AAFC Agriculture and Agri Food Canada (2008) Analysis of the logistical costs associated with
second generation biofuel feedstocks modelled supply chain logistical costs associated
with cellulosic ethanol production in Canada. http://www.agr.gc.ca/eng/about-us/
publications/economic-publications/alphabetical-listing/analysis-of-the-logisticalcosts-
associated-with-second-generation-biofuel-feedstocks-modelled-supply-chain-logistical-
costs-associatedwith-cellulosic-ethanol-production-in-canada/?id=1247181726624. In.
Offset Carbon Emissions the Prakriti Way. EINPresswire. Retrieved from https://
www.einnews.com/pr_news/543030967/offset-carbon-emissions-the-prakriti-way
PowerMax (2015) 1000kw Biomass pyrolysis/gasification system technical specification. http://
powermax1234.en.ec21.com/Biomass_Gasifier_Power_Plant--7762130_7762661.html.
In.
Massacres and paramilitary land seizures behind the biofuel revolution. (2007). The Guardian.
Retrieved from https://www.theguardian.com/world/2007/jun/05/colombia.energy
An Assessment of the Benefits and Issues Associated with the Application of Biochar to Soil.
(2009). Retrieved from http://www.geos.ed.ac.uk/homes/sshackle/
SP0576_final_report.pdf
‘Climate fix’ ship sets sail with plan to dump iron. (2009). New Scientist, 201(2691), 5.
doi:https://doi.org/10.1016/S0262-4079(09)60121-4
DIRECTIVE 2009/31/EC OF THE EUROPEAN PARLIAMENT AND OF THE COUNCIL of 23!
April 2009 on the geological storage of carbon dioxide and amending Council Directive
85/337/EEC, European Parliament and Council Directives 2000/60/EC, 2001/80/EC,
2004/35/EC, 2006/12/EC, 2008/1/EC and Regulation (EC) No! 1013/2006, L 140/114
Stat. (2009).
Ocean fertilisation geoengineering experiment fails. (2009). New Scientist, 201(2701), 5.
doi:http://dx.doi.org/10.1016/S0262-4079(09)60825-3
Ocean Fertilization: A Scientific Summary for Policy Makers. (2010). Retrieved from http://
www.igbp.net/download/18.1b8ae20512db692f2a680004381/1376383081959/
oceanfertilization.pdf
Report to Congress, Ocean Fertilization: The potential of ocean fertilization for climate change
mitigation. (2010). Retrieved from https://www.gc.noaa.gov/documents/
2010_climate_fert_rept_Congress_final.pdf
Carbon Sequestration in Agricultural Soils. A Multidisciplinary Approach to Innovative Methods.
(2012).
IRENA International Renewable Energy Agency (2012) Renewable Energy Technologies: Cost
Analysis Series. Biomass for power generation. . (2012). In (Vol. 1).
. The Social Dynamics of Carbon Capture and Storage: Understanding CCS Representations,
Governance and Innovation. (2012).
Stripping CO
2
from air requires largest ever industry. (2012). New Scientist, 214(2859), 4.
doi:http://dx.doi.org/10.1016/S0262-4079(12)60863-X
Advanced Biofuels and Bioproducts. (2013).
Biochar and Soil Biota. (2013). CRC Press.
. Biofuel Crops and Soil Quality and Erosion. (2013). In B. P. Singh (Ed.), Biofuel Crop
Sustainability (pp. 261-297).
Negative emissions technologies could become the world's largest industry. (2013).
Proceedings of the Institution of Civil Engineers-Civil Engineering, 166(2), 51-51.
doi:10.1680/cien.2013.166.2.51
Carbon dioxide adsorption on coconut shell biochar. (2014). Paper presented at the 13th
International Conference on Clean Energy 2014 (ICCE 2014). http://psasir.upm.edu.my/
31790/
Heavy Metal Removal Efficiency of Paper Mulberry Biochar and Commercially Available Silica
Powder from Simulated Industrial Wastewater. (2014). Iranica Journal of Energy &
Environment, 5(4), 446-452. doi:10.5829/idosi.ijee.2014.05.04.12
Influence of biochar on growth and photosynthetic attributes of Triticum aestivum L. under half
and full irrigation. (2014). International Journal of Biosciences (IJB), 5(7), 101 - 108.
doi:10.12692/ijb/5.7.101-108
Phytoremediation Phytomanagement: Phytoremediation and the Production of Biomass for
Economic Revenue on Contaminated Land. (2014). Cham: Springer International
Publishing.
Quantifying the Effects of Moisture Content on Transport and Adsorption of Methane through
Biochar in Landfills. (2014). Retrieved from http://cedb.asce.org/cgi/WWWdisplay.cgi?
318418
. Biochar amendment inproves lettuce quality in metal contaminated soils. (2015). In XIII FISV
Congress Book of Abstracts.
Biochar for Climate Change Mitigation and Ameliorating Soil Health—A Review. (2015). Journal
of AgriSearch, 2(1), 1-6. Retrieved from http://jsure.org.in/journal/index.php/jas/article/
view/120
Biomass pyrolysis in a vertical auger reactor: Effect of operational conditions on products yields
and analysis of bio-oil and biochar characteristics. (2015). In B. Patrick, Z. Dan, G.
Stéphane, & V. G. S. Raghavan (Eds.).
Characterization and Surface Analysis of Commercially Available Biochars for
Geoenvironmental Applications. (2015). Paper presented at the IFCEE 2015IFCEE
2015, San Antonio, TexasReston, VA. http://ascelibrary.org/doi/abs/
10.1061/9780784479087.245
Characterization of biochar from rice hulls and wood chips produced in a top-lit updraft biomass
gasifier. (2015). Paper presented at the 2015 ASABE International Meeting2015 ASABE
International Meeting. http://elibrary.asabe.org/abstract.asp?aid=46252
Comparison of Standard Soil Amendments and Calcined Clay on Crop Yields in an Urban
Garden at the University of North Carolina Asheville, Asheville, North Carolina. (2015).
Journal of Undergraduate Research. Retrieved from http://libres.uncg.edu/ir/unca/f/
P_Johnston_Comparison_JrnlUngRes_2014.pdf
Contrasting agronomic response of biochar amendment to a Mediterranean Cambisol:
Incubation vs. field experiment. (2015). Geophysical Research Abstracts. Retrieved from
http://meetingorganizer.copernicus.org/EGU2015/EGU2015-1480.pdf
Evaluating the role of Bio-char application under two levels of water requirements on wheat
production under sandy soil conditions. (2015). Global Journal of Advanced Research.
Retrieved from http://gjar.org/publishpaper/vol2issue2/u38.pdf
. Evolution of biochar properties in soil. (2015). In J. P. Joseph, U. Minori, A. Samuel, & M. W. I.
Schmidt (Eds.), Biochar for Environmental Management: Science and Technology and
Implementation.
Exploration of Lignocellulosic Biomass Precision Pyrolysis for Advanced Biofuel Production.
(2015). Paper presented at the 2015 ASABE International Meeting2015 ASABE
International Meeting. http://elibrary.asabe.org/abstract.asp?aid=46139
Growth performance of goats was improved when a basal diet of foliage of Bauhinia acuminata
was supplemented with water spinach and biochar. (2015). Livestock Research for Rural
Development, 27(3). Retrieved from http://lrrd.cipav.org.co/lrrd27/3/sili27058.html
Impact of biochar additions to nitrogen leaching in sand columns. (2015). Paper presented at
the 2015 ASABE International Meeting2015 ASABE International Meeting. http://
elibrary.asabe.org/abstract.asp?aid=45939
Influence of Physico-Chemical Properties of Different Biochars on Landfill Methane Adsorption.
(2015). Paper presented at the IFCEE 2015IFCEE 2015, San Antonio, TexasReston, VA.
http://ascelibrary.org/doi/abs/10.1061/9780784479087.246
Phytoremediation of Mixed Contaminated Soils: Enhancement with Biochar and Compost
Amendments. (2015). Paper presented at the IFCEE 2015IFCEE 2015, San Antonio,
TexasReston, VA. http://ascelibrary.org/doi/abs/10.1061/9780784479087.250
Progress in Clean Energy, Volume 1Carbon Dioxide Adsorption on Coconut Shell Biochar.
(2015). Cham: Springer International Publishing.
Pyrolysis of Bioenergy Crops (Switchgrass and Miscanthus) Grown on Reclaimed Mining Land
in West Virginia. (2015). Paper presented at the 2015 ASABE International Meeting2015
ASABE International Meeting. http://elibrary.asabe.org/abstract.asp?aid=45760
Removal of ammonia from aqueous solution for swine wastewater with swine manure compost-
based char. (2015). Water Practice & Technology, 10(2), 409 - 414. doi:10.2166/
wpt.2015.051
Response of maize varieties (Zea mays) to biochar amended soil in Lafia, Nigeria. (2015).
American Journal of Experimental Agriculture, 5(6), 525-531. Retrieved from http://
www.cabdirect.org/abstracts/20153071748.html
Biochar could be a game changer. (2016). Canadian Cattlemen. Retrieved from https://
www.canadiancattlemen.ca/2017/07/07/biochar-research-to-look-at-methane-emission-
reductions-in-cattle/
IBI International Biochar Initiative (2016) Biochar research and educational resources. http://
www.biocharinternational.org/research/education [Accessed 10 Dec 2015]. (2016). In.
Analysis of Options to Overcome Barriers to Unilateral and Multilateral Large-Pilot Projects for
Fossil Fuel Based Power Plants Equipped with CCS. (2017). Retrieved from http://
64.106.168.122/webfiles/CURC/Final%20Report%20-
%20Analysis%20of%20Options%20for%20Financing%20CCUS%20Projects.pdf
Bioenergy combined with CCS will help UK to transition to low-carbon energy economy, expert
says. (2017). Retrieved from http://www.bioenergy-news.com/display_news/13180/
bioenergy_combined_with_ccs_will_help_uk_to_transition_to_lowcarbon_energy_econo
my_expert_says/
Can Regenerative Agriculture & Healthy Soils Help Combat Climate Change (David C.
Johnson). (2017). Youtube.
. Can Seaweed Save the World? (2017). In: Australian Broadcasting Corporation.
. CCS technology glossary. (2017). In S. A. Rackley (Ed.), Carbon Capture and Storage
(Second Edition) (pp. 635-643). Boston: Butterworth-Heinemann.
China is Building Carbon Capturing Plants to Reduce Greenhouse Gas Emissions. (2017).
Retrieved from https://futurism.com/china-is-building-carbon-capturing-plants-to-reduce-
greenhouse-gas-emissions/
Crystallization Method Offers New Option for Carbon Capture from Ambient Air. (2017). FARS
News Agency. Retrieved from https://www.ornl.gov/news/crystallization-method-offers-
new-option-carbon-capture-ambient-air
Enerkem begins commercial production of cellulosic ethanol from garbage at its state-of-the-art
Edmonton biofuels facility. (2017). Markets Inside. Retrieved from http://
markets.businessinsider.com/news/stocks/Enerkem-begins-commercial-production-of-
cellulosic-ethanol-from-garbage-at-its-state-of-the-art-Edmonton-biofuels-
facility-1002375379
ExxonMobil and Synthetic Genomics achieve algae biofuel breakthrough. (2017). Retrieved
from https://ilbioeconomista.com/2017/06/21/exxonmobil-and-synthetic-genomics-
achieve-algae-biofuel-breakthrough/
Funding for North Sea carbon capture study announced by Nicola Sturgeon. (2017). BBC News.
Retrieved from http://www.bbc.com/news/uk-scotland-north-east-orkney-
shetland-41167176
Greenhouse gases must be scrubbed from the air. (2017). The Economist. Retrieved from
https://www.economist.com/news/briefing/21731386-cutting-emissions-will-not-be-
enough-keep-global-warming-check-greenhouse-gases-must-be
How Biochar supports the UN Sustainable Development Goals. (2017). Retrieved from http://
fingerlakesbiochar.com/how-biochar-supports-the-un-sustainable-development-goals/
US ADM begins carbon capture project in Illinois. (2017). ICIS News. Retrieved from https://
www.icis.com/resources/news/2017/04/07/10095982/us-adm-begins-carbon-capture-
project-in-illinois/
What they don’t tell you about climate change. (2017). The Economist. Retrieved from https://
www.economist.com/news/leaders/21731397-stopping-flow-carbon-dioxide-atmosphere-
not-enough-it-has-be-sucked-out
Carbon Capture and Sequestration Protocol Under the Low Carbon Fuel Standard. (2018). In:
California Air Resources Board.
CARBON DIOXIDE REMOVAL, INCLUDING CARBON SEQUESTRATION IN NATURAL
SYSTEMS. (2018). WWF Climate & Energy Position Paper. Retrieved from https://
wwfeu.awsassets.panda.org/downloads/
wwf_1_5c_position_paper___carbon_dioxide_removal_including_carbon_sequestration
_in_natur.pdf
Carbon Engineering raises $11M to commercialize its technology that creates clean fuel from
air. (2018). Global Newswire. Retrieved from https://globenewswire.com/news-release/
2018/07/12/1536582/0/en/Carbon-Engineering-raises-11M-to-commercialize-its-
technology-that-creates-clean-fuel-from-air.html
Extracting carbon dioxide from the air is possible. But at what cost? (2018). The Economist.
Retrieved from https://www.economist.com/science-and-technology/2018/06/07/
extracting-carbon-dioxide-from-the-air-is-possible.-but-at-what-cost
The IPCC's Recipe for a Livable Planet: Grow Trees, Don't Burn Them. (2018). Retrieved from
http://www.pfpi.net/the-ipccs-recipe-for-a-livable-planet-grow-trees-dont-burn-them
Land Management Practices for Carbon Dioxide Removal and Reliable Sequestration. (2018).
Retrieved from https://www.nap.edu/download/25037#
Marginalized by Conservation: The Billion Tree Tsunami Project. (2018). Jamhoor. Retrieved
from https://www.jamhoor.org/read/2018/2/8/marginalized-by-conservation-the-billion-
trees-tsunami-project
(2018, November 16). Marine Permaculture with Brian Von Herzen [Retrieved from http://
thedrawdownagenda.com/podcast/episode-8-marine-permaculture-with-brian-von-
herzen/
Negative emissions: Scientists meet in Sweden for first international conference. (2018).
CarbonBrief. Retrieved from https://www.carbonbrief.org/negative-emissions-scientists-
meet-sweden-first-international-conference
Why current negative-emissions strategies remain 'magical thinking'. (2018). Nature, 554, 404.
Retrieved from https://www.nature.com/articles/d41586-018-02184-x
Carbon removal requires multiple technologies. (2019). Physics World. Retrieved from https://
physicsworld.com/a/carbon-removal-requires-multiple-technologies/
Climate change: ‘Magic bullet‘ carbon solution takes big step. (2019). Stock Daily Dish.
Retrieved from https://stockdailydish.com/climate-change-magic-bullet-carbon-solution-
takes-big-step/
Do 'mechanical trees' offer the cure for climate change? (2019). Strait Times. Retrieved from
https://www.straitstimes.com/world/united-states/do-mechanical-trees-offer-the-cure-for-
climate-change
Drax strengthens biomass sustainability policy and appoints Independent Advisory Board
(2019). [Press release]. Retrieved from Drax strengthens biomass sustainability policy
and appoints Independent Advisory Board
Enhancing Fossil Fuel Energy Carbon Technology Act, S. 1201, U.S. Senate, Committee on
Energy and Natural Resources (2019).
Geoengineering Developments: Carbon Capture, Venture Capital and Would-be Megaprojects.
(2019). Geoengineering Monitor. Retrieved from http://www.geoengineeringmonitor.org/
2019/05/geoengineering-developments-carbon-capture-venture-capital-and-would-be-
megaprojects/
Grant for climate-positive agriculture. (2019). Southwest Daily News. Retrieved from http://
www.sulphurdailynews.com/news/grant-for-climate-positive-agriculture/
article_3f2f1ce0-2ce9-5ada-9478-3b6e1c9126bc.html
A Hard Look at Negative Emissions. (2019). Kleinman Center for Energy Policy, University of
Pennsylvania.
Is het verstandig van Staatsbosbeheer om een deal te sluiten met Shell? (2019). Trouw.
Retrieved from https://www.trouw.nl/nieuws/is-het-verstandig-van-staatsbosbeheer-om-
een-deal-te-sluiten-met-shell~b9ec6f5f/?
referrer=https%3A%2F%2Fwww.desmog.co.uk%2F
The necessity of pulling carbon dioxide out of the air. (2019). The Economist. Retrieved from
https://www.economist.com/leaders/2019/12/07/the-necessity-of-pulling-carbon-dioxide-
out-of-the-air
Powerful Mechanical Trees Can Remove CO2 From the Air to Combat Global Warming at
Scale. (2019). Business Wire. Retrieved from https://www.businesswire.com/news/
home/20190429005245/en/
Researchers: Recycle CO2 in Floating Methanol Power Plants. (2019). The Maritime Executive.
Retrieved from https://www.maritime-executive.com/article/researchers-recycle-co2-in-
floating-methanol-power-plants
Risky Dreams: Carbon Capture, Utilization, and Storage (CCUS) (Original Japanese name of
translated article: “Enerugi Kankyo Gijyutsu no Potential Jitsuyoka Hyoka Kentokai").
(2019). Retrieved from https://www.kikonet.org/eng/publication-en/2019-08-15/paper-on-
ccus
Studying the Societal Dimensions of Atmospheric Carbon Removal. (2019). Paper presented at
the Workshop on Human/Societal Dimensions of a New Carbon Economy with
Carbon180, Washington, DC.
To support carbon dioxide utilization and direct air capture research, to facilitate the permitting
and development of carbon capture, utilization, and sequestration projects and carbon
dioxide pipelines, and for other
purposes., S383, U.S. Senate (2019).
222 organizations reject “Growing Climate Solutions Act”. (2020). Retrieved from https://foe.org/
news/organizations-reject-growing-climate-solutions-act/
Bioenergy with carbon capture and storage (BECCS). (2020). Retrieved from https://
post.parliament.uk/research-briefings/post-pn-0618/
bp Acquires Majority Stake in Largest US Forest Carbon Offset Developer Finite Carbon.
(2020). [Press release]. Retrieved from https://www.finitecarbon.com/2020/12/16/bp-
acquires-majority-stake-in-largest-us-forest-carbon-offset-developer-finite-carbon/?
utm_source=newsletter&%3Butm_medium=rss&%3Butm_campaign=bp-acquires-
majority-stake-in-largest-us-forest-carbon-offset-developer-finite-
carbon&utm_medium=email&utm_campaign=verge&utm_content=2020-12-30&mkt_tok
=eyJpIjoiWkRJME5XVmhNemMxWVRGaiIsInQiOiJZQ0F1XC8rTGFra2RmVXNrNXdua
EdiSVRWUmtsbkVDTkM2ZzNsTFBoRkVSR0t4K1wvVE4xM3dzUVo0czVUNkZ4VkdIVn
J6WFBGalh3T0cxSkt4YzI5VmFFdUlyWlJQK2NsSEgwTGRycHRUQmRpZUIrTncrUHJO
NlV0WnZjM2tNd081ZXI2MEdZM2Z2Y21MSnFOZWdHOWs3bXRvcktlY09aVU1LanRPd
Ep0TjJZVT0ifQ%3D%3D
California And Trump Push Geoengineering—A Fraught Climate Crisis Fix. (2020). The Real
News Network. Retrieved from https://therealnews.com/stories/california-trump-
geoengineering-direct-air-capture-technology
Carbon Capture Coalition Statement on the Introduction of the Accelerating Carbon Capture and
Extending Secure Storage Act through 45Q (ACCESS 45Q Act). (2020). Retrieved from
https://carboncapturecoalition.org/carbon-capture-coalition-statement-on-the-
introduction-of-the-accelerating-carbon-capture-and-extending-secure-storage-act-
through-45q-access-45q-act/
Carbon Capture Coalition Welcomes IRS Issuance of Final 45Q Rule. (2020). Retrieved from
https://carboncapturecoalition.org/carbon-capture-coalition-welcomes-irs-issuance-of-
final-45q-rule/
Carbon removal mechanisms. (2020). Carbon Plan. Retrieved from https://carbonplan.org/
research/carbon-removal-mechanisms?s=09
The case for carbon action. (2020). Bangkok Post. Retrieved from https://
www.bangkokpost.com/business/2038751/the-case-for-carbon-action
CREATE Act of 2020, S. 4341 (2020).
Credit for Carbon Oxide Sequestration. (2020). Retrieved from https://www.irs.gov/pub/irs-drop/
td-9944.pdf
Dr Charles DeLisi – Genetically Engineered Plants: A Potential Solution to Climate Change.
(2020). Scientia Retrieved from https://www.scientia.global/dr-charles-delisi-genetically-
engineered-plants-a-potential-solution-to-climate-change/
Drax launches Biomass Carbon Calculator to measure supply chain emissions. (2020).
Bioenergy Insight. Retrieved from https://www.bioenergy-news.com/news/drax-launches-
biomass-carbon-calculator-to-measure-supply-chain-emissions/
Drax’s new biomass policy paves the way for world-leading sustainability standard (2020).
[Press release]. Retrieved from https://www.drax.com/press_release/draxs-new-
biomass-policy-paves-the-way-for-world-leading-sustainability-standard/
Driving Action for Carbon Neutrality: British-Nordic Experiences of Negative Emissions
Technologies in Practice. (2020). Retrieved from http://negative-emissions.info/
2020/10/15/driving-action-for-carbon-neutrality-british-nordic-experiences-of-negative-
emissions-technologies-in-practice/
Energy Technology Perspectives 2020: Special Report on Carbon Capture Utilisation and
Storage CCUS in clean energy transitions. (2020). Retrieved from https://www.iea.org/
reports/ccus-in-clean-energy-transitions
Environmental Justice and Carbon Removal. (2020). [Mobile application software]. Retrieved
from https://www.youtube.com/watch?v=PAvkZ5Rt-P8&feature=youtu.be
Exxon holds back on technology that could slow climate change. (2020). Retrieved from https://
www.livemint.com/industry/energy/exxon-holds-back-on-technology-that-could-slow-
climate-change-11607353597868.html
Global Carbon Capture Technology Leaders, Svante and Climeworks, Agree to Collaborate on
Solutions for a Net-Zero-Emissions World. (2020). BusinessWire. Retrieved from https://
www.businesswire.com/news/home/20200127005396/en/Global-Carbon-Capture-
Technology-Leaders-Svante-Climeworks
Guest post: Who should be responsible for removing CO2 from the atmosphere? (2020).
CarbonBrief. Retrieved from https://www.carbonbrief.org/guest-post-who-should-be-
responsible-for-removing-co2-from-the-atmosphere/amp
How Green Sand May Save Us. (2020). YouTube: Project Vesta.
An investor guide to negative emission technologies and the importance of land use. (2020).
Retrieved from https://www.unpri.org/download?ac=11980
LLNL, partners open access to CO2 storage simulator. (2020). [Press release]. Retrieved from
https://www.llnl.gov/news/llnl-partners-open-access-co2-storage-simulator
Menendez Releases Inspector General Investigation Finding Fossil Fuel Companies Improperly
Claimed Nearly $1B in Clean Air Tax Credits. (2020). [Press release]. Retrieved from
https://www.menendez.senate.gov/newsroom/press/menendez-releases-inspector-
general-investigation-finding-fossil-fuel-companies-improperly-claimed-nearly-1b-in-
clean-air-tax-credits
Microsoft pledges to be 'carbon negative' by 2030. (2020). The Guardian. Retrieved from https://
www.theguardian.com/technology/2020/jan/16/microsoft-carbon-emissions-
negative-2030
Microsoft Unveils Plan to Go ‘Carbon Negative’. (2020). CFO. Retrieved from https://
www.cfo.com/strategy/2020/01/microsoft-unveils-plan-to-go-carbon-negative/
Nature-based Solutions to Climate Change. (2020). Retrieved from https://nbsguidelines.info/
. Ocean Alkalinity Enhancement. (2020) [YouTube]. In.
Oceans 2050 Leads Global Effort to Quantify Seaweed Carbon Sequestration. (2020). 3BL
CSWire.
Oxford launches new principles for credible carbon offsetting. (2020). Retrieved from https://
www.ox.ac.uk/news/2020-09-29-oxford-launches-new-principles-credible-carbon-
offsetting
The Oxford Principles for Net Zero Aligned Carbon Offsetting. (2020). Retrieved from https://
www.smithschool.ox.ac.uk/publications/reports/Oxford-Offsetting-Principles-2020.pdf
Oxy Low Carbon Ventures, Rusheen Capital Management Create Development Company
1PointFive to Deploy Carbon Engineering's Direct Air Capture Technology. (2020).
Retrieved from https://www.1pointfive.com/launch-release
Regenerative Organic Certification, progress towards a Biogeotherapy Certification. (2020).
Retrieved from https://cologie.wordpress.com/2020/08/02/regenerative-organic-
certification-progress-towards-a-biogeotherapy-certification-regeneratrice-biologique-
progres-vers-une-biogeotherapie/
Remove: Carbon Capture and Storage. (2020). Retrieved from https://
www.globalccsinstitute.com/resources/publications-reports-research/remove-ccs/
Removing CO2 from the atmosphere and the Desarc-Maresanus project. (2020). Eureka Alert.
Retrieved from https://www.eurekalert.org/pub_releases/2020-02/pdm-rcf021020.php
Toshiba Starts Operation of Large-Scale Carbon Capture Facility -Towards the world’s first
negative emission biomass power plant- (2020). [Press release]. Retrieved from https://
www.toshiba-energy.com/en/info/info2020_1031.htm
What if carbon removal became the new Big Oil? (2020). The Economist. Retrieved from https://
www.economist.com/the-world-if/2020/07/04/what-if-carbon-removal-becomes-the-new-
big-oil
4th Puro.earth Carbon Removal Ecosystem Meeting. (2021).
$100M XPRIZE FOR CARBON REMOVAL FUNDED BY ELON MUSK TO FIGHT CLIMATE
CHANGE. (2021). Retrieved from https://www.xprize.org/prizes/elonmusk/articles/100m-
xprize-for-carbon-removal-funded-by-elon-musk-to-fight-climate-change
Abbott Produces Power… and Data. (2021). Retrieved from https://fs.web.illinois.edu/Insider/
2021/05/07/abbott-produces-power-and-data/
Accenture Helps Climeworks Filter More CO2 from the Air and Inspire One Billion People to Be
Climate Positive. (2021). Business Wire. Retrieved from https://www.businesswire.com/
news/home/20210701005110/en/Accenture-Helps-Climeworks-Filter-More-CO2-from-
the-Air-and-Inspire-One-Billion-People-to-Be-Climate-Positive
Aligning Voluntary Carbon Markets with the 1.5C Paris Agreement Ambition. (2021). Retrieved
from https://vcmintegrity.org/consultation-hub/
America’s Revegetation and Carbon Sequestration Act of 2021. (2021). Retrieved from https://
go.politicoemail.com/?
qs=2a8b8bd9d467c5053ccb2436ef3af5ce515766c3a26b83dba80294bb8e96580b51eb6
6a78887c3ad72284504417f0e8e
Apple and partners launch first-ever $200 million Restore Fund to accelerate natural solutions to
climate change (2021). [Press release]. Retrieved from https://www.apple.com/
newsroom/2021/04/apple-and-partners-launch-first-ever-200-million-restore-fund/
Barrasso: Wyoming is on the cutting edge of carbon capture research and innovation. (2021).
Retrieved from https://www.kulr8.com/news/barrasso-wyoming-is-on-the-cutting-edge-of-
carbon-capture-research-and-innovation/article_4e083760-
a3a9-11eb-8146-6f2e24ba21fa.html
Best CO2 Utilisation 2021:The three winners of the innovation award are turning CO2 into
methanol, cleaners, plastic packaging or surfactants. (2021). Bio-Based News. Retrieved
from https://news.bio-based.eu/best-co2-utilisation-2021-the-three-winners-of-the-
innovation-award-are-turning-co2-into-methanol-cleaners-plastic-packaging-or-
surfactants/
Beyond Carbon Neutral: CarbonCure’s Investments to Fight Climate Change, Internally and
Globally. (2021). Retrieved from https://www.carboncure.com/concrete-corner/beyond-
carbon-neutral-carboncures-investments-to-fight-climate-change-internally-and-globally/
Beyond Climate Neutrality (2021). Retrieved from https://www.wbgu.de/en/publications/
publication/pp12-2021
Biphasic CO2 Absorption Process (BiCAP). (2021). Retrieved from https://www.istc.illinois.edu/
research/energy/carbon_capture/BiCAP/
The California Climate Crisis Act, AB 1395 (2021).
. Can An Abundant Green Mineral Capture CO2 From The Atmosphere? --EXPLAINED! (2021).
In: India Science.
Carbon Capture. (2021). Retrieved from https://icap.sustainability.illinois.edu/project/carbon-
capture
Carbon Capture and Storage: An Expensive and Dangerous Proposition for Louisiana. (2021).
Retrieved from https://www.ciel.org/carbon-capture-and-storage-an-expensive-and-
dangerous-proposition-for-louisiana-communities/
Carbon capture innovator completes £8m funding round. (2021). Retrieved from https://
www.powerengineeringint.com/emissions-environment/carbon-capture-innovator-
completes-8m-funding-round/
Carbon Dioxide (CO2) as Chemical Feedstock for Polymers – already nearly 1 million tonnes
production capacity installed! (2021). Bio-Based News. Retrieved from https://news.bio-
based.eu/carbon-dioxide-co2-as-chemical-feedstock-for-polymers-already-nearly-1-
million-tonnes-production-capacity-installed/
Carbon Dioxide Removal with Roger Aines. (2021). [Mobile application software]. Retrieved
from https://podcasts.apple.com/us/podcast/carbon-dioxide-removal-with-roger-aines/
id1565404483?i=1000531561674
Carbon Engineering | Direct Air Capture of CO2 from the Atmosphere. (2021). [Mobile
application software]. Retrieved from https://www.youtube.com/watch?
v=Rf7pTfCxNW4&list=PLF8369A27273314D8
(2021). Carbon removal in the Biden Administration—w/ Dr. Jan Mazurek, ClimateWorks
Foundation [Retrieved from https://nori.com/podcasts/reversing-climate-change/S2E63-
Carbon-removal-in-the-Biden-Administrationw-Dr--Jan-Mazurek--ClimateWorks-
Foundation-e106dhl
CarbonCure’s Path to the Decarbonization of Concrete. (2021). Retrieved from http://
go.carboncure.com/rs/328-NGP-286/images/
CarbonCure%27s%20Path%20to%20the%20Decarbonization%20of%20Concrete%20e
Book.pdf
China Pursuing Bigger Ocean Carbon Sinks to Help Meet Climate Goals. (2021). Marine
Technology News. Retrieved from https://www.marinetechnologynews.com/news/china-
pursuing-bigger-ocean-613301
CJA Condemns the US Senate’s Vote for a False Promise: the Growing Climate Solutions Act.
(2021). Retrieved from https://climatejusticealliance.org/cja-condemns-the-us-senates-
vote-on-a-false-promise-the-growing-climate-solutions-act/
Clean Tech Company, CarbonCure Wins NRG COSIA Carbon XPRIZE. (2021). [Press release].
Retrieved from https://www.carboncure.com/news/clean-tech-company-carboncure-
wins-nrg-cosia-carbon-xprize/
Companies Commit to Development of Carbon Capture at Biomass Plants. (2021). Renewable
Energy Magazine. Retrieved from https://www.renewableenergymagazine.com/biomass/
companies-commit-to-development-of-carbon-capture-20210310
Council on Environmental Quality Report to Congress on Carbon Capture, Utilization, and
Sequestration. (2021). Retrieved from https://www.google.com/url?
sa=t&rct=j&q=&esrc=s&source=web&cd=&ved=2ahUKEwjwmsrb0cPxAhWFQs0KHapiB
1UQFnoECAQQAw&url=https%3A%2F%2Fwww.whitehouse.gov%2Fwp-
content%2Fuploads%2F2021%2F06%2FCEQ-CCUS-Permitting-
Report.pdf&usg=AOvVaw0mU1qZkYTWeJlUfFrRQfGb
Dac City. (2021). Retrieved from https://www.daccity.com/#intro
Direct Air Capture project awarded funding under Government plans to make UK world leader in
Greenhouse Gas Removals. (2021). [Press release]. Retrieved from https://
carbonengineering.com/news-updates/dac-project-awarded-funding/?
utm_campaign=Newsletter%20Content&utm_source=email&utm_content=Q2%202021
%20Carbon%20Quarterly
Direct Air Carbon Dioxide Capture & Storage (DACCS). (2021). Retrieved from https://
www.c2g2.net/wp-content/uploads/DACCS-Policy-Brief.pdf
The Direct-Air Capture Debate. (2021). Anthropocene. Retrieved from https://
www.anthropocenemagazine.org/2021/03/the-direct-air-capture-debate/
The Direct-Air Capture Debate. (2021). Anthropocene. Retrieved from https://
www.anthropocenemagazine.org/2021/03/the-direct-air-capture-debate/?
utm_source=Anthropocene&utm_campaign=16b2776c9d-
EMAIL_CAMPAIGN_2019_10_17_02_17_COPY_01&utm_medium=email&utm_term=0
_ececcea89a-16b2776c9d-294293021
DOE to award up to $24M to advance direct air carbon capture technology. (2021). Retrieved
from https://www.greencarcongress.com/2021/03/20210306-dac.html
Drax and Mitsubishi Heavy Industries sign pioneering deal to deliver the world’s largest carbon
capture power project. (2021).
The Economist Group becomes first media group to include Climeworks’ carbon dioxide
removal in its sustainability strategy (2021). Retrieved from https://climeworks.com/
news/the-economist-group-includes-climeworks-in-its-sustianability-strategy
Effectively Removing CO2 From the Atmosphere (2021). The Ritz Herald. Retrieved from
https://ritzherald.com/effectively-removing-co2-from-the-atmosphere/
Elizabeth Kolbert: Driving across Iceland to visit my carbon emissions (2021). Wisconsin State
Journal. Retrieved from https://madison.com/wsj/opinion/column/elizabeth-kolbert-
driving-across-iceland-to-visit-my-carbon-emissions/
article_f485ebc3-469b-5ad7-94ef-83004f8daf77.html
Exxon Mobil to invest $3 billion in carbon capture and other projects to lower emissions. (2021).
New York Times. Retrieved from https://www.nytimes.com/2021/02/01/business/energy-
environment/exxon-mobil-carbon-capture.html
Flagstaff City Council Wants Community Feedback On The City’s Carbon Neutrality Plan.
(2021). Retrieved from https://gcmaz.com/kaff-news/kaff_news/flagstaff-city-council-
wants-community-feedback-on-the-citys-carbon-neutrality-plan/
From net-zero to net-negative: policy implications for Carbon Dioxide Removal. (2021). [Mobile
application software]. Retrieved from https://www.youtube.com/watch?v=Ngq4CzbQ_EA
Gemini Offsets Bitcoin Carbon Emissions, Launches Gemini Green. (2021). Retrieved from
https://aithority.com/technology/cryptocurrency/gemini-offsets-bitcoin-carbon-emissions-
launches-gemini-green/
Geoengineering Map. (2021).
Georgia Tech Researchers Awarded Total of $4.35 Million in 2020 for Direct Air Capture
Projects. (2021). [Press release]. Retrieved from https://rh.gatech.edu/news/645171/
georgia-tech-researchers-awarded-total-435-million-2020-direct-air-capture-projects-0
The Godfather of Carbon Capture: Klaus Lackner Interview. (2021).
Growing Climate Solutions Act of 2021, S1251 (2021).
How an Australian biochar start-up inspired Microsoft’s negative carbon plan. (2021). Retrieved
from https://reneweconomy.com.au/how-an-australian-biochar-start-up-inspired-
microsofts-negative-carbon-plan/amp/
How Finland’s Puro.earth plans to scale up carbon removal to help the world reach net zero
emissions. (2021). European Ceo. Retrieved from https://www.europeanceo.com/
profiles/how-finlands-puro-earth-plans-to-scale-up-carbon-removal-to-help-the-world-
reach-net-zero-emissions/
It’s Time to End the Carbon Capture of Climate Policy: 500+ Organizations Call on US and
Canadian Leaders to Reject Carbon Capture and Storage as a False Solution to Climate
Crisis. (2021). Retrieved from https://www.ciel.org/news/end-the-carbon-capture-of-
climate-policy/
Kurzgutachten im Rahmen der dena-Leitstudie Aufbrauch Klimaneutralität. (2021). Retrieved
from https://www.dena.de/newsroom/publikationsdetailansicht/pub/kurzgutachten-im-
rahmen-der-dena-leitstudie-aufbrauch-klimaneutralitaet/
Major global initiative to bring rigour and transparency to net zero and carbon neutral claims.
(2021). [Press release]. Retrieved from https://www.climateaction.org/news/major-global-
initiative-to-bring-rigour-and-transparency-to-net-zero-and-ca?
vgo_ee=YZXCRBjwlNF75YoVimf7JQ%3D%3D
Muratsuchi’s Climate Crisis Act Passes Senate Committee (2021). The Rafu Shimpo. Retrieved
from https://rafu.com/2021/07/muratsuchis-climate-crisis-act-passes-senate-committee/
Oslo CCS project is one step closer to EU funding. (2021). Retrieved from https://bellona.org/
news/ccs/2021-03-olso-ccs-project-is-one-step-closer-to-innovation-fund
Our CO2 solution. How MCi is addressing the challenge of CO2 emissions. (2021). Retrieved
from https://www.mineralcarbonation.com/our-co2-solution
Policies for the promotion of BECCS in the Nordic countries. (2021). (538). Retrieved from
https://pub.norden.org/temanord2021-538/#
Polychroniou, C.J. (2021). TruthOut. Retrieved from https://truthout.org/articles/chomsky-and-
pollin-we-cant-rely-on-private-sector-for-necessary-climate-action/
Project to Test CO2 Capture is First Funded with Support from Office of Proposal Development.
(2021). Retrieved from http://research.illinois.edu/features/project-test-co2-capture-first-
funded-support-office-proposal-development
Project Vesta announces $1.6M grant from Additional Ventures. (2021). Cision PR Newswire.
Retrieved from https://www.prnewswire.com/news-releases/project-vesta-
announces-1-6m-grant-from-additional-ventures-301248574.html
Puro.earth chosen by Microsoft for carbon dioxide removal (2021). Retrieved from https://
puro.earth/articles/puro-earth-chosen-by-microsoft-for-carbon-dioxide-removal-583
Reforestation Directory. (2021). Mongabay. Retrieved from https://reforestation.app/?
sort=Context&country=All&filters=%5B%5D&embed=false&embedType=null&id=undefin
ed
Responsible Carbon Removal Means Putting Science First. (2021). Retrieved from https://
carbon-direct.com/responsible-carbon-removal-means-putting-science-first/
Schlumberger, Chevron, Microsoft plan BECCS project in California. (2021). Biomass
Magazine. Retrieved from http://www.biomassmagazine.com/articles/17779/
schlumberger-chevron-microsoft-plan-beccs-project-in-california
Should We Genetically Engineer Carbon-Hungry Trees? . (2021). Freethink. Retrieved from
https://www.freethink.com/articles/genetically-modified-trees
Source materials supporting Stripe Climate carbon removal purchases (2021). In: Stripe.
Startup Plans To Remove 1 Billion Tons of CO2 from Atmosphere by 2035, By Turning It To
Stone (2021). Retrieved from https://www.indianweb2.com/2021/06/startup-plans-to-
remove-1-billion-tons.html
State seeks input on ways to protect communities from climate change. (2021). Appeal-
Democrat (Marysville, CA). Retrieved from https://news.yahoo.com/state-seeks-input-
ways-protect-040100396.html
Summit Agricultural Group Announces Creation of Summit Carbon Solutions and World’s
Largest Carbon Capture and Storage Project. (2021). [Press release]. Retrieved from
https://www.summitag.com/news/summitcarbonsolutions
Supporting the projects needed to solve the climate crisis. (2021). Retrieved from https://
www.milkywire.com/giveone/climateinitiative-readmore
Taskforce on Scaling Voluntary Carbon Markets: Final Report. (2021). Retrieved from https://
www.iif.com/Portals/1/Files/TSVCM_Report.pdf
Third Global Olivine Conference (2021). In.
This Is CDR EP06: SEA MATE with Matthew Eisaman, PhD. (2021). [Mobile application
software]. Retrieved from https://www.youtube.com/watch?
v=950SLzuAuCo&list=PLF8369A27273314D8
This Is CDR EP07: Geological Sequestration with David Goldberg, PhD. (2021). [Mobile
application software]. Retrieved from https://www.youtube.com/watch?
v=qqpYVXfqr9Q&list=PL1je2pACUAbKdS4529vLLHgZR2MGk9KLm&index=8
This Machine Will Make Seashells Out of CO2 (2021). Freethink. Retrieved from https://
www.freethink.com/articles/making-seashells-out-of-co2
This startup grows kelp then sinks it to pull carbon from the air. (2021). Retrieved from https://
www.wthitv.com/content/national/574338522.html
Tim Kruger & Dr Steve Smith in conversation: "Beyond zero: the role of negative emission.
(2021). YouTube. Retrieved from https://www.youtube.com/watch?v=oqN1vTK6J1g
Treasury Department and Internal Revenue Service Release Final Rule on Section 45Q Credit
Regulations. (2021). [Press release]. Retrieved from https://home.treasury.gov/news/
press-releases/sm1227
Two European companies are mapping a future service for direct air capture to sequestration of
CO2. (2021). Tech Crunch. Retrieved from https://techcrunch.com/2021/03/09/two-
european-companies-are-mapping-a-future-service-for-direct-air-capture-to-
sequestration-of-co2/
U.S. Department of the Treasury Announces U.S. Support For a Proposal At the OECD To End
Official Financing Support for Unabated Coal Power. (2021). Retrieved from https://
mondovisione.com/media-and-resources/news/us-department-of-the-treasury-
announces-us-support-for-a-proposal-at-the-oec/
Working on a project to fight climate change? Apply now to be considered for funding. (2021).
Retrieved from https://www.shopify.ca/about/environment/sustainability-fund/application-
process
Aalbers, R., & Bollen, J. (2017). Biomass Energy with Carbon Capture and Storage can reduce
costs of EU’s Energy Roadmap with 15-75%. Retrieved from https://www.cpb.nl/sites/
default/files/omnidownload/CPB-achtergronddocument-Biomass-Energy-with-Carbon-
Capture-and-Storage-can-reduce-costs_0.pdf
Aaron, D., & Tsouris, C. (2005). Separation of CO2 from Flue Gas: A Review. Separation
Science and Technology, 40(1-3), 321-348. doi:10.1081/SS-200042244
Abadie, C., Lacan, F., Radic, A., Pradoux, C., & Poitrasson, F. (2017). Iron isotopes reveal
distinct dissolved iron sources and pathways in the intermediate versus deep Southern
Ocean. Proceedings of the National Academy of Sciences, 114(5), 858-863.
doi:10.1073/pnas.1603107114
Abanades, J. C., Alonso, M., & Rodríguez, N. (2011). Biomass Combustion with in Situ CO2
Capture with CaO. I. Process Description and Economics. Industrial & Engineering
Chemistry Research, 50(11), 6972-6981. doi:10.1021/ie102353s
Abanades, J. C., Arias, B., Lyngfelt, A., Mattisson, T., Wiley, D. E., Li, H., . . . Brandani, S.
(2015). Emerging CO2 capture systems. International Journal of Greenhouse Gas
Control, 40, 126-166. doi:http://dx.doi.org/10.1016/j.ijggc.2015.04.018
Abanades, J. C., Murillo, R., Fernandez, J. R., Grasa, G., & Martínez, I. (2010). New CO2
Capture Process for Hydrogen Production Combining Ca and Cu Chemical Loops.
Environmental Science & Technology, 44(17), 6901-6904. doi:10.1021/es101707t
Abanades, J. C., Rubin, E. S., Mazzotti, M., & Herzog, H. J. (2017). On the climate change
mitigation potential of CO2 conversion to fuels. Energy & Environmental Science,
10(12), 2491-2499. doi:10.1039/C7EE02819A
Abas, F. Z., & Ani, F. N. (2014). Comparing Characteristics of Oil Palm Biochar Using
Conventional and Microwave Heating. Jurnal Teknologi, 68(3), 33-37. Retrieved from
http://www.jurnalteknologi.utm.my/index.php/jurnalteknologi/article/view/2926
Abate, R. S. (2011). A Tale of Two Carbon Sinks: Can Forest Carbon Management Serve as a
Framework to Implement Ocean Iron Fertilization as a Climate Change Treaty
Compliance Mechanism? Seattle J. Environmental Law, 1, 1-19. Retrieved from http://
commons.law.famu.edu/cgi/viewcontent.cgi?article=1004&context=faculty-research
Abate, R. S. (2013). Ocean Iron Fertilization Science, Law, and Uncertainty.
Abate, R. S. (2016). Ocean Iron Fertilization and Indigenous Peoples' Right to Food: Leveraging
International and Domestic Law Protections to Enhance Access to Salmon in the Pacific
Northwest. UCLA Journal of International Law & Foreign Affairs, 45, 45-85. Retrieved
from https://commons.law.famu.edu/cgi/viewcontent.cgi?referer=https://
www.google.com/&httpsredir=1&article=1203&context=faculty-research
Abate, R. S., & Greenlee, A. B. (2010). Sowing Seeds Uncertain: Ocean Iron Fertilization,
Climate Change, and the International Environmental Law Framework. Pace
Environmental Law Review, 27, 555-623. Retrieved from https://www.mendeley.com/
research/sowing-seeds-uncertain-ocean-iron-fertilization-climate-change-international-
environmental-law-frame/
Abbas, F., Hammad, H. M., Fahad, S., Cerdà, A., Rizwan, M., Farhad, W., . . . Bakhat, H. F.
(2017). Agroforestry: a sustainable environmental practice for carbon sequestration
under the climate change scenarios—a review. Environmental Science and Pollution
Research, 24(12), 11177-11191. doi:10.1007/s11356-017-8687-0
Abbasi, M. K., & Anwar, A. A. (2015). Ameliorating Effects of Biochar Derived from Poultry
Manure and White Clover Residues on Soil Nutrient Status and Plant growth Promotion -
Greenhouse Experiments. Plos One, 10(6), e0131592. doi:10.1371/
journal.pone.0131592.t006
Abbruzzini, T. F. (2015). The role of biochar on greenhouse gas offsets, improvement of soil
attributes and nutrient use efficiency in tropical soils. (Doctorate). Escola Superior de
Agricultura Luiz de Queiroz, Retrieved from http://www.teses.usp.br/teses/disponiveis/
11/11140/tde-30092015-115437/en.php
Abbruzzini, T. F., Davies, C. A., Toledo, F. H., & Cerri, C. E. P. (2019). Dynamic biochar effects
on nitrogen use efficiency, crop yield and soil nitrous oxide emissions during a tropical
wheat-growing season. Journal of Environmental Management, 252, 109638. doi:https://
doi.org/10.1016/j.jenvman.2019.109638
Abd, A. A., Naji, S. Z., Hashim, A. S., & Othman, M. R. (2020). Carbon dioxide removal through
Physical Adsorption using Carbonaceous and non-Carbonaceous Adsorbents: A review.
Journal of Environmental Chemical Engineering, 104142. doi:https://doi.org/10.1016/
j.jece.2020.104142
Abdalla, K., Chivenge, P., Ciais, P., & Chaplot, V. (2016). No-tillage lessens soil CO2 emissions
the most under arid and sandy soil conditions: results from a meta-analysis.
Biogeosciences, 13(12), 3619-3633. doi:10.5194/bg-13-3619-2016
Abdalla, M., Hastings, A., Helmy, M., Prescher, A., Osborne, B., Lanigan, G., . . . Jones, M. B.
(2014). Assessing the combined use of reduced tillage and cover crops for mitigating
greenhouse gas emissions from arable ecosystem. Geoderma, 223-225, 9-20.
doi:https://doi.org/10.1016/j.geoderma.2014.01.030
Abdel-Fattah, T. M., Mahmoud, M. E., Ahmed, S. B., Huff, M. D., Lee, J. W., & Kumar, S. (2014).
Biochar from woody biomass for removing metal contaminants and carbon
sequestration. Journal of Industrial and Engineering Chemistry, 22, 103-109.
doi:10.1016/j.jiec.2014.06.030
Abdelhafez, A. A., & Li, J. (2016). Removal of Pb(II) from aqueous solution by using biochars
derived from sugar cane bagasse and orange peel. Journal of the Taiwan Institute of
Chemical Engineers, 61, 367 - 375. doi:10.1016/j.jtice.2016.01.005
Abdelhafez, A. A., Li, J., & Abbas, M. H. H. (2014). Feasibility of biochar manufactured from
organic wastes on the stabilization of heavy metals in a metal smelter contaminated soil.
Chemosphere, 117, 66 - 71. doi:10.1016/j.chemosphere.2014.05.086
Abdelkareem, M. A., Lootah, M. A., Sayed, E. T., Wilberforce, T., Alawadhi, H., Yousef, B. A. A.,
& Olabi, A. G. (2021). Fuel cells for carbon capture applications. Science of The Total
Environment, 769, 144243. doi:https://doi.org/10.1016/j.scitotenv.2020.144243
Abdulla, A., Hanna, R., Schell, K. R., Babacan, O., & Victor, D. G. (2020). Explaining successful
and failed investments in U.S. carbon capture and storage using empirical and expert
assessments. Environmental Research Letters, 16(1), 014036. doi:10.1088/1748-9326/
abd19e
Abdullah, H., Mediaswanti, K. A., & Wu, H. W. (2010). Biochar as a Fuel: 2. Significant
Differences in Fuel Quality and Ash Properties of Biochars from Various Biomass
Components of Mallee Trees. Energy & Fuels, 24, 1972-1979.
Abdullah, H., Mourant, D., Li, C. Z., & Wu, H. W. (2010). Bioslurry as a Fuel. 3. Fuel and
Rheological Properties of Bioslurry Prepared from the Bio-oil and Biochar of Mallee
Biomass Fast Pyrolysis. Energy & Fuels, 24, 5669-5676. Retrieved from http://
pubs.acs.org/doi/abs/10.1021/ef1008117
Abdullah, H., & Wu, H. (2011). Bioslurry as a Fuel. 4. Preparation of Bioslurry Fuels from
Biochar and the Bio-oil-Rich Fractions after Bio-oil/Biodiesel Extraction. Energy Fuels,
25(4), 1759–1771. doi:10.1021/ef101535e
Abdullah. Nurhayati, e. a. (2014). Characterization of Banana (Musaspp.) Pseudo-Stem and
Fruit-Bunch-Stem as a Potential Renewable Energy Resource. International Journal of
Biological, Veterinary, Agricultural and Food Engineering, 8(8), 815-819. Retrieved from
http://www.waset.org/publications/9998963
Abel, S. (2013). Impact of biochar and hydrochar addition on water retention and water
repellency of sandy soil. Geoderma, 202–203, 183–191. Retrieved from http://
www.sciencedirect.com/science/article/pii/S0016706113000803
Abewa, A., Yitaferu, B., G.Selassie, Y., & Amare, T. (2014). The Role of Biochar on Acid Soil
Reclamation and Yield of Teff (Eragrostis tef [Zucc] Trotter) in Northwestern Ethiopia.
Journal of Agricultural Science, 6(1), 1-12. Retrieved from http://www.ccsenet.org/
journal/index.php/jas/article/view/31299/18976
Abioye, A. M., & Ani, F. N. (2014). The Characteristics of Oil Palm Shell Biochar and Activated
Carbon Produced via Microwave Heating. Retrieved from http://akademiabaru.com/
wvcarmea/docu/050.pdf
Abioye, A. M., & Ani, F. N. (2014). The Characteristics of Oil Palm Shell Biochar and Activated
Carbon Produced via Microwave Heating. Applied Mechanics and Materials, 695, 12 -
15. doi:10.4028/www.scientific.net/AMM.695.12
Abit, S. M., et al. (2012). Influence of feedstock and pyrolysis temperature of biochar
amendments on transport of Escherichia coli in saturated and unsaturated soil.
Environmental Science and Technology, 46(15), 8097–8105. doi:10.1021/es300797z
Abit, S. M., et al. (2013). Transport of Escherichia coli, Salmonella typhimurium, and
Microspheres in Biochar-Amended Soils with Different Textures. Journal of
Environmental Quality, 43, 371-378. Retrieved from https://pubag.nal.usda.gov/pubag/
downloadPDF.xhtml?id=58653&content=PDF
Abiven, S., Andreoli, R., & Andreoli, R. (2010). Charcoal does not change the decomposition
rate of mixed litters in a mineral cambisol: a controlled conditions study. Biology and
Fertility in Soils, 47(1), 111-114. Retrieved from http://link.springer.com/article/10.1007/
s00374-010-0489-1
Abiven, S., Hund, A., Martinsen, V., & Cornelissen, G. (2015). Biochar amendment increases
maize root surface areas and branching: a shovelomics study in Zambia. Plant and Soil,
395(1), 45-55. doi:10.1007/s11104-015-2533-2
Abiven, S., Schmidt, M. W. I., & Lehmann, J. (2014). Biochar by design. Nature Geoscience, 7,
326-327. doi:10.1038/ngeo2154
Abo, K., Sugimatsu, K., Hori, M., Yoshida, G., Shimabukuro, H., Yagi, H., . . . Tarutani, K. (2018).
Quantifying the Fate of Captured Carbon: From Seagrass Meadows to the Deep Sea. In
T. Kuwae & M. Hori (Eds.), Blue Carbon in Shallow Coastal Ecosystems: Carbon
Dynamics, Policy, and Implementation (pp. 251-271). Singapore: Springer Singapore.
Abolins, J. (2018). Ecological Limits to Sustainable Use of Wood Fuels. In W. Leal Filho, D. M.
Pociovălișteanu, P. R. Borges de Brito, & I. Borges de Lima (Eds.), Towards a
Sustainable Bioeconomy: Principles, Challenges and Perspectives (pp. 483-495). Cham:
Springer International Publishing.
Abotalib, M., Zhao, F., & Clarens, A. (2016). Deployment of a Geographical Information System
Life Cycle Assessment Integrated Framework for Exploring the Opportunities and
Challenges of Enhanced Oil Recovery Using Industrial CO2 Supply in the United States.
ACS Sustainable Chemistry & Engineering, 4(9), 4743-4751. doi:10.1021/
acssuschemeng.6b00957
Abouelnaga, M. (2021). Carbon Dioxide Removal: Pathways and Policy Needs. Retrieved from
https://www.c2es.org/document/carbon-dioxide-removal-pathways-and-policy-needs/
Abraham, E. R., Law, C. S., Boyd, P. W., Lavender, S. J., Maldonado, M. T., & Bowie, A. R.
(2000). Importance of stirring in the development of an iron-fertilized phytoplankton
bloom. Nature, 407(6805), 727-730. Retrieved from http://dx.doi.org/10.1038/35037555
Ábrego, J., et al. (2015). Phytotoxicity of Sewage Sludge Biochars Prepared at Different
Pyrolysis Conditions. Paper presented at the 23rd European Biomass Conference and
Exhibition. https://citarea.cita-aragon.es/citarea/bitstream/10532/2979/1/2015_156.pdf
Abrishamkesh, S., Gorji, M., Asadi, H., Bagheri-Marandi, G. H., & Pourbabaee, A. A. (2015).
Effects of rice husk biochar application on the properties of alkaline soil and lentil growth.
Plant, Soil and Environment, 61(11), 475 - 482. doi:10.17221/117/2015-pse
Abt, K. L., Abt, R. C., & Galik, C. S. (2012). Effect of Bioenergy Demands and Supply Response
on Markets, Carbon, and Land Use. Forest Science, 58(5), 523-539. Retrieved from
http://www.sfrc.ufl.edu/CFEOR/LogIn/log%20in%20docs/recent%20research/
Effect%20of%20Bioenergy%20Demand....pdf
Abubakar, R., et al. . (2015). Influence of Oil Palm Empty Fruit Bunch Biochar on Floodwater pH
and Yield Components of Rice Cultivated on Acid Sulphate Soil under Rice
Intensification Practices. Plant Production Science, 18(4), 491 - 500. doi:10.1626/
pps.18.491
Abubakar, Z., & Ani, F. N. (2014). Microwave-assisted pyrolysis of oil palm shell biomass using
an overhead stirrer. Jurnal Mekanikal, 96, 162-172. Retrieved from http://
jurnalmekanikal.fkm.utm.my/UserFiles/file/issue%2036/2_MICROWAVE-
ASSISTED_PYROLYSIS_OF_OIL_PALM_SHELL_BIOMASS.pdf
Abujabhah, I. S., Bound, S. A., Doyle, R., & Bowman, J. P. (2016). Effects of biochar and
compost amendments on soil physico-chemical properties and the total community
within a temperate agricultural soil. Applied Soil Ecology, 98, 243 - 253. doi:10.1016/
j.apsoil.2015.10.021
Abukari, A. (2014). Effect of rice husk biochar on maize productivity in the Guinea Savannah
Zone of Ghana. Kwame Nkrumah University of Science and Technology, Retrieved from
http://ir.knust.edu.gh/handle/123456789/6595
Abunowara, M., & Elgarni, M. (2013). Carbon Dioxide Capture from Flue Gases by Solid
Sorbents. Energy Procedia, 37, 16-24. doi:http://dx.doi.org/10.1016/
j.egypro.2013.05.080
Aburas, H., & Demirbas, A. (2015). Evaluation of beech for production of bio-char, bio-oil and
gaseous materials. Process Safety and Environmental Protection, 94, 29 - 36.
doi:10.1016/j.psep.2014.12.004
Academies, S. (2018). Emissionen rückgängig machen oder die Sonneneinstrahlung
beeinflussen: Ist «Geoengineering» sinnvoll, überhaupt machbar und, wenn ja, zu
welchem Preis? Fact Sheets, 13(4), 1-8. Retrieved from http://www.akademien-
schweiz.ch/en/index/Publikationen/Swiss-Academies-Factsheets.html
Achten, W. M. J., et al. (2010). Jatrophba integrated agroforestry systems - biodiesel pathways
toward sustainable rural development. In C. Poterio & C. Ferra (Eds.), Jatropha Curcas
as a Premier Biofuel: Cost, Growing and Management (pp. 85-102): Nova Science
Publishers.
Achterberg, E. P., Moore, C. M., Henson, S. A., Steigenberger, S., Stohl, A., Eckhardt, S., . . .
Ryan-Keogh, T. J. (2013). Natural iron fertilization by the Eyjafjallajökull volcanic
eruption. Geophysical Research Letters, 40(5), 921-926. doi:10.1002/grl.50221
Ack, B. (2020). Ocean-Based Carbon Dioxide Removal: Air Miners.
Ack, B. (2020). Rethinking the ocean-climate crisis: Why negative emissions and ecosystem life
support are urgently needed. The Economist: World Ocean Initiative. Retrieved from
https://www.woi.economist.com/rethinking-the-ocean-climate-crisis-why-negative-
emissions-and-ecosystem-life-support-are-urgently-needed/
Acosta, L. A., Enano Jr, N. H., Magcale-Macandog, D. B., Engay, K. G., Herrera, M. N. Q.,
Nicopior, O. B. S., . . . Lucht, W. (2013). How sustainable is bioenergy production in the
Philippines? A conjoint analysis of knowledge and opinions of people with different
typologies. Applied Energy, 102, 241-253. doi:http://dx.doi.org/10.1016/
j.apenergy.2012.09.063
Acosta, L. A., Eugenio, E. A., Enano Jr, N. H., Magcale-Macandog, D. B., Vega, B. A.,
Macandog, P. B. M., . . . Lucht, W. (2014). Sustainability trade-offs in bioenergy
development in the Philippines: An application of conjoint analysis. Biomass and
Bioenergy, 64, 20-41. doi:http://dx.doi.org/10.1016/j.biombioe.2014.03.015
Adams, E. E., & Caldeira, K. (2008). Ocean Storage of CO2. Elements, 4, 319-324. Retrieved
from https://people.ucsc.edu/~mdmccar/migrated/ocea213/readings/15_GeoEngineer/
C_sequestration/adams_2008_Elements_CALDERIA_Ocean_CO2_Storeage.pdf
Adams, E. E., & Caldeira, K. (2009). Carbon Sequestration via Direct Injection into the Ocean.
In J. H. Steele (Ed.), Encyclopedia of Ocean Sciences (Second Edition) (pp. 495-501).
Oxford: Academic Press.
Adams, J. M. M., Ross, A. B., Anastasakis, K., Hodgson, E. M., Gallagher, J. A., Jones, J. M., &
Donnison, I. S. (2011). Seasonal variation in the chemical composition of the bioenergy
feedstock Laminaria digitata for thermochemical conversion. Bioresource Technology,
102(1), 226-234. doi:https://doi.org/10.1016/j.biortech.2010.06.152
Adams, M., et al. . (2012). The Effect of Biochar on Native and Invasive Prairie Plant Species.
Invasive Plant Science and Management, 6(2), 197-207. doi:10.1614/ipsm-d-12-00058.1
Adams, M. A., & Pfautsch, S. (2018). Grand Challenges: Forests and Global Change. Frontiers
in Forests and Global Change, 1(1). doi:10.3389/ffgc.2018.00001
Adánez-Rubio, I., Abad, A., Gayán, P., de Diego, L. F., García-Labiano, F., & Adánez, J. (2013).
Performance of CLOU process in the combustion of different types of coal with CO2
capture. International Journal of Greenhouse Gas Control, 12, 430-440. doi:https://
doi.org/10.1016/j.ijggc.2012.11.025
Adánez-Rubio, I., Pérez-Astray, A., Abad, A., Gayán, P., De Diego, L. F., Adánez, J. J. M., &
Change, A. S. f. G. (2019). Chemical looping with oxygen uncoupling: an advanced
biomass combustion technology to avoid CO2 emissions. 24(7), 1293-1306.
doi:10.1007/s11027-019-9840-5
Adebayo, A. R., Kandil, M. E., Okasha, T. M., & Sanni, M. L. (2017). Measurements of electrical
resistivity, NMR pore size and distribution, and x-ray CT-scan for performance evaluation
of CO2 injection in carbonate rocks: A pilot study. International Journal of Greenhouse
Gas Control, 63, 1-11. doi:https://doi.org/10.1016/j.ijggc.2017.04.016
Adegboye, M. O. (2013). Continuous Segregation and Removal of Biochar from Bubbling
Fluidized Bed. University of Western Ontario,
Adejumo, A. V., & Adejumo, O. O. (2018). Sustainable Development: Implications for Energy
Policy in Nigeria. In W. Leal Filho, D. M. Pociovălișteanu, P. R. Borges de Brito, & I.
Borges de Lima (Eds.), Towards a Sustainable Bioeconomy: Principles, Challenges and
Perspectives (pp. 395-433). Cham: Springer International Publishing.
Adejumo, S. A., Owolabi, M. O., & Odesola, I. F. (2016). Agro-physiologic effects of compost
and biochar produced at different temperatures on growth, photosynthetic pigment and
micronutrients uptake of maize crop. African Journal of Agricultural Research, 11(8), 661
- 673. doi:10.5897/ajar2015.9895
Adeyemo, A. O., et al. (2015). Removal of Cadmium(II) from Aqueous Solutions by Pinecone
Biochar. Research Journal of Chemical and Environmental Sciences, 2(2), 98-102.
Retrieved from http://www.aelsindia.com/rjcesapril2014/15.pdf
Adhiya, J., & Chisholm, S. W. (2001). Is Ocean Fertilization a Good Carbon Sequestration
Option? Retrieved from https://energy.mit.edu/wp-content/uploads/2001/09/MIT-
LFEE-02-001.pdf
Adil, S., et al. (2014). Adsorption of Heavy Metals by Bio-Chars Produced from Pyrolysis of
Paper Mulberry from Simulated Industrial Wastewater. The Nucleus, 51(4), 323.
Retrieved from http://www.thenucleuspak.org.pk/nucleus/AdminArea/Accepted_papers/
%5B5%5D%20MS-1037%20Author%20proof%20after%20plg%20rep.pdf
Adlen, E., & Hepburn, C. (2020). Five ways to turn CO from pollution to a valuable produc. The
Conversation. Retrieved from https://theconversation.com/five-ways-to-turn-co-from-
pollution-to-a-valuable-product-129499
Adler, P. R., Del Gross, S. J., & Parton, W. J. (2007). Life-cycle assessment of net greenhouse-
gas flux for bioenergy cropping systems. Ecological Applications, 17(3), 675-691.
Retrieved from http://onlinelibrary.wiley.com/doi/10.1890/05-2018/abstract
Admin, I. E. D. B. (2020). Oxford Net Zero launches to tackle global carbon emissions. Indian
EducationDiary. Retrieved from https://indiaeducationdiary.in/oxford-net-zero-launches-
to-tackle-global-carbon-emissions/
Adnan, M. A., Azis, M. M., Quddus, M. R., & Hossain, M. M. (2018). Integrated liquid fuel based
chemical looping combustion – parametric study for efficient power generation and CO2
capture. Applied Energy, 228, 2398-2406. doi:https://doi.org/10.1016/
j.apenergy.2018.07.072
Adrados, A., De Marco, I., Lopez-Urionabarrenechea, A., Solar, J., & Caballero, B. (2015).
Avoiding tar formation in biocoke production from waste biomass. Biomass and
Bioenergy, 74, 172 - 179. doi:10.1016/j.biombioe.2015.01.021
Aertsens, J., De Nocker, L., & Gobin, A. (2013). Valuing the carbon sequestration potential for
European agriculture. Land Use Policy, 31(Supplement C), 584-594. doi:https://doi.org/
10.1016/j.landusepol.2012.09.003
Agarwal, A., & Parsons, J. (2011). Commercial Structures for Integrated CCS-EOR Projects.
Energy Procedia, 4, 5786-5793. doi:https://doi.org/10.1016/j.egypro.2011.02.575
Agaton, C. B. (2021). Application of real options in carbon capture and storage literature:
Valuation techniques and research hotspots. Science of The Total Environment, 148683.
doi:https://doi.org/10.1016/j.scitotenv.2021.148683
Agawin, N. S. R., Hale, M. S., Rivkin, R. B., Matthews, P., & Li, W. K. W. (2006). Microbial
response to a mesoscale iron enrichment in the NE Subarctic Pacific: Bacterial
community composition. Deep Sea Research Part II: Topical Studies in Oceanography,
53(20–22), 2248-2267. doi:http://dx.doi.org/10.1016/j.dsr2.2006.05.040
Agblevor, F. A., Mante, N., Beis, S., Kim, S., & Tarrant, R. (2009). Biocrude oils from the fast
pyrolysis of poultry litter and hardwood. Waste Management, 30, 298 - 307. Retrieved
from http://ac.els-cdn.com/S0956053X09003961/1-s2.0-S0956053X09003961-main.pdf?
_tid=f5951e54-e9d0-11e6-
b655-00000aacb360&acdnat=1486099616_22d4b9142a33ac6325d6655bc4a8b110
Agboola, K., & Moses, S. A. (2015). Effect of biochar and cowdung on nodulation, growth and
yield of soybean (Glycine max L. Merrill). International Journal of Agriculture and
Biosciences, 4(4), 154-160. Retrieved from https://www.cabdirect.org/cabdirect/
FullTextPDF/2015/20153359382.pdf
Agdestein, M. (2020). Ocean-based negative emissions technology research receives
prestigious funding. Norwegian SciTech News. Retrieved from https://
norwegianscitechnews.com/notes/ocean-based-negative-emissions-technology-
research-receives-prestigious-funding/
Agee, E., Orton, A., & Rogers, J. (2013). CO2 Snow Deposition in Antarctica to Curtail
Anthropogenic Global Warming. Journal of Applied Meteorology and Climatology, 52(2),
281-288. doi:10.1175/jamc-d-12-0110.1
Agee, E. M., & Orton, A. (2016). An Initial Laboratory Prototype Experiment for Sequestration of
Atmospheric CO2. Journal of Applied Meteorology and Climatology, 55(8), 1763-1770.
doi:10.1175/jamc-d-16-0135.1
Agegnehu, G., Bass, A. M., Nelson, P. N., & Bird, M. I. (2016). Benefits of biochar, compost and
biochar–compost for soil quality, maize yield and greenhouse gas emissions in a tropical
agricultural soil. Science of The Total Environment, 543, 295 - 306. doi:10.1016/
j.scitotenv.2015.11.054
Agegnehu, G., Bass, A. M., Nelson, P. N., Muirhead, B., Wright, G., & Bird, M. I. (2015). Biochar
and biochar-compost as soil amendments: Effects on peanut yield, soil properties and
greenhouse gas emissions in tropical North Queensland, Australia. Agriculture,
Ecosystems & Environment, 213, 72 - 85. doi:10.1016/j.agee.2015.07.027
Agegnehu, G., Bird, M., Nelson, P., & Bass, A. (2014). The Ameliorating effects of biochar and
compost on soil quality and plant growth on a Ferralsol. Soil Research, 53(1), 1-12.
Retrieved from https://www.researchgate.net/publication/
272094413_The_ameliorating_effects_of_biochar_and_compost_on_soil_quality_and_p
lant_growth_on_a_Ferralsol
Agegnehu, G., Nelson, P. N., & Bird, M. I. (2016). Crop yield, plant nutrient uptake and soil
physicochemical properties under organic soil amendments and nitrogen fertilization on
Nitisols. Soil and Tillage Research, 160, 1 - 13. doi:10.1016/j.still.2016.02.003
Agency, I. E. (2011). Combining Bioenergy with CCS Reporting and Accounting for Negative
Emissions under UNFCCC and the Kyoto Protocol. Retrieved from https://www.iea.org/
publications/freepublications/publication/bioenergy_ccs.pdf
Agency, I. E. (2020). Direct Air Capture. Retrieved from https://www.iea.org/reports/direct-air-
capture
Agency, O. I. E. (2015). Storing CO2 through Enhanced Oil Recovery. Retrieved from https://
www.iea.org/publications/insights/insightpublications/CO2EOR_3Nov2015.pdf
Aggarwal, A. (2021). ‘Carbon’ in forest carbon projects: Evidence from India. Climate and
Development, 1-10. doi:10.1080/17565529.2021.1956873
Agnihotri, A., Rai, S., & Warhadpande, N. (2017). Carbon Dioxide Management—Aluminium
Industry Perspective. In M. Goel & M. Sudhakar (Eds.), Carbon Utilization: Applications
for the Energy Industry (pp. 217-229). Singapore: Springer Singapore.
Agostini, F., Gregory, A. S., & Richter, G. M. (2015). Carbon Sequestration by Perennial Energy
Crops: Is the Jury Still Out? BioEnergy Research, 8, 1057-1080. Retrieved from https://
www.ncbi.nlm.nih.gov/pmc/articles/PMC4732603/pdf/12155_2014_Article_9571.pdf
Agrafioti, E., et al. (2013). Biochar Production by Sewage Sludge Pyrolysis. Journal of Analytical
and Applied Pyrolysis, 101, 72-78. Retrieved from http://ac.els-cdn.com/
S0165237013000454/1-s2.0-S0165237013000454-main.pdf?_tid=bf887e86-e9d1-11e6-
a3e5-00000aab0f02&acdnat=1486099955_78575e6a5dd7bcf4a4fe99e8b2acd471
Agriculture, U. S. D. o. (2021). 90-Day Progress Report on Climate-Smart Agriculture and
Forestry Retrieved from https://www.usda.gov/sites/default/files/documents/climate-
smart-ag-forestry-strategy-90-day-progress-report.pdf
Agruilar-Amuchastegui, N., et al. (2021). Forest Carbon Credits: Separating the “good” from the
merely “good enough”. Retrieved from https://wwf.panda.org/discover/knowledge_hub/
all_publications/?1415966/Forest-Carbon-Credits-Separating-the-good-from-the-merely-
good-enough
Agustini, D., Mangrich, A. S., Bergamini, M. F., & Marcolino-Junior, L. H. (2015). Sensitive
voltammetric determination of lead released from ceramic dishes by using of bismuth
nanostructures anchored on biochar. Talanta, 142, 221 - 227. doi:10.1016/
j.talanta.2015.04.052
Ahmad, F. M. (2017). Bipartisan Support Grows for Carbon Capture. Breaking Energy.
Retrieved from Bipartisan Support Grows for Carbon Capture
Ahmad, M., et al. (2012). Effects of Pyrolysis Temperature on Soybean Stover- and Peanut
Shell-derived Biochar Properties and TCE Adsorption in Water. Bioresource Technology,
118, 536-544. Retrieved from http://ac.els-cdn.com/S0960852412007869/1-s2.0-
S0960852412007869-main.pdf?_tid=a0c0aca2-e9d2-11e6-
b3ee-00000aacb35d&acdnat=1486100333_edc061075459285ba7a758d2261c97f8
Ahmad, M., et al. . (2012). Effects of soil dilution and amendments (mussel shell, cow bone, and
biochar) on Pb availability and phytotoxicity in military shooting range soil. Ecotoxicology
and Environmental Safety, 79, 225-231. Retrieved from http://www.sciencedirect.com/
science/article/pii/S0147651312000073
Ahmad, M., et al. . (2013). Modeling adsorption kinetics of trichloroethylene onto biochars
derived from soybean stover and peanut shell wastes. Environmental Science and
Pollution Research, 20(12), 8364-8373. Retrieved from http://download.springer.com/
static/pdf/254/art%253A10.1007%252Fs11356-013-1676-z.pdf?
originUrl=http%3A%2F%2Flink.springer.com%2Farticle%2F10.1007%2Fs11356-013-16
76-
z&token2=exp=1486140637~acl=%2Fstatic%2Fpdf%2F254%2Fart%25253A10.1007%2
5252Fs11356-013-1676-
z.pdf%3ForiginUrl%3Dhttp%253A%252F%252Flink.springer.com%252Farticle%252F10.
1007%252Fs11356-013-1676-
z*~hmac=c6b56c6c3f61c2c077a54c4d66ad955eea549e7d292529c229cf4137b089a47d
Ahmad, M., et al. . (2013). Production and use of biochar from buffalo-weed (Ambrosia trifida L.)
for trichloroethylene removal from water. Journal of Chemical Technology and
Biotechnology, 89(1), 150-157. Retrieved from http://onlinelibrary.wiley.com/doi/10.1002/
jctb.4157/pdf
Ahmad, M., et al. . (2014). Speciation and phytoavailability of lead and antimony in a small arms
range soil amended with mussel shell, cow bone and biochar: EXAFS spectroscopy and
chemical extractions. Chemosphere, 95, 433-441. Retrieved from https://
www.researchgate.net/profile/Yong_Sik_Ok/publication/
258251761_Speciation_and_phytoavailability_of_lead_and_antimony_in_a_small_arms
_range_soil_amended_with_mussel_shell_cow_bone_and_biochar_EXAFS_spectrosco
py_and_chemical_extractions/links/00b7d527bf5b8283f9000000.pdf?
origin=publication_list
Ahmad, M., et al. (2015). Effect of Sowing Depths, Nitrogen Placement Methods and Biochar on
Quantitative and Qualitative Attributes of Sugar Beet and its Weeds. Pakistan Journal of
Weed Science Research, 21(2), 181-194. Retrieved from http://eds.a.ebscohost.com/
eds/pdfviewer/pdfviewer?sid=f21d132c-6d2a-413c-b550-
f433e30b9e20%40sessionmgr4007&vid=1&hid=4111
Ahmad, M., et al. (2016). Biochar-induced changes in soil properties affected immobilization/
mobilization of metals/metalloids in contaminated soils. Journal of Soils and Sediments,
17(3), 717-730. doi:10.1007/s11368-015-1339-4
Ahmad, M., et al. . (2016). Impact of soybean stover- and pine needle-derived biochars on Pb
and As mobility, microbial community, and carbon stability in a contaminated agricultural
soil. Journal of Environmental Management, 166, 131 - 139. doi:10.1016/
j.jenvman.2015.10.006
Ahmad, M., et al. (2016). Lead and copper immobilization in a shooting range soil using
soybean stover- and pine needle-derived biochars: Chemical, microbial and
spectroscopic assessments. Journal of Hazardous Materials, 301, 179 - 186.
doi:10.1016/j.jhazmat.2015.08.029
Ahmad, M., Rajapaksha, A. U., Lim, J. E., Zhang, M., Bolan, N., Mohan, D., . . . Ok, Y. S. (2014).
Biochar as a sorbent for contaminant management in soil and water: A review.
Chemosphere, 99, 19-33. doi:http://dx.doi.org/10.1016/j.chemosphere.2013.10.071
Ahmad, M. T., Asghar, H. N., Saleem, M., Khan, M. Y., & Zahir, Z. A. (2015). Synergistic Effect of
Rhizobia and Biochar on Growth and Physiology of Maize. Agronomy Journal, 107(6),
2327. doi:10.2134/agronj15.0212
Ahmadi, M. A., Pouladi, B., & Barghi, T. (2016). Numerical modeling of CO2 injection scenarios
in petroleum reservoirs: Application to CO2 sequestration and EOR. Journal of Natural
Gas Science and Engineering, 30, 38-49. doi:https://doi.org/10.1016/j.jngse.2016.01.038
Åhman, M., Skjærseth, J. B., & Eikeland, P. O. (2018). Demonstrating climate mitigation
technologies: An early assessment of the NER 300 programme. Energy Policy, 117,
100-107. doi:https://doi.org/10.1016/j.enpol.2018.02.032
Ahmed, H. P., & Schoenau, J. (2013). Canola Yield and Nutrient Uptake as Affected by Biochar
Addition to a Brown Chernozem.
Ahmed, H. P., & Schoenau, J. J. (2015). Effects of Biochar on Yield, Nutrient Recovery, and Soil
Properties in a Canola (Brassica napus L)-Wheat (Triticum aestivum L) Rotation Grown
under Controlled Environmental Conditions. BioEnergy Research, 8(3), 1183-1196.
doi:10.1007/s12155-014-9574-x
Ahmed, M. B., Zhou, J. L., Ngo, H. H., & Guo, W. (2015). Adsorptive removal of antibiotics from
water and wastewater: Progress and challenges. Science of The Total Environment, 532,
112 - 126. doi:10.1016/j.scitotenv.2015.05.130
Ahmed, M. B., Zhou, J. L., Ngo, H. H., & Guo, W. (2016). Insight into biochar properties and its
cost analysis. Biomass and Bioenergy, 84, 76 - 86. doi:10.1016/j.biombioe.2015.11.002
Ahmed, N. (2014). World Bank and UN carbon offset scheme 'complicit' in genocidal land grabs
- NGOs. The Guardian. Retrieved from https://www.theguardian.com/environment/earth-
insight/2014/jul/03/world-bank-un-redd-genocide-land-carbon-grab-sengwer-kenya
Ahmed, N., Cheung, W. W. L., Thompson, S., & Glaser, M. (2017). Solutions to blue carbon
emissions: Shrimp cultivation, mangrove deforestation and climate change in coastal
Bangladesh. Marine Policy, 82, 68-75. doi:https://doi.org/10.1016/j.marpol.2017.05.007
Ahmed, N., & Glaser, M. (2016). Coastal aquaculture, mangrove deforestation and blue carbon
emissions: Is REDD+ a solution? Marine Policy, 66, 58-66. doi:https://doi.org/10.1016/
j.marpol.2016.01.011
Ahmed, R. E., & Wiheeb, A. D. (2019). Enhancement of carbon dioxide absorption into aqueous
potassium carbonate by adding amino acid salts. Materials Today: Proceedings.
doi:https://doi.org/10.1016/j.matpr.2019.09.198
Ahmeda, S., et al. . (2012). The potential role of biochar in combating climate change in
Scotland: an analysis of feedstocks, life cycle assessment and spatial dimensions.
Journal of Environmental Planning and Management, 55(4), 487-505.
doi:10.1080/09640568.2011.608890
Ahrends, A., Hollingsworth, P. M., Beckschäfer, P., Chen, H., Zomer, R. J., Zhang, L., . . . Xu, J.
(2017). China's fight to halt tree cover loss. Proceedings of the Royal Society B:
Biological Sciences, 284(1854). doi:10.1098/rspb.2016.2559
Ahtikoski, A., et al. (2008). Economic viability of utilizing biomass energy from young stands—
The case of Finland. Biomass & Bioenergy, 32(11), 988-996. Retrieved from https://
www.researchgate.net/publication/
222972274_Economic_viability_of_utilizing_biomass_energy_from_young_stands-
The_case_of_Finland
Aines, R. D. (2019). Atmospheric Carbon Extraction Scope, Available Technologies. In V.
Ramanathan (Ed.), Bending the Curve: Climate Change Solutions (pp. 1-43).
Aines, R. D. (2019). Atmospheric Carbon Extraction: Scope, Available Technologies, and
Challenges. In V. Ramanathan (Ed.), Bending the Curve (pp. 714-756).
Aitken, D. (2014). Assessment of the sustainability of bioenergy production from algal feedstock.
The University of Edinburgh, Retrieved from https://www.era.lib.ed.ac.uk/handle/
1842/8961
Aizawa, M., et al. (2007, Sept. 29 2007-Oct. 4 2007). Seaweed Bioethanol Production in Japan -
The Ocean Sunrise Project. Paper presented at the OCEANS 2007.
Ajayi, A. E., Holthusen, D., & Horn, R. (2016). Changes in microstructural behaviour and
hydraulic functions of biochar amended soils. Soil and Tillage Research, 155, 166 - 175.
doi:10.1016/j.still.2015.08.007
Ajayi, A. E., & Horn, R. (2016). Modification of chemical and hydrophysical properties of two
texturally differentiated soils due to varying magnitudes of added biochar. Soil and
Tillage Research, 164, 34-44. doi:10.1016/j.still.2016.01.011
Akash, A. R., Rao, A. B., & Chandel, M. K. (2017). Relevance of Carbon Capture &
Sequestration in India's Energy Mix to Achieve the Reduction in Emission Intensity by
2030 as per INDCs. Energy Procedia, 114, 7492-7503. doi:https://doi.org/10.1016/
j.egypro.2017.03.1882
Akça, M. O., & Namlı, A. (2014). Effects of poultry litter biochar on soil enzyme activities and
tomato, pepper and lettuce plants growth. Eurasian Journal of Soil Science, 4(3),
161-168. Retrieved from http://dergipark.ulakbim.gov.tr/ejss/article/view/
5000130429/5000119473
Akerboom, S., Waldmann, S., Mukherjee, A., Agaton, C., Sanders, M., & Kramer, G. J. (2021).
Different This Time? The Prospects of CCS in the Netherlands in the 2020s. Frontiers in
Energy Research, 9(193). doi:10.3389/fenrg.2021.644796
Akgul, O., Mac Dowell, N., Papageorgiou, L. G., & Shah, N. (2014). A mixed integer nonlinear
programming (MINLP) supply chain optimisation framework for carbon negative
electricity generation using biomass to energy with CCS (BECCS) in the UK.
International Journal of Greenhouse Gas Control, 28, 189-202. doi:http://dx.doi.org/
10.1016/j.ijggc.2014.06.017
Akhand, A., Chanda, A., Das, S., Hazra, S., & Kuwae, T. (2018). CO2 Fluxes in Mangrove
Ecosystems. In T. Kuwae & M. Hori (Eds.), Blue Carbon in Shallow Coastal Ecosystems:
Carbon Dynamics, Policy, and Implementation (pp. 185-221). Singapore: Springer
Singapore.
Akhtar, S., et al. . (2015). Interactive effect of biochar and plant growth-promoting bacterial
endophytes on ameliorating salinity stress in maize. Functional Plant Biology: Plant
Function & Evolutionary Biology, 42(8), 770-781. Retrieved from http://
www.publish.csiro.au/view/journals/dsp_journals_pip_abstract_scholar1.cfm?
nid=102&pip=FP15054
Akhtar, S. S., et al. (2014). Biochar enhances yield and quality of tomato under reduced
irrigation. Agricultural Water Management, 138, 37–44. Retrieved from http://
www.sciencedirect.com/science/article/pii/S0378377414000626
Akhtar, S. S. (2015). Biochar Ameliorate Drought and Salt Stress in Plants. University of
Copenhagen, Retrieved from http://www.forskningsdatabasen.dk/en/catalog/
2280082965
Akhtar, S. S., Andersen, M. N., & Liu, F. (2015). Biochar Mitigates Salinity Stress in Potato.
Journal of Agronomy and Crop Science, 201(5), 368-378. doi:10.1111/jac.12132
Akhtar, S. S., Andersen, M. N., & Liu, F. (2015). Residual effects of biochar on improving growth,
physiology and yield of wheat under salt stress. Agricultural Water Management, 158, 61
- 68. doi:10.1016/j.agwat.2015.04.010
Akhter, A., Hage-Ahmed, K., Soja, G., & Steinkellner, S. (2015). Compost and biochar alter
mycorrhization, tomato root exudation, and development of Fusarium oxysporum f. sp.
lycopersici. Frontiers in Plant Science, 6, 1-13. doi:10.3389/fpls.2015.00529
Akhter, P., Farkhondehfal, M. A., Hernández, S., Hussain, M., Fina, A., Saracco, G., . . . Russo,
N. (2016). Environmental issues regarding CO2 and recent strategies for alternative
fuels through photocatalytic reduction with titania-based materials. Journal of
Environmental Chemical Engineering, 4(4, Part A), 3934-3953. doi:http://dx.doi.org/
10.1016/j.jece.2016.09.004
Akom, M., et al. . (2015). Effect of Biochar and Inorganic Fertilizer in Yam (Dioscorea rotundata
Poir) Production in a Forest Agroecological Zone. Journal of Agricultural Science, 7(3),
211-222. doi:10.5539/jas.v7n3p211!
Al Shra’ah, A. Q. (2014). Low temperature microwave materials for renewable fuels and
chemicals pyrolysis of lignocellulosic. Memorial University of Newfoundland, Retrieved
from http://research.library.mun.ca/6289/1/MSc%20Thesis.pdf
Alagukannan, G. (2016). Biochar – an Effective Tool to Abate Climate Change and Ensure
Sustainable Agriculture. Indian Journal of Applied Research, 5(9), 383-385. Retrieved
from http://worldwidejournals.in/ojs/index.php/ijar/article/view/5/5
Alam, F., Date, A., Rasjidin, R., Mobin, S., Moria, H., & Baqui, A. (2012). Biofuel from Algae- Is It
a Viable Alternative? Procedia Engineering, 49, 221-227. doi:https://doi.org/10.1016/
j.proeng.2012.10.131
Alam, F., Mobin, S., & Chowdhury, H. (2015). Third Generation Biofuel from Algae. Procedia
Engineering, 105, 763-768. doi:https://doi.org/10.1016/j.proeng.2015.05.068
Alam, M. B., Pulkki, R., & Shahi, C. (2012). Woody biomass availability for bioenergy production
using forest depletion spatial data in northwestern Ontario. Canadian Journal of Forest
Research, 42. doi:10.1139/x2012-011
Alamin, A. H., & Kaewsichan, L. (2016). Adsorption of Pb(II) Ions from Aqueous Solution in
Fixed Bed Column by Mixture of Clay plus Bamboo Biochar. Walailak Journal of Science
and Technology, 13(11), 949-963. Retrieved from http://wjst.wu.ac.th/index.php/wjst/
article/view/1847/631
Alamooti, A. M., & Malekabadi, F. K. (2018). Chapter One - An Introduction to Enhanced Oil
Recovery. In A. Bahadori (Ed.), Fundamentals of Enhanced Oil and Gas Recovery from
Conventional and Unconventional Reservoirs (pp. 1-40): Gulf Professional Publishing.
Al-Ansari, T., Korre, A., Nie, Z., & Shah, N. (2016). Integration of Biomass Gasification and CO2
Capture in the LCA Model for the Energy, Water and Food Nexus. In K. Zdravko & B.
Miloš (Eds.), Computer Aided Chemical Engineering (Vol. Volume 38, pp. 2085-2090):
Elsevier.
Alaswad, A., Dassisti, M., Prescott, T., & Olabi, A. G. (2015). Technologies and developments of
third generation biofuel production. Renewable and Sustainable Energy Reviews, 51,
1446-1460. doi:https://doi.org/10.1016/j.rser.2015.07.058
Alatiq, A., Aljedani, W., Abussaud, A., Algarni, O., Pilorgé, H., & Wilcox, J. (2021). Assessment
of the carbon abatement and removal opportunities of the Arabian Gulf Countries. Clean
Energy, 5(2), 340-353. doi:10.1093/ce/zkab015
Al-Audah, O., & El-Dweik, M. (2015). Biomass for Bioenergy and Biochar Applications. Paper
presented at the WM2015 Conference, Phoenix, AZ.
Albanito, F., Hastings, A., Fitton, N., Richards, M., Martin, M., Mac Dowell, N., . . . Smith, P.
(2019). Mitigation potential and environmental impact of centralized versus distributed
BECCS with domestic biomass production in Great Britain. GCB-Bioenergy, 11(10).
doi:10.1111/gcbb.12630
Albertovna, V. A., et al. (2015). Research Journal of Pharmaceutical, Biological and Chemical
Sciences. Research Journal of Pharmaceutical, Biological and Chemical Sciences, 5(2),
1712-1719. Retrieved from https://www.researchgate.net/profile/Anita_Goswami-Giri2/
publication/
262726143_Bioinformatics_Overview_of_lantana_camara_an_Environmental_Weed/
links/57927fbf08aec89db785e842/Bioinformatics-Overview-of-lantana-camara-an-
Environmental-Weed.pdf
Albrecht, A., & Kandji, S. T. (2003). Carbon sequestration in tropical agroforestry systems.
Agriculture, Ecosystems & Environment, 99(1), 15-27. doi:https://doi.org/10.1016/
S0167-8809(03)00138-5
Albright, R., Caldeira, L., Hosfelt, J., Kwiatkowski, L., Maclaren, J. K., Mason, B. M., . . .
Caldeira, K. (2016). Reversal of ocean acidification enhances net coral reef calcification.
Nature, 531(7594), 362-365. doi:10.1038/nature17155
Alburquerque, J. A., et al. . (2015). Plant growth responses to biochar amendment of
Mediterranean soils deficient in iron and phosphorus. Journal of Plant Nutrition and Soil
Science, 178(4), 567 - 575. doi:10.1002/jpln.201400653
Alburquerque, J. A., et al. (2016). Slow pyrolysis of relevant biomasses in the Mediterranean
basin. Part 2. Char characterisation for carbon sequestration and agricultural uses.
Journal of Cleaner Production, 120, 191–197. Retrieved from http://
www.sciencedirect.com/science/article/pii/S0959652614011238
Alburquerque, J. A., Sánchez-Monedero, M. A., Roig, A., & Cayuela, M. L. (2014). High
concentrations of polycyclic aromatic hydrocarbons (naphthalene, phenanthrene and
pyrene) failed to explain biochar's capacity to reduce soil nitrous oxide emissions.
Environmental Pollution, 196, 72 - 77. doi:10.1016/j.envpol.2014.09.014
Alcalde, J., Flude, S., Wilkinson, M., Johnson, G., Edlmann, K., Bond, C. E., . . . Haszeldine, R.
S. (2018). Estimating geological CO2 storage security to deliver on climate mitigation.
Nature Communications, 9(1), 2201. doi:10.1038/s41467-018-04423-1
Alcalde, J., Smith, P., Haszeldine, R. S., & Bond, C. E. (2018). The potential for implementation
of Negative Emission Technologies in Scotland. International Journal of Greenhouse
Gas Control, 76, 85-91. doi:https://doi.org/10.1016/j.ijggc.2018.06.021
Alcantar, S. (2015). The effects of biochar on crop growth and carbon content, soil carbon and
soil microbial biomass carbon intake. Paper presented at the UNG Annual Research
Conference. http://digitalcommons.northgeorgia.edu/ngresearchconf/2015/Dahlonega/5/
Aldrich, E. L., & Koerner, C. (2011). Assessment of Carbon Capture and Sequestration Liability
Regimes. The Electricity Journal, 24(7), 35-48. doi:https://doi.org/10.1016/
j.tej.2011.07.001
Ale, S., Femeena, P. V., Mehan, S., & Cibin, R. (2019). Chapter 10 - Environmental impacts of
bioenergy crop production and benefits of multifunctional bioenergy systems. In J. C.
Magalhães Pires & A. L. D. Cunha Gonçalves (Eds.), Bioenergy with Carbon Capture
and Storage (pp. 195-217): Academic Press.
Alexander, G., Mercedes Maroto-Valer, M., & Gafarova-Aksoy, P. (2007). Evaluation of reaction
variables in the dissolution of serpentine for mineral carbonation. Fuel, 86(1), 273-281.
doi:https://doi.org/10.1016/j.fuel.2006.04.034
Alfredsson, H. A., et al. (2008). CO2 sequestration in basaltic rock at the Hellisheidi site in SW
Iceland: stratigraphy and chemical composition of the rocks at the injection site.
Mineralogical Magazine, 72(1), 1-5. Retrieved from https://www.or.is/sites/or.is/files/
co2_sequestration_in_basaltic_rock_at_the_hellisheidi_site_in_sw_iceland_stratigraphy
_and_chemical_composition_of_the_rocks_at_the_injection_site.pdf
Alfredsson, H. A., Wolff-Boenisch, D., & Stefánsson, A. (2011). CO2 sequestration in basaltic
rocks in Iceland: Development of a piston-type downhole sampler for CO2 rich fluids and
tracers. Energy Procedia, 4, 3510-3517. doi:https://doi.org/10.1016/j.egypro.2011.02.278
Alho, C., Auccaise, R., Maia, C., Novotny, E., & Lelis, R. (2015). Using solid state 13C NMR to
study pyrolysis final temperature effects on biochar stability. In.
Alho, C. F. B. V., et al. (2012). Biochar and soil nitrous oxide emissions: Science Note. Pesquisa
Agropecuária Brasileira, 47(5), 722-725. Retrieved from https://seer.sct.embrapa.br/
index.php/pab/article/viewFile/10030/6921
Alho, C. F. B. V., et al. (2013). Using Solid-State 13C NMR to Study Pyrolysis Final Temperature
Effects on Biochar Stability. In J. Xu, et al. (Ed.), Functions of Natural Organic Matter in
Changing Environment (pp. 1007-1011).
Ali, A. A. M., Othman, M. R., Shirai, Y., & Hassan, M. A. (2014). Sustainable and integrated palm
oil biorefinery concept with value-addition of biomass and zero emission system. Journal
of Cleaner Production, 91, 96-99. doi:10.1016/j.jclepro.2014.12.030
Ali Beg, A. (2021). Artificial Photosynthesis for extracting Atmospheric Carbon and produce
Hydrogen fuel. The Indian Wire. Retrieved from https://www.theindianwire.com/science/
artificial-photosynthesis-for-extracting-atmospheric-carbon-and-produce-hydrogen-
fuel-308318/
Ali, K., et al. (2015). Influence of Organic and Inogranic Amendments on Weeds Desnity and
Chemical Composition. Pakistan Journal of Weed Science Research, 21(1), 47-57.
Retrieved from http://www.wssp.org.pk/vol-21-1-2015/5.%20PJWSR-05-2015.pdf
Ali, K., et al. . (2015). Integrated Use of Biochar: A Tool for Improving Soil and Wheat Quality of
Degraded Soil Under Wheat-Maize Cropping Pattern. Pakistan Journal of Botany, 47(1),
233-240. Retrieved from http://www.pakbs.org/pjbot/PDFs/47(1)/32.pdf
Ali, K., Arif, M., Jan, M. T., YASEEN, T., WAQAS, M., & Munsif, F. (2015). Biochar: A Novel Tool
to Enhance Wheat Productivity and Soil Fertility on Sustainable Basis Under Wheat-
Maize-Wheat Cropping Pattern. Pakistan Journal of Botany, 47(3), 1023-1031. Retrieved
from http://www.pakbs.org/pjbot/PDFs/47(3)/27.pdf
Ali, M. (2015). Enhancing oil extraction processes for flaxseed and microalgae. University of
Glasgow, Retrieved from http://theses.gla.ac.uk/6970/
Ali, M., Ahmed, O. H., & Primus, W. C. (2015). Coapplication of Chicken Litter Biochar and Urea
Only to Improve Nutrients Use Efficiency and Yield of Oryza sativa L. Cultivation on a
Tropical Acid Soil. The Scientific World Journal, 1-12. Retrieved from http://
downloads.hindawi.com/journals/tswj/2015/943853.pdf
Ali, M., Saleem, M., Khan, Z., & Watson, I. A. (2019). 16 - The use of crop residues for biofuel
production. In D. Verma, E. Fortunati, S. Jain, & X. Zhang (Eds.), Biomass, Biopolymer-
Based Materials, and Bioenergy (pp. 369-395): Woodhead Publishing.
Ali, M. A., Kim, P. J., & Inubushi, K. (2015). Mitigating yield-scaled greenhouse gas emissions
through combined application of soil amendments: A comparative study between
temperate and subtropical rice paddy soils. Science of The Total Environment, 529, 140 -
148. doi:10.1016/j.scitotenv.2015.04.090
Ali, U., Akram, M., Font-Palma, C., Ingham, D. B., & Pourkashanian, M. (2017). Part-load
performance of direct-firing and co-firing of coal and biomass in a power generation
system integrated with a CO2 capture and compression system. Fuel. doi:https://doi.org/
10.1016/j.fuel.2017.09.023
Ali, U., Font-Palma, C., Akram, M., Agbonghae, E. O., Ingham, D. B., & Pourkashanian, M.
(2017). Comparative potential of natural gas, coal and biomass fired power plant with
post - combustion CO2 capture and compression. International Journal of Greenhouse
Gas Control, 63, 184-193. doi:https://doi.org/10.1016/j.ijggc.2017.05.022
Alidoust, E., Afyuni, M., Hajabbasi, M. A., & Mosaddeghi, M. R. (2018). Soil carbon
sequestration potential as affected by soil physical and climatic factors under different
land uses in a semiarid region. CATENA, 171, 62-71. doi:https://doi.org/10.1016/
j.catena.2018.07.005
Alie, C., Backham, L., Croiset, E., & Douglas, P. L. (2005). Simulation of CO2 capture using
MEA scrubbing: a flowsheet decomposition method. Energy Conversion and
Management, 46(3), 475-487. doi:https://doi.org/10.1016/j.enconman.2004.03.003
Alisson, E. (2020). Study confirms contribution of bioenergy to climate change mitigation.
Phys.org. Retrieved from https://phys.org/news/2020-11-contribution-bioenergy-climate-
mitigation.html
Allaire, S. E. (2014). Le biochar dans les milieux poreux : une solution miracle en
environnement? (Biochar in porous media: a panacea environment?). Vecteur
Environnement (Vector Environment)(September), 58-67. Retrieved from http://
www.researchgate.net/publication/
260713425_Le_biochar_dans_les_milieux_poreux__une_solution_miracle_en_environn
ement
Allaire, S. E., et al. (2015). Analyse des propriétés de biochars. Retrieved from Québec: http://
www.biochar-international.org/sites/default/files/
Analyse_comparative_biochar_format.pdf
Allaire, S. E., et al. (2015). Carbon dynamics in a biochar-amended loamy soil under
switchgrass. Canadian Journal of Soil Science, 95(1), 1 - 13. doi:10.4141/cjss-2014-042
Allaire, S. E., Baril, B., Vanasse, A., Lange, S. F., Mackay, J., & Smith, D. L. (2014). Carbon
dynamic under switchgrass produced in a loamy soil amended with biochar. Canadian
Journal of Soil Science, 95(1), 1-13. doi:10.4141/cjss-2014-042
Allaire, S. E. E., Lange, S. F., Auclair, I. K., Quinche, M., & L., G. (2015). Report: Analyses of
biochar properties. Retrieved from http://www.biochar-international.org/sites/default/files/
Analyse_comparative-biochar-ENG.pdf
Allam, R., Martin, S., Forrest, B., Fetvedt, J., Lu, X., Freed, D., . . . Manning, J. (2017).
Demonstration of the Allam Cycle: An Update on the Development Status of a High
Efficiency Supercritical Carbon Dioxide Power Process Employing Full Carbon Capture.
Energy Procedia, 114, 5948-5966. doi:https://doi.org/10.1016/j.egypro.2017.03.1731
Allen, E., Wall, D. M., Herrmann, C., Xia, A., & Murphy, J. D. (2015). What is the gross energy
yield of third generation gaseous biofuel sourced from seaweed? Energy,
81(Supplement C), 352-360. doi:https://doi.org/10.1016/j.energy.2014.12.048
Allen, J. M., et al. . (2014). The influences of poultry litter biochar and water source on radish
growth and nutrition. Discovery: The Student Journal of Dale Bumpers College of
Agricultural, Food and Life Sciences, 15, 4-11. Retrieved from http://
arkansasagnews.uark.edu/Discovery2014.pdf.pdf#page=5
Allen, J. M. (2015). Effect of enhanced biochar on green house gas emission and paddy rice
yield from loamy sand soil after first year trial in Thai Nguyen, Viet Nam. University of
Arkansas, Retrieved from http://scholarworks.uark.edu/csesuht/9/
Allen, J. M. (2015). The Effects of Poultry Litter Biochar and Water Source on Radish Growth
and Nutrition. University of Arkansas, Retrieved from http://scholarworks.uark.edu/
csesuht/9/
Allen, M. (2021). Welcome to CarbonTakeBack.org. Retrieved from https://carbontakeback.org/
Allen, M. R., Frame, D. J., & Mason, C. F. (2009). The case for mandatory sequestration. Nature
Geoscience, 2(12), 813-814. doi:10.1038/ngeo709
Aller, D. (2012). The Potential of Biochar produced from Eichhornia crassipes and Prosopis
juliflora to Enhance Soil Water Holding Capacity of Drylands Soils. The University of
Edinburgh, Retrieved from http://hdl.handle.net/1842/6333
Aller-Rojas, O., Moreno, B., Aponte, H., & Zavala, J. (2020). Carbon storage estimation of
Lessonia trabeculata kelp beds in Southern Peru: an analysis from the San Juan de
Marcona region. Carbon Management, 11(5), 525-532.
doi:10.1080/17583004.2020.1808765
Allesina, G., Pedrazzi, S., La Cava, E., Orlandi, M., Hanuskova, M., Fontanesi, C., & Tartarini, P.
(2014). Energy-Based Assessment of Optimal Operating Parameters for Coupled
Biochar and Syngas Production in Stratified Downdraft Gasifiers. Paper presented at the
The 15th International Heat Transfer ConferenceProceedings of the 15th International
Heat Transfer Conference, Kyoto, JapanConnecticut. http://www.dl.begellhouse.com/
references/ihtc15,50fa9dc1199c5e33,2714425e43f2da0e.html
Alling, V., et al. . (2014). The role of biochar in retaining nutrients in amended tropical soils.
Journal of Plant Nutrition and Soil Science, 177(5), 671 - 680. doi:10.1002/
jpln.201400109
Allinson, K., Burt, D., Campbell, L., Constable, L., Crombie, M., Lee, A., . . . Solsbey, L. (2017).
Best Practice for Transitioning from Carbon Dioxide (CO2) Enhanced Oil Recovery EOR
to CO2 Storage. Energy Procedia, 114, 6950-6956. doi:https://doi.org/10.1016/
j.egypro.2017.03.1837
Alliston, S. (2019). The trouble with indiscriminate tree-planting in Africa. Mail & Guardian.
Retrieved from https://mg.co.za/article/2019-10-31-00-the-trouble-with-indiscriminate-
tree-planting-in-africa
Allsopp, M., et al. (2007). A scientific critique of oceanic iron fertilization as a climate change
mitigation strategy. Retrieved from http://www.climos.com/imo/Other/
Other_greenpeace_iron_fert_critiq_Sep2007.pdf
Almaroai, Y. A., et al. (2014). Effects of biochar, cow bone, and eggshell on Pb availability to
maize in contaminated soil irrigated with saline water. Environmental Earth Sciences,
71(3), 1289-1296. Retrieved from http://link.springer.com/article/10.1007/
s12665-013-2533-6
AlMazrouei, M., Asad, O., Zahra, M. A., Mezher, T., & Tsai, I. T. (2017). CO2-Enhanced Oil
Recovery System Optimization for Contract-based versus Integrated Operations. Energy
Procedia, 105, 4357-4362. doi:https://doi.org/10.1016/j.egypro.2017.03.927
Almedia, J., Achten, W. M. J., et al., Duarte, M. P., Medes, B., & Muys, B. (2011). Benchmarking
the environmental performance of the Jatropha biodiesel system through a generic life
cycle assessment. Environmental Science and Technology, 45, 5447-5453. Retrieved
from http://dx.doi.org/10.1021/es200257m
AlNouss, A., McKay, G., & Al-Ansari, T. (2021). Utilisation of Carbon Dioxide and Gasified
Biomass for the Generation of Value Added Products. In M. Türkay & R. Gani (Eds.),
Computer Aided Chemical Engineering (Vol. 50, pp. 1567-1572): Elsevier.
Alotaibi, K., & Schoenau, J. (2016). Application of Two Bioenergy Byproducts with Contrasting
Carbon Availability to a Prairie Soil: Three-Year Crop Response and Changes in Soil
Biological and Chemical Properties. Agronomy, 6(1), 13. doi:10.3390/agronomy6010013
Alper, K., Tekin, K., & Karagöz, S. (2014). Pyrolysis of agricultural residues for bio-oil
production. Clean Technologies and Environmental Policy, 17(1), 211-223. Retrieved
from http://link.springer.com/article/10.1007/s10098-014-0778-8
Alpert, S. B., Spencer, D. F., & Hidy, G. (1992). Biospheric options for mitigating atmospheric
carbon dioxide levels. Energy Conversion and Management, 33(5), 729-736. doi:https://
doi.org/10.1016/0196-8904(92)90078-B
Al-Qayim, K., Nimmo, W., & Pourkashanian, M. (2015). Comparative techno-economic
assessment of biomass and coal with CCS technologies in a pulverized combustion
power plant in the United Kingdom. International Journal of Greenhouse Gas Control,
43, 82-92. doi:https://doi.org/10.1016/j.ijggc.2015.10.013
Alter, L. (2021). Bill Gates’s climate fixes don’t add up. Corporate Knights. Retrieved from
https://www.corporateknights.com/channels/climate-and-carbon/bill-gatess-climate-fixes-
dont-add-up-16197980/
Alvarado, V., & Manrique, E. (2010). Enhanced Oil Recovery: An Update Review. Energies,
3(9), 1529. Retrieved from http://www.mdpi.com/1996-1073/3/9/1529
Alvarado-Morales, M., Boldrin, A., Karakashev, D. B., Holdt, S. L., Angelidaki, I., & Astrup, T.
(2013). Life cycle assessment of biofuel production from brown seaweed in Nordic
conditions. Bioresource Technology, 129(Supplement C), 92-99. doi:https://doi.org/
10.1016/j.biortech.2012.11.029
Álvarez, J. M., Pasian, C., Lal, R., López Núñez, R., & Fernández Martínez, M. (2016). Biochar
and vermicompost as peat replacement for ornamental-plant production. European
Biochar Research Network. Retrieved from http://digital.csic.es/bitstream/
10261/129002/1/Poster_biochar_2015_Rafael.pdf
Alvum-Toll, K., Karlsson, T., & Ström, H. (2011). Biochar as soil amendment: A comparison
between plant materials for biochar production from three regions in Kenya. (Degree
project in Biology Agriculture Programme – Soil and Plant Sciences). Swedish University
of Agricultural Sciences, Uppsala, Sweden. Retrieved from http://stud.epsilon.slu.se/
2572/1/alvum_toll_k_etal_110509.pdf
Al-Wabel, M., Elfaki, J., Usman, A., Hussain, Q., & Ok, Y. S. (2019). Performance of dry water-
and porous carbon-based sorbents for carbon dioxide capture. Environmental Research,
174, 69-79. doi:https://doi.org/10.1016/j.envres.2019.04.020
Al-Wabel, M. I., et al. (2013). Pyrolysis temperature induced changes in characteristics and
chemical composition of biochar produced from conocarpus wastes. Bioresource
Technology, 131, 374-379.
Al-Wabel, M. I., Usman, A. R. A., El-Naggar, A. H., Aly, A. A., Ibrahim, H. M., Elmaghraby, S., &
Al-Omran, A. (2014). Conocarpus biochar as a soil amendment for reducing heavy metal
availability and uptake by maize plants. Saudi Journal of Biological Sciences, 22(4),
503-511. doi:10.1016/j.sjbs.2014.12.003
Al-Zahrani, H. S. M., et al. (2015). Potential Use of Biochar Derived from Cotton Stalks for
Heavy Metals Removal from Wastewater. In.
Amador, G., et al. (2020). Transition Book: Priorities for Administrative Action on Carbon
Removal in 2021+. Retrieved from https://t.co/NAOTos1THt
Amador, G., et al. (2020). Zero, Then Negative: The Congressional Blueprint for Scaling Carbon
Removal. Retrieved from https://static1.squarespace.com/static/
5b9362d89d5abb8c51d474f8/t/609c3255bf02607c0d3b9591/1620853036140/
Carbon180+ZeroThenNegative.pdf
Amador, G. (2021). The FY22 President’s Budget, as told by Carbon180. Retrieved from https://
carbon180.medium.com/the-fy22-presidents-budget-as-told-by-carbon180-90d503e524
Amann, T., & Hartmann, J. (2019). Ideas and perspectives: Synergies from co-deployment of
negative emission technologies. Biogeosciences, 16(15), 2949-2960. doi:10.5194/
bg-16-2949-2019
Amann, T., Hartmann, J., Struyf, E., de Oliveira Garcia, W., Fischer, E. K., Janssens, I., . . .
Schoelynck, J. (2020). Enhanced Weathering and related element fluxes – a cropland
mesocosm approach. Biogeosciences, 17(1), 103-119. doi:10.5194/bg-17-103-2020
Amaro, H. M., Macedo, Â. C., & Malcata, F. X. (2012). Microalgae: An alternative as sustainable
source of biofuels? Energy, 44(1), 158-166. doi:https://doi.org/10.1016/
j.energy.2012.05.006
Ambrose, J. (2018). National Grid calls for carbon capture project funding by next year. The
Telegraph. Retrieved from https://www.telegraph.co.uk/business/2018/03/09/national-
grid-calls-carbon-capture-project-funding-next-year/
Ambrose, J. (2019). UK must kick-start carbon capture or risk spiralling climate change costs.
The Telegraph, (April 25). Retrieved from https://www.telegraph.co.uk/business/
2019/04/25/uk-must-kick-start-carbon-capture-risk-spiralling-climate-change/
Ambrose, J. (2020). Ecotricity founder to grow diamonds 'made entirely from the sky'. The
Guardian. Retrieved from https://www.theguardian.com/environment/2020/oct/30/
ecotricity-founder-to-grow-diamonds-made-entirely-from-the-sky
Ambrose, J. (2020). UK electricity grid's carbon emissions could turn negative by 2033, says
National Grid. The Guardian. Retrieved from Carbon emissions from Britain’s electricity
system could turn negative by as early as 2033 if the UK uses carbon capture
technology alongside more renewable energy to reach its climate targets, according to a
report from National Grid.
Ameloot, N., et al. (2012). Short-term CO2 and N2O emissions and microbial properties of
biochar amended sandy loam soils. Soil Biology & Biochemistry, 57, 401-410. Retrieved
from http://www.sciencedirect.com/science/article/pii/S003807171200404X
Ameloot, N., et al. (2013). Biochar amendment to soils with contrasting organic matter level:
effects on N mineralization and biological soil properties. Global Change Biology
Bioenergy, 7(1), 135-144. Retrieved from http://onlinelibrary.wiley.com/doi/10.1111/
gcbb.12119/abstract
Ameloot, N., et al. (2013). Interactions between biochar stability and soil organisms: review and
research needs. European Journal of Soil Science, 64(4), 379–390. Retrieved from
http://onlinelibrary.wiley.com/doi/10.1111/ejss.12064/full
Ameloot, N., et al. (2014). C mineralization and microbial activity in four biochar field
experiments several years after incorporation. Soil Biology and Biochemistry, 78, 195 -
203. doi:10.1016/j.soilbio.2014.08.004
Ameloot, N., et al. (2016). Biochar-induced N2O emission reductions after field incorporation in
a loam soil. Geoderma, 267, 10 - 16. doi:10.1016/j.geoderma.2015.12.016
Amigun, B., Musango, J., & Brent, A. (2011). Community perspectives on the introduction of
biodiesel production in the Eastern Cape Province of South Africa. Energy, 36(5),
2502-2508. Retrieved from https://www.researchgate.net/publication/
238001279_Community_perspectives_on_the_introduction_of_biodiesel_production_in_
the_Eastern_Cape_Province_of_South_Africa
Amini, S. (2014). Restoring Native Grassland Function in Urban Environment: Implications for
Soil-Plant Relations. University of Alberta, Retrieved from https://era.library.ualberta.ca/
public/view/item/uuid:602643c4-4a90-4d20-98c0-03ee27b31cc1/DS1/
Amini_Seyedeharezoo_Fall%202013.pdf
Amini, S., Ghadiri, H., Chen, C., & Marschner, P. (2015). Salt-affected soils, reclamation, carbon
dynamics, and biochar: a review. Journal of Soils and Sediments, 16(3), 939-953.
doi:10.1007/s11368-015-1293-1
Aminu, M. D. (2018). Carbon Dioxide Storage in the UK Southern North Sea Experimental and
Numerical Analysis. (Ph.D.). Cranfield University, Retrieved from https://
www.academia.edu/38495657/
Carbon_Dioxide_Storage_in_the_UK_Southern_North_Sea_Experimental_and_Numeri
cal_Analysis_Clean.pdf
Aminu, M. D., Nabavi, S. A., Rochelle, C. A., & Manovic, V. (2017). A review of developments in
carbon dioxide storage. Applied Energy, 208, 1389-1419. doi:https://doi.org/10.1016/
j.apenergy.2017.09.015
Ammar Imran, M. (2014). Integration of!Biochar!with Organic and Inorganic Sources of
Phosphorous for Improving Maize Productivity. Journal of Environment and Earth
Science, 4(11), 1-7. Retrieved from http://www.iiste.org/Journals/index.php/JEES/article/
view/13984/14006
Amonette, J. (2012). Federación Nacional de Cultivadores de Palma de Aceite Centro de
Información y Documentación Palmero, Colombia (National Federation of Oil Palm
Growers Center for Information and Documentation Palmero, Colombia). Paper
presented at the Conferencia Internacional Sobre Palma de Aceite y Expopalma 2012
(Palma International Conference on Oil and Expopalma 2012). http://www.sidalc.net/cgi-
bin/wxis.exe/?
IsisScript=FDPALMA.xis&method=post&formato=2&cantidad=1&expresion=mfn=014649
Amonette, J., & Joseph, S. (2009). Characteristics of Biochar - Micro-chemical Properties. In J.
Lehmann & S. Joseph (Eds.), Biochar for Environmental Management: Science and
Technology (pp. pp. 33-52.). London, UK: Earthscan.
Amonette, J. E., Blanco-Canqui, H., Hassebrook, C., Laird, D. A., Lal, R., Lehmann, J., & Page-
Dumroese, D. (2021). Integrated biochar research: A roadmap. Journal of Soil and Water
Conservation, 76(1), 24A-29A. doi:10.2489/jswc.2021.1115A
Amonette, J. E., Hu, Y., Schlekewey, N. J., Humphrys, D. R., Dai, S. S., Shaff, Z. W., . . . Arey,
B. W. (2011). Survey of the chemical properties of a suite of biochars.
Amorim, M. J. B., Novais, S., Römbke, J., & Soares, A. M. V. M. (2008). Avoidance test with
enchytraeus albidus (enchytraeidae): Effects of Different Exposure Time and Soil
Properties. Environmental Pollution, 155(1), 112-116. Retrieved from http://
www.sciencedirect.com/science/article/pii/S0269749107005295
Amos, R. (2017). Bioenergy Carbon Capture and Storage in Global Climate Policy: Examining
the Issues. Carbon & Climate Law Review, 10(4). doi:10.21552/cclr/2016/4/5
Ampelli, C., Centi, G., Passalacqua, R., & Perathoner, S. (2010). Synthesis of solar fuels by a
novel photoelectrocatalytic approach. Energy Environ. Sci., 3, 292.
Ampomah, W., Balch, R., Cather, M., Rose-Coss, D., Dai, Z., Heath, J., . . . Mozley, P. (2016).
Evaluation of CO2 Storage Mechanisms in CO2 Enhanced Oil Recovery Sites:
Application to Morrow Sandstone Reservoir. Energy & Fuels, 30(10), 8545-8555.
doi:10.1021/acs.energyfuels.6b01888
Ampomah, W., Balch, R., Will, R., Cather, M., Gunda, D., & Dai, Z. (2017). Co-optimization of
CO2-EOR and Storage Processes under Geological Uncertainty. Energy Procedia, 114,
6928-6941. doi:https://doi.org/10.1016/j.egypro.2017.03.1835
Amundson, R., & Biardeau, L. (2018). Opinion: Soil carbon sequestration is an elusive climate
mitigation tool. 115(46), 11652-11656. doi:10.1073/pnas.1815901115 %J Proceedings of
the National Academy of Sciences
An, C., & Huang, G. (2015). Environmental concern on biochar: capture, then what?
Environmental Earth Sciences, 74(12), 7861-7863. doi:10.1007/s12665-015-4741-8
An, S.-I., Shin, J., Yeh, S.-W., Son, S.-W., Kug, J.-S., Min, S.-K., & Kim, H.-J. Global cooling
hiatus driven by an AMOC overshoot in a carbon dioxide removal scenario. Earth's
Future, n/a(n/a), e2021EF002165. doi:https://doi.org/10.1029/2021EF002165
Analytics, C. Why negative CO
2
emission technologies should not be classified as
Geoengineering. Retrieved from http://climateanalytics.org/files/
why_net_is_not_geoengineering.pdf
Ananthaswamy, A. (2018). Fix acid oceans by dumping alkali in them? Forget it. New Scientist.
Retrieved from https://www.newscientist.com/article/dn21294-fix-acid-oceans-by-
dumping-alkali-in-them-forget-it/
Anastasakis, K., & Ross, A. B. (2015). Hydrothermal liquefaction of four brown macro-algae
commonly found on the UK coasts: An energetic analysis of the process and comparison
with bio-chemical conversion methods. Fuel, 139, 546 - 553. doi:10.1016/
j.fuel.2014.09.006
Anawar, H. M., Farjana, A., Solaiman, Z. M., & Strezov, V. (2015). Biochar: An Emerging
Panacea for Remediation of Soil Contaminants from Mining, Industry and Sewage
Wastes. Pedosphere, 25(5), 654 - 665. doi:10.1016/s1002-0160(15)30046-1
Anbar, A., et al. (2016). Addressing the Anthropocene. Environmental Chemistry, 13(5),
777-783.
Anchondo, C., & Klump, E. (2020). Petra Nova is closed: What it means for carbon capture.
E&E News. Retrieved from https://www.eenews.net/stories/1063714297
Anda, M., Shamshuddin, J., & Fauziah, C. I. (2013). Increasing negative charge and nutrient
contents of a highly weathered soil using basalt and rice husk to promote cocoa growth
under field conditions. Soil and Tillage Research, 132(Supplement C), 1-11. doi:https://
doi.org/10.1016/j.still.2013.04.005
Anda, M., Shamshuddin, J., & Fauziah, C. I. (2015). Improving chemical properties of a highly
weathered soil using finely ground basalt rocks. CATENA, 124, 147-161. Retrieved from
https://www.infona.pl/resource/bwmeta1.element.elsevier-bbc7cf8c-dd2b-360a-8824-
ef7fd4950907
Anderegg, W. R. L., Trugman, A. T., Badgley, G., Anderson, C. M., Bartuska, A., Ciais, P., . . .
Randerson, J. T. (2020). Climate-driven risks to the climate mitigation potential of
forests. Science, 368(6497), eaaz7005. doi:10.1126/science.aaz7005
Andersen, M. (2017). Opportunities and Risks of Seaweed Biofuels in Aviation. Retrieved from
http://network.bellona.org/content/uploads/sites/3/2017/03/OPPORTUNITIES-AND-
RISKS-OF-SEAWEED-BIOFUELS-IN-AVIATION-web_print.pdf
Anderson, A. (2019). Can Trees, Oceans and Giant Carbon Sucking Machines Save Us from
Climate Catastrophe? Retrieved from https://blog.ucsusa.org/angela-anderson/can-
trees-oceans-and-giant-carbon-sucking-machines-save-us-from-climate-catastrophe
Anderson, C., Schirmer, J., & Abjorensen, N. (2012). Exploring CCS community acceptance and
public participation from a human and social capital perspective. Mitigation and
Adaptation Strategies for Global Change, 17(6), 687-706. doi:10.1007/s11027-011-9312-
z
Anderson, C. G. (2014). Effects of biosolids-derived pharmaceuticals on microbial communities
and nitrogen processes in soil. University of California, Davis, Retrieved from http://
gradworks.umi.com/15/60/1560063.html
Anderson, C. M., DeFries, R. S., Litterman, R., Matson, P. A., Nepstad, D. C., Pacala, S., . . .
Field, C. B. (2019). Natural climate solutions are not enough. 363(6430), 933-934.
doi:10.1126/science.aaw2741 %J Science
Anderson, C. M., Field, C. B., & Mach, K. J. (2017). Forest offsets partner climate-change
mitigation with conservation. Frontiers in Ecology and the Environment, 15(7), 359-365.
doi:10.1002/fee.1515
Anderson, C. R., et al. . (2011). Biochar induced soil microbial community change: Implications
for biogeochemical cycling of carbon, nitrogen and phosphorus. Pedobiologia, 54(5-6),
309-320. doi:10.1016/j.pedobi.2011.07.005
Anderson, C. R., Hamonts, K., Clough, T. J., & Condron, L. M. (2014). Biochar does not affect
soil N-transformations or microbial community structure under ruminant urine patches
but does alter relative proportions of nitrogen cycling bacteria. Agriculture, Ecosystems &
Environment, 191, 63-72. doi:http://dx.doi.org/10.1016/j.agee.2014.02.021
Anderson, D. (2021). Lululemon, LanzaTech are reshaping carbon waste into fabric. Green Biz.
Retrieved from https://www.greenbiz.com/article/lululemon-lanzatech-are-reshaping-
carbon-waste-fabric?
utm_source=newsletter&utm_medium=email&utm_campaign=greenbuzz&utm_content=
2021-07-26&mkt_tok=MjExLU5KWS0xNjUAAAF-geIwtuAjG-DLYSsbCA4wRQyD394B-
zjZ08FQiqc0ESChmktBKDgPtkyyQbIsggO932QYC2nTbHDYm8rwxTMFQyotq1ffPs-
seSQJsonPXpRZna4
Anderson, J. (2010). CCS and Community Engagement. Retrieved from https://
wriorg.s3.amazonaws.com/s3fs-public/pdf/ccs_and_community_engagement.pdf?
_ga=2.67475606.609284369.1555298562-1151941182.1555298562
Anderson, K. (2015). Duality in climate science. Nature Geoscience, 8(12), 898-900.
doi:10.1038/ngeo2559
Anderson, K., & Peters, G. (2016). The trouble with negative emissions. Science, 354(6309),
182-183. Retrieved from http://science.sciencemag.org/content/354/6309/182
Anderson, M. (2019). A (Very) Close Look at Carbon Capture and Storage. IEEE Spectrum,
(July 16). Retrieved from https://spectrum.ieee.org/energywise/energy/environment/a-
very-close-look-at-carbon-capture-and-storage
Anderson, N., et al. (2013). A Comparison of Producer Gas, Biochar, and Activated Carbon from
Two Distributed Scale Thermochemical Conversion Systems Used to Process Forest
Biomass. Energies, 6(1), 164-183. Retrieved from http://www.mdpi.com/
1996-1073/6/1/164
Anderson, P. (2019). Recognition of Biochar & Energy (BC&E) as a Separate Negative
Emission Technology (NET) for Improving Integrated Assessment Modeling (IAM).
Retrieved from https://woodgas.energy/wp-content/uploads/2020/12/Recognition-of-
Biochar-and-Energy-as-a-Separate-NET.pdf
Anderson, P. (2020). Climate Intervention with Biochar. Retrieved from
Anderson-Teixeira, K. J., Masters, M. D., Black, C. K., Zeri, M., Hussain, M. Z., Bernacchi, C. J.,
& DeLucia, E. H. (2013). Altered Belowground Carbon Cycling Following Land-Use
Change to Perennial Bioenergy Crops. Ecosystems, 16(3), 508-520. doi:10.1007/
s10021-012-9628-x
Andersson, K., Lawrence, D., Zavaleta, J., & Guariguata, M. R. (2016). More Trees, More
Poverty? The Socioeconomic Effects of Tree Plantations in Chile, 2001–2011.
Environmental Management, 57(1), 123-136. doi:10.1007/s00267-015-0594-x
Andersson, R., Stripple, H., Gustafsson, T., & Ljungkrantz, C. (2019). Carbonation as a method
to improve climate performance for cement based material. Cement and Concrete
Research, 124, 105819. doi:https://doi.org/10.1016/j.cemconres.2019.105819
Andert, J., & Mumme, J. (2015). Impact of pyrolysis and hydrothermal biochar on gas-emitting
activity of soil microorganisms and bacterial and archaeal community composition.
Applied Soil Ecology, 96, 225 - 239. doi:10.1016/j.apsoil.2015.08.019
Ando, K. (2020). US startup's carbon capture concrete wins Mitsubishi's backing. Nikkei Asian
Review. Retrieved from https://asia.nikkei.com/Spotlight/Environment/US-startup-s-
carbon-capture-concrete-wins-Mitsubishi-s-backing
Ando, K. (2020). US startup's carbon capture concrete wins Mitsubishi's backing. Nikkei Asia
Retrieved from https://asia.nikkei.com/Spotlight/Environment/US-startup-s-carbon-
capture-concrete-wins-Mitsubishi-s-backing
Andre, M. (2020). Norway starts work on carbon storage program — says it’s “absolutely
necessary. ZME Science. Retrieved from https://www.zmescience.com/science/news-
science/ccs-norway-22072021/
Andreani, M., et al. (2009). Experimental study of carbon sequestration reactions controlled by
the percolation of CO2-rich brine through peridotites. Environmental Science &
Technology, 43, 1226-1231.
Andreev, N., et al. (2012). A concept for a sustainable sanitation chain based on the semi
centralised production of Terra Preta for Moldova. Paper presented at the 4th
International Dry Toilet Conference. http://www.drytoilet.org/dt2012/full_papers/4/
Nadejda_Andreev.pdf
Andrenelli, M. C., Maienza, A., Genesio, L., Miglietta, F., Pellegrini, S., Vaccari, F. P., & Vignozzi,
N. (2016). Field application of pelletized biochar: Short term effect on the hydrological
properties of a silty clay loam soil. Agricultural Water Management, 163, 190 - 196.
doi:10.1016/j.agwat.2015.09.017
Andresen, B., Norheim, A., Strand, J., Ulleberg, O., Vik, A., & Waernhus, I. (2014). BioZEG -
pilot plant demonstration of high efficiency carbon negative energy production. In T.
Dixon, H. Herzog, & S. Twinning (Eds.), 12th International Conference on Greenhouse
Gas Control Technologies, Ghgt-12 (Vol. 63, pp. 279-285). Amsterdam: Elsevier Science
Bv.
Andresen, J. (2021). Direct Air Capture: The Upscaling of Sustainable Technologies. (Bachelor).
University of Twente, Retrieved from http://essay.utwente.nl/87713/
Andrews, M. G., & Taylor, L. L. (2019). Combating Climate Change Through Enhanced
Weathering of Agricultural Soils. Elements, 15(4), 253-258. doi:10.2138/
gselements.15.4.253 %J Elements
Andrews, R. G. (2018). The Alluring Dream of Carbon Capature. Earther. Retrieved from https://
earther.com/the-alluring-dream-of-carbon-capture-1826830310
Anegbe, B., et al. (2015). Fractionation of lead-acid battery soil amended with Biochar. Bayero
Journal of Pure and Applied Sciences, 7(2), 36-43. Retrieved from file:///C:/Users/
Gateway/Downloads/111300-307644-1-PB.pdf
Anex, R. P., Lynd, L. R., Laser, M. S., Heggenstaller, A. H., & Liebman, M. (2007). Potential for
Enhanced Nutrient Cycling through Coupling of Agricultural and Bioenergy Systems All
rights reserved. No part of this periodical may be reproduced or transmitted in any form
or by any means, electronic or mechanical, including photocopying, recording, or any
information storage and retrieval system, without permission in writing from the
publisher. Permission for printing and for reprinting the material contained herein has
been obtained by the publisher. Crop Science, 47(4), 1327-1335. doi:10.2135/
cropsci2006.06.0406
Anggono, R. C. W. (2015). Pengaruh Dosis Biochar Terhadap Kalium Tanah pada Sistem
Pertanian Organik (Dose Effect of Potassium Against Soil Biochar in Organic Farming
Systems). Univesitas Kristen (Christian University), Retrieved from http://
repository.uksw.edu/handle/123456789/6248?mode=full
Angin, D. (2012). Effect of Pyrolysis Temperature and Heating Rate on Biochar Obtained from
Pyrolysis of Safflower Seed Press Cake. Bioresource Technology, 128, 593-597.
Retrieved from http://www.sciencedirect.com/science/article/pii/S0960852412016598
Angın, D., Altintig, E., & Köse, T. E. (2013). Influence of process parameters on the surface and
chemical properties of activated carbon obtained from biochar by chemical activation.
Bioresource Technology, 148, 542-549. Retrieved from http://www.sciencedirect.com/
science/article/pii/S0960852413014223
Angin, D., Köse, T. E., & Selengil, U. (2013). Production and characterization of activated
carbon prepared from safflower seed cake biochar and its ability to absorb reactive
dyestuff. Applied Surface Science, 280, 705-710. Retrieved from http://
www.sciencedirect.com/science/article/pii/S0169433213009732
Angst, T. E., et al. (2013). Biochar Diminishes Nitrous Oxide and Nitrate Leaching from Diverse
Nutrient Sources. Journal of Environmental Quality, 42(3), 672-682. Retrieved from
https://dl.sciencesocieties.org/publications/jeq/abstracts/42/3/672
Angst, T. E., Six, J., Reay, D. S., & Sohi, S. P. (2014). Impact of pine chip biochar on trace
greenhouse gas emissions and soil nutrient dynamics in an annual ryegrass system in
California. Agriculture, Ecosystems & Environment, 191, 17-26. doi:http://dx.doi.org/
10.1016/j.agee.2014.03.009
Angst, T. E., & Sohi, S. P. (2012). Establishing release dynamics for plant nutrients from biochar.
Global Change Biology Bioenergy, 5(2), 221-226. Retrieved from http://
onlinelibrary.wiley.com/doi/10.1111/gcbb.12023/full
Anjum, R., Krakat, N., Toufiq Reza, M., & Klocke, M. (2014). Assessment of mutagenic potential
of pyrolysis biochars by Ames Salmonella/mammalian-microsomal mutagenicity test.
Ecotoxicology and Environmental Safety, 107, 306 - 312. doi:10.1016/
j.ecoenv.2014.06.005
Anschau, A., et al. (2013). Agrofuels and water in Argentina. In J. F. Dellemand & P. W.
Gerbens-Leenes (Eds.), Bioenergy and Water (pp. 77-88): European Commission.
Anstey, A., et al. (2016). Oxidative acid treatment and characterization of new biocarbon from
sustainable Miscanthus biomass. Science of The Total Environment, 550, 241 - 247.
doi:10.1016/j.scitotenv.2016.01.015
Antal, J., Michael Jerry , Mochidzuk, K., & Paredes, L. S. (2003). Flash Carbonization of
Biomass. Industrial Engineering and Chemistry Research, 42(16), 3690-3699. Retrieved
from http://www.hnei.hawaii.edu/flash_carb_biomass.pdf
Antal, M. J., et al. (2000). Attainment of the Theoretical Yield of Carbon from Biomass. Industrial
and Engineering Chemistry Research, 39(11), 4024-4031. Retrieved from http://
pubs.acs.org/doi/abs/10.1021/ie000511u
Anthonia, Eseyin, E., Kieran, & Ekpenyong, I. (2015). Advances in Low Temperature Biomass
Pyrolysis: A Brief Review. Journal of Biofuels, 6(1), 44.
doi:10.5958/0976-4763.2015.00007.0
Anthonsen, K. L., Aagaard, P., Bergmo, P. E. S., Erlström, M., Fareide, J. I., Gislason, S. R., . . .
Snæbjörnsdottir, S. Ó. (2013). CO2 Storage Potential in the Nordic Region. Energy
Procedia, 37, 5080-5092. doi:https://doi.org/10.1016/j.egypro.2013.06.421
Anthony, E. J. (2010). Chemical-looping combustion systems and technology for carbon dioxide
(CO2) capture in power plants A2 - Maroto-Valer, M. Mercedes. In Developments and
Innovation in Carbon Dioxide (CO2) Capture and Storage Technology (Vol. 1, pp.
358-379): Woodhead Publishing.
Anthony, R. (2014). Carbon storage in orchards. Bangor University, Retrieved from http://
ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.610906
Antonini, C., Treyer, K., Streb, A., van der Spek, M., Bauer, C., & Mazzotti, M. (2020). Hydrogen
production from natural gas and biomethane with carbon capture and storage – A
techno-environmental analysis. Sustainable Energy & Fuels, 4(6), 2967-2986.
doi:10.1039/D0SE00222D
Antonius, S., Dewi, T. K., & Osaki, M. (2015). The Synergy of Biochar, Compost and Biofertilizer
for Development of Sustainable Agriculture. KnE Life Sciences, 2(1), 677. doi:10.18502/
kls.v2i1.247
Antwerp, U. o. (2020). Coastal enhanced silicate weathering: Investigating the potential for CO2
drawdown in coastal environments. Retrieved from https://coastalesw.com/
Anupam, K., Swaroop, V., Deepika, Lal, P. S., & Bist, V. (2015). Turning Leucaena leucocephala
bark to biochar for soil application via statistical modelling and optimization technique.
Ecological Engineering, 82, 26 - 39. doi:10.1016/j.ecoleng.2015.04.078
Anyanwu, J.-T., Wang, Y., & Yang, R. T. (2020). Amine-Grafted Silica Gels for CO2 Capture
Including Direct Air Capture. Industrial & Engineering Chemistry Research, 59(15),
7072-7079. doi:10.1021/acs.iecr.9b05228
Anyanwu, J.-T., Wang, Y., & Yang, R. T. (2021). CO2 Capture (Including Direct Air Capture) and
Natural Gas Desulfurization of Amine-grafted Hierarchical Bimodal Silica. Chemical
Engineering Journal, 131561. doi:https://doi.org/10.1016/j.cej.2021.131561
Anyika, C., Abdul Majid, Z., Ibrahim, Z., Zakaria, M. P., & Yahya, A. (2014). The impact of
biochars on sorption and biodegradation of polycyclic aromatic hydrocarbons in soils—a
review. Environmental Science and Pollution Research, 22(5), 3314-3341. doi:10.1007/
s11356-014-3719-5
Aon, M., et al. (2015). Low temperature produced citrus peel and green waste biochar improved
maize growth and nutrient uptake, and chemical properties of calcareous soil. Pakistan
Journal of Agricultural Sciences, 52(3), 627-636. Retrieved from http://
www.pakjas.com.pk/papers%5C2461.pdf
AP. (2019). North Dakota officials considering carbon dioxide pipeline. Washington Times.
Retrieved from https://www.washingtontimes.com/news/2019/dec/19/north-dakota-
officials-considering-carbon-dioxide-/
AP. (2020). Wyoming Carbon Capture Project Advances to Next Stage. US News & World
Report. Retrieved from https://www.usnews.com/news/best-states/wyoming/articles/
2020-11-09/wyoming-carbon-capture-project-advances-to-next-stage
Appunn, K. (2021). The carbon balancing act: Emission reduction and removal in the bid for net-
zero Clean Energy Wire. Retrieved from https://www.cleanenergywire.org/news/carbon-
balancing-act-emission-reduction-and-removal-bid-net-zero
Appunn, K. (2021). German industry urges new debate on carbon capture, storage and
utilisation. Clean Energy Wire. Retrieved from https://www.cleanenergywire.org/news/
german-industry-urges-new-debate-carbon-capture-storage-and-utilisation
Arabesque. (2021). Carbon dioxide removal mustn't become get-out-of-jail-free cards for
corporate polluters. Eco-Business. Retrieved from https://www.eco-business.com/
opinion/carbon-dioxide-removal-mustnt-become-get-out-of-jail-free-cards-for-corporate-
polluters/
Arachchige, U. (2019). Amines' effect on CO2 removal efficiency. International Journal of
Research, 6(3), 725-729. Retrieved from https://journals.pen2print.org/index.php/ijr/
article/view/17312/16907
Arachchige, U. S. P. R. (2012). Optimization of post combustion carbon capture processsolvent
selection. International Journal of Energy and Environment, 3(6), 861-870. Retrieved
from http:// www.IJEE.IEEFoundation.org
Aradóttir, E. S. P., Sonnenthal, E. L., Björnsson, G., & Jónsson, H. (2012). Multidimensional
reactive transport modeling of CO2 mineral sequestration in basalts at the Hellisheidi
geothermal field, Iceland. International Journal of Greenhouse Gas Control, 9, 24-40.
doi:https://doi.org/10.1016/j.ijggc.2012.02.006
Aradóttir, E. S. P., Sonnenthal, E. L., & Jónsson, H. (2012). Development and evaluation of a
thermodynamic dataset for phases of interest in CO2 mineral sequestration in basaltic
rocks. Chemical Geology, 304-305, 26-38. doi:https://doi.org/10.1016/
j.chemgeo.2012.01.031
Aragonès, M. P., et al. (2020). Europe needs a definition of Carbon Dioxide Removal. Retrieved
from https://bit.ly/30aO4R4
Aragonès, M. P., & Wang, F. (2021). New EU climate law delivers innovative policy framework to
advance carbon removal and avoid moral hazard. Retrieved from https://
www.climateworks.org/blog/innovative-european-union-climate-law/
Aramaki, T., Nojiri, Y., & Imai, K. (2009). Behavior of particulate materials during iron fertilization
experiments in the Western Subarctic Pacific (SEEDS and SEEDS II). Deep Sea
Research Part II: Topical Studies in Oceanography, 56(26), 2875-2888. doi:https://
doi.org/10.1016/j.dsr2.2009.07.005
Arasto, A., Onarheim, K., Tsupari, E., & Karki, J. (2014). Bio-CCS: feasibility comparison of large
scale carbon-negative solutions. In T. Dixon, H. Herzog, & S. Twinning (Eds.), 12th
International Conference on Greenhouse Gas Control Technologies, Ghgt-12 (Vol. 63,
pp. 6756-6769). Amsterdam: Elsevier Science Bv.
Arasto, A., Onarheim, K., Tsupari, E., & Kärki, J. (2014). Bio-CCS: Feasibility comparison of
large scale carbon-negative solutions. Energy Procedia, 63, 6756-6769. doi:http://
dx.doi.org/10.1016/j.egypro.2014.11.711
Arasto, A., Tsupari, E., Karki, J., Sormunen, R., Korpinen, T., & Hujanen, S. (2014). Feasibility of
significant CO2 emission reductions in thermal power plants - comparison of biomass
and CCS. In T. Dixon, H. Herzog, & S. Twinning (Eds.), 12th International Conference on
Greenhouse Gas Control Technologies, Ghgt-12 (Vol. 63, pp. 6745-6755). Amsterdam:
Elsevier Science Bv.
Arastoopour, H., Gidaspow, D., & Lyczkowski, R. W. (2022). Application of Multiphase Transport
to CO2 Capture. In Transport Phenomena in Multiphase Systems (pp. 177-196). Cham:
Springer International Publishing.
Araujo, O. D. F., de Medeiros, J. L., & Alves, R. M. B. (2014). CO2 Utilization: A Process
Systems Engineering Vision. Rijeka: Intech Europe.
Arbestain, M. C., et al. (2015). SSSA Special PublicationAgricultural and Environmental
Applications of Biochar: Advances and BarriersResearch and Application of Biochar in
New Zealand: Soil Science Society of America, Inc.
Arce Ferrufino, G. L. A., Okamoto, S., Dos Santos, J. C., de Carvalho, J. A., Avila, I., Romero
Luna, C. M., & Gomes Soares Neto, T. (2018). CO2 sequestration by pH-swing mineral
carbonation based on HCl/NH4OH system using iron-rich lizardite 1T. Journal of CO2
Utilization, 24, 164-173. doi:https://doi.org/10.1016/j.jcou.2018.01.001
Archontoulis, S. V., Huber, I., Miguez, F. E., Thorburn, P. J., Rogovska, N., & Laird, D. A. (2015).
A model for mechanistic and system assessments of biochar effects on soils and crops
and trade-offs. GCB Bioenergy, 8(6), 1028-1045. doi:10.1111/gcbb.12314
Ardiansyah, A., Arif, C., & Wijaya, K. (2016). Nitrogen Uptake of Sir Paddy Feild Compared to
Conventional Field. Jurnal Teknologi, 78(1-2). doi:10.11113/jt.v78.7259
Ardiwinata, A. N., & Harsanti, E. S. (2016). The role and use of activated carbon in the
agriculture sector to control insecticide residues. In Biochar for future food security:
learning from experiences and identifying research priorities.
Arehart, J. H., Nelson, W. S., & Srubar, W. V. (2020). On the theoretical carbon storage and
carbon sequestration potential of hempcrete. Journal of Cleaner Production, 266,
121846. doi:https://doi.org/10.1016/j.jclepro.2020.121846
Arenas, F., & Vas-Pinto, F. (2014). Marine algae as carbon sinks and allies to combat global
warming. In L. Pereira & J. M. Neto (Eds.), Marine algae: biodiversity, taxonomy,
environmental assessment and biotechnology (pp. 178-193).
Aresta, M. (2010). Indirect Utilization of Carbon Dioxide: Utilization of Terrestrial and Aquatic
Biomass. In Carbon Dioxide as Chemical Feedstock.
Aresta, M. (2019). Perspective Look on CCU Large-Scale Exploitation. In M. Aresta, I. Karimi, &
S. Kawi (Eds.), An Economy Based on Carbon Dioxide and Water: Potential of Large
Scale Carbon Dioxide Utilization (pp. 431-436). Retrieved from https://link.springer.com/
chapter/10.1007/978-3-030-15868-2_13
Aresta, M., & Dibenedetto, A. (2007). Utilisation of CO2 as a chemical feedstock: opportunities
and challenges. Dalton Transactions(28), 2975-2992. doi:10.1039/b700658f
Aresta, M., & Dibenedetto, A. (2019). Chapter 9 - Beyond fractionation in the utilization of
microalgal components. In J. C. Magalhães Pires & A. L. D. Cunha Gonçalves (Eds.),
Bioenergy with Carbon Capture and Storage (pp. 173-193): Academic Press.
Aresta, M., Dibenedetto, A., & Angelini, A. (2013). The changing paradigm in CO2 utilization.
Journal of CO2 Utilization, 3-4(Supplement C), 65-73. doi:https://doi.org/10.1016/
j.jcou.2013.08.001
Aresta, M., Dibenedetto, A., & Barberio, G. (2005). Utilization of macro-algae for enhanced CO2
fixation and biofuels production: Development of a computing software for an LCA study.
Fuel Processing Technology, 86, 1679-1693. Retrieved from http://moritz.botany.ut.ee/
~olli/b/Aresta05.pdf
Aresta, M., & Nocito, F. (2019). Large Scale Utilization of Carbon Dioxide: From Its Reaction
with Energy Rich Chemicals to (Co)-processing with Water to Afford Energy Rich
Products. Opportunities and Barriers. In M. Aresta, I. Karimi, & S. Kawi (Eds.), An
Economy Based on Carbon Dioxide and Water: Potential of Large Scale Carbon Dioxide
Utilization (pp. 1-33). Retrieved from https://link.springer.com/content/pdf/
10.1007%2F978-3-030-15868-2_1.pdf
Arevalo, J., Ochieng, R., Mola-Yudego, B., & Gritten, D. (2014). Understanding bioenergy
conflicts: Case of a jatropha project in Kenya's Tana Delta. Land Use Policy, 41,
138-148. doi:http://dx.doi.org/10.1016/j.landusepol.2014.05.002
Arif, M., et al. (2012). Effect of biochar, FYM and nitrogen on weeds and maize phenology.
Pakistan Journal of Weed Science Research, 18(4), 475-484. Retrieved from https://
www.researchgate.net/publication/
280132996_Effect_of_biochar_FYM_and_nitrogen_on_weeds_and_maize_phenology
Arif, M., Ali, A., Umair, M., Munsif, F., Ali, K., Inamullah, . . . Ayub, G. (2012). Effect of biochar
FYM and mineral nitrogen alone and in combination on yield and yield components of
maize. Sarhad J. Agric., 28(2), 191-195. Retrieved from http://www.aup.edu.pk/sj_pdf/
EFFECT%20OF%20BIOCHAR,
%20FYM%20AND%20MINERAL%20NITROGEN%20-35-2012.pdf
Arif, M., Ali, K., Jan, M. T., Shah, Z., Jones, D. L., & Quilliam, R. S. (2016). Integration of biochar
with animal manure and nitrogen for improving maize yields and soil properties in
calcareous semi-arid agroecosystems. Field Crops Research, 195, 28-35. doi:http://
dx.doi.org/10.1016/j.fcr.2016.05.011
Arif, M., Jalal, F., Jan, M. T., Muhammad, D., & Quilliam, R. S. (2014). Incorporation of Biochar
and Legumes into the Summer Gap: Improving Productivity of Cereal-Based Cropping
Systems in Pakistan. Agroecology and Sustainable Food Systems, 39, 391-398.
doi:10.1080/21683565.2014.996696
Ariffin, M. A., et al. . (2014). Potential of Oil Palm Empty Fruit Bunch (EFB) Biochar from
Gasification Process. Australian Journal of Basic and Applied Sciences, 8(19), 149-153.
Retrieved from http://ajbasweb.com/old/ajbas/2014/Special%2012/149-152.pdf
Ariza-Montobbio, P., et al. (2010). The political ecology of Jatropha plantations for biodiesel in
Tamil Nadu, India. The Journal of Peasant Studies, 37(4), 875-897. Retrieved from http://
www.tandfonline.com/doi/pdf/10.1080/03066150.2010.512462
Arlt, W. (2003). Engineering Solutions for Limiting the Increase of Atmospheric Carbon Dioxide.
Chemical Engineering & Technology, 26(12), 1217-1224. doi:10.1002/ceat.200306130
Armeni, C., & Redgwell, C. (2015). International legal and regulatory issues of climate
geoengineering governance: rethinking the approach. Retrieved from http://
www.geoengineering-governance-research.org/perch/resources/
workingpaper21armeniredgwelltheinternationalcontextrevise-.pdf
Armstrong, K., Bachmann, M., Bardow, A., Cao, X. E., Cassiola, F., Cummings, C., . . . Whiston,
K. (2021). Life cycle and upscaling: general discussion. Faraday Discussions, 230(0),
308-330. doi:10.1039/D1FD90047A
Armstrong, K., Barbarino, S., Cao, X. E., Cassiola, F., Catlow, R. A., Claeys, M., . . . Wolf, M.
(2021). Thermal catalytic conversion: general discussion. Faraday Discussions, 230(0),
124-151. doi:10.1039/D1FD90045E
Armstrong, K., Bardow, A., Cao, X. E., Cassiola, F., Fischer, N., Hills, C., . . . Whiston, K. (2021).
Accelerated mineralisation: general discussion. Faraday Discussions, 230(0), 213-226.
doi:10.1039/D1FD90046C
Armstrong, K., & Styring, P. (2015). Assessing the Potential of Utilization and Storage Strategies
for Post-Combustion CO2 Emissions Reduction. Frontiers in Energy Research, 3(8).
doi:10.3389/fenrg.2015.00008
Armstrong, M., Shi, X., Shan, B., Lackner, K., & Mu, B. (2019). Rapid CO2 capture from ambient
air by sorbent-containing porous electrospun fibers made with the solvothermal polymer
additive removal technique. AIChE Journal, 65(1), 214-220. doi:https://doi.org/10.1002/
aic.16418
Arnette, A. N. (2017). Renewable energy and carbon capture and sequestration for a reduced
carbon energy plan: An optimization model. Renewable and Sustainable Energy
Reviews, 70, 254-265. doi:https://doi.org/10.1016/j.rser.2016.11.218
Arning, K., Offermann-van Heek, J., Linzenich, A., Kaetelhoen, A., Sternberg, A., Bardow, A., &
Ziefle, M. (2019). Same or different? Insights on public perception and acceptance of
carbon capture and storage or utilization in Germany. Energy Policy, 125, 235-249.
doi:https://doi.org/10.1016/j.enpol.2018.10.039
Arora, V. K., & Montenegro, A. (2011). Small temperature benefits provided by realistic
afforestation efforts. Nature Geoscience, 4, 514. doi:10.1038/ngeo1182
https://www.nature.com/articles/ngeo1182#supplementary-information
Arstad, B., Spjelkavik, A., Andreassen, K. A., Lind, A., Prostak, J., & Blom, R. (2013). Studies of
Ca-based high temperature sorbents for CO2 capture. Energy Procedia, 37, 9-15.
doi:http://dx.doi.org/10.1016/j.egypro.2013.05.079
Arthur, E., Tuller, M., Moldrup, P., & de Jonge, L. W. (2015). Effects of biochar and manure
amendments on water vapor sorption in a sandy loam soil. Geoderma, 243-244, 175 -
182. doi:10.1016/j.geoderma.2015.01.001
Arthur, M. J. R., Wenqiao, Y., Michael, D. B., Donghai, W., & Ajay, K. (2015). Characterization of
biochar from rice hulls and wood chips produced in a top-lit updraft biomass gasifier.
2015 ASABE Annual International Meeting, 1. doi:10.13031/aim.20152187923
Artiola, J. F., Rasmussen, C., & Freitas, R. (2012). Effects of a Biochar-Amended Alkaline Soil
on the Growth of Romaine Lettuce and Bermudagrass. Soil Science, 177(9), 561–570.
doi:10.1097/SS.0b013e31826ba908
Artyszak, A. (2018). Effect of Silicon Fertilization on Crop Yield Quantity and Quality—A
Literature Review in Europe. Plants, 7(3), 54. Retrieved from https://www.mdpi.com/
2223-7747/7/3/54
Arvidson, R. S., Mackenzie, F. T., & Guidry, M. (2006). MAGic: A Phanerozoic Model for the
Geochemical Cycling of Major Rock-Forming Components. American Journal of
Science, 306(3), 135-190. doi:10.2475/ajs.306.3.135
Asai, H., et al. (2009). Biochar Amendment Techniques for Upland Rice Production in Northern
Laos. Field Crops Research, 111(1-2), 81-84. Retrieved from http://
www.sciencedirect.com/science/article/pii/S0378429008002141
Asai, T., Akiyama, Y., & Dodo, S. (2017). Development of a State-of-the-Art Dry Low NOx Gas
Turbine Combustor for IGCC with CCS. In Y. Yun (Ed.), Recent Advances in Carbon
Capture and Storage (pp. Ch. 01). Rijeka: InTech.
Asamoah, A., Antwi-Boasiako, C., & Frimpong-Mensah, K. (2015). Amending Sandy Soils with
Composite Materials for Improved Conditions and Crop Productivity—a probable exploit.
Paper presented at the The 4th IBI Biochar Congress, Beijing, China.
www.researchgate.net/profile/Akwasi_Asamoah/publication/
261409709_The_Amending_Sandy_Soils_with_Composite_Materials_for_Improved_Co
nditions_and_Crop_Productivity_a_probable_exploit/links/
0a85e5343a68481070000000.pdf
Asayama, S., & Hulme, M. (2019). Engineering climate debt: temperature overshoot and peak-
shaving as risky subprime mortgage lending. Climate Policy, 19(8), 937-946.
doi:10.1080/14693062.2019.1623165
Asayama, S., & Ishii, A. (2013). Exploring Media Representation of Carbon Capture and
Storage: An Analysis of Japanese Newspaper Coverage in 1990-2010. Energy Procedia,
37, 7403-7409. doi:http://dx.doi.org/10.1016/j.egypro.2013.06.682
Ascough, P. L., Bird, M. I., Brock, F., Higham, T. F. G., Meredith, W., & Snape, C. E. (2009).
Hydropyrolysis as a New Tool for Radiocarbon Pre-Treatment and the Quantification of
Black Carbon. Quaternary Geochronology, 4(2), 140-147. Retrieved from http://
www.sciencedirect.com/science/article/pii/S1871101408000538
Ascough, P. L., Bird, M. I., Wormald, P., Snape, C. E., & Apperley, D. (2008). Influence of
production variables and starting material on charcoal stable isotopic and molecular
characteristics. Geochimica Et Cosmochimica Acta, 72(24), 6090-6102. Retrieved from
http://www.sciencedirect.com/science/article/pii/S0016703708006005
Ascough, P. L., Sturrock, C. J., & Bird, M. I. (2010). Investigation of growth responses in
saprophytic fungi to charred biomass. Isotopes in Environmental and Health Studies,
46(1), 64-77. Retrieved from https://www.ncbi.nlm.nih.gov/pubmed/20229385
Ashok, J., et al. (2019). Catalytic CO2 Conversion to Added-Value Energy Rich C1 Products. In
M. Aresta, I. Karimi, & S. Kawi (Eds.), An Economy Based on Carbon Dioxide and
Water: Potential of Large Scale Carbon Dioxide Utilization (pp. 155-210). Retrieved from
https://link.springer.com/chapter/10.1007/978-3-030-15868-2_5
Ashraf, U., Kanu, A. S., Mo, Z., Hussain, S., Anjum, S. A., Khan, I., . . . Tang, X. (2015). Lead
toxicity in rice: effects, mechanisms, and mitigation strategies—a mini review.
Environmental Science and Pollution Research, 22(23), 18318 - 18332. doi:10.1007/
s11356-015-5463-x
Ashworth, A. J. (2015). Enhancing the Sustainability of Integrated Biofuel Feedstock Production
Systems. (Ph.D.). University of Tennessee, Retrieved from http://trace.tennessee.edu/
utk_graddiss/3320/
Ashworth, A. J., Keyser, P. D., Allen, F. L., Sadaka, S. S., & Sharara, M. A. (2015). Use of
Biochar in Switchgrass Production. Center for Native Grasslands Management.
Retrieved from www.researchgate.net/profile/Sammy_Sadaka/publication/
268512530_USE_OF_BIOCHAR_IN_SWITCHGRASS_PRODUCTION/links/
546df4c90cf2bc99c21504c3.pdf
Ashworth, A. J., Keyser, P. D., Allen, F. L., Tyler, D. D., Taylor, A. M., & West, C. P. (2015).
Displacing Inorganic Nitrogen in Lignocellulosic Feedstock Production Systems.
Agronomy Journal, 108(1), 109-116. doi:10.2134/agronj15.0033
Ashworth, A. J., Sadaka, S. S., Allen, F. L., Sharara, M. A., & Keyser, P. D. (2014). Influence of
Pyrolysis Temperature and Production Conditions on Switchgrass Biochar for Use as a
Soil Amendment. BioResources, 9(4), 7622-7635. Retrieved from http://ojs.cnr.ncsu.edu/
index.php/BioRes/article/view/
BioRes_09_4_7622_Ashworth_Pyrolysis_Temperature_Switchgrass/3151
Ashworth, P., Bradbury, J., Wade, S., Ynke Feenstra, C. F. J., Greenberg, S., Hund, G., &
Mikunda, T. (2012). What's in store: Lessons from implementing CCS. International
Journal of Greenhouse Gas Control, 9, 402-409. doi:https://doi.org/10.1016/
j.ijggc.2012.04.012
Ashworth, P., Pisarski, A., & Thambimuthu, K. (2009). Public acceptance of carbon dioxide
capture and storage in a proposed demonstration area. Proceedings of the Institution of
Mechanical Engineers, Part A: Journal of Power and Energy, 223(3), 299-304.
doi:10.1243/09576509jpe622
Ashworth, P., Sun, Y., Ferguson, M., Witt, K., & She, S. (2019). Comparing how the public
perceive CCS across Australia and China. International Journal of Greenhouse Gas
Control, 86, 125-133. doi:https://doi.org/10.1016/j.ijggc.2019.04.008
Ashworth, P., Wade, S., Reiner, D., & Liang, X. (2015). Developments in public communications
on CCS. International Journal of Greenhouse Gas Control, 40(Supplement C), 449-458.
doi:https://doi.org/10.1016/j.ijggc.2015.06.002
Asibor, J. O., Clough, P. T., Nabavi, S. A., & Manovic, V. (2021). Assessment of optimal
conditions for the performance of greenhouse gas removal methods. Journal of
Environmental Management, 294, 113039. doi:https://doi.org/10.1016/
j.jenvman.2021.113039
Asiedu-Boateng, P., Legros, R., & Patience, G. S. (2016). Attrition resistance of calcium oxide–
copper oxide–cement sorbents for post-combustion carbon dioxide capture. Advanced
Powder Technology, 27(2), 786-795. doi:https://doi.org/10.1016/j.apt.2016.03.007
Asif, M., et al. (2014). Yield and Nutrient Composition of Biochar Produced from Different
Feedstocks at Varying Pyrolytic Temperatures. Pakistan Journal of Agricultural Sciences,
51(1), 75-82. Retrieved from http://pakjas.com.pk/papers%5C2245.pdf
Åslund, I. (2012). Effects of applying biochar to soils from Embu, Kenya – Effects on crop
residue decomposition and soil fertility under varying soil moisture levels. SLU, Swedish
University of Agricultural Sciences, Uppsala. Retrieved from http://stud.epsilon.slu.se/
4008/1/aslund_i_120327.pdf
Ason, B., et al. (2015). Comparative Growth Response of Maize on Amended Sediment from
the Odaw River and Cultivated Soil. In.
Aspelund, A. (2010). Gas purification, compression and liquefaction processes and technology
for carbon dioxide (CO2) transport A2 - Maroto-Valer, M. Mercedes. In Developments
and Innovation in Carbon Dioxide (CO2) Capture and Storage Technology (Vol. 1, pp.
383-407): Woodhead Publishing.
Assen, A. H., Belmabkhout, Y., Adil, K., Lachehab, A., Hassoune, H., & Aggarwal, H. (2021).
Advances on CO2 storage. Synthetic porous solids, mineralization and alternative
solutions. Chemical Engineering Journal, 129569. doi:https://doi.org/10.1016/
j.cej.2021.129569
Assmy, P., et al. (2005). Plankton rain in the Southern Ocean: The European Iron Fertilization
Experiment EIFEX. Ausgewählte Forschungsthemen, 2, 38-39. Retrieved from https://
epic.awi.de/id/eprint/15162/
Assmy, P., Cisewski, B., Henjes, J., Klaas, C., Montresor, M., & Smetacek, V. (2014). Response
of the protozooplankton assemblage during the European Iron Fertilization Experiment
(EIFEX) in the Antarctic circumpolar current. Journal of Plankton Research, 36(5),
1175-1189. doi:10.1093/plankt/fbu068
Assmy, P., Henjes, J., Klaas, C., & Smetacek, V. (2007). Mechanisms determining species
dominance in a phytoplankton bloom induced by the iron fertilization experiment EisenEx
in the Southern Ocean. Deep Sea Research Part I: Oceanographic Research Papers,
54(3), 340-362. doi:http://dx.doi.org/10.1016/j.dsr.2006.12.005
Association, W. B. (2016). Global Biomass Potential Towards 2035. Retrieved from http://
www.worldbioenergy.org/sites/default/files/WBA%20Factsheet%20-
%20Biomass%20potential_160303_Toprint.pdf
Asuming-Brempong, S., & Nyalemegbe, K. K. (2014). The use of earthworms and biochar to
mitigate increase in nitrous oxide production - A minireview. Global Advanced Research
Journal of Agricultural Science, 3(2), 35-41. Retrieved from http://garj.org/garjas/pdf/
2014/February/Asuming-Brempong%20and%20Nyalemegbe.pdf
Ataeian, M., Liu, Y., Canon-Rubio, K. A., Nightingale, M., Strous, M., & Vadlamani, A. (2019).
Direct capture and conversion of CO2 from air by growing a cyanobacterial consortium
at pH up to 11.2. 116(7), 1604-1611. doi:10.1002/bit.26974
Atta-Obeng, E., Dawson-Andoh, B., Felton, E., Dahle, G. J. W., & Valorization, B. (2018).
Carbon Dioxide Capture Using Amine Functionalized Hydrothermal Carbons from
Technical Lignin. doi:10.1007/s12649-018-0281-2
Atucha, A. (2015). Effect of Biochar Amendments on Peach Replant Disease. HortScience,
50(6), 863-868. Retrieved from http://hortsci.ashspublications.org/content/50/6/863.short
Augustenborg, C. A., et al. (2012). Biochar and Earthworm Effects on Soil Nitrous Oxide and
Carbon Dioxide Emissions. Journal of Environmental Quality, 41(4), 1203-1209.
doi:10.2134/jeq2011.0119
Augustini, D. (2014). Nanoestruturas de bismuto suportadas em biochar para determinação de
ions chumbo por voltametria de redissolução adsortiva (Nanostructures of bismuth
supported on biochar to determine lead ions by adsorptive stripping voltammetry).
Universidade Federal do Paraná (Federal University of Paraná), Retrieved from http://
dspace.c3sl.ufpr.br:8080/dspace/handle/1884/36601
Aulakh, M. S., Rennie, D. A., & Paul, E. A. (1984). Gaseous Nitrogen Losses from Soils Under
Zero-Till as Compared with Conventional-Till Management Systems. Journal of
Environmental Quality, 13, 130-136. Retrieved from https://www.researchgate.net/
publication/250105619_Gaseous_Nitrogen_Losses_from_Soils_Under_Zero-
Till_as_Compared_with_Conventional-Till_Management_Systems1
Aumont, O., & Bopp, L. (2006). Globalizing results from ocean in situ iron fertilization studies.
Global Biogeochemical Cycles, 20(2), 1-15. Retrieved from http://onlinelibrary.wiley.com/
doi/10.1029/2005GB002591/epdf
Aure, J., Strand, Ã. Â., Erga, S. R., & Strohmeier, T. (2007). Primary production enhancement
by artificial upwelling in a western Norwegian fjord. Marine Ecology Progress Series,
352, 39-52. Retrieved from https://www.int-res.com/abstracts/meps/v352/p39-52/
Aurich, J.-T., Thomas, F. S., & Fortunat, J. (2020). Hysteresis of the Earth system under positive
and negative CO2 emissions. Environmental Research Letters. Retrieved from http://
iopscience.iop.org/article/10.1088/1748-9326/abc4af
Austin, M. M. K., & Converse, B. A. (2021). In search of weakened resolve: Does climate-
engineering awareness decrease individuals’ commitment to mitigation? Journal of
Environmental Psychology, 101690. doi:https://doi.org/10.1016/j.jenvp.2021.101690
Australia, G. (2014). Biochar and Energy From Trees Project: Background, results and future
opportunities for landscape restoration from the strategic establishment of mixed native
species plantations in Habitat 141°. Retrieved from http://www.greeningaustralia.org.au/
uploads/knowledge-portal/biochar-energy-from-trees.pdf
Averett, N. (2016). Healthy Ground, Healthy Atmosphere: Recarbonizing the Earth’s Soils.
Environmental Health Perspectives, 124(2). doi:10.1289/ehp.124-A30
Aviso, K. B., Belmonte, B. A., Benjamin, M. F. D., Arogo, J. I. A., Coronel, A. L. O., Janairo, C.
M. J., . . . Tan, R. R. (2019). Synthesis of optimal and near-optimal biochar-based
Carbon Management Networks with P-graph. Journal of Cleaner Production, 214,
893-901. doi:https://doi.org/10.1016/j.jclepro.2019.01.002
Aviso, K. B., Janairo, J. I. B., Promentilla, M. A. B., & Tan, R. R. (2019). Prediction of CO2
storage site integrity with rough set-based machine learning. Clean Technologies and
Environmental Policy, 21(8), 1655-1664. doi:10.1007/s10098-019-01732-x
Aviso, K. B., Lee, J.-Y., Ubando, A. T., & Tan, R. R. (2021). Fuzzy optimization model for
enhanced weathering networks using industrial waste. Clean Technologies and
Environmental Policy. doi:10.1007/s10098-021-02053-8
Awad, Y. M., et al. (2011). Effects of polyacrylamide, biopolymer, and biochar on decomposition
of soil organic matter and plant residues as determined by 14C and enzyme activities.
European Journal of Soil Biology, 48, 1-10. doi:10.1016/j.ejsobi.2011.09.005
Awadallah-F, A., & Al-Muhtaseb, S. A. (2013). Carbon dioxide sequestration and methane
removal from exhaust gases using resorcinol–formaldehyde activated carbon xerogel.
Adsorption, 19(5), 967-977. doi:10.1007/s10450-013-9508-5
Awan, A. R., Teigland, R., & Kleppe, J. (2008). A Survey of North Sea Enhanced-Oil-Recovery
Projects Initiated During the Years 1975 to 2005. SPE Reservoir Evaluation and
Engineering, 11(3), 497-512.
Awasthi, M. K., Wang, M., Chen, H., Wang, Q., Zhao, J., Ren, X., . . . Zhang, Z. (2017).
Heterogeneity of biochar amendment to improve the carbon and nitrogen sequestration
through reduce the greenhouse gases emissions during sewage sludge composting.
Bioresource Technology, 224, 428-438. doi:https://doi.org/10.1016/j.biortech.2016.11.014
Awasthi, M. K., Wang, Q., Huang, H., Li, R., Shen, F., Lahori, A. H., . . . Zhang, Z. (2016). Effect
of biochar amendment on greenhouse gas emission and bio-availability of heavy metals
during sewage sludge co-composting. Journal of Cleaner Production, 135, 829-835.
doi:https://doi.org/10.1016/j.jclepro.2016.07.008
Awasthi, M. K., Wang, Q., Ren, X., Zhao, J., Huang, H., Awasthi, S. K., . . . Zhang, Z. (2016).
Role of biochar amendment in mitigation of nitrogen loss and greenhouse gas emission
during sewage sludge composting. Bioresource Technology, 219, 270-280. doi:http://
dx.doi.org/10.1016/j.biortech.2016.07.128
Aycaguer, A.-C., Lev-On, M., & Winer, A. M. (2001). Reducing Carbon Dioxide Emissions with
Enhanced Oil Recovery Projects: A Life Cycle Assessment Approach. Energy & Fuels,
15(2), 303-308. doi:10.1021/ef000258a
Ayhan. (2020). Climate change: Removing CO2 could spark big rise in food prices. Retrieved
from https://trading-u.com/climate-change-removing-co2-could-spark-big-rise-in-food-
prices/
Ayre, J. (2017). Soils May Release Much Higher Levels Of Carbon Dioxide With Continued
Temperature Rise Than Previously Thought. Retrieved from https://cleantechnica.com/
2017/03/13/soils-may-release-much-higher-levels-carbon-dioxide-continued-
temperature-rise-previously-thought/
Aysu, T. (2014). The Effect of Boron Minerals on Pyrolysis of Common Reed ( <i>Phragmites
australis</i> ) for Producing Bio-oils. Energy Sources, Part A: Recovery, Utilization, and
Environmental Effects, 36(22), 2511 - 2518. doi:10.1080/15567036.2014.948648
Aysu, T. (2014). Production and Characterization of Bio-Chars and Bio-Oils Formed by Pyrolysis
of Persian Hogweed (Heracleum persicum Desf.) in A Fixed-Bed Reactor. Lifescience
Global, 2(4). Retrieved from http://www.lifescienceglobal.com/pms/index.php/JASCM/
article/view/1518/0
Aysu, T. (2015). Catalytic pyrolysis of Alcea pallida stems in a fixed-bed reactor for production of
liquid bio-fuels. Bioresource Technology, 191, 253 - 262. doi:10.1016/
j.biortech.2015.05.037
Aysu, T. (2015). Catalytic pyrolysis of Eremurus spectabilis for bio-oil production in a fixed-bed
reactor: Effects of pyrolysis parameters on product yields and character. Fuel Processing
Technology, 129, 24 - 38. doi:10.1016/j.fuproc.2014.08.014
Aysu, T., et al. (2016). Bio-oil production via catalytic pyrolysis of Anchusa azurea: Effects of
operating conditions on product yields and chromatographic characterization.
Bioresource Technology, 205, 7 - 14. doi:10.1016/j.biortech.2016.01.015
Aysu, T., & Bengü, A. S. (2014). Bio-Oil Production from Cirsium yildizianum through Pyrolysis in
a Fixed-Bed Reactor. Lifescience Global, 3(3). Retrieved from http://
lifescienceglobal.com/pms/index.php/JASCM/article/view/2323
Aysu, T., & Durak, H. (2014). Catalytic pyrolysis of liquorice (Glycyrrhiza glabra L.) in a fixed-bed
reactor: Effects of pyrolysis parameters on product yields and character. Journal of
Analytical and Applied Pyrolysis, 111, 156-172. doi:10.1016/j.jaap.2014.11.017
Aysu, T., & Sanna, A. (2015). Nannochloropsis algae pyrolysis with ceria-based catalysts for
production of high-quality bio-oils. Bioresource Technology, 194, 108 - 116. doi:10.1016/
j.biortech.2015.07.027
Ayub, S. A. (2020). Potential for CO2 Mineral Carbonation in the Paleogene Segamat Basalt of
Malaysia. Minerals, 10(12), 1-14. doi:http://dx.doi.org/10.3390/min10121045
Azadi, M., Edraki, M., Farhang, F., & Ahn, J. (2019). Opportunities for Mineral Carbonation in
Australia’s Mining Industry. Sustainability, 11(5), 1250. Retrieved from https://
www.mdpi.com/2071-1050/11/5/1250
Azar, C. (2011). Biomass for energy: a dream come true… or a nightmare? Wiley
Interdisciplinary Reviews: Climate Change, 2(3), 309-323. doi:10.1002/wcc.109
Azar, C., Johansson, D. J. A., & Mattsson, N. (2013). Meeting global temperature targets-the
role of bioenergy with carbon capture and storage. Environmental Research Letters,
8(3), 1-8. doi:10.1088/1748-9326/8/3/034004
Azar, C., Lindgren, K., Larson, E., & Möllersten, K. (2006). Carbon Capture and Storage From
Fossil Fuels and Biomass – Costs and Potential Role in Stabilizing the Atmosphere.
Climatic Change, 74(1), 47-79. doi:10.1007/s10584-005-3484-7
Azar, C., Lindgren, K., Obersteiner, M., Riahi, K., van Vuuren, D. P., den Elzen, K., . . . Larson,
E. D. (2010). The feasibility of low CO2 concentration targets and the role of bio-energy
with carbon capture and storage (BECCS). Climatic Change, 100(1), 195-202.
doi:10.1007/s10584-010-9832-7
Azarabadi, H., & Lackner, K. S. (2019). A sorbent-focused techno-economic analysis of direct air
capture. Applied Energy, 250, 959-975. doi:https://doi.org/10.1016/
j.apenergy.2019.04.012
Azarabadi, H., & Lackner, K. S. (2020). Postcombustion Capture or Direct Air Capture in
Decarbonizing US Natural Gas Power? Environmental Science & Technology, 54(8),
5102-5111. doi:10.1021/acs.est.0c00161
Azargohar, R., & Dalai, A. K. (2006). Biochar as a precursor of activated carbon. Applied
Biochemistry and Biotechnology, 131, 762-773.
Azargohar, R., & Dalai, A. K. (2008). Steam and KOH Activation of Biochar: Experimental and
Modeling Studies. Microporous and Mesoporous Materials, 110(2-3)(2-3), 413-421.
Retrieved from http://www.sciencedirect.com/science/article/pii/S138718110700385X
Azargohar, R., & Dalai, A. K. (2011). The direct oxidation of hydrogen sulphide over activated
carbons prepared from lignite coal and biochar. The Canadian Journal of Chemical
Engineering, 89(4), 844-853. doi:10.1002/cjce.20430
Azasi, V. D., Offei, F., Kemausuor, F., & Akpalu, L. (2020). Bioenergy from crop residues: A
regional analysis for heat and electricity applications in Ghana. Biomass and Bioenergy,
140, 105640. doi:https://doi.org/10.1016/j.biombioe.2020.105640
Azdarpour, A., Afkhami Karaei, M., Hamidi, H., Mohammadian, E., & Honarvar, B. (2018). CO2
sequestration through direct aqueous mineral carbonation of red gypsum. Petroleum,
4(4), 398-407. doi:https://doi.org/10.1016/j.petlm.2017.10.002
Azdarpour, A., Asadullah, M., Junin, R., Manan, M., Hamidi, H., & Daud, A. R. M. (2014).
Carbon Dioxide Mineral Carbonation Through pH-swing Process: A Review. Energy
Procedia, 61, 2783-2786. doi:https://doi.org/10.1016/j.egypro.2014.12.311
Azdarpour, A., Asadullah, M., Mohammadian, E., Hamidi, H., Junin, R., & Karaei, M. A. (2015). A
review on carbon dioxide mineral carbonation through pH-swing process. Chemical
Engineering Journal, 279, 615-630. doi:https://doi.org/10.1016/j.cej.2015.05.064
Azduwin, K., et al. (2014). Pyrolysis of Palm pressed fibre (PPF) Towards Maximizing Bio-oil
Yield in a Fixed-bed reactor. Retrieved from http://akademiabaru.com/wvcarmea/docu/
073.pdf
Azduwin, K., Zarina, Z., Ridzuan, M. J. M., & Ahmad, A. A. (2016). Pyrolysis of Rice Straw by
Using Microwave Irradiation with Quartz Glass Reactor. Key Engineering Materials, 673,
203 - 212. doi:10.4028/www.scientific.net/KEM.673.203
Azevedo, I., Bataille, C., Bistline, J., Clarke, L., & Davis, S. (2021). Net-Zero Emissions Energy
Systems: What We Know and Do Not Know. Energy and Climate Change, 100049.
doi:https://doi.org/10.1016/j.egycc.2021.100049
Aziz, N. S. b. A., Nor, M. A. b. M., Manaf, S. F. b. A., & Hamzah, F. (2015). Suitability of Biochar
Produced from Biomass Waste as Soil Amendment. Procedia - Social and Behavioral
Sciences, 195, 2457 - 2465. doi:10.1016/j.sbspro.2015.06.288
Azizi, N., et al. . (2013). Catalytic Combustion of Waste Palm Trunk Derived Biochar and
Biomass. Applied Mechanics and Materials, 315, 1007-1011. Retrieved from https://
www.scientific.net/AMM.315.1007
Azizi, P., & Glaser, B. (2006). Organic Iron-fertilizers from Hornbeam-leaves, Outer Rice-husks
and Charcoal. Journal of Applied Sciences, 6, 673-677.
AZoCleantech. (2019). New Approach to Capture Carbon Dioxide in Power Plant Exhaust and
Enable Safe Disposal. Retrieved from https://www.azocleantech.com/news.aspx?
newsID=26513
Azzolina, N. A., Hamling, J. A., Peck, W. D., Gorecki, C. D., Nakles, D. V., & Melzer, L. S.
(2017). A Life Cycle Analysis of Incremental Oil Produced via CO2 EOR. Energy
Procedia, 114, 6588-6596. doi:https://doi.org/10.1016/j.egypro.2017.03.1800
Azzolina, N. A., Nakles, D. V., Gorecki, C. D., Peck, W. D., Ayash, S. C., Melzer, L. S., &
Chatterjee, S. (2015). CO2 storage associated with CO2 enhanced oil recovery: A
statistical analysis of historical operations. International Journal of Greenhouse Gas
Control, 37, 384-397. doi:https://doi.org/10.1016/j.ijggc.2015.03.037
Azzolina, N. A., Peck, W. D., Hamling, J. A., Gorecki, C. D., Ayash, S. C., Doll, T. E., . . . Melzer,
L. S. (2016). How green is my oil? A detailed look at greenhouse gas accounting for
CO2-enhanced oil recovery (CO2-EOR) sites. International Journal of Greenhouse Gas
Control, 51, 369-379. doi:https://doi.org/10.1016/j.ijggc.2016.06.008
Baah-Acheamfour, M., et al. (2017). The potential of agroforestry to reduce atmospheric
greenhouse gases in Canada: Insight from pairwise comparisons with traditional
agriculture, data gaps and future research. The Forestry Chronicle, 93(2), 180-189.
Retrieved from https://www.google.com/url?
sa=t&rct=j&q=&esrc=s&source=web&cd=&cad=rja&uact=8&ved=2ahUKEwim5bi1-4blAh
UIJDQIHQNyChgQgAMoAHoECAYQAg&url=http%3A%2F%2Fscholar.google.com%2Fs
cholar_url%3Furl%3Dhttp%3A%2F%2Fpubs.cif-
ifc.org%2Fdoi%2Fpdf%2F10.5558%2Ftfc2017-024%26hl%3Den%26sa%3DX%26scisig
%3DAAGBfm2rIKPIW196ZeY2DdXpSnlTOaSIKA%26nossl%3D1%26oi%3Dscholarr&u
sg=AOvVaw2QK1clOtlcvIObQ2hQ59w3
Baah-Acheamfour, M., Carlyle, C. N., Bork, E. W., & Chang, S. X. (2014). Trees increase soil
carbon and its stability in three agroforestry systems in central Alberta, Canada. Forest
Ecology and Management, 328, 131-139. doi:https://doi.org/10.1016/
j.foreco.2014.05.031
Babar, M., Azmi Bustam, M., Shah Maulud, A., Ali, A., Mukhtar, A., & Ullah, S. (2019). Enhanced
Cryogenic Packed Bed with Optimal CO2 removal from Natural gas; A Joint
Computational and Experimental Approach. Cryogenics, 103010. doi:https://doi.org/
10.1016/j.cryogenics.2019.103010
Babin, A., Vaneeckhaute, C., & Iliuta, M. C. (2021). Potential and challenges of bioenergy with
carbon capture and storage as a carbon-negative energy source: A review. Biomass and
Bioenergy, 146, 105968. doi:https://doi.org/10.1016/j.biombioe.2021.105968
Babonneau, F., Bahn, O., Haurie, A., & Vielle, M. (2020). An Oligopoly Game of CDR Strategy
Deployment in a Steady-State Net-Zero Emission Climate Regime. Environmental
Modeling & Assessment. doi:10.1007/s10666-020-09734-6
Bacchi, U. (2017). Don't ignore carbon stored in soil in climate change fight: Fiji President.
Reuters. Retrieved from http://www.reuters.com/article/us-climatechange-soil-
idUSKBN16S1XD
Baccini, A., Goetz, S. J., Walker, W. S., Laporte, N. T., Sun, M., Sulla-Menashe, D., . . .
Houghton, R. A. (2012). Estimated carbon dioxide emissions from tropical deforestation
improved by carbon-density maps. Nature Climate Change, 2(3), 182-185. doi:http://
www.nature.com/nclimate/journal/v2/n3/abs/nclimate1354.html#supplementary-
information
Bach, L. T., & Boyd, P. W. (2021). Seeking natural analogs to fast-forward the assessment of
marine CO<sub>2</sub> removal. Proceedings of the National Academy of Sciences,
118(40), e2106147118. doi:10.1073/pnas.2106147118
Bach, L. T., Gill, S. J., Rickaby, R. E. M., Gore, S., & Renforth, P. (2019). CO2 Removal With
Enhanced Weathering and Ocean Alkalinity Enhancement: Potential Risks and Co-
benefits for Marine Pelagic Ecosystems. Frontiers in Climate, 1(7). doi:10.3389/
fclim.2019.00007
Bach, L. T., Tamsitt, V., Gower, J., Hurd, C. L., Raven, J. A., & Boyd, P. W. (2021). Testing the
climate intervention potential of ocean afforestation using the Great Atlantic Sargassum
Belt. Nature Communications, 12(1), 2556. doi:10.1038/s41467-021-22837-2
Bach, M., Wilske, B., & Bai, M. (2015). Biochar strategies as measures for climate protection. In.
Bach, M., Wilske, B., & Breuer, L. (2016). Current economic obstacles to biochar use in
agriculture and climate change mitigation. Carbon Management, 7(3-4), 183-190.
Retrieved from http://www.tandfonline.com/doi/abs/10.1080/17583004.2016.1213608
Bachmann, H. J., et al. (2016). Toward the Standardization of Biochar Analysis: The COST
Action TD1107 Interlaboratory Comparison. Journal of Agricultural and Food Chemistry,
64(2), 513-527. doi:10.1021/acs.jafc.5b05055
Bachmann, M., Kätelhön, A., Winter, B., Meys, R., Müller, L. J., & Bardow, A. (2021). Renewable
carbon feedstock for polymers: environmental benefits from synergistic use of biomass
and CO2. Faraday Discussions, 230(0), 227-246. doi:10.1039/D0FD00134A
Bachu, S. (2000). Sequestration of CO2 in geological media: criteria and approach for site
selection in response to climate change. Energy Conversion and Management, 41(9),
953-970. doi:10.1016/s0196-8904(99)00149-1
Bachu, S., et al. (2007). CO
2
storage capacity estimation: Methodology and gaps. International
Journal of Greenhouse Gas Control, 1, 430-443. Retrieved from https://
www.researchgate.net/profile/Stefan_Bachu/publication/
223952456_CO2_storage_capacity_estimation_Methodology_and_gaps/links/
00b7d52c5bb308c143000000/CO2-storage-capacity-estimation-Methodology-and-
gaps.pdf
Bachu, S. (2008). CO2 storage in geological media: Role, means, status and barriers to
deployment. Progress in Energy and Combustion Science, 34(2), 254-273. doi:https://
doi.org/10.1016/j.pecs.2007.10.001
Bachu, S., Gunter, W. D., & Perkins, E. H. (1994). Aquifer disposal of CO2: Hydrodynamic and
mineral trapping. Energy Conversion and Management, 35(4), 269-279. doi:http://
dx.doi.org/10.1016/0196-8904(94)90060-4
Bachu, S., Shaw, J. C., & Pearson, R. M. (2004). Estimation of Oil Recovery and CO2 Storage
Capacity in CO2 EOR Incorporating the Effect of Underlying Aquifers. Paper presented
at the SPE/DOE Symposium on Improved Oil Recovery. https://www.onepetro.org/
conference-paper/SPE-89340-MS
Baciocchi, R., & Costa, G. (2021). CO2 Utilization and Long-Term Storage in Useful Mineral
Products by Carbonation of Alkaline Feedstocks. Frontiers in Energy Research, 9(207).
doi:10.3389/fenrg.2021.592600
Baciocchi, R., Storti, G., & Mazzotti, M. (2006). Process design and energy requirements for the
capture of carbon dioxide from air. Chemical Engineering and Processing: Process
Intensification, 45(12), 1047-1058. doi:https://doi.org/10.1016/j.cep.2006.03.015
Bäckstrand, K., Meadowcroft, J., & Oppenheimer, M. (2011). The politics and policy of carbon
capture and storage: Framing an emergent technology. Global Environmental Change,
21(2), 275-281. doi:http://dx.doi.org/10.1016/j.gloenvcha.2011.03.008
Badgley, G., et al. (2021). Systematic over-crediting of forest offsets. Retrieved from https://
carbonplan.org/research/forest-offsets-explainer
Badr, E. A., Ibrahim, O. M., Tawfik, M. M., & Bahr, A. A. (2015). Management strategy for
improving the productivity of wheat in newly reclaimed sandy soil. International Journal
of ChemTech Research, 8(4), 1439-1445. Retrieved from http://sphinxsai.com/2015/
ch_vol8_no4/1/(1438-1445)V8N4.pdf
Bae, H., Park, J.-S., Senthilkumar, S. T., Hwang, S. M., & Kim, Y. (2019). Hybrid seawater
desalination-carbon capture using modified seawater battery system. Journal of Power
Sources, 410-411, 99-105. doi:https://doi.org/10.1016/j.jpowsour.2018.11.009
Baek, Y.-S., Lee, J.-Y., Park, S.-K., & Bae, S. (2014). The Characteristics of the Biochar with the
Synthetic Food Waste and Wood Waste for Soil Contaminated with Heavy Metals.
Journal of Soil and Groundwater Environment, 19(1), 1 - 7. doi:10.7857/
jsge.2014.19.1.001
Baena-Moreno, F. M., Rodríguez-Galán, M., Vega, F., Alonso-Fariñas, B., Vilches Arenas, L. F.,
& Navarrete, B. (2019). Carbon capture and utilization technologies: a literature review
and recent advances. Energy Sources, Part A: Recovery, Utilization, and Environmental
Effects, 41(12), 1403-1433. doi:10.1080/15567036.2018.1548518
Baena-Moreno, F. M., Rodriguez-Galan, M., Vega, F., Vilches, L. F., & Navarrete, B. (2019).
Review: recent advances in biogas purifying technologies. International Journal of Green
Energy, 16(5), 401-412. doi:10.1080/15435075.2019.1572610
Baethke, K. A. (2015). Mine restoration of a native grassland plant community in the British
Columbia interior: The use of biochar, hydroseeding and raking. (MSc.). Thompson
Rivers University, Retrieved from http://www.tru.ca/__shared/assets/
Baethke_thesis34899.pdf
Baghel, R. S., Reddy, C. R. K., & Jha, B. (2014). Characterization of agarophytic seaweeds
from the biorefinery context. Bioresource Technology, 159(Supplement C), 280-285.
doi:https://doi.org/10.1016/j.biortech.2014.02.083
Bahamon, D., Anlu, W., Builes, S., Khaleel, M., & Vega, L. F. (2021). Effect of Amine
Functionalization of MOF Adsorbents for Enhanced CO2 Capture and Separation: A
Molecular Simulation Study. Frontiers in Chemistry, 8(1228). doi:10.3389/
fchem.2020.574622
Bai, M., et al. (2013). Degradation kinetics of biochar from pyrolysis and hydrothermal
carbonization in temperate soils. Plant and Soil, 372(1), 375-387. Retrieved from http://
link.springer.com/article/10.1007/s11104-013-1745-6
Bai, S. H., et al. . (2015). Soil and foliar nutrient and nitrogen isotope composition (δ15N) at
5!years after poultry litter and green waste biochar amendment in a macadamia orchard.
Environmental Science and Pollution Research, 22(5), 3803-3809. doi:10.1007/
s11356-014-3649-2
Bai, S. H., et al. (2015). Wood biochar increases nitrogen retention in field settings mainly
through abiotic processes. Soil Biology and Biochemistry, 90, 232 - 240. doi:10.1016/
j.soilbio.2015.08.007
Bai, X., Huang, Y., Ren, W., Coyne, M., Jacinthe, P.-A., Tao, B., . . . Matocha, C. (2019).
Responses of soil carbon sequestration to climate-smart agriculture practices: A meta-
analysis. Global Change Biology, 25(8), 2591-2606. doi:10.1111/gcb.14658
Baiamonte, G., Pasquale, C. D., Marsala, V., Cimò, G., Alonzo, G., Crescimanno, G., & Conte,
P. (2014). Structure alteration of a sandy-clay soil by biochar amendments. Journal of
Soils and Sediments, 15(4), 816-824. doi:10.1007/s11368-014-0960-y
Baig, S. A., Zhu, J., Muhammad, N., Sheng, T., & Xu, X. (2014). Effect of synthesis methods on
magnetic Kans grass biochar for enhanced As(III, V) adsorption from aqueous solutions.
Biomass and Bioenergy, 71, 299 - 310. doi:10.1016/j.biombioe.2014.09.027
Baik, E., et al. (2020). An Action Plan for Carbon Capture and Storage in California:
Opportunities, Challenges, and Solutions. Retrieved from https://cdrlaw.org/resources/
an-action-plan-for-carbon-capture-and-storage-in-california-opportunities-challenges-
and-solutions/
Baik, E., Sanchez, D. L., Turner, P. A., Mach, K. J., Field, C. B., & Benson, S. M. (2018).
Geospatial analysis of near-term potential for carbon-negative bioenergy in the United
States. Proceedings of the National Academy of Sciences, 115(13), 3290-3295.
doi:10.1073/pnas.1720338115
Bailey, V. L., Fansler, S. J., Smith, J. L., & Bolton, H. J. (2010). Reconciling apparent variability
in effects of biochar amendment on soil enzyme activities by assay optimization. Soil
Biology and Biochemistry, 43(2), 296-301. doi:10.1016/j.soilbio.2010.10.014
Bailis, R., & Kavlak, G. (2013). Environmental Implications of Jatropha Biofuel from a Silvi-
Pastoral Production System in Central-West Brazil. Environmental Science &
Technology, 47(14), 8042-8050. doi:10.1021/es303954g
Bain, R. L., Overend, R. P., & Craig, K. R. (1998). Biomass-fired power generation. Fuel
Processing Technology, 54, 1-16. Retrieved from https://www.academia.edu/22318148/
Biomass-fired_power_generation?auto=download
Bajamundi, C. J. E., Koponen, J., Ruuskanen, V., Elfving, J., Kosonen, A., Kauppinen, J., &
Ahola, J. (2019). Capturing CO2 from air: Technical performance and process control
improvement. Journal of CO2 Utilization, 30, 232-239. doi:https://doi.org/10.1016/
j.jcou.2019.02.002
Bajón Fernández, Y., Soares, A., Villa, R., Vale, P., & Cartmell, E. (2014). Carbon capture and
biogas enhancement by carbon dioxide enrichment of anaerobic digesters treating
sewage sludge or food waste. Bioresource Technology, 159, 1-7. doi:https://doi.org/
10.1016/j.biortech.2014.02.010
Bajracharya, S., et al. (2019). Bioelectrochemical Syntheses. In M. Aresta, I. Karimi, & S. Kawi
(Eds.), An Economy Based on Carbon Dioxide and Water: Potential of Large Scale
Carbon Dioxide Utilization (pp. 327-358). Retrieved from https://link.springer.com/
chapter/10.1007/978-3-030-15868-2_9
Baker, J. M., Ochsner, T. E., Venterea, R. T., & Griffis, T. J. (2007). Tillage and soil carbon
sequestration—What do we really know? Agriculture, Ecosystems & Environment,
118(1–4), 1-5. doi:http://dx.doi.org/10.1016/j.agee.2006.05.014
Baker, S. E., et al. . (2020). Getting to Neutral. Options for Negative Carbon Emissions in
California. Retrieved from https://www-gs.llnl.gov/content/assets/docs/energy/
Getting_to_Neutral.pdf
Bakhtary, H., et al. (2020). #NDCsWeWant: Enhancing forest targets and measures in
Nationally Determined Contributions (NDCs). Retrieved from https://wwf.panda.org/?
1113391/forest-ndcs
Bakker, D. C. E., Bozec, Y., Nightingale, P. D., Goldson, L., Messias, M.-J., de Baar, H. J.
W., . . . Watson, A. J. (2005). Iron and mixing affect biological carbon uptake in SOIREE
and EisenEx, two Southern Ocean iron fertilisation experiments. Deep Sea Research
Part I: Oceanographic Research Papers, 52(6), 1001-1019. doi:http://dx.doi.org/10.1016/
j.dsr.2004.11.015
Bakker, D. C. E., Watson, A. J., & Law, C. S. (2001). Southern Ocean iron enrichment promotes
inorganic carbon drawdown. Deep Sea Research Part II: Topical Studies in
Oceanography, 48(11), 2483-2507. doi:https://doi.org/10.1016/S0967-0645(01)00005-4
Bakonyi, P., Peter, J., Koter, S., Mateos, R., Kumar, G., Koók, L., . . . Pant, D. (2020).
Possibilities for the biologically-assisted utilization of CO2-rich gaseous waste streams
generated during membrane technological separation of biohydrogen. Journal of CO2
Utilization, 36, 231-243. doi:https://doi.org/10.1016/j.jcou.2019.11.008
Bakry, B. A., Ibrahim, O. M., Eid, A. R., & Badr, E. A. (2014). Effect of Humic Acid, Mycorrhiza
Inoculation, and Biochar on Yield and Water Use Efficiency of Flax under Newly
Reclaimed Sandy Soil. Agricultural Sciences, 05(14), 1427 - 1432. doi:10.4236/
as.2014.514153
Bakshi, S. (2011). Biogeochemistry of the immobilization of Cu (II) by the addition of biochar in
soil. University of Florida, Gainesville. Retrieved from http://lqma.ifas.ufl.edu/CWR6252/
RP/Santanu.pdf
Bakshi, S., He, Z. L., & Harris, W. G. (2014). Biochar Amendment Affects Leaching Potential of
Copper and Nutrient Release Behavior in Contaminated Sandy Soils. Journal of
Environment Quality, 43(6), 1894. doi:10.2134/jeq2014.05.0213
Bala, G., Caldeira, K., Mirin, A., Wickett, M., Delire, C., & Phillips, T. J. (2006). Biogeophysical
effects of CO2 fertilization on global climate. Tellus, 58B, 620-627. Retrieved from http://
adsabs.harvard.edu/full/2006TellB..58..620B
Bala, G., Caldeira, K., Wickett, M., Phillips, T. J., Lobell, D. B., Delire, C., & Mirin, A. (2007).
Combined climate and carbon-cycle effects of large-scale deforestation. Proceedings of
the National Academy of Sciences, 104(16), 6550-6555. doi:10.1073/pnas.0608998104
Balagurumurthy, B., et al. . (2014). Effect of temperature and pressure on the hydropyrolysis of
cotton residue. Paper presented at the 7th International Symposium on Feedstock
Recycling of Polymeric Materials. http://www.fsrj.org/act/7_nenkai/16-7-ISFR/
symposium%20abstract/Contributory%20talks/CT%2029_Bhavya.pdf
Balagurumurthy, B., et al. (2015). Value addition to rice straw through pyrolysis in hydrogen and
nitrogen environments. Bioresource Technology, 188, 273-279. doi:10.1016/
j.biortech.2015.01.027
Balan, V., Bals, B., Chundawat, S. P. S., Marshall, D., & Dale, B. E. (2009). Lignocellulosic
Biomass Pretreatment Using AFEX. In J. R. Mielenz (Ed.), Biofuels: Methods and
Protocols (pp. 61-77). Totowa, NJ: Humana Press.
Baldocchi, D., & Penuelas, J. (2018). The Physics and Ecology of Mining Carbon Dioxide from
the Atmosphere by Ecosystems. Global Change Biology, 24(4), 1191-1197.
doi:doi:10.1111/gcb.14559
Baldocchi, D., & Penuelas, J. (2019). The physics and ecology of mining carbon dioxide from
the atmosphere by ecosystems. 25(4), 1191-1197. doi:10.1111/gcb.14559
Baldock, J. A., & Smernik, R. J. (2002). Chemical Composition and Bioavailability of Thermally,
Altered pinus resinosa (red pine) Wood. Organic Geochemistry, 33(9), 1093-1109.
Bałdyga, J., Henczka, M., & Sokolnicka, K. (2010). Utilization of carbon dioxide by chemically
accelerated mineral carbonation. Materials Letters, 64(6), 702-704. doi:https://doi.org/
10.1016/j.matlet.2009.12.043
Bali, S., Sakwa-Novak, M. A., & Jones, C. W. (2015). Potassium incorporated alumina based
CO2 capture sorbents: Comparison with supported amine sorbents under ultra-dilute
capture conditions. Colloids and Surfaces A: Physicochemical and Engineering Aspects,
486, 78-85. doi:http://dx.doi.org/10.1016/j.colsurfa.2015.09.020
Balicki, A., & Kotowicz, J. (2017). Analysis of efficiency of 'zero-emission' oxy-type ultra-
supercritical power unit based on high-temperature membranes. International Journal of
Greenhouse Gas Control, 12(2), 188-206. Retrieved from http://www.inderscience.com/
info/inarticle.php?artid=84513
Balota, E. L., Colozzi Filho, A., Andrade, D. S., & Dick, R. P. (2004). Long-term tillage and crop
rotation effects on microbial biomass and C and N mineralization in a Brazilian Oxisol.
Soil and Tillage Research, 77(2), 137-145. doi:https://doi.org/10.1016/j.still.2003.12.003
Balsamo, R. A., Kelly, W. J., Satrio, J. A., Ruiz-Felix, M. N., Fetterman, M., Wynn, R., & Hagel,
K. (2014). Utilization of grasses for potential biofuel production and phytoremediation of
heavy metal contaminated soils. International Journal of Phytoremediation, 17(5),
448-455. doi:10.1080/15226514.2014.922918
Baltrėnaitė, E., Baltrėnas, P., Lietuvninkas, A., Baltrėnaitė, E., Baltrėnas, P., & Lietuvninkas, A.
(2016). The Sustainable Role of the Tree in Environmental Protection TechnologiesTree
in Earth’s Terrestrial Ecosystems. Cham: Springer International Publishing.
Baltrėnas, P., Baltrėnaitė, E., & Spudulis, E. (2015). Biochar from Pine and Birch Morphology
and Pore Structure Change by Treatment in Biofilter. Water, Air, & Soil Pollution, 226(3),
1-14. doi:10.1007/s11270-015-2295-8
Baltz, T. (2020). Wyoming, Utility Clash Over Coal-Boosting, Climate Fighting Tech. Bloomberg
Law. Retrieved from https://news.bloomberglaw.com/environment-and-energy/wyoming-
utility-clash-over-coal-boosting-climate-fighting-tech
Bamdad, H., Hawboldt, K., & MacQuarrie, S. (2018). Nitrogen Functionalized Biochar as a
Renewable Adsorbent for Efficient CO2 Removal. Energy & Fuels, 32(11), 11742-11748.
doi:10.1021/acs.energyfuels.8b03056
Bamminger, C., Marschner, B., & Jüschke, E. (2013). An incubation study on the stability and
biological effects of pyrogenic and hydrothermal biochar in two soils. European Journal
of Soil Science, 65(1), 72-82. Retrieved from http://onlinelibrary.wiley.com/doi/10.1111/
ejss.12074/full
Bamminger, C., Poll, C., Högy, P., Kandeler, E., & Marhan, S. (2015). The role of biochar and
elevated soil temperature in affecting microbial abundance and growth of Brassica
napus in an agroecosystem. In.
Bamminger, C., Poll, C., Sixt, C., Högy, P., Wüst, D., Kandeler, E., & Marhan, S. (2016). Short-
term response of soil microorganisms to biochar addition in a temperate agroecosystem
under soil warming. Agriculture, Ecosystems & Environment, 233, 308-317. doi:https://
doi.org/10.1016/j.agee.2016.09.016
Bandara, T., et al. . (2014). ROLE OF WOODY BIOCHAR ON SOIL MICROBIAL ACTIVITIES,
ORGANIC FRACTION AND HEAVY METAL IMMOBILIZATION IN SERPENTNE SOIL.
DRIVING RESEARCH TOWARDS ECONOMY: OPPORTUNITIES AND CHALLENGES.
Retrieved from http://www.researchgate.net/profile/Tharanga_Bandara2/publication/
276954702_ROLE_OF_WOODY_BIOCHAR_ON_SOIL_MICROBIAL_ACTIVITIES_OR
GANIC_FRACTION_AND_HEAVY_METAL_IMMOBILIZATION_IN_SERPENTNE_SOIL/
links/555c8ee408ae86c06b5d3913.pdf
Bandara, T., et al. . (2015). Role of fungal-bacterial co-inoculation and woody biochar on soil
enzyme activity and heavy metal immobilization in serpentine soil. Selected Works of
Nishanta Rajakaruna. Retrieved from http://works.bepress.com/nishanta_rajakaruna/44/
Bandara, T., et al. (2015). Role of woody biochar and fungal-bacterial co-inoculation on enzyme
activity and metal immobilization in serpentine soil. Journal of Soils and Sediments,
17(3), 665-673. doi:10.1007/s11368-015-1243-y
Bandaraa, T., et al. (2015). Role of biochar as a bioamendment to reduce heavy metals
translocation into Zea mays plants. In.
Bandilla, K. W. (2020). 31 - Carbon Capture and Storage. In T. M. Letcher (Ed.), Future Energy
(Third Edition) (pp. 669-692): Elsevier.
Bandyopadhyay, A. (2017). Aqueous NH3 in CO2 Capture from Coal-Fired Thermal Power Plant
Flue Gas: N-Fertilizer Production Potential and GHG Emission Mitigation. In M. Goel &
M. Sudhakar (Eds.), Carbon Utilization: Applications for the Energy Industry (pp.
269-297). Singapore: Springer Singapore.
Bandza, A. J., & Vajjhala, S. P. (2010). Long-Term Risks and Short-Term Regulations: Modeling
the Transition from Enhanced Oil Recovery to Geologic Carbon Sequestration. Retrieved
from https://papers.ssrn.com/sol3/papers.cfm?abstract_id=1272668
Banerjee, A., Schelly, C. L., & Halvorsen, K. E. (2018). Constructing a Sustainable Bioeconomy:
Multi-scalar Perceptions of Sustainability. In W. Leal Filho, D. M. Pociovălișteanu, P. R.
Borges de Brito, & I. Borges de Lima (Eds.), Towards a Sustainable Bioeconomy:
Principles, Challenges and Perspectives (pp. 355-374). Cham: Springer International
Publishing.
Banja, M., & Dellemand, J. F. (2013). Bioenergy & water: Doing the right thing ? A literature
review. In J. F. Dellemand & P. W. Gerbens-Leenes (Eds.), Bioenergy and Water (pp.
243-289): European Commission.
Bank, D. (2019). How negative can carbontech entrepreneurs go? Impact Alpha, (April 3).
Retrieved from https://impactalpha.com/how-negative-can-carbontech-entrepreneurs-go/
Banks, M. K., & Schultz, K. E. (2005). Comparison of Plants for Germination Toxicity Tests in
Petroleum-contaminated Soils. Water Air and Soil Pollution, 167(1-4), 211-219.
Retrieved from https://link.springer.com/article/10.1007/s11270-005-8553-4
Banowetz, G. M., Griffith, S. M., & El-Nashaar, H. M. (2009). Mineral Content of Grasses Grown
for Seed in Low Rainfall Areas of the Pacific Northwest and Analysis of Ash from
Gasification of Bluegrass (Poa pratensis L.) Straw. Energy & Fuels, 23, 502-506.
Retrieved from http://pubs.acs.org/doi/abs/10.1021/ef800490w
Bansode, R., et al. . (2014). Biochars From Solid Organic Municipal Wastes For Soil Quality
Enhancement. In.
Bapat, H. D., & Manahan, S. E. (1998). Chemchar gasification of hazardous wastes and mixed
wastes on a biochar matrix. American Chemical Society, 215. Retrieved from http://
www.biochar-international.org/node/915
Barbarossa, V., Vanga, G., Viscardi, R., & Gattia, D. M. (2014). CO2 as Carbon Source for Fuel
Synthesis. Energy Procedia, 45, 1325-1329. doi:https://doi.org/10.1016/
j.egypro.2014.01.138
Barber, R. T. (2007). Picoplankton Do Some Heavy Lifting. Science, 315(5813), 777-778.
doi:10.1126/science.1137438
Barber, R. T., & Hiscock, M. R. (2006). A rising tide lifts all phytoplankton: Growth response of
other phytoplankton taxa in diatom-dominated blooms. Global Biogeochemical Cycles,
20(4), n/a-n/a. doi:10.1029/2006GB002726
Bargmann, I., et al. (2013). Hydrochar and Biochar Effects on Germination of Spring Barley.
Journal of Agronomy and Crop Science, 199(5), 360-373. Retrieved from http://
onlinelibrary.wiley.com/doi/10.1111/jac.12024/abstract
Barkakaty, B. (2017). Emerging Materials for Lowering Atmospheric Carbon. Environmental
Technology & Innovation, 7, 30-43. Retrieved from http://ac.els-cdn.com/
S2352186416301705/1-s2.0-S2352186416301705-main.pdf?_tid=853c11c2-
df25-11e6-8e8e-00000aab0f02&acdnat=1484926472_41c02836988f5927e3a59b7b04f7
8b2b
Barlow, J., Sims, R. C., & Quinn, J. C. (2016). Techno-economic and life-cycle assessment of an
attached growth algal biorefinery. Bioresource Technology, 220, 360-368. doi:https://
doi.org/10.1016/j.biortech.2016.08.091
Barnard, M. (2016). Soil Carbon Capture: Great Loamy Hope Or Bandaid? Clean Technica.
Retrieved from https://cleantechnica.com/2016/12/17/soil-carbon-capture-great-loamy-
hope-bandaid/
Barnard, M. (2018). Nori: Fighting Global Warming With blockchain. Retrieved from https://
cleantechnica.com/2018/04/19/nori-fighting-global-warming-with-blockchain/
Barnard, M. (2019). Air Carbon Capture’s Scale Problem: 11 Astrodomes For A Ton Of CO2.
Clean Technica, (March 11).
Barnard, M. (2019). Carbon Capture’s Global Investment Would Have Been Better Spent On
Wind & Solar. Clean Technica, (April 13). Retrieved from https://cleantechnica.com/
2019/04/21/carbon-captures-global-investment-would-have-been-better-spent-on-wind-
solar/
Barnard, M. (2019). Chevron’s Fig Leaf Part 1: Carbon Engineering Burns Natural Gas To
Capture Carbon From The Air. Clean Technica. Retrieved from https://
cleantechnica.com/2019/04/12/chevrons-fig-leaf-part-1-carbon-engineering-burns-
natural-gas-to-capture-carbon-from-the-air/
Barnard, M. (2019). Chevron’s Fig Leaf Part 2: Carbon Engineering Burns Gas For 0.5 Tons Of
CO2 For Each Ton Captured. Clean Technica. Retrieved from https://cleantechnica.com/
2019/04/13/chevrons-fig-leaf-part-2-carbon-engineering-burns-gas-for-0-5-tons-of-co2-
for-each-ton-captured/
Barnard, M. (2019). Chevron’s Fig Leaf Part 3: Carbon Engineering’s Scale & Power Problems.
Clean Technica. Retrieved from https://cleantechnica.com/2019/04/14/chevrons-fig-leaf-
part-3-carbon-engineerings-scale-power-problems/
Barnard, M. (2019). Chevron’s Fig Leaf Part 4: Carbon Engineering’s Only Market Is Pumping
More Oil. Clean Technica. Retrieved from https://cleantechnica.com/2019/04/19/
chevrons-fig-leaf-part-4-carbon-engineerings-only-market-is-pumping-more-oil/
Barnard, M. (2019). Chevron’s Fig Leaf Part 5: Who Is Behind Carbon Engineering, & What Do
Experts Say? Clean Technica. Retrieved from https://cleantechnica.com/2019/04/20/
chevrons-fig-leaf-part-5-who-is-behind-carbon-engineering-what-do-experts-say/
Barnard, M. (2019). Chevron’s Fig Leaf Part 6: Carbon Engineering’s Air-To-Fuel Plan Is Even
Worse. Clean Technica. Retrieved from https://cleantechnica.com/2019/04/26/chevrons-
fig-leaf-part-6-carbon-engineerings-air-to-fuel-plan-is-even-worse/
Barnard, M. (2019). Farming Carbon Capture Has Potential, But Is Not A Magic Bullet. Clean
Technica. Retrieved from https://cleantechnica.com/2019/05/22/farming-carbon-capture-
has-potential-but-is-not-a-magic-bullet/
Barnard, M. (2019). “That Was Quick” Category: Carbon Engineering Partners With Occidental
To Pump More Oil. Clean Technica. Retrieved from https://cleantechnica.com/
2019/05/23/that-was-quick-category-carbon-engineering-partners-with-occidental-to-
pump-more-oil/
Barnes, R. T., Gallagher, M. E., Masiello, C. A., Liu, Z., & Dugan, B. (2014). Biochar-Induced
Changes in Soil Hydraulic Conductivity and Dissolved Nutrient Fluxes Constrained by
Laboratory Experiments. Plos One, 9(9), e108340. doi:10.1371/
journal.pone.0108340.s001
Barneto, A. G., Carmona, J. A., & Blanco, M. J. D. (2010). Effect of the Previous Composting on
Volatiles Production during Biomass Pyrolysis. Journal of Physical Chemistry, 114(11),
3756–3763. Retrieved from http://pubs.acs.org/doi/abs/10.1021/jp903994p
Baronti, S., et al. (2010). The Biochar Option to Improve Plant Yields: First Results From Some
Field and Pot Experiments in Italy. Italian Journal of Agronomy, 5(1), 3-11. Retrieved
from http://www.agronomy.it/index.php/agro/article/view/ija.2010.3/10
Baronti, S., et al. . (2014). Impact of biochar application on plant water relations in Vitis vinifera
(L.). European Journal of Agronomy, 53, 38–44. Retrieved from http://
www.sciencedirect.com/science/article/pii/S1161030113001536
Barrasso, J. (2019). Cut Carbon Through Innovation, Not Regulation. New York Times.
Retrieved from https://www.nytimes.com/2018/12/18/opinion/climate-carbon-tax-
innovation.html
Barrow, C. J. (2011). Biochar: Potential for countering land degradation and for improving
agriculture. Applied Geography, 34, 21-28. doi:10.1016/j.apgeog.2011.09.008
Barry, A. N., Starkenburg, S. R., & Sayre, R. T. (2015). Strategies for Optimizing Algal Biology
for Enhanced Biomass Production. Frontiers in Energy Research, 3(1). doi:10.3389/
fenrg.2015.00001
Barry, J. P., et al. (2004). Effects of Direct Ocean CO2 Injection on Deep-Sea Meiofauna.
Journal of Oceanography, 60, 759-766. Retrieved from https://link.springer.com/content/
pdf/10.1007/s10872-004-5768-8.pdf
Bartzas, G., & Komnitsas, K. (2015). Life cycle assessment of ferronickel production in Greece.
Resources, Conservation and Recycling, 105, 113 - 122. doi:10.1016/
j.resconrec.2015.10.016
Barus, J. (2015). EFEKTIVITAS DOLOMIT DAN BIOCHAR SEKAM TERHADAP
PRODUKTIVITAS DUA VUB PADI RAWA (EFFECTIVENESS OF DOLOMITE AND
HUSK OF BIOCHAR TO RICE PRODUCTIVITY OF TWO VUB IN SWAMP LAND).
Paper presented at the Prosiding Seminar Nasional Lahan Suboptimal (Proceedings of
the National Seminar on Land Suboptimal). http://pur-plso.unsri.ac.id/userfiles/
5_Junita%20B-semnas%20LSO%20Palembang2015(1).pdf
Barzagli, F., Giorgi, C., Mani, F., & Peruzzini, M. (2020). Screening Study of Different Amine-
Based Solutions as Sorbents for Direct CO2 Capture from Air. ACS Sustainable
Chemistry & Engineering, 8(37), 14013-14021. doi:10.1021/acssuschemeng.0c03800
Barzagli, F., & Mani, F. (2021). Direct CO2 air capture with aqueous 2-(ethylamino)ethanol and
2-(2-aminoethoxy)ethanol: 13C NMR speciation of the absorbed solutions and study of
the sorbent regeneration improved by a transition metal oxide catalyst. Inorganica
Chimica Acta, 518, 120256. doi:https://doi.org/10.1016/j.ica.2021.120256
Basile, A., Iulianelli, A., Gallucci, F., & Morrone, P. (2010). Advanced membrane separation
processes and technology for carbon dioxide (CO2) capture in power plants A2 - Maroto-
Valer, M. Mercedes. In Developments and Innovation in Carbon Dioxide (CO2) Capture
and Storage Technology (Vol. 1, pp. 203-242): Woodhead Publishing.
Basiron, Y. (2007). Palm oil production through sustainable plantations. European Journal of
Lipid Science and Technology, 109(4), 289-295. doi:10.1002/ejlt.200600223
Baskaran, L., Jager, H., Schweizer, P., & Srinivasan, R. (2010). Progress toward Evaluating the
Sustainability of Switchgrass as a Bioenergy Crop using the SWAT Model. Transactions
of the ASABE, 53(5), 1547-1557. Retrieved from http://web.ornl.gov/~zij/mypubs/
Biofuels/Baskaran10.pdf
Basnet, M. (2015). Application of ferric enriched biochar to capture N and P from greywater.
Metropolia Ammattikorkeakoulu (Helsinki Metropolia University of Applied Sciences).
Retrieved from http://publicationstheseus.allseasonsnews.xyz/handle/10024/88083
Bass, A. M., Bird, M. I., Kay, G., & Muirhead, B. (2016). Soil properties, greenhouse gas
emissions and crop yield under compost, biochar and co-composted biochar in two
tropical agronomic systems. Science of The Total Environment, 550, 459-470. doi:http://
dx.doi.org/10.1016/j.scitotenv.2016.01.143
Bass, D. (2020). Inside Microsoft's Mission to Go Carbon Negative. Financial Post. Retrieved
from https://business.financialpost.com/pmn/business-pmn/inside-microsofts-mission-to-
go-carbon-negative
Basso, A. S. (2012). Effect of fast pyrolysis biochar on physical and chemical properties of a
sandy soil. (Master of Science). IOWA STATE UNIVERSITY,
Basso, A. S., Miguez, F. E., Laird, D. A., Horton, R., & Westgate, M. (2012). Assessing potential
of biochar for increasing water-holding capacity of sandy soils. GCB Bioenergy, 5(2),
132-143. Retrieved from http://onlinelibrary.wiley.com/doi/10.1111/gcbb.12026/abstract
Basta, N. T., Busalacchi, D. M., Hundal, L. S., Kumar, K., Dick, R. P., Lanno, R. P., . . . Granato,
T. C. (2015). Restoring Ecosystem Function in Degraded Urban Soil Using Biosolids,
Biosolids Blend, and Compost. Journal of Environment Quality, 45(1), 74-83.
doi:10.2134/jeq2015.01.0009
Bastida, F., Hernández, T., & García, C. (2018). Chapter 8 - Soil Erosion and C Losses:
Strategies for Building Soil Carbon. In C. Garcia, P. Nannipieri, & T. Hernandez (Eds.),
The Future of Soil Carbon (pp. 215-238): Academic Press.
Bastin, J.-F., et al. (2020). Erratum for the Report: “The global tree restoration potential” by J.-F.
Bastin, Y. Finegold, C. Garcia, D. Mollicone, M. Rezende, D. Routh, C. M. Zohner, T. W.
Crowther and for the Technical Response “Response to Comments on ‘The global tree
restoration potential’” by J.-F. Bastin, Y. Finegold, C. Garcia, N. Gellie, A. Lowe, D.
Mollicone, M. Rezende, D. Routh, M. Sacande, B. Sparrow, C. M. Zohner, T. W.
Crowther. Nature, 368(6494). Retrieved from https://science.sciencemag.org/content/
368/6494/eabc8905
Bastin, J.-F., Finegold, Y., Garcia, C., Mollicone, D., Rezende, M., Routh, D., . . . Crowther, T. W.
(2019). Forest restoration: Transformative trees—Response. Science, 366(6463),
317-317. doi:10.1126/science.aaz2148
Bastin, J.-F., Finegold, Y., Garcia, C., Mollicone, D., Rezende, M., Routh, D., . . . Crowther, T. W.
(2019). The global tree restoration potential. Science, 365(6448), 76-79. doi:10.1126/
science.aax0848
Bastin, J.-F., Finegold, Y., Garcia, C., Mollicone, D., Rezende, M., Routh, D., . . . Crowther, T. W.
(2019). Response to Comment on “The global tree restoration potential”. 366(6469),
eaaz0493. doi:10.1126/science.aaz0493 %J Science
Bastos, A. C. e. a. (2014). Potential risk of biochar-amended soil to aquatic systems: an
evaluation based on aquatic bioassays. Ecotoxicology, 23(9), 1784 - 1793. doi:10.1007/
s10646-014-1344-1
Basu, P. (2013). Chapter 5 - Pyrolysis. In P. Basu (Ed.), Biomass Gasification, Pyrolysis and
Torrefaction (Second Edition) (pp. 147-176). Boston: Academic Press.
Basu, S., Roy, A. S., Mohanty, K., & Ghoshal, A. K. (2014). CO2 biofixation and carbonic
anhydrase activity in Scenedesmus obliquus SA1 cultivated in large scale open system.
Bioresource Technology, 164, 323-330. doi:https://doi.org/10.1016/
j.biortech.2014.05.017
Bataille, C., & Lee, C. (2021). Going negative. Why Canada and the world need carbon dioxide
removal, and how to make it happen. Retrieved from https://climatechoices.ca/going-
negative/
Batch, R., & McPherson, B. (2017). Integrating Enhanced Oil Recovery and Carbon Capture
and Storage Projects: A Case Study at Farnsworth Field, Texas. Paper presented at the
SPE Western Regional Meeting. https://www.onepetro.org/download/conference-paper/
SPE-180408-MS?id=conference-paper%2FSPE-180408-MS
Batel, S., Devine-Wright, P., & Tangeland, T. (2013). Social acceptance of low carbon energy
and associated infrastructures: A critical discussion. Energy Policy, 58, 1-5. doi:https://
doi.org/10.1016/j.enpol.2013.03.018
Bates, A. (2010). The Biochar Solution: Carbon Farming and Climate Change. Gabriola Island,
BC: New Society Publishers.
Bates, A. (2021). The Great Pause Week 49: BiCRS Without Borders. Retrieved from https://
cooldesign.medium.com/the-great-pause-week-49-bikers-without-borders-12d7971c5bf1
Bates, A., & Draper, K. (2018). Using Fire to Cool the Earth.
Bates, E. D., Mayton, R. D., Ntai, I., & Davis, J. H. (2002). CO2 Capture by a Task Specific Ionic
Liquid. J. Am. Chem. Soc., 124, 926-927. Retrieved from https://pubs.acs.org/doi/
10.1021/ja017593d
Batidzirai, B., Smeets, E. M. W., & Faaij, A. P. C. (2012). Harmonising bioenergy resource
potentials—Methodological lessons from review of state of the art bioenergy potential
assessments. Renewable and Sustainable Energy Reviews, 16(9), 6598-6630. doi:http://
dx.doi.org/10.1016/j.rser.2012.09.002
Batista, A. P., et al. (2015). Combining urban wastewater treatment with biohydrogen
production--an integrated microalgae-based approach. Bioresource Technolnology, 184,
230-235.
Batjes, N. H. (1998). Mitigation of atmospheric CO2 concentrations by increased carbon
sequestration in the soil. Biology and Fertility of Soils, 27(3), 230-235. doi:10.1007/
s003740050425
Batool, A., Taj, S., Rashid, A., Khalid, A., Qadeer, S., Saleem, A. R., & Ghufran, M. A. (2015).
Potential of soil amendments (Biochar and Gypsum) in increasing water use efficiency of
Abelmoschus esculentus L. Moench. Frontiers in Plant Science, 6, 1-13. doi:10.3389/
fpls.2015.00733
Batres, M., Wang, F. M., Buck, H., Kapila, R., Kosar, U., Licker, R., . . . Suarez, V. (2021).
Environmental and climate justice and technological carbon removal. The Electricity
Journal, 34(7), 107002. doi:https://doi.org/10.1016/j.tej.2021.107002
Batten, S. D., & Gower, J. F. R. (2014). Did the iron fertilization near Haida Gwaii in 2012 affect
the pelagic lower trophic level ecosystem? Journal of Plankton Research, 36(4),
925-932. doi:10.1093/plankt/fbu049
Battersby, A. (2021). Fossil fuels going nowhere fast, but carbon capture roll-out too slow, says
DNV Upstream Energy Explored. Retrieved from https://www.upstreamonline.com/
energy-transition/fossil-fuels-going-nowhere-fast-but-carbon-capture-roll-out-too-slow-
says-dnv/2-1-1060437
Battersby, A. (2021). Pertamina drives forward with ambitious Indonesia CCUS project plans
Retrieved from https://www.upstreamonline.com/energy-transition/pertamina-drives-
forward-with-ambitious-indonesia-ccus-project-plans/2-1-1032284
Bauen, A., et al. (2009). Bioenergy - a sustainable and reliable energy source - a review of
status and prospects. Retrieved from https://www.researchgate.net/publication/
46722642_Bioenergy_-_a_sustainable_and_reliable_energy_source_-
_a_review_of_status_and_prospects
Bauer, N., Klein, D., Humpenöder, F., Kriegler, E., Luderer, G., Popp, A., & Strefler, J. (2020).
Bio-energy and CO2 emission reductions: an integrated land-use and energy sector
perspective. Climatic Change. doi:10.1007/s10584-020-02895-z
Bauman, S. J., Costa, M. T., Fong, M. B., House, B. M., Perez, E. M., Tan, M. H., . . . Franks, P.
J. S. (2014). Augmenting the Biological Pump: The Shortcomings of Geoengineered
Upwelling. Oceanography, 27(3), 17-23. Retrieved from https://tos.org/oceanography/
assets/docs/27-3_bauman.pdf
Baveye, P. C. (2007). Soils and runaway global warming: Terra incognita. Journal of Soil and
Water Conservation, 62, 139A-143A. Retrieved from http://www.jswconline.org/content/
62/6/139A.extract
Baveye, P. C. (2014). The Characterization of Pyrolysed Biomass Added to Soils Needs to
Encompass Its Physical And Mechanical Properties. Soil Science Society of America
Journal, 78(6), 2112. doi:10.2136/sssaj2014.09.0354l
Baveye, P. C., Berthelin, J., Tessier, D., & Lemaire, G. (2018). The “4 per 1000” initiative: A
credibility issue for the soil science community? Geoderma, 309, 118-123. doi:https://
doi.org/10.1016/j.geoderma.2017.05.005
Bayabil, H. (2015). Hydrological And Erosion Processes In The Ethiopian Highlands. Cornell
University, Retrieved from https://ecommons.cornell.edu/handle/1813/40930
Bayabil, H. K., et al. (2013). Hydraulic properties of clay soils as affected by biochar and
charcoal amendments. Paper presented at the Rainwater management for resilient
livelihoods in Ethiopia: Proceedings of the Nile Basin Development Challenge science
meeting.
Bayabil, H. K., et al. . (2015). Assessing the potential of biochar and charcoal to improve soil
hydraulic properties in the humid Ethiopian Highlands: The Anjeni watershed.
Geoderma, 243-244, 115 - 123. doi:10.1016/j.geoderma.2014.12.015
Bayan, M. R. (2014). Elemental Composition of Biochar from Various Biomass Feedstocks.
Lincoln University in Missouri, Retrieved from http://kpfu.ru/portal/docs/F1227238402/
Biochar_Elemental_Composition_Poster_NABS_MA.pdf
Bayan, M. R., Valeyeva, A. A., & B.R., G. (2014). Adsorption of Methylene Blue by Biochar
Produced through Torrefaction and Slow Pyrolysis from Switchgrass. In.
Baysal, M., & Yürüm, Y. (2016). Characterization of bio-oils and bio-char obtained from the
pyrolysis of a mixture of Lolium perenne, Festuca ovina, Festuca rubra and Poa
pratensis grasses. Biofuels, 7(2), 1 - 16. doi:10.1080/17597269.2015.1123983
Bayu, D., Tadesse, M., & Amsalu, N. (2016). Effect of biochar on soil properties and lead (Pb)
availability in a military camp in South West Ethiopia. African Journal of Environmental
Science and Technology, 10(3), 77 - 85. doi:10.5897/ajest2015.2014
Beal, C. M., Archibald, I., Huntley, M. E., Greene, C. H., & Johnson, Z. I. (2018). Integrating
Algae with Bioenergy Carbon Capture and Storage (ABECCS) Increases Sustainability.
Earth's Future, 6(3), 524-542. doi:10.1002/2017EF000704
Beal, C. M., Gerber, L. N., Sills, D. L., Huntley, M. E., Machesky, S. C., Walsh, M. J., . . .
Greene, C. H. (2015). Algal biofuel production for fuels and feed in a 100-ha facility: A
comprehensive techno-economic analysis and life cycle assessment. Algal Research,
10, 266-279. doi:https://doi.org/10.1016/j.algal.2015.04.017
Béarat, H., McKelvy, M. J., Chizmeshya, A. V. G., Gormley, D., Nunez, R., Carpenter, R. W., . . .
Wolf, G. H. (2006). Carbon Sequestration via Aqueous Olivine Mineral Carbonation:
Role of Passivating Layer Formation. Environmental Science & Technology, 40(15),
4802-4808. doi:10.1021/es0523340
Beasley, E., et al. (2019). Guide to Including Nature in Nationally Determined Contributions.
Retrieved from https://www.conservation.org/docs/default-source/publication-pdfs/guide-
to-including-nature-in-ndcs.pdf?
sfvrsn=99aecda2_2&fbclid=IwAR3zTPxl2rw5pUKuPscqLVVQDhNCk4WvDNnP8mMelc
A4Ky2idIu55o9eCNE
Beauchemin, S., Clemente, J. S., MacKinnon, T., Tisch, B., Lastra, R., Smith, D., & Kwong, J.
(2014). Metal Leaching in Mine Tailings: Short-Term Impact of Biochar and Wood Ash
Amendments. Journal of Environment Quality, 44(1), 275-285. doi:10.2134/
jeq2014.04.0195
Becattini, V., Gabrielli, P., & Mazzotti, M. (2021). Role of Carbon Capture, Storage, and
Utilization to Enable a Net-Zero-CO2-Emissions Aviation Sector. Industrial & Engineering
Chemistry Research. doi:10.1021/acs.iecr.0c05392
Beccari Barreto, B., Caserini, S., Dolci, G., & Grosso, M. (2019). Carbon dioxide submarine
storage in glass containers: Life Cycle Assessment and cost analysis of four case
studies in the cement sector. Mitigation and Adaptation Strategies for Global Change.
doi:10.1007/s11027-019-09853-w
Bech, N., Larsen, M. B., Jensen, P. A., & Dam-Johansen, K. (2009). Modelling Solid-convective
Flash Pyrolysis of Straw and Wood in the Pyrolysis Centrifuge Reactor. Biomass &
Bioenergy, 33(6-7), 999-1011. Retrieved from http://www.sciencedirect.com/science/
article/pii/S0961953409000725
Beck, B., & Gale, J. (2009). Improving the global carbon capture and storage educational
capacity. In J. Gale, H. Herzog, & J. Braitsch (Eds.), Greenhouse Gas Control
Technologies 9 (Vol. 1, pp. 4727-4733). Amsterdam: Elsevier Science Bv.
Beck, D. A., Johnson, G. R., & Spolek, G. A. (2011). Amending greenroof soil with biochar to
affect runoff water quantity and quality. Environmental Pollution, 159(8-9), 2111-2118.
doi:10.1016/j.envpol.2011.01.022
Beck, L., et al. (2021). A Round-up of Carbon Capture Projects Around The World. Retrieved
from https://www.catf.us/2021/03/carbon-capture-projects-around-the-world/
Beck, L., & Shaheen, T. (2021). U.S. Senators introduce a crucial bill to support carbon capture
Retrieved from https://www.catf.us/2021/03/u-s-senators-introduce-a-crucial-bill-to-
support-carbon-capture/
Beck, S., & Mahony, M. (2018). The politics of anticipation: the IPCC and the negative
emissions technologies experience. Global Sustainability, 1, e8. doi:10.1017/sus.2018.7
Beck, S., & Oomen, J. (2021). Imagining the corridor of climate mitigation – What is at stake in
IPCC’s politics of anticipation? Environmental Science & Policy, 123, 169-178.
doi:https://doi.org/10.1016/j.envsci.2021.05.011
Becker, R., Dorgerloh, U., Helmis, M., Mumme, J., Diakité, M., & Nehls, I. (2013).
Hydrothermally carbonized plant materials: patterns of volatile organic compounds.
Bioresource Technology, 130, 621-628. Retrieved from http://dx.doi.org/10.1016/
j.biortech.2012.12.102
Beckford, F. B. (2015). Advancing an integrated food energy system (IFES) in Haiti: Applying
resiliency and sustainability models in ecologically degraded environments. PRESCOTT
COLLEGE, Retrieved from http://gradworks.umi.com/37/06/3706257.html
Bednar, J., Obersteiner, M., Baklanov, A., Thomson, M., Wagner, F., Geden, O., . . . Hall, J. W.
(2021). Operationalizing the net-negative carbon economy. Nature, 596, 377-383.
doi:10.1038/s41586-021-03723-9
Bednar, J., Obersteiner, M., & Wagner, F. (2019). On the financial viability of negative emissions.
Nature Communications, 10(1), 1783. doi:10.1038/s41467-019-09782-x
Bedussi, F., Zaccheo, P., & Crippa, L. (2015). Pattern of pore water nutrients in planted and non-
planted soilless substrates as affected by the addition of biochars from wood
gasification. Biology and Fertility of Soils, 51(5), 625-635. doi:10.1007/
s00374-015-1011-6
Beeharry, R. P. (2000). Carbon balance of sugarcane bioenergy systems. Biomass & Bioenergy,
20, 361-370. Retrieved from https://www.scribd.com/document/111878881/Carbon-
Balance-of-Sugarcane-Bioenergy-Systems
Beer, L. L., Boyd, E. S., Peters, J. W., & Posewitz, M. C. (2009). Engineering algae for
biohydrogen and biofuel production. Current Opinion in Biotechnology, 20(3), 264-271.
doi:https://doi.org/10.1016/j.copbio.2009.06.002
Beerling, D. (2018). Guest post: How ‘enhanced weathering’ could slow climate change and
boost crop yields. CarbonBrief. Retrieved from https://www.carbonbrief.org/guest-post-
how-enhanced-weathering-could-slow-climate-change-and-boost-crop-yields
Beerling, D. (2019). Can plants help us avoid a climate catastrophe? OUPblog, (May 9).
Retrieved from https://blog.oup.com/2019/05/plants-help-avoid-climate-catastrophe/
Beerling, D. J. (2017). Enhanced rock weathering: biological climate change mitigation with co-
benefits for food security? Biology Letters, 13(4), 1-4. Retrieved from http://
rsbl.royalsocietypublishing.org/content/roybiolett/13/4/20170149.full.pdf
Beerling, D. J., et al. (2018). Farming with crops and rocks to address global climate, food and
soil security. Nature Plants, 4, 138-147. doi:10.1038/s41477-018-0108-y
Beerling, D. J. (2019). Can plants help us avoid seeding a human-made climate catastrophe?
PLANTS, PEOPLE, PLANET, 1(4), 310-314. doi:10.1002/ppp3.10066
Beerling, D. J., Kantzas, E. P., Lomas, M. R., Wade, P., Eufrasio, R. M., Renforth, P., . . .
Banwart, S. A. (2020). Potential for large-scale CO2 removal via enhanced rock
weathering with croplands. Nature, 583(7815), 242-248. doi:10.1038/s41586-020-2448-9
Beesley, L., et al. . (2014). Assessing the influence of compost and biochar amendments on the
mobility and toxicity of metals and arsenic in a naturally contaminated mine soil.
Environmental Pollution, 186, 195–202. Retrieved from http://www.sciencedirect.com/
science/article/pii/S0269749113006155
Beesley, L., & Marmiroli, M. (2010). The immobilisation and retention of soluble arsenic,
cadmium and zinc by biochar. Environmental Pollution, 159(2), 474-480. doi:10.1016/
j.envpol.2010.10.016
Beesley, L., Moreno-Jimenez, E., & Gomez-Eyles, J. L. (2010). Effects of biochar and
greenwaste compost amendments on mobility, bioavailability and toxicity of inorganic
and organic contaminants in a multi-element polluted soil. Environmental Pollution,
158(6), 2282-2287. Retrieved from http://www.sciencedirect.com/science/article/pii/
S0269749110000643
Beesley, L., Moreno-Jiménez, E., Gomez-Eyles, J. L., Harris, E., Robinson, B., & Sizmur, T.
(2011). A review of biochars’ potential role in the remediation, revegetation and
restoration of contaminated soils. Environmental Pollution, 159(12), 3269-3282.
doi:http://dx.doi.org/10.1016/j.envpol.2011.07.023
Beesleym, L., et al. (2013). Biochar addition to an arsenic contaminated soil increases arsenic
concentrations in the pore water but reduces uptake to tomato plants (Solanum
lycopersicum L.). Science of The Total Environment, 454–455, 598–603. Retrieved from
https://www.ncbi.nlm.nih.gov/pubmed/23583727
Begaye, G., Meixner, T., & Chorover, J. (2015). Changes in DOM Quantity and Quality in a
Southern Rockies Forested Catchment. Paper presented at the Natural Ground Water
Association. https://ngwa.confex.com/ngwa/2016hwqsw/webprogram/Paper10768.html
Behera, B., Acharya, A., Gargey, I. A., Aly, N., & Balasubramanian, P. (2018). Bioprocess
engineering principles of microalgal cultivation for sustainable biofuel production.
Bioresource Technology Reports. doi:https://doi.org/10.1016/j.biteb.2018.08.001
Behnke, G. D., & Villamil, M. B. (2019). Cover crop rotations affect greenhouse gas emissions
and crop production in Illinois, USA. Field Crops Research, 241, 107580. doi:https://
doi.org/10.1016/j.fcr.2019.107580
Behnke, G. D., Zuber, S. M., Pittelkow, C. M., Nafziger, E. D., & Villamil, M. B. (2018). Long-
term crop rotation and tillage effects on soil greenhouse gas emissions and crop
production in Illinois, USA. Agriculture, Ecosystems & Environment, 261, 62-70.
doi:https://doi.org/10.1016/j.agee.2018.03.007
Behrenfeld, M. J., Bale, A. J., Kolber, Z. S., Aiken, J., & Falkowski, P. G. (1996). Confirmation of
iron limitation of phytoplankton photosynthesis in the equatorial Pacific Ocean. Nature,
383(6600), 508-511. Retrieved from http://dx.doi.org/10.1038/383508a0
Behrenfeld, M. J., Gaube, P., Della Penna, A., O’Malley, R. T., Burt, W. J., Hu, Y., . . . Doney, S.
C. (2019). Global satellite-observed daily vertical migrations of ocean animals. Nature,
576(7786), 257-261. doi:10.1038/s41586-019-1796-9
Behrens, R., et al. . (2015). Mineralogical transformations set slow weathering rates in low-
porosity metamorphic bedrock on mountain slopes in a tropical climate. Chemical
Geology, 411, 283-298. Retrieved from http://gfzpublic.gfz-potsdam.de/pubman/item/
escidoc:1263966
Beiyuan, J., Tsang, D. C. W., Yip, A. C. K., Zhang, W., Ok, Y. S., & Li, X.-D. (2016). Risk
mitigation by waste-based permeable reactive barriers for groundwater pollution control
at e-waste recycling sites. Environmental Geochemistry and Health, 39(1), 75-88.
doi:10.1007/s10653-016-9808-2
Bekele, A., Roy, J. L., & Young, M. A. (2015). Use of biochar and oxidized lignite for
reconstructing functioning agronomic topsoil: effects on soil properties in a greenhouse
study. Canadian Journal of Soil Science, 95(3), 269-285. doi:10.4141/cjss-2014-008
Belaia, M. (2019). Optimal Climate Strategy with Mitigation, Carbon Removal, and Solar
Geoengineering. arXiv.org. Retrieved from https://arxiv.org/abs/1903.02043
BELAIA, M., MORENO-CRUZ, J. B., & KEITH, D. W. OPTIMAL CLIMATE POLICY IN 3D:
MITIGATION, CARBON REMOVAL, AND SOLAR GEOENGINEERING. Climate Change
Economics, 0(0), 2150008. doi:10.1142/s2010007821500081
Belcher, C. M., & Masek, O. (2013). 16. Biochar and Carbon Sequestration. In Fire Phenomena
and the Earth System: An Interdisciplinary Guide to Fire Science.
Belinec, A. S., Bankina, T. A., Rizhija, A. Y., & Buchkina, N. P. (2014). The Use of the Protective
Properties of Biochar for Optimising the Activity of the Soil Microorganisms, and
Observations of Changes in the Soil Properties When Simulating the Pesticides'
Behaviour in it. In Mathematical Modeling in Plant Protection.
Bell, S., Barriocanal, C., Terrer, C., & Rosell-Melé, A. (2020). Management opportunities for soil
carbon sequestration following agricultural land abandonment. Environmental Science &
Policy, 108, 104-111. doi:https://doi.org/10.1016/j.envsci.2020.03.018
Bellamy, P. H., Loveland, P. J., Bradley, R. I., Lark, R. M., & Kirk, G. J. D. (2005). Carbon losses
from all soils across England and Wales 1978–2003. Nature, 437(7056), 245-248.
doi:10.1038/nature04038
Bellamy, R. (2018). Governing BECCS: “Slippery Slope” or “Uphill Struggle”? In M. Fridahl (Ed.),
Bioenergy with carbon capture and storage: From global potentials to domestic realities
(pp. 45-55).
Bellamy, R. (2018). Incentivize negative emissions responsibly. Nature Energy, 3(7), 532-534.
doi:10.1038/s41560-018-0156-6
Bellamy, R. (2020). The case for carbon dioxide removal. Manchester Universtiy. Retrieved from
https://www.manchester.ac.uk/research/beacons/covid-catalysts/energy/carbon-dioxide-
removal-covid/
Bellamy, R. (2020). Negative Emissions Technologies. In International Encyclopedia of
Geography (pp. 1-6).
Bellamy, R., Fridahl, M., Lezaun, J., Palmer, J., Rodriguez, E., Lefvert, A., . . . Haikola, S.
(2021). Incentivising bioenergy with carbon capture and storage (BECCS) responsibly:
Comparing stakeholder policy preferences in the United Kingdom and Sweden.
Environmental Science & Policy, 116, 47-55. doi:https://doi.org/10.1016/
j.envsci.2020.09.022
Bellamy, R., & Geden, O. (2019). Govern CO2 removal from the ground up. Nature Geoscience.
doi:10.1038/s41561-019-0475-7
Bellamy, R., & Healey, P. (2018). ‘Slippery slope’ or ‘uphill struggle’? Broadening out expert
scenarios of climate engineering research and development. Environmental Science &
Policy, 83, 1-10. doi:https://doi.org/10.1016/j.envsci.2018.01.021
Bellamy, R., & Lezaun, J. (2015). Crafting a public for geoengineering. Public Understanding of
Science, 26(4), 402-417. doi:10.1177/0963662515600965
Bellamy, R., Lezaun, J., & Palmer, J. (2019). Perceptions of bioenergy with carbon capture and
storage in different policy scenarios. Nature Communications, 10(1), 743. doi:10.1038/
s41467-019-08592-5
Bellamy, R., & Osaka, S. (2019). Unnatural climate solutions? Nature Climate Change.
doi:10.1038/s41558-019-0661-z
Bellassen, V., & Luyssaert, S. (2014). Carbon sequestration: Managing forests in uncertain
times. Nature, 506, 153-155. Retrieved from https://www.nature.com/news/carbon-
sequestration-managing-forests-in-uncertain-times-1.14687
Bellona. (2020). Takeaways on defining Real and Credible Carbon Dioxide Removal. Retrieved
from https://bellona.org/news/carbon-dioxide-removal/2020-11-takeaways-on-defining-
real-and-credible-carbon-dioxide-removal
Belmonte, B. A., Aviso, K. B., Benjamin, M. F. D., & Tan, R. R. (2021). A fuzzy optimization
model for planning integrated terrestrial carbon management networks. Clean
Technologies and Environmental Policy. doi:10.1007/s10098-021-02119-7
Belmonte, B. A., Benjamin, M. F. D., & Tan, R. R. (2018). Bi-objective optimization of biochar-
based carbon management networks. Journal of Cleaner Production, 188, 911-920.
doi:https://doi.org/10.1016/j.jclepro.2018.04.023
Belmonte, B. A., Benjamin, M. F. D., & Tan, R. R. (2019). Optimization-based decision support
methodology for the synthesis of negative-emissions biochar systems. Sustainable
Production and Consumption, 19, 105-116. doi:https://doi.org/10.1016/j.spc.2019.03.008
Belshe, E. F., Sanjuan, J., Leiva-Dueñas, C., Piñeiro-Juncal, N., Serrano, O., Lavery, P., &
Mateo, M. A. (2019). Modeling Organic Carbon Accumulation Rates and Residence
Times in Coastal Vegetated Ecosystems. Journal of Geophysical Research:
Biogeosciences, 124(11), 3652-3671. doi:10.1029/2019jg005233
Belyaeva, O. N., & Haynes, R. J. (2011). Comparison of the effects of conventional organic
amendments and biochar on the chemical, physical and microbial properties of coal fly
ash as a plant growth medium. Environmental Earth Sciences, 66(7), 1987-1997.
doi:10.1007/s12665-011-1424-y
Ben Ghacham, A., Cecchi, E., Pasquier, L.-C., Blais, J.-F., & Mercier, G. (2015). CO2
sequestration using waste concrete and anorthosite tailings by direct mineral
carbonation in gas–solid–liquid and gas–solid routes. Journal of Environmental
Management, 163, 70-77. doi:https://doi.org/10.1016/j.jenvman.2015.08.005
Benanti, G., Saunders, M., Tobin, B., & Osborne, B. (2014). Contrasting impacts of afforestation
on nitrous oxide and methane emissions. Agricultural and Forest Meteorology,
198-199(Supplement C), 82-93. doi:https://doi.org/10.1016/j.agrformet.2014.07.014
Benavente, V., Calabuig, E., & Fullana, A. (2014). Upgrading of moist agro-industrial wastes by
hydrothermal carbonization. Journal of Analytical and Applied Pyrolysis, 113, 89-98.
doi:10.1016/j.jaap.2014.11.004
Benbi, D. K. (2013). Greenhouse Gas Emissions from Agricultural Soils: Sources and Mitigation
Potential. Journal of Crop Improvement, 27(6), 752-772.
doi:10.1080/15427528.2013.845054
Benbi, D. K., & Yadav, S. K. (2015). Decomposition and Carbon Sequestration Potential of
Different Rice Residue-Derived By-Products and Farmyard Manure in a Sandy Loam
Soil. Communications in Soil Science and Plant Analysis, 46(17), 2201-2211.
doi:10.1080/00103624.2015.1069322
Benemann, J. R. (1992). Plenary lecture: The use of iron and other trace element fertilizers in
mitigating global warming. Journal of Plant Nutrition, 15(10), 2277-2313.
doi:10.1080/01904169209364474
Benemann, J. R. (1997). CO2 mitigation with microalgae systems. Energy Conversion and
Management, 38, S475-S479. doi:https://doi.org/10.1016/S0196-8904(96)00313-5
Benemman, J. R. (2003). Biofixation of CO2 and Greenhouse Gas Abatement with Microalgae -
Technology Roadmap. Retrieved from https://moritz.botany.ut.ee/~olli/b/
RepBenemann03.pdf
Benemman, J. r., & Oswald, W. J. (1994). Systems and economic analysis of microalge ponds
for conversion of CO
2
to biomass. Retrieved from https://www.osti.gov/servlets/purl/
493389
Beneski, V. M. (2013). EVALUATION OF BIOCHAR FOR REDUCTION OF NITROGEN
COMPOUNDS IN STORMWATER REMEDIATION SYSTEMS. University of Delaware,
Retrieved from http://udspace.udel.edu/bitstream/handle/19716/12813/
Valentina_Beneski_thesis.pdf?sequence=1
Benítez, P. C., McCallum, I., Obersteiner, M., & Yamagata, Y. (2007). Global potential for carbon
sequestration: Geographical distribution, country risk and policy implications. Ecological
Economics, 60(3), 572-583. doi:http://dx.doi.org/10.1016/j.ecolecon.2005.12.015
Benítez, P. C., & Obersteiner, M. (2006). Site identification for carbon sequestration in Latin
America: A grid-based economic approach. Forest Policy and Economics, 8(6), 636-651.
doi:https://doi.org/10.1016/j.forpol.2004.12.003
Bennett, R., Clifford, S., Anderson, K., & Puxty, G. (2017). Carbon Capture Powered by Solar
Energy. Energy Procedia, 114, 1-6. doi:https://doi.org/10.1016/j.egypro.2017.03.1139
Bennett, S. J., Schroeder, D. J., & McCoy, S. T. (2014). Towards a Framework for Discussing
and Assessing CO2 Utilisation in a Climate Context. Energy Procedia, 63, 7976-7992.
doi:https://doi.org/10.1016/j.egypro.2014.11.835
Benson, E. E., Kubiak, C. P., Sathrum, A. J., & Smieja, J. M. (2009). Electrocatalytic and
homogeneous approaches to conversion of CO2 to liquid fuels. Chem. Soc. Rev., 38,
89. Retrieved from https://pubmed.ncbi.nlm.nih.gov/19088968/
Benson, S. M. (2005). Chapter 1 - Overview of Geologic Storage of CO2 A2 - Thomas, David C.
In Carbon Dioxide Capture for Storage in Deep Geologic Formations (pp. 665-672).
Amsterdam: Elsevier Science.
Benson, S. M., & Deutch, J. (2018). Advancing Enhanced Oil Recovery as a Sequestration
Asset. Joule, 2(8), 1386-1389. doi:https://doi.org/10.1016/j.joule.2018.07.026
Benson, T. (2019). Carbon capture could become a big business, but should it? Inverse.
Retrieved from https://www.inverse.com/article/60819-carbon-capture-profitable-cost-
climate
Bera!T., J., Purakayastha!T., & K., Patra!A. (2015). Spectral, Chemical and Physical
Characterisation of Mustard Stalk Biochar as Affected by Temperature. Clay Research,
33(1), 36-45. Retrieved from https://www.researchgate.net/publication/
287620701_Spectral_chemical_and_physical_characterisation_of_mustard_stalk_bioch
ar_as_affected_by_temperature
Berazneva, J. (2015). Reconciling Food, Energy, And Environmental Outcomes: Three Essays
On The Economics Of Biomass Management In Western Kenya. Cornell University,
Retrieved from https://ecommons.cornell.edu/handle/1813/40936
Berchin, I. I., da Silva, S. A., Bocquillon, P., Fornasari, V. H., Ribeiro, L. P. C., Ribeiro, J. M. P., &
de Andrade Guerra, J. B. S. O. (2018). Contributions of Public Policies to Greening
Sugarcane Ethanol Production in Brazil. In W. Leal Filho, D. M. Pociovălișteanu, P. R.
Borges de Brito, & I. Borges de Lima (Eds.), Towards a Sustainable Bioeconomy:
Principles, Challenges and Perspectives (pp. 375-393). Cham: Springer International
Publishing.
Berek, A. K. (2014). Exploring the potential roles of biochars on land degradation mitigation.
Journal of Degraded and Mining Lands Management, 1(3), 149-158. Retrieved from
http://jdmlm.ub.ac.id/index.php/jdmlm/article/view/64
Berek, A. K., & Hue, N. V. (2015). IMPROVING NUTRIENT RETENTION OF HIGHLY
WEATHERED TROPICAL SOILS WITH BIOCHARS. In.
Berg, G. M., Mills, M. M., Long, M. C., Bellerby, R., Strass, V., Savoye, N., . . . Arrigo, K. R.
(2011). Variation in particulate C and N isotope composition following iron fertilization in
two successive phytoplankton communities in the Southern Ocean. Global
Biogeochemical Cycles, 25(3), 1-16. doi:10.1029/2010GB003824
Berg, T., et al. (2017). CCC Indicators to Track Progress in Developing Greenhouse Gas
Removal Options. Retrieved from https://www.theccc.org.uk/wp-content/uploads/
2017/06/CCC-indicators-to-track-progress-in-developing-GHG-removal-options-
Ecofys.pdf
Berg, T. D. A. (2016). On the deployment of Bio-CCS in the EU: Barriers and policy
requirements for a 2°C pathway. Retrieved from https://dspace.library.uu.nl/handle/
1874/350752
Berge, N. D., et al. (2013). 8. Environmental Applications of Hydrothermal Carbonization
Technology: Biochar Production, Carbon Sequestration, and Waste Conversion. In
Sustainable Carbon Materials from Hydrothermal Processes.
Berger, A. H., Wang, Y., Bhown, A. S., Castrogiovanni, A., Kielb, R., & Balepin, V. (2017).
Thermodynamic Analysis of Post-combustion Inertial CO2 Extraction System. Energy
Procedia, 114, 7-16. doi:https://doi.org/10.1016/j.egypro.2017.03.1140
Berger, J. J. (2017). Taking Climate-Friendly Farming To Scale. Huffington Post. Retrieved from
https://www.huffingtonpost.com/entry/taking-climate-friendly-farming-to-
scale_us_5a065850e4b0ee8ec369418d
Berger, M. (2019). Transforming the greenhouse gas carbon dioxide into graphene. Nano Werk.
Retrieved from https://www.nanowerk.com/spotlight/spotid=54125.php
Berger, M., Radu, D., Fonteneau, R., Deschuyteneer, T., Detienne, G., & Ernst, D. (2020). The
role of power-to-gas and carbon capture technologies in cross-sector decarbonisation
strategies. Electric Power Systems Research, 180, 106039. doi:https://doi.org/10.1016/
j.epsr.2019.106039
Bergier, I., et al. . (2015). Pyrolysis Dynamics of Biomass Residues in Hot-Stage. BioResources.
Retrieved from http://152.1.0.246/index.php/BioRes/article/view/
BioRes_10_4_7604_Bergier_Pyrolysis_Dynamics_Biomass_Residues
Berglund, I., DeLuca, T. H., & Zackrisson, O. (2004). Activated carbon amendments to soils
alters nitrification rates in Scots pine forests. Soil Biology & Biochemistry, 36(12),
2067-2073. Retrieved from http://www.sciencedirect.com/science/article/pii/
S0038071704002561
Bergman R, & H, G. (2014). Life-cycle inventory analysis of bio-products from a modular
advanced biomass pyrolysis system. Paper presented at the Proceedings, Society of
Wood Science and Technology 57th International Convention. June 23-27, 2014.,
Zvolen, Slovakia. June 23-27, 2014.
Bergman, R., Zhang, H., Englund, K., Windell, K., & Gu, H. (2016, 03/2016). Estimating GHG
Emissions from the Manufacturing of Field-Applied Biochar Pellets. Paper presented at
the Society of Wood Science and Technology 59th International Convention.
Bergmo, P. E. S., Polak, S., Aagaard, P., Frykman, P., Haugen, H. A., & Bjørnsen, D. (2013).
Evaluation of CO2 Storage Potential in Skagerrak. Energy Procedia, 37, 4863-4871.
doi:https://doi.org/10.1016/j.egypro.2013.06.396
Bergstrom, J. C., & Ty, D. (2017). Economics of Carbon Capture and Storage. In Y. Yun (Ed.),
Recent Advances in Carbon Capture and Storage (pp. Ch. 11). Rijeka: InTech.
Beringer, T., Lucht, W., & Schaphoff, S. (2011). Bioenergy production potential of global biomass
plantations under environmental and agricultural constraints. GCB Bioenergy, 3(4),
299-312. Retrieved from http://onlinelibrary.wiley.com/doi/10.1111/
j.1757-1707.2010.01088.x/abstract
Berkeley Rausser, C. o. N. R. (2021). Researchers outline strategy for biomass carbon capture
in Europe [Press release]. Retrieved from https://nature.berkeley.edu/news/2021/05/
study-identifies-strategy-biomass-carbon-capture-europe
Berkshire Hathaway, B. W. (2017). Battelle Completes 15-Year CO2 Storage Project at
Mountaineer Power Plant [Press release]
Bernacchi, C. (2013). Impact of land use change due to bioenergy on regional hydrology. In J. F.
Dellemand & P. W. Gerbens-Leenes (Eds.), Bioenergy and Water (pp. 159-172):
European Commission.
Bernal, B., Murray, L. T., Pearson, T. R. H. J. C. B., & Management. (2018). Global carbon
dioxide removal rates from forest landscape restoration activities. 13(1), 22. doi:10.1186/
s13021-018-0110-8
Bernal, M. P., et al. (2015). Benefits and constraints in the soil use of digestate and a
composting strategy for adding value. In.
Berndes, G. (2008). Future Biomass Energy Supply: The Consumptive Water Use Perspective.
International Journal of Water Resources Development, 24(2), 235-245. Retrieved from
http://www.tandfonline.com/doi/abs/10.1080/07900620701723489
Berndes, G. (2008). Water demand for global bioenergy production: trends, risks and
opportunities. Retrieved from http://www.wbgu.de/fileadmin/user_upload/wbgu.de/
templates/dateien/veroeffentlichungen/hauptgutachten/jg2008/wbgu_jg2008_ex02.pdf
Berndes, G., et al. (2013). Bioenergy & Water, Challenges & opportunities. In J. F. Dellemand &
P. W. Gerbens-Leenes (Eds.), Bioenergy and Water (pp. 49-60): European Commission.
Berndes, G., et al. (2014). Forest biomass, carbon neutrality and climate change mitigation.
Retrieved from https://www.efi.int/sites/default/files/files/publication-bank/2018/
ThinkForest_carbon_neutrality_2016_0.pdf
Berndes, G., Ahlgren, S., Borjesson, P., & Cowie, A. L. (2013). Bioenergy and land use change-
state of the art. Wiley Interdisciplinary Reviews-Energy and Environment, 2(3), 282-303.
doi:10.1002/wene.41
Berndes, G., Hoogwijk, M., & van den Broek, R. (2003). The contribution of biomass in the
future global energy supply: a review of 17 studies. Biomass and Bioenergy, 25(1), 1-28.
doi:http://dx.doi.org/10.1016/S0961-9534(02)00185-X
Berner, R. A. (1997). The Rise of Plants and Their Effect on Weathering and Atmospheric
CO<sub>2</sub>. 276(5312), 544-546. doi:10.1126/science.276.5312.544 %J Science
Bernier, P., & Paré, D. (2013). Using ecosystem CO2 measurements to estimate the timing and
magnitude of greenhouse gas mitigation potential of forest bioenergy. GCB Bioenergy,
5(1), 67-72. doi:doi:10.1111/j.1757-1707.2012.01197.x
Berstad, D., Anantharaman, R., Blom, R., Jordal, K., & Arstad, B. (2014). NGCC post-
combustion CO2 capture with Ca/carbonate looping: Efficiency dependency on sorbent
properties, capture unit performance and process configuration. International Journal of
Greenhouse Gas Control, 24(Supplement C), 43-53. doi:https://doi.org/10.1016/
j.ijggc.2014.02.015
Berstad, D., Anantharaman, R., & Jordal, K. (2012). Post-combustion CO2 capture from a
natural gas combined cycle by CaO/CaCO3 looping. International Journal of
Greenhouse Gas Control, 11(Supplement C), 25-33. doi:https://doi.org/10.1016/
j.ijggc.2012.07.021
Berthrong, S. T., Jobbágy, E. G., & Jackson, R. B. (2009). A global meta-analysis of soil
exchangeable cations, pH, carbon, and nitrogen with afforestation. Ecological
Applications, 19(8), 2228-2241. doi:10.1890/08-1730.1
Berthrong, S. T., Jobbágy, E. G., & Jackson, R. B. (2009). A global meta-analysis of soil
exchangeable cations, pH, carbon, and nitrogen with afforestation. Ecological
Applications, 19(8), 2228-2241. doi:https://doi.org/10.1890/08-1730.1
Bertram, C. (2010). Ocean iron fertilization in the context of the Kyoto protocol and the post-
Kyoto process. Energy Policy, 38(2), 1130-1139. doi:http://dx.doi.org/10.1016/
j.enpol.2009.10.065
Bertram, C. (2011). The Potential of Ocean Iron Fertilization as an Option for Mitigating Climate
Change.
Bertram, C., & Merk, C. (2020). Public Perceptions of Ocean-Based Carbon Dioxide Removal:
The Nature-Engineering Divide? Frontiers in Climate, 2(31). doi:10.3389/
fclim.2020.594194
Berwyn, B. (2020). Can Planting a Trillion Trees Stop Climate Change? Scientists Say it’s a Lot
More Complicated. Inside Climate News. Retrieved from https://insideclimatenews.org/
news/26052020/trillion-trees-climate-change
Bess-Ouko, C. (2014). Development of a LCA Screening Tool: Assessment of Biochar in the
Removal of Organic Carbon in SAGD Produced Water. University of Calgary,
Betts, A. R., et al. (2013). Rates and mechanisms of Zn2+ adsorption on a meat and bonemeal
biochar. Environmental Science and Technology, 47(24), 14350-14357. Retrieved from
http://pubs.acs.org/doi/abs/10.1021/es4032198
Betts, R. A. (2000). Offset of the potential carbon sink from boreal forestation by decreases in
surface albedo. Nature, 408(6809), 187-190. Retrieved from http://dx.doi.org/
10.1038/35041545
Betts, R. A. (2011). Afforestation cools more or less. Natural Geoscience, 4, 504-505.
Betts, R. A., Falloon, P. D., Goldewijk, K. K., & Ramankutty, N. (2007). Biogeophysical effects of
land use on climate: Model simulations of radiative forcing and large-scale temperature
change. Agricultural and Forest Meteorology, 142(2–4), 216-233. doi:http://dx.doi.org/
10.1016/j.agrformet.2006.08.021
Beuttler, C., Charles, L., & Wurzbacher, J. (2019). The Role of Direct Air Capture in Mitigation of
Anthropogenic Greenhouse Gas Emissions. Frontiers in Climate, 1(10). doi:10.3389/
fclim.2019.00010
Bever, F. (2021). Maine Startup Aims To Pull Carbon Out Of The Atmosphere By Growing —
And Then Sinking — Kelp Farms wbur Earthwhile. Retrieved from https://amp.wbur.org/
earthwhile/2021/02/16/maine-startup-carbon-kelp
Bhaduri, D., Saha, A., Desai, D., & Meena, H. N. (2016). Restoration of carbon and microbial
activity in salt-induced soil by application of peanut shell biochar during short-term
incubation study. Chemosphere, 148, 86 - 98. doi:10.1016/j.chemosphere.2015.12.130
Bhandari, B. (2020). Gaming carbon dioxide removal with young climate leaders. C2G.
Retrieved from https://www.c2g2.net/gaming-carbon-dioxide-removal-with-young-
climate-leaders/
Bhandari, P. N., Kumar, A., Bellmer, D. D., & Huhnke, R. L. (2014). Synthesis and evaluation of
biochar-derived catalysts for removal of toluene (model tar) from biomass-generated
producer gas. Renewable Energy, 66, 346–353.
Bhandari, P. N., Kumar, A., & Huhnke, R. L. (2013). Simultaneous removal of toluene (model
tar), NH3, and H2S, from biomass-generated producer gas using biochar-based and
mixed-metal oxide catalysts. Energy Fuels, 28(3), 1918-1925. Retrieved from http://
pubs.acs.org/doi/abs/10.1021/ef4016872
Bharathiraja, B., Chakravarthy, M., Ranjith Kumar, R., Yogendran, D., Yuvaraj, D.,
Jayamuthunagai, J., . . . Palani, S. (2015). Aquatic biomass (algae) as a future feed
stock for bio-refineries: A review on cultivation, processing and products. Renewable and
Sustainable Energy Reviews, 47, 634-653. doi:https://doi.org/10.1016/j.rser.2015.03.047
Bhardwaj, R., van Ommen, J. R., Nugteren, H. W., & Geerlings, H. (2016). Accelerating Natural
CO2 Mineralization in a Fluidized Bed. Industrial & Engineering Chemistry Research,
55(11), 2946-2951. doi:10.1021/acs.iecr.5b04925
Bhaskaran, A., & Nair, N. V. (2014). Challenges and opportunities in sugarcane cultivation under
climate change scenario. Journal of Sugarcane Research: Society for Sugarcane
Research and Development, 4(1), 1-18. Retrieved from https://www.scribd.com/
document/251915135/Challenges-and-opportunities-in-sugarcane-cultivation-under-
climate-change-scenario
Bhasker Nair, P. N. S., Tan, R. R., & Foo, D. C. Y. (2021). A Generic Algebraic Targeting
Approach for Integration of Renewable Energy Sources, CO2 Capture and Storage and
Negative Emission Technologies in Carbon-Constrained Energy Planning. Energy,
121280. doi:https://doi.org/10.1016/j.energy.2021.121280
Bhattacharjya, S., Chandra, R., Pareek, N., & Raverkar, K. P. (2015). Biochar and crop residue
application to soil: effect on soil biochemical properties, nutrient availability and yield of
rice (Oryza sativa L.) and wheat (Triticum aestivum L.). Archives of Agronomy and Soil
Science, 62(8), 1 - 14. doi:10.1080/03650340.2015.1118760
Bhattacharjya, S., Chandra, R., Sharma, M. P., Sharma, S. K., & Agnihotri, R. (2015). Biochar
and Crop Residue Amendments on Soil Microbial and Biochemical Properties. Archives
of Agronomy and Soil Science, 62(8), 1095-1108. doi:10.1007/s40011-015-0669-8
Bhattacharya, I., et al. . (2014). Biochar. In Carbon Capture and Storage.
Bhattacharya, I., et al. (2014). Role of Biochar for CCS. In ASCE (American Society of Civil
Engineers).
Bhattacharya, I., et al. (2015). Biochar. In Carbon Capture and Storage.
Bhattacharyya, P., & Barman, D. (2018). Chapter 21 - Crop Residue Management and
Greenhouse Gases Emissions in Tropical Rice Lands. In M. Á. Muñoz & R. Zornoza
(Eds.), Soil Management and Climate Change (pp. 323-335): Academic Press.
Bhattacharyya, S. S., Leite, F. F. G. D., Adeyemi, M. A., Sarker, A. J., Cambareri, S., Faverin,
C., . . . Parra-Saldívar, R. (2021). A Paradigm Shift to CO2 Sequestration to Manage
Global Warming – With the Emphasis on Developing Countries. Science of The Total
Environment, 148169. doi:https://doi.org/10.1016/j.scitotenv.2021.148169
Bhattacharyya, T., Wani, S. P., Pal, D. K., & Sahrawat, K. L. (2017). Soil as Source and Sink for
Atmospheric CO2. In M. Goel & M. Sudhakar (Eds.), Carbon Utilization: Applications for
the Energy Industry (pp. 61-68). Singapore: Springer Singapore.
Bhattarai, B., et al. . (2015). Effect of Biochar from Different Origin onPhysio-
Chemical Properties of Soil and Yield of Garden Pea (Pisum sativum L.) at Paklihawa,
Rupandehi, Nepal. World Journal of Agricultural Research, 3(4), 129-138. Retrieved
from http://www.sciepub.com/portal/downloads?doi=10.12691/
wjar-3-4-3&filename=wjar-3-4-3.pdf
Bhatti, S. M. (2014). Arsenic irrigated vegetables : risk assessment for South Asian horticulture.
(Doctor of Philosophy in Soil Science). Retrieved from http://mro.massey.ac.nz/handle/
10179/5445
Bhave, A., Taylor, R. H. S., Fennell, P., Livingston, W. R., Shah, N., Dowell, N. M., . . . Akroyd, J.
(2017). Screening and techno-economic assessment of biomass-based power
generation with CCS technologies to meet 2050 CO2 targets. Applied Energy, 190,
481-489. doi:https://doi.org/10.1016/j.apenergy.2016.12.120
Bhogal, A., Nicholson, F. A., & Chambers, B. J. (2009). Organic carbon additions: effects on soil
bio-physical and physico-chemical properties. European Journal of Soil Science, 60(2),
276-286. doi:10.1111/j.1365-2389.2008.01105.x
Bhola, V., et al. (2014). Overview of the potential of microalgae for CO2 sequestration.
International Journal of Environmental Science and Technology, 11, 2103-2118.
Retrieved from https://link.springer.com/article/10.1007%2Fs13762-013-0487-6
Biagini, E., Barontini, F., & Tognotti, L. (2014). Gasification of agricultural residues in a
demonstrative plant: Corn cobs. Bioresource Technology, 173, 110 - 116. doi:10.1016/
j.biortech.2014.09.086
Bian, R., et al. (2013). Biochar soil amendment as a solution to prevent Cd-tainted rice from
China: Results from a cross-site field experiment. Ecological Engineering, 58, 378–383.
Retrieved from http://www.sciencedirect.com/science/article/pii/S0925857413002826
Bian, R., et al. (2014). Effect of Municipal Biowaste Biochar on Greenhouse Gas Emissions and
Metal Bioaccumulation in a Slightly Acidic Clay Rice Paddy. In Biowaste biochar for rice
soil.
Bian, R., et al. . (2014). A three-year experiment confirms continuous immobilization of cadmium
and lead in contaminated paddy field with biochar amendment. Journal of Hazardous
Materials, 272, 121-128. Retrieved from https://www.ncbi.nlm.nih.gov/pubmed/24685528
Bian, R., et al. (2016). Cd immobilization in a contaminated rice paddy by inorganic stabilizers of
calcium hydroxide and silicon slag and by organic stabilizer of biochar. Environmental
Science and Pollution Research, 23(10), 10028-10036. doi:10.1007/s11356-016-6214-3
Biao, L., et al. (2014). Burning and adsorption characteristics of char obtained from pyrolysis of
cotton stalk and rapeseed straw. Transactions of the Chinese Society of Agricultural
Engineering, 30(10), 193-200. Retrieved from http://www.tcsae.org/nygcxben/ch/reader/
view_abstract.aspx?file_no=20141024&flag=1
Bide, T. P., Styles, M. T., & Naden, J. (2014). An assessment of global resources of rocks as
suitable raw materials for carbon capture and storage by mineralisation. Applied Earth
Science, 123(3), 179-195. doi:10.1179/1743275814Y.0000000057
Biederman, L. A., & Harpole, W. S. (2011). Biochar and Managed Perennial Ecosystems. IOWA
STATE UNIVERSITY, Retrieved from http://lib.dr.iastate.edu/farms_reports/136
Biederman, L. A., & Harpole, W. S. (2013). Biochar and its effects on plant productivity and
nutrient cycling: a meta-analysis. GCB Energy, 5(2), 202-214. Retrieved from http://
onlinelibrary.wiley.com/doi/10.1111/gcbb.12037/abstract
Bielicki, J. M., & Stephens, J. C. (2008). Public Perception of Carbon Capture and Storage
Technology. Retrieved from http://www.belfercenter.org/sites/default/files/files/
publication/CCS_Public_Perception_Workshop_Report.pdf
Biello, D. (2009). Pulling CO2 from the Air: Promising Idea, Big Price Tag. Yale Environment
360. Retrieved from http://e360.yale.edu/features/
pulling_co2_from_the_air_promising_idea_big_price_tag
Biello, D. (2010). CO2 Capture and Storage Gains a Growing Foothold. Yale Environment 360.
Retrieved from http://e360.yale.edu/features/
co2_capture_and_storage_gains_a_growing_foothold
Biello, D. (2010). Reverse Combustion: Can CO2 Be Turned Back into Fuel? [Video]. Yale
Environment 360. Retrieved from https://www.scientificamerican.com/article/turning-
carbon-dioxide-back-into-fuel/
Biello, D. (2011). Using CO2 to Make Fuel: A Long Shot for Green Energy. Yale Environment
360. Retrieved from http://e360.yale.edu/features/
using_co2_to_make_fuel_a_long_shot_for_green_energy
Biello, D. (2013). 400 PPM: Can Artificial Trees Help Pull CO2 from the Air? Scientific American.
Retrieved from https://www.scientificamerican.com/article/prospects-for-direct-air-
capture-of-carbon-dioxide/
Biello, D. (2013). How to Win the War on Coal. Scientific American. Retrieved from https://
www.scientificamerican.com/article/how-to-win-the-war-on-coal-carbon-capture-and-
storage/
Biello, D. (2015). An Unusual Tech Bet Could Slow Climate Change. Scientific American.
Retrieved from https://www.scientificamerican.com/article/an-unusual-tech-bet-could-
slow-climate-change/
Biello, D. (2016). Carbon Capture May Be Too Expensive to Combat Climate Change. Scientific
American. Retrieved from https://www.scientificamerican.com/article/carbon-capture-
may-be-too-expensive-to-combat-climate-change/
Biello, D. (2016). Iron rules. In The Unnatural World (pp. 11-38).
Biello, D. (2016). The Long Thaw. In The Unnatural World (pp. 201-232).
Biello, D. (2017). How Far Can Technology Go to Stave Off Climate Change? Yale Environment
360. Retrieved from http://e360.yale.edu/features/
how_far_can_technology_go_to_stave_off_climate_change
Biello, D., & Saltzberg, E. (2016). Restoring the Carbon Balance- Session 1: The Imperative
(Video). Retrieved from https://vimeo.com/195856479
Bin, L. Y. (2015). Preparation of Biochar with Pal Oil Mill Slude by Using Microwave for Copper
Removal. Universiti Tunku Abdul Rahman, Retrieved from http://eprints.utar.edu.my/
1756/1/
Preparation_of_Biochar_with_Palm_Oil_Mill_Sludge_by_using_Microwave_for_Copper_
Removal.pdf
Bin Wang, H. H. S., Manuel T. Lerdau. (2016). A global synthesis of greenhouse gases budget
change resulted from ozone pollution. Environmental Research Letters.
doi:10.1088/1748-9326/aa7885
Bingyuan, L., et al. (2014). 微波辐射对⽣物质热解过程的影响 (Effects of microwave irradiation
on pyrolysis processes of biomass). Chinese Journal of Environmental Engineering,
9(1), 413-418. Retrieved from http://www.cjee.ac.cn/teepc_en/ch/reader/
create_pdf.aspx?file_no=20150168&flag=&journal_id=teepc_en&year_id=2015
Biniek, K., et al. (2020). Driving CO2 emissions to zero (and beyond) with carbon capture, use,
and storage. McKinsey Quarterly.
Birat, J. P. (2010). Carbon dioxide (CO2) capture and storage technology in the iron and steel
industry A2 - Maroto-Valer, M. Mercedes. In Developments and Innovation in Carbon
Dioxide (CO2) Capture and Storage Technology (Vol. 1, pp. 492-521): Woodhead
Publishing.
Bird, D. N. (2011). Using a Life Cycle Assessment Approach to Estimate the Net Greenhouse
Gas Emissions of Bioenergy. Retrieved from https://www.ieabioenergy.com/wp-content/
uploads/2013/10/Using-a-LCA-approach-to-estimate-the-net-GHG-emissions-of-
bioenergy.pdf
Bird, D. N., Pena, N., Frieden, D., & Zanchi, G. (2012). Zero, one, or in between: evaluation of
alternative national and entity-level accounting for bioenergy. GCB Bioenergy, 4(5),
576-587. doi:10.1111/j.1757-1707.2011.01137.x
Bird, M. I., et al. . (2010). Algal biochar – production and properties. Bioresource Technology,
102(2), 1886-1891. Retrieved from https://www.ncbi.nlm.nih.gov/pubmed/20797850
Bird, M. I., et al. . (2014). The Pyrogenic Carbon Cycle. Annual Review of Earth and Planetary
Sciences, 43, 9.1-9.26. Retrieved from http://www.annualreviews.org/doi/abs/10.1146/
annurev-earth-060614-105038
Bird, M. I., & Ascough, P. L. (2010). Isotopes in pyrogenic carbon: A review. Organic
Geochemistry, 42(12), 1529-1539. Retrieved from http://www.sciencedirect.com/science/
article/pii/S0146638010002305
Bird, M. I., Ascough, P. L., Young, I. M., Wood, C. V., & C., S. A. (2008). X-ray microtomographic
imaging of charcoal. Journal of Archaeological Science, 35(10), 2698-2706.
Bird, M. I., & Cali, J. A. (1998). A Million-year Record of Fire in Sub-saharan Africa. Nature,
394(6695), 767-769. Retrieved from http://www.sciencedirect.com/science/article/pii/
S0146638010002305
Bird, M. I., Charville-Mort, P. D. J., Ascough, P. L., Wood, R., Higham, T., & Apperley, D. (2010).
Assessment of oxygen plasma ashing as a pre-treatment for radiocarbon dating.
Quaternary Geochronology, 5(4), 435-442. Retrieved from http://www.sciencedirect.com/
science/article/pii/S1871101409001381
Bird, M. I., Moyo, C., Veenendaal, E. M., Lloyd, J., & Frost, P. (1999). Stability of elemental
carbon in a savanna soil. Global Biogeochemical Cycles, 13(4), 923-932. Retrieved from
http://onlinelibrary.wiley.com/doi/10.1029/1999GB900067/abstract
Bird, M. I., et al. , & s. (2011). Algal biochar: effects and applications. Global Change Biology:
Bioenergy, 4(1), 61-69. doi:10.1111/j.1757-1707.2011.01109
Bird, M. I., Wurster, C. M., de Paula Silva, P. H., Bass, A. M., & de Nys, R. (2011). Algal biochar
– production and properties. Bioresource Technology, 102(2), 1886-1891. doi:https://
doi.org/10.1016/j.biortech.2010.07.106
Birzer, C., Medwell, P., MacFarlane, G., Read, M., Wilkey, J., Higgins, M., & West, T. (2014). A
Biochar-producing, Dung-burning Cookstove for Humanitarian Purposes. Procedia
Engineering, 78, 243 - 249. doi:10.1016/j.proeng.2014.07.063
Birzer, C. H., Medwell, P. R., & Kalt, P. A. M. (2014). Humanitarian technology research group:
Developments at the University of Adelaide. Paper presented at the 2014 IEEE Global
Humanitarian Technology Conference (GHTC)IEEE Global Humanitarian Technology
Conference (GHTC 2014), San Jose, CA, USA. http://ieeexplore.ieee.org/xpl/
articleDetails.jsp?
tp=&arnumber=6970327&url=http%3A%2F%2Fieeexplore.ieee.org%2Fxpls%2Fabs_all.j
sp%3Farnumber%3D6970327
Bis, Z., Kobyłecki, R., Ścisłowska, M., & Zarzycki, R. (2018). Biochar – Potential tool to combat
climate change and drought. Ecohydrology & Hydrobiology, 18(4), 441-453. doi:https://
doi.org/10.1016/j.ecohyd.2018.11.005
Bishaw, B., et al. (2013). Famrer's Strategies for Adapting to and Mitigating Climate Variaiblity
and Change through Agroforestry in Ethiopia and Kenya. Retrieved from https://
www.google.com/url?sa=t&rct=j&q=&esrc=s&source=web&cd=2&ved=2ahUKEwjb-
quG6vnkAhUO7J4KHWlrA4cQFjABegQIARAC&url=https%3A%2F%2Fpdfs.semanticsc
holar.org%2F56ca%2Ff539f7cdebaf98a373b947d54e6e2f2b10a9.pdf&usg=AOvVaw34T
1DuDZIMVfarZWPaXpMw
Bishnoi, S. (2017). Carbon Emissions and Their Mitigation in the Cement Sector. In M. Goel &
M. Sudhakar (Eds.), Carbon Utilization: Applications for the Energy Industry (pp.
257-268). Singapore: Springer Singapore.
Bistline, J. E. T., & Blanford, G. J. (2021). Impact of carbon dioxide removal technologies on
deep decarbonization of the electric power sector. Nature Communications, 12(1), 3732.
doi:10.1038/s41467-021-23554-6
Bistline, J. E. T., & Blanford, G. J. (2021). The Role of the Power Sector in Net-Zero Energy
Systems. Energy and Climate Change, 100045. doi:https://doi.org/10.1016/
j.egycc.2021.100045
Biswas, B., Singh, R., Kumar, J., Khan, A. A., Krishna, B. B., & Bhaskar, T. (2016). Slow
pyrolysis of prot, alkali and dealkaline lignins for production of chemicals. Bioresource
Technology. doi:10.1016/j.biortech.2016.01.131
Bjerregaard, P. P. (2011). The social shaping of technology: a case study of biochar in Denmark.
(MBA). Copenhagen Business School, Copenhagen. Retrieved from http://
studenttheses.cbs.dk/bitstream/handle/10417/1766/peter_poul_bjerregaard.pdf?
sequence=1
Black, R., et al. (2021). TAKING STOCK: A global assessment of net zero targets. Retrieved
from https://ca1-eci.edcdn.com/reports/ECIU-Oxford_Taking_Stock.pdf?
mtime=20210323005817&focal=none
Blackwell, P., et al. . (2009). Biochar application to soil. In Biochar for environmental
management: Science and Technology (pp. 207-226).
Blackwell, P., et al. . (2010). Effect of banded biochar on dryland wheat production and fertiliser
use in south-western Australia: an agronomic and economic perspective. Australian
Journal of Soil Research, 48, 531-545.
Blackwell, P., et al. (2015). Influences of Biochar and Biochar-Mineral Complex on Mycorrhizal
Colonisation and Nutrition of Wheat and Sorghum. Pedosphere, 25(5), 686 - 695.
doi:10.1016/s1002-0160(15)30049-7
Blackwell, P., Riethmuller, G., & Collins, M. (2009). Biochar Application to Soil. In J. Lehmann &
S. Joseph (Eds.), Biochar for Environmental Management: Science and Technology (pp.
207-226). London, UK: Earthscan.
Blain, S., Queguiner, B., Armand, L., Belviso, S., Bombled, B., Bopp, L., . . . Wagener, T. (2007).
Effect of natural iron fertilization on carbon sequestration in the Southern Ocean. Nature,
446(7139), 1070-1074. doi:http://www.nature.com/nature/journal/v446/n7139/suppinfo/
nature05700_S1.html
Blain, S., Quéguiner, B., & Trull, T. (2008). The natural iron fertilization experiment KEOPS
(KErguelen Ocean and Plateau compared Study): An overview. Deep Sea Research
Part II: Topical Studies in Oceanography, 55(5), 559-565. doi:https://doi.org/10.1016/
j.dsr2.2008.01.002
Blain, S., Sarthou, G., & Laan, P. (2008). Distribution of dissolved iron during the natural iron-
fertilization experiment KEOPS (Kerguelen Plateau, Southern Ocean). Deep Sea
Research Part II: Topical Studies in Oceanography, 55(5–7), 594-605. doi:http://
dx.doi.org/10.1016/j.dsr2.2007.12.028
Blakeslee, T. R. (2009). Biochar: The Key to Carbon-Negative Biofuels. In.
Blanc, A. (2014). Propriétés physico-chimiques d’un sol amendé en biochar (Physical and
chemical properties of soil biochar amended). In.
Blanco, J. A. (2018). Chapter 16 - Managing Forest Soils for Carbon Sequestration: Insights
From Modeling Forests Around the Globe A2 - Muñoz, María Ángeles. In R. Zornoza
(Ed.), Soil Management and Climate Change (pp. 237-252): Academic Press.
Blanco-Canqui, H., & Lal, R. (2009). Corn Stover Removal for Expanded Uses Reduces Soil
Fertility and Structural Stability. Soil Science Society of America Journal, 73(2), 418-426.
Retrieved from https://dl.sciencesocieties.org/publications/sssaj/abstracts/73/2/418
Blanke, M. M. (2014). Possible Implications of the New PAS 2050-1 Hort Carbon Footprint
Stnadard (March 201) for Orchard Mangement.
Blaufelder, C., et al. (2021). A blueprint for scaling voluntary carbon markets to meet the climate
challenge Retrieved from https://www.mckinsey.com/~/media/McKinsey/
Business%20Functions/Sustainability/Our%20Insights/
A%20blueprint%20for%20scaling%20voluntary%20carbon%20markets%20to%20meet
%20the%20climate%20challenge/A-blueprint-for-scaling-voluntary-carbon-markets-to-
meet-the-climate-challenge.pdf?shouldIndex=false
Bledsoe, P. (2017). How Trump can help save coal—with China's help. Politico. Retrieved from
http://www.politico.com/agenda/story/2017/04/trump-china-clean-coal-000401
Block, I. (2018). Artificial mountain made of soil could soak up pollution in Turin. Dezeen.
Retrieved from https://www.dezeen.com/2018/10/25/sponge-mountain-angelo-renna-
absorb-pollution-climate-change/amp/?__twitter_impression=true
Blum, W. E. H., Lair, G. J., & Schiefer, J. (2015). Persistence of soil organic matter and soil
structure. Agrokémia és Talajtan, 64(2), 383 - 390. doi:10.1556/0088.2015.64.2.6
Board, C. A. R. (2028). Carbon Capture and Sequestration (CCS) Protocol. Retrieved from
https://ww2.arb.ca.gov/sites/default/files/2020-03/
CCS_Protocol_Under_LCFS_8-13-18_ada.pdf
Board, J. (2021). Carbon capture technology an important pillar for Southeast Asia to tackle
climate change, say experts. CNA Insider. Retrieved from https://
www.channelnewsasia.com/news/sustainability/climate-change-carbon-capture-
technology-southeast-asia-15133220
Boateng, A. A. (2007). Characterization and thermal conversion of charcoal derived from
fluidized-bed fast pyrolysis oil production of switchgrass. Industrial & Engineering
Chemistry Research, 46(26), 8857-8862. Retrieved from http://pubs.acs.org/doi/abs/
10.1021/ie071054l
Boateng, A. A., et al. (2015). Biochar production technology. In Biochar for Environmental
Management: Science and Technology and Implementation.
Boateng, A. A., Goldberg, N. M., Hicks, K. B., Devine, T. E., Lima, I. M., & McMurtrey, J. E.
(2010). Sustainable Production of Bioenergy and Biochar from the Straw of High-
Biomass Soybean Lines via Fast Pyrolysis. Environmental Progress & Sustainable
Energy, 29(2), 175-183. Retrieved from http://onlinelibrary.wiley.com/doi/10.1002/
ep.10446/abstract
Bobicki, E. R., Liu, Q., Xu, Z., & Zeng, H. (2012). Carbon capture and storage using alkaline
industrial wastes. Progress in Energy and Combustion Science, 38(2), 302-320.
doi:http://dx.doi.org/10.1016/j.pecs.2011.11.002
Bock, B., et al. (2003). Economic Evaluation of CO2 Storage and Sink Enhancement Options.
Retrieved from http://www.brbock.com/RefFiles/40937R04.pdf
Bock, E. M., Coleman, B., & Easton, Z. M. (2015). Effect of Biochar on Nitrate Removal in a
Pilot-Scale Denitrifying Bioreactor. Journal of Environment Quality, 45(3), 762-771.
doi:10.2134/jeq2015.04.0179
Bodénan, F., Bourgeois, F., Petiot, C., Augé, T., Bonfils, B., Julcour-Lebigue, C., . . . Chiquet, P.
(2014). Ex situ mineral carbonation for CO2 mitigation: Evaluation of mining waste
resources, aqueous carbonation processability and life cycle assessment (Carmex
project). Minerals Engineering, 59(Supplement C), 52-63. doi:https://doi.org/10.1016/
j.mineng.2014.01.011
Boersma, M. (2015). Management of pasture soils: biochar stability, carbon storage potential
and its effect on production and quality. Paper presented at the Proceedings of the XXIII
International Grassland Congress. http://ecite.utas.edu.au/102161
Boetjer, S. (2015). Rootbound: Exploring Production in Seattle's Urban Forest. University of
Washington, Retrieved from https://dlib.lib.washington.edu/researchworks/handle/
1773/33626
Boettcher, M. (2020). Coming to GRIPs With NETs Discourse: Implications of Discursive
Structures for Emerging Governance of Negative Emissions Technologies in the UK.
Frontiers in Climate, 2(20). doi:10.3389/fclim.2020.595685
Boettcher, M., Brent, K., Buck, H. J., Low, S., McLaren, D., & Mengis, N. (2021). Navigating
Potential Hype and Opportunity in Governing Marine Carbon Removal. Frontiers in
Climate, 3(47). doi:10.3389/fclim.2021.664456
Bogaerts, A., & Snoeckx, R. (2019). Plasma-Based CO2 Conversion. In M. Aresta, I. Karimi, &
S. Kawi (Eds.), An Economy Based on Carbon Dioxide and Water: Potential of Large
Scale Carbon Dioxide Utilization (pp. 287-325). Retrieved from https://link.springer.com/
chapter/10.1007/978-3-030-15868-2_8
Bohlin, F., Vinterbäck, J., Wisniewski, J., & Wisniewski, J. (1998). Solid biofuels for carbon
dioxide mitigation. Biomass and Bioenergy, 15(4), 277-281. doi:https://doi.org/10.1016/
S0961-9534(98)00035-X
Boisvert, W. (2014). Harmonic Destruction: How Greens Justify Bioenergy’s Assault on Nature.
Retrieved from https://thebreakthrough.org/index.php/journal/past-issues/issue-4/
harmonic-destruction
Bol, D. (2021). SNP told to draw up delivery plans for climate emergency strategy. The Herald.
Retrieved from https://www.heraldscotland.com/news/19148107.snp-told-draw-delivery-
plans-climate-emergency-strategy/
Bolan, N. S., Kunhikrishnan, A., Choppala, G. K., Thangarajan, R., & Chung, J. W. (2012).
Stabilization of carbon in composts and biochars in relation to carbon sequestration and
soil fertility. Science of The Total Environment, 424, 264-270. doi:https://doi.org/10.1016/
j.scitotenv.2012.02.061
Boland, H. (2020). Technology which 'sucks' excess CO2 from the air could hurt UK's green
ambitions. Yahoo News. Retrieved from https://sg.news.yahoo.com/backing-technology-
sucks-excess-co2-132707460.html
Bolinder, M. A., Crotty, F., Elsen, A., Frac, M., Kismányoky, T., Lipiec, J., . . . Kätterer, T. (2020).
The effect of crop residues, cover crops, manures and nitrogen fertilization on soil
organic carbon changes in agroecosystems: a synthesis of reviews. Mitigation and
Adaptation Strategies for Global Change, 25(6), 929-952. doi:10.1007/
s11027-020-09916-3
Bollen, J., & Aalbers, R. (2017). Biomass-Energy with Carbon Capture and Storage Should Be
Used Immediately. Retrieved from https://www.cpb.nl/sites/default/files/omnidownload/
CPB-Policy-Brief-2017-02-Biomass-energy-with-carbon-capture-and-storage-should-be-
used-immediately-met-omslag.pdf
Bollini, P., Didas, S. A., & Jones, C. W. (2011). Amine-oxide hybrid materials for acid gas
separations Journal of Materials Chemistry 21, 15100-15120. Retrieved from https://
pubs.rsc.org/en/content/articlelanding/2011/jm/c1jm12522b#!divAbstract
Bolster, C., & Streubel, J. (2015). Know Your Community - Biochar: Agronomic and
Environmental Uses. In.
Bomgardner, M. M. (2020). 45Q, the tax credit that’s luring US companies to capture CO2.
C&EN, 98(8). Retrieved from https://cen.acs.org/environment/greenhouse-gases/45Q-
tax-credit-s-luring/98/i8
Bonan, G. B. (2008). Forests and Climate Change: Forcings, Feedbacks, and the Climate
Benefits of Forests. Science, 320(5882), 1444-1449. doi:10.1126/science.1155121
Bonaventura, D., Chacartegui, R., Valverde, J. M., Becerra, J. A., Ortiz, C., & Lizana, J. (2017).
Dry carbonate process for CO2 capture and storage: Integration with solar thermal
power. Renewable and Sustainable Energy Reviews. doi:https://doi.org/10.1016/
j.rser.2017.06.061
Bond, W. J., Stevens, N., Midgley, G. F., & Lehmann, C. E. R. (2019). The Trouble with Trees:
Afforestation Plans for Africa. Trends in Ecology & Evolution, 34(11), 963-965. doi:https://
doi.org/10.1016/j.tree.2019.08.003
Bondeau, A., et al. (2007). Modelling the role of agriculture for the 20th century global terrestrial
carbon balance. Global Change Biology, 13, 679-706. Retrieved from http://
onlinelibrary.wiley.com/doi/10.1111/j.1365-2486.2006.01305.x/abstract
Bond-Lamberty, B., Bailey, V. L., Chen, M., Gough, C. M., & Vargas, R. (2018). Globally rising
soil heterotrophic respiration over recent decades. Nature, 560(7716), 80-83.
doi:10.1038/s41586-018-0358-x
Bonnet, J. F., & Lorne, D. (2013). Water Impact of French biofuels development at the 2030
horizon. In J. F. Dellemand & P. W. Gerbens-Leenes (Eds.), Bioenergy and Water (pp.
117-142): European Commission.
Bonsch, M., et al. (2014). Trade-offs between land and water requirements for large-scale
bioenergy production. GCB Bioenergy, 8(1), 11-24. Retrieved from http://
onlinelibrary.wiley.com/doi/10.1111/gcbb.12226/abstract?
systemMessage=WOL+Usage+report+download+page+will+be+unavailable+on+Friday
+27th+January+2017+at+23%3A00+GMT%2F+18%3A00+EST%2F+07%3A00+SGT+
%28Saturday+28th+Jan+for+SGT%29+
+for+up+to+2+hours+due+to+essential+server+maintenance.
+Apologies+for+the+inconvenience.
Bontchev, R., Kim, H. S., & Belcher, R. W. (2016).
Bony, S., Bellon, G., Klocke, D., Sherwood, S., Fermepin, S., & Denvil, S. (2013). Robust direct
effect of carbon dioxide on tropical circulation and regional precipitation. Nature
Geoscience, 6, 447. doi:10.1038/ngeo1799
https://www.nature.com/articles/ngeo1799#supplementary-information
Boomsma, C., ter Mors, E., Jack, C., Broecks, K., Buzoianu, C., Cismaru, D. M., . . . Werker, J.
(2020). Community compensation in the context of Carbon Capture and Storage:
Current debates and practices. International Journal of Greenhouse Gas Control, 101,
103128. doi:https://doi.org/10.1016/j.ijggc.2020.103128
Booth, M. (2014) Trees, Trash, and Toxics: How Biomass Energy Has Become the New Coal.
In, (pp. 1-81): Partnership for Policy Integrity.
Booth, M. (2019). The Great Biomass Boondoggle. New York Review of Books. Retrieved from
https://www.nybooks.com/daily/2019/10/14/the-great-biomass-boondoggle/
Booth, M. (2021). Biomass energy: The dangerous carbon shell game putting forests and
climate at risk. Retrieved from https://www.ewg.org/news-insights/news/biomass-energy-
dangerous-carbon-shell-game-putting-forests-and-climate-risk
Booth, M., & Mitchell, B. (2020). Paper Tiger: Why the EU’s RED II biomass sustainability
criteria fail forests and the climate. Retrieved from https://www.pfpi.net/paper-tiger-
report-shows-new-eu-biomass-rules-greenlight-increased-forest-destruction
Booth, M. S. (2018). Not carbon neutral: Assessing the net emissions impact of residues burned
for bioenergy. Environmental Research Letters, 13(3), 035001. Retrieved from http://
stacks.iop.org/1748-9326/13/i=3/a=035001
Boot-Handford, M. E., Abanades, J. C., Anthony, E. J., Blunt, M. J., Brandani, S., Mac Dowell,
N., . . . Fennell, P. S. (2014). Carbon capture and storage update. Energy &
Environmental Science, 7(1), 130-189. doi:10.1039/C3EE42350F
Borah P., e. a. (2020). Biochar: A New Environmental Paradigm in Management of Agricultural
Soils and Mitigation of GHG Emission. In J. Singh, et al. (Ed.), Biochar Applications in
Agriculture and Environment Management (pp. 223-258).
Borchard, N., et al. (2012). Physical activation of biochar and its meaning for soil fertility and
nutrient leaching – a greenhouse experiment. Soil Use and Management, 28(2),
177-184. doi:10.1111/j.1475-2743.2012.00407.x
Borchard, N., et al. (2014). Application of biochars to sandy and silty soil failed to increase
maize yield under common agricultural practice. Soil and Tillage Research, 144,
184-194. doi:10.1016/j.still.2014.07.016
Borchert, C., Borgen, B., & Storslee, N. (2014). United States Patent No.
Boretti, A. (2013). Renewable hydrogen to recycle CO2 to methanol. International Journal of
Hydrogen Energy, 38(4), 1806-1812. doi:https://doi.org/10.1016/j.ijhydene.2012.11.097
Borges, Y. A. (2015). Application of multivariate techniques in infrared spectra for determination
of total levels of carbon, oxygen and hydrogen in samples of biomass and biochar
(translated from Portuguese language). Universidade Federal de Goiás (Goias Federal
University), Retrieved from http://repositorio.bc.ufg.br/tede/handle/tede/4932
Börjesson, M., Athanassiadis, D., Lundmark, R., & Ahlgren, E. O. (2015). Bioenergy futures in
Sweden – system effects of CO2 reduction and fossil fuel phase-out policies. GCB
Bioenergy, 7(5), 1118-1135. doi:10.1111/gcbb.12225
Borjesson, P. (2009). Good or bad bioethanol from a greenhouse gas perspective – What
determines this? Applied Energy, 86(5), 589-594. Retrieved from https://
www.researchgate.net/publication/
222674290_Good_or_bad_bioethanol_from_a_greenhouse_gas_perspective_-
_What_determines_this
Börjesson, P., Gustavsson, L., Christersson, L., & Linder, S. (1997). Future production and
utilisation of biomass in Sweden: Potentials and CO2 mitigation. Biomass and
Bioenergy, 13(6), 399-412. doi:http://dx.doi.org/10.1016/S0961-9534(97)00039-1
Bornemann, L. C., Kookana, R. S., & Welp, G. (2007). Differential sorption behaviour of
aromatic hydrocarbons on charcoals prepared at different temperatures from grass and
wood. Chemosphere, 67(5), 1033-1042. Retrieved from http://www.sciencedirect.com/
science/article/pii/S0045653506013919
Borocz, M., Herczeg, B., Horvath, B., & Fogarassy, C. (2016). Evaluation of biochar lifecycle
processes and related lifecycle assessments. Hungarian Agricultural Engineering(29),
60- 64. doi:10.17676/hae.2016.29.60
Borras, S. M., Fig, D., & Suárez, S. M. (2011). The politics of agrofuels and mega-land and
water deals: insights from the ProCana case, Mozambique. Review of African Political
Economy, 38(128), 215-234. doi:10.1080/03056244.2011.582758
Borsari, B. (2014). A Preliminary Study of the Effect of Biochar from Maple (Acer spp.) on Root
Growth of Selected Agronomic CropsS. Paper presented at the ISHS Acta Horticulturae
1013, NGWA Summit. https://www.researchgate.net/publication/
263161995_A_Preliminary_Study_of_the_Effect_of_Biochar_from_Maple_Acer_spp_on
_Root_Growth_of_Selected_Agronomic_Crops
Bos, M. J., Kersten, S. R. A., & Brilman, D. W. F. (2020). Wind power to methanol: Renewable
methanol production using electricity, electrolysis of water and CO2 air capture. Applied
Energy, 264, 114672. doi:https://doi.org/10.1016/j.apenergy.2020.114672
Bossio, D. A., Cook-Patton, S. C., Ellis, P. W., Fargione, J., Sanderman, J., Smith, P., . . .
Griscom, B. W. (2020). The role of soil carbon in natural climate solutions. Nature
Sustainability. doi:10.1038/s41893-020-0491-z
Boucher, J. F., Tremblay, P., Gaboury, S., & Villeneuve, C. (2012). Can boreal afforestation help
offset incompressible GHG emissions from Canadian industries? Process Safety and
Environmental Protection, 90(6), 459-466. doi:http://dx.doi.org/10.1016/
j.psep.2012.10.011
Boucher, O., et al. (2014). Rethinking climate engineering categorization in the context of
climate change mitigation and adaptation. WIREs Climate Change, 5, 23-35. Retrieved
from https://onlinelibrary.wiley.com/doi/epdf/10.1002/wcc.261
Boucher, O., & Folberth, G. A. (2010). New Directions: Atmospheric methane removal as a way
to mitigate climate change? Atmospheric Environment, 44(27), 3343-3345. doi:http://
dx.doi.org/10.1016/j.atmosenv.2010.04.032
Boucher, O., Lowe, J. A., & Jones, C. D. (2009). Implications of delayed actions in addressing
carbon dioxide emission reduction in the context of geo-engineering. Climatic Change,
92(3), 261-273. doi:10.1007/s10584-008-9489-7
Bouillon, R.-C., Miller, W. L., Levasseur, M., Scarratt, M., Merzouk, A., Michaud, S., &
Ziolkowski, L. (2006). The effect of mesoscale iron enrichment on the marine
photochemistry of dimethylsulfide in the NE subarctic Pacific. Deep Sea Research Part
II: Topical Studies in Oceanography, 53(20–22), 2384-2397. doi:http://dx.doi.org/
10.1016/j.dsr2.2006.05.024
Bound, S., Eyles, A., Oliver, G., Paterson, S., Direen, J., Corkrey, R., . . . Close, D. (2015). Soil
amendment with biochar: growth, physiology and fruit yield and quality of young 'Fuji'
trees. Paper presented at the Refereed Conference Paper: eCite. http://
ecite.utas.edu.au/103194
Bouraoui, F. (2013). EU Legislative tools to protect water resources. In J. F. Dellemand & P. W.
Gerbens-Leenes (Eds.), Bioenergy and Water (pp. 201-210): European Commission.
Bourke, J., et al. (2003). Do All Carbonized Charcoals Have the Same Chemical Structure? A
Model of the Chemical Structure of Carbonized Charcoal. Industrial and Engineering
Chemistry Research, 46(18), 5954–5967. Retrieved from http://pubs.acs.org/doi/abs/
10.1021/ie070415u
Bourne, D., Fatima, T., van Meurs, P., & Muntean, A. (2014). Is adding charcoal to soil a good
method for CO2 sequestration? – Modeling a spatially homogeneous soil. Applied
Mathematical Modelling, 38(9), 2463-2475. doi:https://doi.org/10.1016/
j.apm.2013.10.064
Bourzac, K. (2017). Copper nanoparticles could help recycle CO2 into fuel. Chemical
Engineering News, 95, 7. Retrieved from http://cen.acs.org/articles/95/i38/Copper-
nanoparticles-help-recycle-CO2.html
Boutsika, L. G., Karapanagioti, H. K., & Manariotis, I. D. (2013). Aqueous Mercury Sorption by
Biochar from Malt Spent Rootlets. Water, Air, & Soil Pollution, 225, 1-10. Retrieved from
https://link.springer.com/article/10.1007/s11270-013-1805-9
Bouzalakos, S., & Mercedes, M. (2010). Overview of carbon dioxide (CO2) capture and storage
technology A2 - Maroto-Valer, M. Mercedes. In Developments and Innovation in Carbon
Dioxide (CO2) Capture and Storage Technology (Vol. 1, pp. 1-24): Woodhead
Publishing.
Bowden-Green, B., & Briens, L. (2016). An investigation of drum granulation of biochar powder.
Powder Technology, 288, 249 - 254. doi:10.1016/j.powtec.2015.10.046
Bowden-Green, B. H. M. (2016). Granulation of Biochar for Soil Amendment. The University of
Western Ontario, Retrieved from http://ir.lib.uwo.ca/etd/3475/
Bowie, A. R. (2016). Position Analysis: Ocean Fertilisation. Retrieved from http://acecrc.org.au/
wp-content/uploads/2016/07/ACE106_Position-Analysis_Ocean-
Fert_April-2016_WEB.pdf
Bowie, A. R., Maldonado, M. T., Frew, R. D., Croot, P. L., Achterberg, E. P., Mantoura, R. F.
C., . . . Boyd, P. W. (2001). The fate of added iron during a mesoscale fertilisation
experiment in the Southern Ocean. Deep Sea Research Part II: Topical Studies in
Oceanography, 48(11–12), 2703-2743. doi:http://dx.doi.org/10.1016/
S0967-0645(01)00015-7
Boyd, A. (2017). Communicating about Climate Change and Carbon Capture and Storage.
Oxford Research Encyclopedias. Retrieved from http://climatescience.oxfordre.com/
view/10.1093/acrefore/9780190228620.001.0001/acrefore-9780190228620-
e-444#.WRw_w-qsJQ4.facebook
Boyd, A. D. (2015). Connections between community and emerging technology: Support for
enhanced oil recovery in the Weyburn, Saskatchewan area. International Journal of
Greenhouse Gas Control, 32, 81-89. doi:https://doi.org/10.1016/j.ijggc.2014.11.005
Boyd, P. (2004). Ironing Out Algal Issues in the Southern Ocean. Science, 304(5669), 396-397.
doi:10.1126/science.1092677
Boyd, P., & Vivian, C. (2019). Should we fertilize oceans or seed clouds? No one knows. Nature,
570(June 11), 155-156. Retrieved from https://www.nature.com/articles/
d41586-019-01790-7
Boyd, P. W. (2008). Implications of large-scale iron fertilization of the oceans. Marine Ecology
Progress Series, 364, 213-218. Retrieved from http://www.int-res.com/abstracts/meps/
v364/p213-218/
Boyd, P. W. (2013). Ocean Fertilization for Sequestration of Carbon Dioxide from the
Atmosphere. In T. Lenton & N. Vaughan (Eds.), Geoengineering Responses to Climate
Change: Selected Entries from the Encyclopedia of Sustainability Science and
Technology (pp. 53-72). New York, NY: Springer New York.
Boyd, P. W., & Bressac, M. (2016). Developing a test-bed for robust research governance of
geoengineering: the contribution of ocean iron biogeochemistry. Philosophical
Transactions of the Royal Society A: Mathematical, Physical and
Engineering Sciences, 374(2081). doi:10.1098/rsta.2015.0299
Boyd, P. W., Claustre, H., Levy, M., Siegel, D. A., & Weber, T. (2019). Multi-faceted particle
pumps drive carbon sequestration in the ocean. Nature, 568(7752), 327-335.
doi:10.1038/s41586-019-1098-2
Boyd, P. W., & Ellwood, M. J. (2010). The biogeochemical cycle of iron in the ocean. Nature
Geoscience, 3, 675-682. Retrieved from http://www.nature.com/ngeo/journal/v3/n10/full/
ngeo964.html
Boyd, P. W., Ellwood, M. J., Tagliabue, A., & Twining, B. S. (2017). Biotic and abiotic retention,
recycling and remineralization of metals in the ocean. Nature Geoscience, 10, 167.
doi:10.1038/ngeo2876
https://www.nature.com/articles/ngeo2876#supplementary-information
Boyd, P. W., Jickells, T., Law, C. S., Blain, S., Boyle, E. A., Buesseler, K. O., . . . Watson, A. J.
(2007). Mesoscale Iron Enrichment Experiments 1993-2005: Synthesis and Future
Directions. Science, 315(5812), 612-617. doi:10.1126/science.1131669
Boyd, P. W., & Law, C. S. (2001). The Southern Ocean Iron RElease Experiment (SOIREE)—
introduction and summary. Deep Sea Research Part II: Topical Studies in
Oceanography, 48(11), 2425-2438. doi:https://doi.org/10.1016/S0967-0645(01)00002-9
Boyd, P. W., Law, C. S., Hutchins, D. A., Abraham, E. R., Croot, P. L., Ellwood, M., . . . Wilhelm,
S. W. (2005). FeCycle: Attempting an iron biogeochemical budget from a mesoscale SF6
tracer experiment in unperturbed low iron waters. Global Biogeochemical Cycles, 19(4),
1-13. doi:10.1029/2005GB002494
Boyd, P. W., Law, C. S., Wong, C. S., Nojiri, Y., Tsuda, A., Levasseur, M., . . . Yoshimura, T.
(2004). The decline and fate of an iron-induced subarctic phytoplankton bloom. Nature,
428(6982), 549-553. doi:http://www.nature.com/nature/journal/v428/n6982/suppinfo/
nature02437_S1.html
Boyd, P. W., Strzepek, R., Takeda, S., Jackson, G., Wong, C. S., McKay, R. M., . . . Ramaiah, N.
(2005). The evolution and termination of an iron-induced mesoscale bloom in the
northeast subarctic Pacific. Limnology and Oceanography, 50(6), 1872-1886.
doi:10.4319/lo.2005.50.6.1872
Boyd, P. W., & Vivian, C. M. G. (2019). High level review of a wide range of proposed marine
geoengineering techniques. Retrieved from https://www.academia.edu/38535715/
GESAMP_Report_High_Level_Review_of_a_Wide_Range_of_Proposed_Marine_Geoe
ngineering_Techniques
Boyd, P. W., Watson, A. J., Law, C. S., Abraham, E. R., Trull, T., Murdoch, R., . . . Zeldis, J.
(2000). A mesoscale phytoplankton bloom in the polar Southern Ocean stimulated by
iron fertilization. Nature, 407(6805), 695-702. Retrieved from http://dx.doi.org/
10.1038/35037500
Boye, M., Nishioka, J., Croot, P. L., Laan, P., Timmermans, K. R., & de Baar, H. J. W. (2005).
Major deviations of iron complexation during 22 days of a mesoscale iron enrichment in
the open Southern Ocean. Marine Chemistry, 96(3), 257-271. doi:https://doi.org/
10.1016/j.marchem.2005.02.002
Boyle, D. (2020). Scheme backed by Dominic Cummings to ‘suck’ excess carbon dioxide from
the air and bury it underground gets £100m from the Treasury. Daily Mail, (July 2).
Retrieved from https://www.dailymail.co.uk/news/article-8485601/Dominic-Cummings-
authorises-100m-suck-CO2-sky.html
Boyles, J. K. L., & Orge, R. F. (2016). Performance of the Continuous-Type Rice Hull Carbonizer
as Heat Source in Food Product Processing. OIDA International Journal of Sustainable
Development, 08(11), 25-34. Retrieved from http://papers.ssrn.com/sol3/papers.cfm?
abstract_id=2709112
Boysen, L. R. (2017). Potentials, Consequences and Trade-Offs of Terrestrial Carbon Dioxide
Removal: Strategies for climate engineering and their limitations. (M.Sc., Meteorologie).
Humboldt-Universität zu Berlin, Retrieved from http://edoc.hu-berlin.de/dissertationen/
boysen-lena-2017-01-17/PDF/boysen.pdf
Boysen, L. R., Lucht, W., & Gerten, D. (2017). Tradeoffs for food production, nature
conservation and climate limit the terrestrial carbon dioxide removal potential. Global
Change Biology, 23(10), 4303-4317. doi:doi:10.1111/gcb.13745
Boysen, L. R., Lucht, W., Gerten, D., & Heck, V. (2016). Impacts devalue the potential of large-
scale terrestrial CO2 removal through biomass plantations. Environmental Research
Letters, 11(9), 1-11. Retrieved from http://iopscience.iop.org/article/
10.1088/1748-9326/11/9/095010/pdf
Boysen, L. R., Lucht, W., Gerten, D., Heck, V., Lenton, T. M., & Schellnhuber, H. J. (2017). The
limits to global-warming mitigation by terrestrial carbon removal. Earth's Future, 5(5),
463-474. doi:10.1002/2016EF000469
Bozec, Y., Bakker, D. C. E., Hartmann, C., Thomas, H., Bellerby, R. G. J., Nightingale, P. D., . . .
de Baar, H. J. W. (2005). The CO2 system in a Redfield context during an iron
enrichment experiment in the Southern Ocean. Marine Chemistry, 95(1), 89-105.
doi:https://doi.org/10.1016/j.marchem.2004.08.004
Bozzi, E., Genesio, L., Toscano, P., Pieri, M., & Miglietta, F. (2015). Mimicking biochar-albedo
feedback in complex Mediterranean agricultural landscapes. Environmental Research
Letters, 10(8), 1-10. doi:10.1088/1748-9326/10/8/084014
Brack, D. (2017). The Impacts of the Demand for Woody Biomass for Power and Heat on
Climate and Forests. Retrieved from https://www.chathamhouse.org/sites/files/
chathamhouse/publications/research/2017-02-23-impacts-demand-woody-biomass-
climate-forests-brack-final.pdf
Brack, D. (2017). Woody Biomass for Power and Heat Impacts on the Global Climate.
Retrieved from https://www.chathamhouse.org/sites/files/chathamhouse/publications/
research/2017-02-23-woody-biomass-global-climate-brack-final2.pdf
Brack, D., & King, R. (2020). Net Zero and Beyond: What Role for Bioenergy with Carbon
Capture and Storage? Retrieved from https://www.chathamhouse.org/publication/net-
zero-and-beyond-what-role-bioenergy-carbon-capture-and-storage
Brack, D., & King, R. (2021). Managing Land-based CDR: BECCS, Forests and Carbon
Sequestration. Global Policy, 12(S1), 45-56. doi:https://doi.org/10.1111/1758-5899.12827
Bradbury, J., Ray, I., Peterson, T., Wade, S., Wong-Parodi, G., & Feldpausch, A. (2009). The
Role of Social Factors in Shaping Public Perceptions of CCS: Results of Multi-State
Focus Group Interviews in the U.S. Energy Procedia, 1(1), 4665-4672. doi:http://
dx.doi.org/10.1016/j.egypro.2009.02.289
Bradley, A., Larson, R. A., & Runge, T. (2015). Effect of Wood Biochar in Manure-Applied Sand
Columns on Leachate Quality. Journal of Environment Quality, 44(6), 1720. doi:10.2134/
jeq2015.04.0196
Bradley, D. (2018). Making magnesite much faster for CO2 sequestration. Materials Today,
21(9), 931-932. doi:https://doi.org/10.1016/j.mattod.2018.10.009
Bradshaw, J., Bachu, S., Bonijoly, D., Burruss, R., Holloway, S., Christensen, N. P., &
Mathiassen, O. M. (2007). CO2 storage capacity estimation: Issues and development of
standards. International Journal of Greenhouse Gas Control, 1(1), 62-68. doi:https://
doi.org/10.1016/S1750-5836(07)00027-8
Brady, C., Davis, M. E., & Xu, B. (2019). Integration of thermochemical water splitting with
CO<sub>2</sub> direct air capture. Proceedings of the National Academy of Sciences,
116(50), 25001-25007. doi:10.1073/pnas.1915951116
Brady, J. (2018). How One Company Pulls Carbon From The Air, Aiming To Avert A Climate
Catastrophe. Retrieved from https://www.npr.org/2018/12/10/673742751/how-1-
company-pulls-carbon-from-the-air-aiming-to-avert-a-climate-catastrophe
Braida, W. J., Pignatello, J. J., Lu, Y. F., Ravikovitch, P. I., Neimark, A. V., & Xing, B. S. (2003).
Sorption hysteresis of benzene in charcoal particles. Environmental Science &
Technology, 37(2), 409-413. Retrieved from http://pubs.acs.org/doi/abs/10.1021/
es020660z
Branca, G., Braimoh, A., Zhao, Y., Ratii, M., & Likoetla, P. (2020). Are there opportunities for
climate-smart agriculture? Assessing costs and benefits of sustainability investments
and planning policies in Southern Africa. Journal of Cleaner Production, 123847.
doi:https://doi.org/10.1016/j.jclepro.2020.123847
Branch, O., & Wulfmeyer, V. (2019). Deliberate enhancement of rainfall using desert plantations.
Proceedings of the National Academy of Sciences, 201904754. doi:10.1073/
pnas.1904754116
Brandani, S. (2012). Carbon Dioxide Capture from Air: A Simple Analysis. Energy &
Environment, 23(2-3), 319-328. doi:doi:10.1260/0958-305X.23.2-3.319
Brandão, M., et al. (2013). Key issues and options in accounting for carbon sequestration and
temporary storage in life cycle assessment and carbon footprinting. International Journal
of Life Cycle Assessment, 18, 230-240. Retrieved from https://link.springer.com/content/
pdf/10.1007/s11367-012-0451-6.pdf
Brander, M., Ascui, F., Scott, V., & Tett, S. (2021). Carbon accounting for negative emissions
technologies. Climate Policy, 1-19. doi:10.1080/14693062.2021.1878009
Brandl, P., Bui, M., Hallett, J. P., & Mac Dowell, N. (2021). Beyond 90% capture: Possible, but at
what cost? International Journal of Greenhouse Gas Control, 105, 103239. doi:https://
doi.org/10.1016/j.ijggc.2020.103239
Brandon, H. C. (2014). Biochar's fitness as an amendment in bell pepper transplant and field
production. Iowa State University, Retrieved from http://lib.dr.iastate.edu/etd/14040/
Branson, M. C. (2014). A Green Herring: How Curren Ocean Fertilization Regulation Distracts
from Geoengineering Research. Santa Clara Law Review, 54, 163-200. Retrieved from
http://www.lexisnexis.com/hottopics/lnacademic/?
Brantley, K. (2014). Short-Term Effects of Poultry Litter or Woodchip Biochar Amendment in a
Temperate Zone Agronomic System. University of Arkansas, Retrieved from http://
gradworks.umi.com/15/70/1570469.html
Brantley, K. E. (2014). Root Biomass and Mycorrhizal Infection in Loam Soil Amended with
Poultry Litter Biochar. Paper presented at the 2014 ASA, CSSA, & SSSA Annual
Meeting. https://dl.sciencesocieties.org/publications/meetings/download/pdf/2014am/
87533
Brantley, K. E., et al. (2015). Pine Woodchip Biochar Impact on Soil Nutrient Concentrations and
Corn Yield in a Silt Loam in the Mid-Southern U.S. Agriculture, 5(1), 30-47. Retrieved
from http://www.mdpi.com/2077-0472/5/1/30/htm
Brantley, K. E., Brye, K. R., Savin, M. C., & Longer, D. E. (2015). Biochar Source and
Application Rate Effects on Soil Water Retention Determined Using Wetting Curves.
Open Journal of Soil Science, 5(1), 1-10. doi:10.4236/ojss.2015.51001
Brassard, P., et al. (2014). Biochar Production from the Solid Fraction of Pig Manure as an
Environmental Management Solution. Paper presented at the NABEC 2014 (Northeast
Agricultural Biological Engineering Conference). www.researchgate.net/profile/
Patrick_Brassard/publication/
264930889_Biochar_Production_from_the_Solid_Fraction_of_Pig_Manure_as_an_Envir
onmental_Management_Solution/links/53f5fc3a0cf22be01c3fd4fe.pdf
Brassard, P., Godbout, S., Palacios, J. H., Jeanne, T., Hogue, R., Dubé, P., . . . Raghavan, V.
(2018). Effect of six engineered biochars on GHG emissions from two agricultural soils:
A short-term incubation study. Geoderma, 327, 73-84. doi:https://doi.org/10.1016/
j.geoderma.2018.04.022
Brassard, P., Godbout, S., Pelletier, F., Raghavan, V., & Palacios, J. H. (2018). Pyrolysis of
switchgrass in an auger reactor for biochar production: A greenhouse gas and energy
impacts assessment. Biomass and Bioenergy, 116, 99-105. doi:https://doi.org/10.1016/
j.biombioe.2018.06.007
Brassard, P., Godbout, S., & Raghavan, V. (2016). Soil biochar amendment as a climate change
mitigation tool: Key parameters and mechanisms involved. Journal of Environmental
Management, 181(Supplement C), 484-497. doi:https://doi.org/10.1016/
j.jenvman.2016.06.063
Braun, C. (2017). Not in My Backyard: CCS Sites and Public Perception of CCS. Risk Analysis,
37(12), 2264-2275. doi:doi:10.1111/risa.12793
Braun, C., Merk, C., Pönitzsch, G., Rehdanz, K., & Schmidt, U. (2018). Public perception of
climate engineering and carbon capture and storage in Germany: survey evidence.
Climate Policy, 18(4), 471-484. doi:10.1080/14693062.2017.1304888
Growing Climate Solutions Act of 2020, (2020).
Brazzola, N., Wohland, J., & Patt, A. (2021). Offsetting unabated agricultural emissions with
CO2 removal to achieve ambitious climate targets. Plos One, 16(3), e0247887.
doi:10.1371/journal.pone.0247887
Breaks, K., et al. (2020). Examining the Section 45Q Tax Credit. Drilling Down. Retrieved from
https://home.kpmg/us/en/home/insights/2020/03/examining-section-45q-tax-credit.html
Brech, Y. L., et al. (2014). The mechanism of biomass pyrolysis revealed by various analytical
methods. Paper presented at the 20th International Symposium on Analytical and
Applied Pyrolysis. http://hal.archives-ouvertes.fr/hal-00992460/
Breeze, N. (2018). Can we remove a trillion tons of carbon from the atmosphere? Ecologist.
Retrieved from https://theecologist.org/2018/may/03/can-we-remove-trillion-tons-carbon-
atmosphere
Breeze, N. (2018). Interview with Sir David King: Putting forward the climate restoration agenda.
The Ecologist. Retrieved from https://theecologist.org/2018/apr/11/interview-sir-david-
king-putting-forward-climate-restoration-agenda
Bremer, L. L., & Farley, K. A. (2010). Does plantation forestry restore biodiversity or create
green deserts? A synthesis of the effects of land-use transitions on plant species
richness. Biodiversity and Conservation, 19(14), 3893-3915. doi:10.1007/
s10531-010-9936-4
Brendová, K., et al. (2012). BIOCHAR PROPERTIES FROM DIFFERENT MATERIALS OF
PLANT ORIGIN. Paper presented at the 4th International Symposium on Trace
Elements in the Food Chain, Friends or Foes, Visegrád, Hungary.
Břendová, K., Tlustoš, P., & Száková, J. (2015). Biochar immobilizes cadmium and zinc and
improves phytoextraction potential of willow plants on extremely contaminated soil.
Plant, Soil and Environment, 61(7), 303 - 308. doi:10.17221/181/2015-pse
Břendová, K., Tlustoš, P., & Száková, J. (2015). Can Biochar From Contaminated Biomass Be
Applied Into Soil for Remediation Purposes? Water, Air, & Soil Pollution, 226(6).
doi:10.1007/s11270-015-2456-9
Brennan, A., et al. (2014). Effects of biochar amendment on root traits and contaminant
availability of maize plants in a copper and arsenic impacted soil. Plant and Soil, 379(1),
351-360. Retrieved from https://link.springer.com/article/10.1007/s11104-014-2074-0
Brennan, A., et al. (2014). Effects of biochar and activated carbon amendment on maize growth
and the uptake and measured availability of polycyclic aromatic hydrocarbons (PAHs)
and potentially toxic elements (PTEs). Environmental Pollution, 193, 79-87. doi:10.1016/
j.envpol.2014.06.016
Brennan, L., & Owende, P. (2010). Biofuels from microalgae—A review of technologies for
production, processing, and extractions of biofuels and co-products. Renewable and
Sustainable Energy Reviews, 14(2), 557-577. doi:https://doi.org/10.1016/
j.rser.2009.10.009
Brennan, R. B., Healy, M. G., Fenton, O., & Lanigan, G. J. (2015). The Effect of Chemical
Amendments Used for Phosphorus Abatement on Greenhouse Gas and Ammonia
Emissions from Dairy Cattle Slurry: Synergies and Pollution Swapping. Plos One, 10(6),
e0111965. doi:10.1371/journal.pone.0111965.t004
Brent, G. F., Allen, D. J., Eichler, B. R., Petrie, J. G., Mann, J. P., & Haynes, B. S. (2012).
Mineral Carbonation as the Core of an Industrial Symbiosis for Energy-Intensive
Minerals Conversion. Journal of industrial Ecology, 16(1), 94-104. doi:10.1111/
j.1530-9290.2011.00368.x
Brent, K., et al. (2018). International law poses problems for negative emissions research.
Nature Climate Change, 8, 451-453. Retrieved from https://www.nature.com/articles/
s41558-018-0181-2
Brent, K. (2020). Marine geoengineering governance and the importance of compatibility with
the law of the sea. In J. McDonald, J. McGee, & R. Barnes (Eds.), Research Handbook
on Climate Change, Oceans and Coasts (pp. 442-461). Retrieved from https://
www.elgaronline.com/view/edcoll/9781788112222/9781788112222.00033.xml
Brent, K., McDonald, J., & McGee, J. (2018). Carbon Dioxide Removal Geoengineering.
Australian Law Journal, 92(10), 830-838.
Brentner, L. B., Eckelman, M. J., & Zimmerman, J. B. (2011). Combinatorial Life Cycle
Assessment to Inform Process Design of Industrial Production of Algal Biodiesel.
Environmental Science & Technology, 45(16), 7060-7067. doi:10.1021/es2006995
Brethomé, F. M., Williams, N. J., Seipp, C. A., Kidder, M. K., & Custelcean, R. (2018). Direct air
capture of CO2 via aqueous-phase absorption and crystalline-phase release using
concentrated solar power. Nature Energy, 3, 553-559. doi:10.1038/s41560-018-0150-z
Breulmann, M., van Afferden, M., & Fühner, C. (2015). Biochar: Bring on the sewage. Nature,
518(7540), 483 - 483. doi:10.1038/518483e
Breulmann, M., van Afferden, M., Müller, R. A., & Fühner, C. (2015). The Sewchar Concept: An
Innovative Tool for a Sustainable Water – Waste – Soil Nexus of Sanitation Systems. In.
Breunig, H. M., Amirebrahimi, J., Smith, S., & Scown, C. D. (2019). Role of Digestate and
Biochar in Carbon-Negative Bioenergy. Environmental Science & Technology, 53(22),
12989-12998. doi:10.1021/acs.est.9b03763
Brevik, E. C., Cerdà, A., Mataix-Solera, J., Pereg, L., Quinton, J. N., Six, J., & Van Oost, K.
(2015). The interdisciplinary nature of <i>SOIL</i>. SOIL, 1(1), 117-129. doi:10.5194/
soil-1-117-2015
Brewer, C. E., et al. (2012). Extent of Pyrolysis Impacts on Fast Pyrolysis Biochar Properties.
Journal of Environmental Quality, 41(4), 1115-1122. doi:10.2134/jeq2011.0118
Brewer, C. E., et al. (2014). New approaches to measuring biochar density and porosity.
Biomass and Bioenergy, 66, 176-185. doi:10.1016/j.biombioe.2014.03.059
Brewer, C. E., Schmidt-Rohr, K., Satrio, J. A., & Brown, R. C. (2009). Characterization of
Biochar from Fast Pyrolysis and Gasification Systems. Environmental Progress &
Sustainable Energy, 28, 386 - 396. Retrieved from http://onlinelibrary.wiley.com/doi/
10.1002/ep.10378/full
Brewer, C. E., Unger, R., Schmidt-Rohr, K., & Brown, R. C. (2011). Criteria to Select Biochars
for Field Studies based on Biochar Chemical Properties. BioEnergy Research, 4(4),
312-323. doi:10.1007/s12155-011-9133-7
Breyer, C., et al. (2019). Direct Air Capture of CO2: A Key Technology for Ambitious Climate
Change Mitigation. Joule. doi:https://doi.org/10.1016/j.joule.2019.08.010
Breyer, C., Fasihi, M., & Aghahosseini, A. J. M. (2019). Carbon dioxide direct air capture for
effective climate change mitigation based on renewable electricity: a new type of energy
system sector coupling. Adaptation Strategies for Global Change, 1-23. doi:10.1007/
s11027-019-9847-y
Brick, S. (2010). Biochar: Assessing the Promise and Risks To Guide U.S. Policy. Retrieved
from Washington DC: https://www.nrdc.org/energy/files/biochar_paper.pdf
Bridges, R. (2014). Design and characterisation of an 'open source' pyrolyser for biochar
production. Massey University, Retrieved from http://mro.massey.ac.nz/handle/
10179/5864?show=full
Bridges, R. P., Paterson, A. H. J., & Jones, J. R. (2013). Design and Characterisation of an
‘Open Source” Pyrolyser for Biochar Production. Retrieved from http://
www.conference.net.au/chemeca2013/papers/27038.pdf
Bridgwater, A. V., Toft, A. J., & Brammer, J. G. (2002). A techno-economic comparison of power
production by biomass fast pyrolysis with gasification and combustion. Renewable and
Sustainable Energy Reviews, 6(3), 181-246. doi:https://doi.org/10.1016/
S1364-0321(01)00010-7
Brienen, R. J. W., Caldwell, L., Duchesne, L., Voelker, S., Barichivich, J., Baliva, M., . . . Gloor,
E. (2020). Forest carbon sink neutralized by pervasive growth-lifespan trade-offs. Nature
Communications, 11(1), 4241. doi:10.1038/s41467-020-17966-z
Briggs, N., Dall’Olmo, G., & Claustre, H. (2020). Major role of particle fragmentation in
regulating biological sequestration of CO<sub>2</sub> by the oceans. Science,
367(6479), 791-793. doi:10.1126/science.aay1790
Brigham, K. (2019). Bill Gates and Big Oil back this company that’s trying to solve climate
change by sucking CO2 out of the air. CNBC. Retrieved from https://www.cnbc.com/
2019/06/21/carbon-engineering-co2-capture-backed-by-bill-gates-oil-companies.html
Bright, M. (2021). Surveying the U.S. Federal CCS Policy Landscape in 2021. Retrieved from
https://www.globalccsinstitute.com/resources/publications-reports-research/surveying-
the-u-s-federal-ccs-policy-landscape-in-2021/
Bright, R. M., Zhao, K., Jackson, R. B., & Cherubini, F. (2015). Quantifying surface albedo and
other direct biogeophysical climate forcings of forestry activities. Global Change Biology,
21(9), 3246-3266. doi:10.1111/gcb.12951
Brilman, D. W. F., & Veneman, R. (2013). Capturing Atmospheric CO2 Using Supported Amine
Sorbents. Energy Procedia, 37, 6070-6078. doi:http://dx.doi.org/10.1016/
j.egypro.2013.06.536
Bringezu, S., et al. (2009). Towards Sustainable Production and Use of Resources: Assessing
Biofuels. Retrieved from http://www.unep.org/PDF/Assessing_Biofuels.pdf
Brockhoff, S. R., et al. (2010). Physical and Mineral-Nutrition Properties of Sand-Based
Turfgrass Root Zones Amended with Biochar. Crop Science Society of America, 102(6),
1627-1631. doi:10.2134/agronj2010.0188
Broder, S. P., & Haward, M. (2013). The International Legal Regimes Governing Ocean Iron
Fertilization.
Brodowski, S., Amelung, W., Haumaier, L., & Zech, W. (2007). Black carbon contribution to
stable humus in german arable soils. Geoderma, 139(1-2), 220-228. Retrieved from
http://www.sciencedirect.com/science/article/pii/S0016706107000389
Brodowski, S., John, B., Flessa, H., & Amelung, W. (2006). Aggregate-occluded black carbon in
soil. European Journal of Soil Science, 57, 539--546.
Brodowski, S., Rodionov, A., Haumaier, L., Glaser, B., & Amelung, W. (2005). Revised black
carbon assessment using benzene polycarboxylic acids. Organic Geochemistry, 36(9),
1299-1310. Retrieved from http://www.sciencedirect.com/science/article/pii/
S0146638005000938
Brodowski, S., Amelung, W., Haumaier, L., Abetz, C.,, & Zech, W. (2005). Morphological and
chemical properties of black carbon in physical soil fractions as revealed by scanning
electron microscopy and energy-dispersive X-ray spectroscopy. Geoderma, 128(1-2),
116-129. Retrieved from http://www.sciencedirect.com/science/article/pii/
S0016706104003301
Broecker, W. (2013). Does air capture constitute a viable backstop against a bad CO2 trip?
Elementa, 1(9), 1-3. Retrieved from https://www.elementascience.org/articles/10.12952/
journal.elementa.000009/
Broecker, W., & Takahashi, F. (1977). Neutralization of fossil fuel CO
2
by marine calcium
carbonate. In N. R. Andersen & A. Malahoff (Eds.), The Fate of Sossil Fuel CO
2
in the
Oceans (pp. 213-241).
Broecks, K., Jack, C., ter Mors, E., Boomsma, C., & Shackley, S. (2021). How do people
perceive carbon capture and storage for industrial processes? Examining factors
underlying public opinion in the Netherlands and the United Kingdom. Energy Research
& Social Science, 81, 102236. doi:https://doi.org/10.1016/j.erss.2021.102236
Broehm, M., Strefler, J., & Bauer, N. (2015). Techno-Economic Review of Direct Air Capture
Systems for Large Scale Mitigation of Atmospheric CO2. Retrieved from https://
poseidon01.ssrn.com/delivery.php?
ID=44707109711702511901412211312608112203304006303603105702208208609012
11130180831230290451140200600071001090670030970070850661221220780370600
59112030105084017027092107036079030007127086080125017114109085016118099
091077095087010084110087065091004008124115&EXT=pdf
Brosse, N., et al. (2012). Miscanthus: a fast-growing crop for biofuels and chemicals production.
Biofpr, 6(5), 580-598. Retrieved from http://onlinelibrary.wiley.com/doi/10.1002/bbb.1353/
full
Brovkin, V., Raddatz, T., Reick, C. H., Claussen, M., & Gayler, V. (2009). Global biogeophysical
interactions between forest and climate. Geophysical Research Letters, 36(7), 1-5.
doi:10.1029/2009GL037543
Brown, E., & Jacobson, M. (2005). Cruel Oil: How Palm Oil Harms Health, Rainforest & Wildlife.
Retrieved from https://cspinet.org/file/5656/download?token=f9iLJfz2
Brown, K., et al. (2015). Biochar and Biological Phosphorus Removal at Shelburne Farms.
Retrieved from http://www.biochar-international.org/sites/default/files/
Shelburne_Farms_2015.pdf
Brown, L. M. (1996). Uptake of carbon dioxide from flue gas by microalgae. Energy Conversion
and Management, 37(6), 1363-1367. doi:https://doi.org/10.1016/0196-8904(95)00347-9
Brown, L. M., & Zeiler, K. G. (1993). Aquatic biomass and carbon dioxide trapping. Energy
Conversion and Management, 34(9), 1005-1013. doi:https://doi.org/
10.1016/0196-8904(93)90048-F
Brown, P. (2019). Carbon Capture Is Vital for Planet, Scientists Say. The Good Men Project.
Retrieved from https://goodmenproject.com/environment-2/carbon-capture-is-vital-for-
planet-scientists-say/
Brown, R. (2009). Biochar Production Technology. In Biochar for Environmental Management:
Science and Technology (pp. 127-146). London, UK: Earthscan.
Brown, R., et al. (2015). Fundamentals of biochar production. In Biochar for Environmental
Management: Science and Technology and Implementation.
Brown, R. A., et al. (2000). Potential Production and Environmental Effects of Switchgrass and
Traditional Crops under Current and Greenhouse-Altered Climate in the Central United
States: A Simulation Study. Agriculture Ecosystems & Environment, 78, 31-47. Retrieved
from http://digitalcommons.unl.edu/cgi/viewcontent.cgi?
article=1159&context=natrespapers
Brown, S., Krek, A., & Lees, B. (2012). Growth of creeping bentgrass (Agrostis palustris) in a
sand-based root zone amended with a nutrient loaded biochar. Retrieved from http://
ptrc.oldscollege.ca/documents/StudentProjectonBiochar.pdf
Brown, T. R., Wright, M. M., & Brown, R. C. (2010). Estimating profitability of two biochar
production scenarios: slow pyrolysis vs fast pyrolysis. Biofuels, Bioproducts and
Biorefining, 5(1), 54-68. doi:10.1002/bbb.254
Brownbridge, G., Azadi, P., Smallbone, A., Bhave, A., Taylor, B., & Kraft, M. (2014). The future
viability of algae-derived biodiesel under economic and technical uncertainties.
Bioresource Technology, 151, 166-173. doi:https://doi.org/10.1016/
j.biortech.2013.10.062
Brtnicky, M., Datta, R., Holatko, J., Bielska, L., Gusiatin, Z. M., Kucerik, J., . . . Pecina, V. (2021).
A critical review of the possible adverse effects of biochar in the soil environment.
Science of The Total Environment, 796, 148756. doi:https://doi.org/10.1016/
j.scitotenv.2021.148756
Bruckman, V. J., et al. (Ed.) (2017). Biochar: A Regional Supply Chain Approach in View of
Climate Change Mitigation.
Bruckman, V. J., Terada, T., Uzun, B. B., Apaydın-Varol, E., & Liu, J. (2015). Biochar for Climate
Change Mitigation: Tracing the in-situ Priming Effect on a Forest Site. Energy Procedia,
76, 381-387. doi:http://dx.doi.org/10.1016/j.egypro.2015.07.845
Bruges, J. (2009). The Biochar Debate: Charcoal's Potential to Reverse Climate Change and
Build Soil Fertility: Green Books Ltd.
Bruhn, A., et al. (2016). Impact of environmental conditions on biomass yield, quality, and bio-
mitigation capacity of Saccharina latissima. Aquaculture Environment Interactions, 8,
619-636. Retrieved from http://orbit.dtu.dk/files/127202460/Publishers_version.pdf
Bruhn, T., Naims, H., & Olfe-Kräutlein, B. (2016). Separating the debate on CO2 utilisation from
carbon capture and storage. Environmental Science & Policy, 60(Supplement C), 38-43.
doi:https://doi.org/10.1016/j.envsci.2016.03.001
Bruine de Bruin, W., Mayer, L. A., & Morgan, M. G. (2015). Developing communications about
CCS: three lessons learned. Journal of Risk Research, 18(6), 699-705.
doi:10.1080/13669877.2014.983951
Bruine de Bruin, W., Rabinovich, L., Weber, K., Babboni, M., Dean, M., & Ignon, L. (2021).
Public understanding of climate change terminology. Climatic Change, 167(3), 37.
doi:10.1007/s10584-021-03183-0
Brunsting, S., et al. (2011). Communicating CCS: Applying communications theory to public
perceptions of carbon capture and storage. International Journal of Greenhouse Gas
Control, 5(6), 1651-1662. Retrieved from https://www.researchgate.net/publication/
236146899_Communicating_CCS_Applying_communications_theory_to_public_percept
ions_of_carbon_capture_and_storage
Brunsting, S., Best-Waldhober, M. d., Feenstra, C. F. J., & Mikunda, T. (2011). Stakeholder
participation practices and onshore CCS: Lessons from the dutch CCS case
barendrecht. Energy Procedia, 4, 6376-6383. doi:http://dx.doi.org/10.1016/
j.egypro.2011.02.655
Brunsting, S., de Best-Waldhober, M., Brouwer, A. S., Riesch, H., & Reiner, D. (2013).
Communicating CCS: Effects of Text-only and Text-and-visual Depictions of CO2
Storage on Risk Perceptions and Attitudes. Energy Procedia, 37, 7318-7326. doi:http://
dx.doi.org/10.1016/j.egypro.2013.06.670
Brunsting, S., de Best-Waldhober, M., & Terwel, B. W. (2013). ‘I Reject your Reality and
Substitute my Own!’ Why More Knowledge about CO2 Storage Hardly Improves Public
Attitudes. Energy Procedia, 37, 7419-7427. doi:https://doi.org/10.1016/
j.egypro.2013.06.684
Brunsting, S., Desbarats, J., de Best-Waldhober, M., Duetschke, E., Oltra, C., Upham, P., &
Riesch, H. (2011). The Public and CCS: The importance of communication and
participation in the context of local realities. Energy Procedia, 4, 6241-6247. doi:http://
dx.doi.org/10.1016/j.egypro.2011.02.637
Bruton, T., et al. (2009). A Review of the Potential of Marine Algae as a Source of Biofuel in
Ireland. Retrieved from http://www.fao.org/uploads/media/0902_SEI_-
_A_Review_of_the_Potential_of_Marine_Algae.pdf
Bruun, E., B., et al. (2012). Effects of slow and fast pyrolysis biochar on soil C and N turnover
dynamics. Soil Biology and Biochemistry, 46, 73-79. doi:10.1016/j.soilbio.2011.11.019
Bruun, E., et al. (2016). Biochar carbon stability and effect on greenhouse gas emissions. In
Biochar in European Soils and Agriculture: Science and Practice.
Bruun, E. B., et al. (2010). Influence of fast pyrolysis temperature on biochar labile fraction and
short-term carbon loss in a loamy soil. Biomass and Bioengineering, 35(3), 1182-1189.
doi:10.1016/j.biombioe.2010.12.008
Bruun, E. W., et al. (2011). Application of biochar to soil and N2O emissions: potential effects of
blending fast-pyrolysis biochar with anaerobically digested slurry. European Journal of
Soil Science, 62(4), 581-589. doi:10.1111/j.1365-2389.2011.01377.x
Bruun, E. W., et al. . (2012). Nitrogen and Carbon Leaching in Repacked Sandy Soil with Added
Fine Particulate Biochar. Soil Science Society of America Journal, 76(4), 1142-1148.
doi:10.2136/sssaj2011.0101
Bruun, E. W., et al. (2014). Biochar amendment to coarse sandy subsoil improves root growth
and increases water retention. Soil Use and Management, 30(1), 109-118. Retrieved
from http://onlinelibrary.wiley.com/doi/10.1111/sum.12102/full
Bruun, E. W., Muller-Stover, D., Ambus, P., & Hauggaard-Nielsen, H. (2011). Application of
biochar to soil and N2O emissions: potential effects of blending fast-pyrolysis biochar
with anaerobically digested slurry. European Journal of Social Science, 62(4), 581-589.
doi:10.1111/j.1365-2389.2011.01377.x
Bruun, S., & EL-Zehery, T. (2012). Biochar effect on the mineralization of soil organic matter.
Pesquisa Agropecuária Brasileira, 47, 665-671. doi:http://dx.doi.org/10.1590/
S0100-204X2012000500005
Bruun, S., Jensen, E. S., & Jensen, L. S. (2008). Microbial mineralization and assimilation of
black carbon: dependency on degree of thermal alteration. Organic Geochemistry, 39(7),
839-845. Retrieved from http://www.sciencedirect.com/science/article/pii/
S0146638008001307
Bruun, S., & Luxhoi, J. (2008). Is biochar production really carbon-negative? Environmental
Science & Technology, 42(5), 1388.
Bryce, E. (2020). Tasmania’s ‘Super-Kelp’ Is Making CO2 Vanish into the Ocean. Retrieved from
https://reasonstobecheerful.world/super-kelp-carbon-emissions-climate-change-oceans/
#
Bryce, E. (2021). Leaving crop residues to rot could be an unexpected boon for climate
mitigation. Anthropocene.
Bryngelsson, D. K., & Lindgren, K. (2013). Why large-scale bioenergy production on marginal
land is unfeasible: A conceptual partial equilibrium analysis. Energy Policy,
55(Supplement C), 454-466. doi:https://doi.org/10.1016/j.enpol.2012.12.036
Bubici, S., et al. (2016). Evaluation of the surface affinity of water in three biochars using fast
field cycling NMR relaxometry. Magnetic Resonance in Chemistry, 54(5), 365-370.
doi:10.1002/mrc.4391
Bublé, C. (2020). Bipartisan Bill Would Establish Multi-Agency Effort for Carbon Removal.
Government Executive. Retrieved from https://www.govexec.com/management/2020/07/
bipartisan-bill-would-establish-multi-agency-effort-carbon-removal/167384/
Bucheli, T. D., et al. (2014). On the heterogeneity of biochar and consequences for its
representative sampling. Journal of Analytical and Applied Pyrolysis, 107, 25-30.
Retrieved from http://www.sciencedirect.com/science/article/pii/S0165237014000229
Buck, H. J. (2014). Village Science Meets Global Discourse: The Haida Salmon Restoration
Corporation’s Ocean Iron Fertilization Experiment. Retrieved from http://
www.homepages.ed.ac.uk/shs/Climatechange/Geo-politics/
Holly%20Buck%20iron%20fert.htm
Buck, H. J. (2016). Rapid scale-up of negative emissions technologies: social barriers and
social implications. Climatic Change, 139(2), 155-167. doi:10.1007/s10584-016-1770-6
Buck, H. J. (2018). A Best-Case Scenario for Putting Carbon Back Underground. Retrieved from
https://magazine.scienceforthepeople.org/geoengineering/best-case-scenario-carbon-
underground/
Buck, H. J. (2018). The Need for Carbon Removal. Jacobin. Retrieved from https://
jacobinmag.com/2018/07/carbon-removal-geoengineering-global-warming
Buck, H. J. (2018). The politics of negative emissions technologies and decarbonization in rural
communities. Global Sustainability, 1-7. Retrieved from https://www.cambridge.org/core/
journals/global-sustainability/collection/the-politics-and-governance-of-negative-
emissions-technologies
Buck, H. J. (2019). Challenges and Opportunities of Bioenergy With Carbon Capture and
Storage (BECCS) for Communities. Current Sustainable/Renewable Energy Reports.
doi:10.1007/s40518-019-00139-y
Buck, H. J. (2019). The desperate race to cool the ocean before it’s too late. MIT Technology
Review. Retrieved from https://www.technologyreview.com/s/613327/the-desperate-
race-to-cool
Buck, H. J. (2020). Should carbon removal be treated as waste management? Lessons from the
cultural history of waste. Interface Focus, 10(5), 20200010. doi:doi:10.1098/
rsfs.2020.0010
Buck, H. J. (2021). Social science for the next decade of carbon capture and storage. The
Electricity Journal, 34(7), 107003. doi:https://doi.org/10.1016/j.tej.2021.107003
Buck, H. J., Furhman, J., Morrow, D. R., Sanchez, D. L., & Wang, F. M. (2020). Adaptation and
Carbon Removal. One Earth, 3(4), 425-435. doi:10.1016/j.oneear.2020.09.008
Budai, A., Zimmerman, A. R., Cowie, A. L., Webber, J. B. W., Singh, B. P., Glaser, B., . . .
Joseph, S. (2013). Biochar Carbon Stability Test Method: An assessment of methods to
determine biochar carbon stability. Retrieved from http://www.biochar-international.org/
sites/default/files/IBI_Report_Biochar_Stability_Test_Method_Final.pdf
Budania, K., & Yadav, J. (2014). Effects of PGPR blended biochar and different levels of
phosphorus on yield and nutrient uptake by chickpea. Annals of Agri Bio Research, 19,
408-412. Retrieved from http://www.cabdirect.org/abstracts/
20143328845.html;jsessionid=79D899100F399417CA15181118A7D9AE
Budi, S. W., & Setyaningsih, L. (2013). Arbuscular Mycorrhizal Fungi and Biochar Improved
Early Growth of Neem (Melia azedarach Linn.) Seedling Under Greenhouse Conditions.
Manajemen Hutan Tropika Journal of Tropical Forest Management, 19(2). Retrieved
from http://journal.ipb.ac.id/index.php/jmht/article/view/6965
Budinis, S. (2020). Direct Air Capture: More Efforts Needed. Retrieved from https://www.iea.org/
reports/direct-air-captur
Budinis, S. (2020). Going carbon negative: What are the technology options? Retrieved from
https://www.iea.org/commentaries/going-carbon-negative-what-are-the-technology-
options
Budinis, S., Dowell, N. M., Krevor, S., Dixon, T., Kemper, J., & Hawkes, A. (2017). Can Carbon
Capture and Storage Unlock ‘Unburnable Carbon’? Energy Procedia, 114, 7504-7515.
doi:https://doi.org/10.1016/j.egypro.2017.03.1883
Budinis, S., Krevor, S., Dowell, N. M., Brandon, N., & Hawkes, A. (2018). An assessment of
CCS costs, barriers and potential. Energy Strategy Reviews, 22, 61-81. doi:https://
doi.org/10.1016/j.esr.2018.08.003
Budzianowski, W. M. (2010). Negative Net CO2 Emissions from Oxy-Decarbonization of Biogas
to H-2. International Journal of Chemical Reactor Engineering, 8, 31. Retrieved from
<Go to ISI>://WOS:000285830700010
Budzianowski, W. M. (2011). Can 'negative net CO2 emissions' from decarbonised biogas-to-
electricity contribute to solving Poland's carbon capture and sequestration dilemmas?
Energy, 36(11), 6318-6325. doi:10.1016/j.energy.2011.09.047
Budzianowski, W. M. (2012). Negative carbon intensity of renewable energy technologies
involving biomass or carbon dioxide as inputs. Renewable & Sustainable Energy
Reviews, 16(9), 6507-6521. doi:10.1016/j.rser.2012.08.016
Budzianowski, W. M. (2012). Value-added carbon management technologies for low CO2
intensive carbon-based energy vectors. Energy, 41(1), 280-297. doi:10.1016/
j.energy.2012.03.008
Budzianowski, W. M. (2017). Implementing carbon capture, utilisation and storage in the circular
economy. International Journal of Greenhouse Gas Control, 12(2), 272-296. Retrieved
from http://www.inderscience.com/info/inarticle.php?artid=84510
Buechler-Scott, C. (2021). A Progressive Platform for Carbon Removal: Federal Action Plan.
Retrieved from https://filesforprogress.org/memos/carbon-removal-guiding-principles.pdf
Buechler-Scott, C. (2021). A Progressive Platform for Carbon Removal: Guiding Principles.
Retrieved from https://filesforprogress.org/memos/carbon-removal-guiding-principles.pdf
Buecker, J., Kloss, S., Wimmer, B., Rempt, F., Zehetner, F., & Soja, G. (2016). Leachate
Composition of Temperate Agricultural Soils in Response to Biochar Application. Water,
Air, & Soil Pollution, 227(2). doi:10.1007/s11270-016-2745-y
Buesseler, K. O. (2012). Biogeochemistry: The great iron dump. Nature, 487, 305-306.
Retrieved from http://www.nature.com/nature/journal/v487/n7407/full/487305a.html
Buesseler, K. O., Andrews, J. E., Pike, S. M., & Charette, M. A. (2004). The Effects of Iron
Fertilization on Carbon Sequestration in the Southern Ocean. Science, 304(5669),
414-417. Retrieved from http://science.sciencemag.org/content/304/5669/414
Buesseler, K. O., Andrews, J. E., Pike, S. M., Charette, M. A., Goldson, L. E., Brzezinski, M. A.,
& Lance, V., P. (2005). Particle export during the Southern Ocean Iron Experiment
(SOFeX). Limnology and Oceanography, 50(1), 311-327.
Buesseler, K. O., Barber, R. T., Dickson, M.-L., Hiscock, M. R., Moore, C. M., & Sambrotto, R.
(2003). The effect of marginal ice-edge dynamics on production and export in the
Southern Ocean along 170 degrees W. Deep-Sea Research Part Ii-Topical Studies In
Oceanography, 50(3-4), 579-603.
Buesseler, K. O., & Boyd, P. W. (2003). Will Ocean Fertilization Work? Science, 300(5616),
67-68. doi:10.1126/science.1082959
Buesseler, K. O., Boyd, P. W., Black, E. E., & Siegel, D. A. (2020). Metrics that matter for
assessing the ocean biological carbon pump. Proceedings of the National Academy of
Sciences, 117(18), 9679-9687. doi:10.1073/pnas.1918114117
Buesseler, K. O., Doney, S. C., Karl, D. M., Boyd, P. W., Caldeira, K., Chai, F., . . . Watson, A. J.
(2008). Ocean Iron Fertilization--Moving Forward in a Sea of Uncertainty. Science,
319(5860), 162-162. doi:10.1126/science.1154305
Buesseler, K. O., Lamborg, C. H., Boyd, P. W., Lam, P. J., Trull, T. W., Bidigare, R. R., . . .
Wilson, S. (2007). Revisiting Carbon Flux Through the Ocean's Twilight Zone. Science,
316(5824), 567-570. doi:10.1126/science.1137959
Buhr, K., & Wibeck, V. (2014). Communication approaches for carbon capture and storage:
Underlying assumptions of limited versus extensive public engagement. Energy
Research & Social Science, 3, 5-12. doi:https://doi.org/10.1016/j.erss.2014.05.004
Bui, M., Adjiman, C. S., Bardow, A., Anthony, E. J., Boston, A., Brown, S., . . . Mac Dowell, N.
(2018). Carbon capture and storage (CCS): the way forward. Energy & Environmental
Science, 11(5), 1062-1176. doi:10.1039/C7EE02342A
Bui, M., Fajardy, M., & Mac Dowell, N. (2017). Bio-Energy with CCS (BECCS) performance
evaluation: Efficiency enhancement and emissions reduction. Applied Energy, 195,
289-302. doi:https://doi.org/10.1016/j.apenergy.2017.03.063
Bui, M., Fajardy, M., & Mac Dowell, N. (2017). Thermodynamic evaluation of carbon negative
power generation: Bio-energy CCS (BECCS). Energy Procedia. Retrieved from https://
az659834.vo.msecnd.net/eventsairwesteuprod/production-ieaghg-public/
e0ee2e3677fa4176b9003102b0b4edff
Bui, M., Fajardy, M., & Mac Dowell, N. (2018). Bio-energy with carbon capture and storage
(BECCS): Opportunities for performance improvement. Fuel, 213, 164-175. doi:https://
doi.org/10.1016/j.fuel.2017.10.100
Bui, M., Zhang, D., Fajardy, M., & Mac Dowell, N. (2021). Delivering carbon negative electricity,
heat and hydrogen with BECCS – Comparing the options. International Journal of
Hydrogen Energy. doi:https://doi.org/10.1016/j.ijhydene.2021.02.042
Bui, T. (2015). Cryopreservation, culture recovery and glucose induced programmed cell death
in chlorophyte microalgae. (PhD Thesis). The University of Queensland, Retrieved from
http://espace.library.uq.edu.au/view/UQ:345619
Buijs, W., & de Flart, S. (2017). Direct Air Capture of CO2 with an Amine Resin: A Molecular
Modeling Study of the CO2 Capturing Process. Industrial & Engineering Chemistry
Research, 56(43), 12297-12304. doi:10.1021/acs.iecr.7b02613
Bull, I. D., Betancourt, P. P., & Evershed, R. P. (2001). An Organic Geochemical Investigation of
the Practice of Manuring at a Minoan Site on Pseira Island, Crete. Geoarchaeology: An
International Journal, 16, 223 - 242.
Bull, L. (2012). A Field Demonstration for Mobile Torrefaction Technology to Produce Biochar
and Evaluate Its Value to North Carolina Farmers. Retrieved from http://
www.ncfarmcenter.org/uploads/Bio-Char-Final-Report-2013.pdf
Bullard, N. (2021). Stripe, Shopify, and the E-Commerce Approach to Drawing Down Carbon.
Bloomberg Green. Retrieved from https://www.bloomberg.com/news/articles/
2021-06-03/stripe-shopify-and-the-e-commerce-approach-to-drawing-down-carbon
Buller, L. S., Bergier, I., Ortega, E., Moraes, A., Bayma-Silva, G., & Zanetti, M. R. (2015). Soil
improvement and mitigation of greenhouse gas emissions for integrated crop–livestock
systems: Case study assessment in the Pantanal savanna highland, Brazil. Agricultural
Systems, 137, 206-219. doi:https://doi.org/10.1016/j.agsy.2014.11.004
Bullis, K. (2006). Storing Carbon Dioxide under the Ocean. MIT Technology Review. Retrieved
from https://www.technologyreview.com/s/406222/storing-carbon-dioxide-under-the-
ocean/
Bullis, K. (2014). The Cost of Limiting Climate Change Could Double without Carbon Capture
Technology. MIT Technology Review. Retrieved from https://www.technologyreview.com/
s/526646/the-cost-of-limiting-climate-change-could-double-without-carbon-capture-
technology/
Bundschuh, M., Zubrod, J. P., Seitz, F., & Newman, M. C. (2015). Effects of two sorbents
applied to mercury-contaminated river sediments on bioaccumulation in and detrital
processing by Hyalella azteca. Journal of Soils and Sediments, 15, 1265-1274.
doi:10.1007/s11368-015-1100-z
Buonocore, J. (2021). Companies are promising to remove carbon — what about frontline
communities? The Hill. Retrieved from https://thehill.com/opinion/energy-environment/
548049-companies-are-promising-to-remove-carbon-what-about-frontline
Burgess, M. (2018). Denmark Leads the Way. Gasworld. Retrieved from https://
www.gasworld.com/denmark-leads-the-way-/2016068.article
Burgess, M. (2019). SCCS wins European CCUS funding
By Molly Burgess2 December 2019. Gasworld. Retrieved from https://www.gasworld.com/sccs-
wins-funding/2018130.article
Burgess, M. (2021). Aker Solutions awarded contract for Brevik carbon capture project.
Gasworld. Retrieved from https://www.gasworld.com/aker-awarded-contract-for-brevik-
carbon-capture-project/2020310.article
Burgess, M. (2021). Chart and Svante to develop integrated carbon capture solutio. Gasworld.
Retrieved from https://www.gasworld.com/chart-and-svante-to-develop-integrated-
carbon-capture-solution/2020477.article
Burgess, P. J., et al. (2019). Regenerative Agriculture Identifying the impact; enabling the
potential. Retrieved from https://www.foodandlandusecoalition.org/wp-content/uploads/
2019/09/Regenerative-Agriculture-final.pdf
Burhenne, L., Giacomin, C., Follett, T., Ritchie, J., McCahill, J. S. J., & Mérida, W. (2017).
Characterization of reactive CaCO3 crystallization in a fluidized bed reactor as a central
process of direct air capture. Journal of Environmental Chemical Engineering, 5(6),
5968-5977. doi:https://doi.org/10.1016/j.jece.2017.10.047
Burke, J. M., et al. . (2012). The Effect of Source of Biochar on Cotton Seedling Growth and
Development. International Journal of Plant & Soil Science, 3(8), 995-1008. Retrieved
from http://arkansasagnews.uark.edu/610-15.pdf
Burley J., e. a. (2007). C sequestration as a forestry opportunity in a changing climate. In P. H.
Freer-Smith, et al. (Ed.), Forestry and climate change. (pp. 31-37).
Burlinghaus, E., et al. (2020). Scaling CCUS: Catalyzing policy and financial innovation.
Retrieved from https://www.atlanticcouncil.org/blogs/energysource/scaling-ccus-
catalyzing-policy-and-financial-innovation/
Burns, E. (2017). Negative Emissions Primer. Retrieved from http://www.thirdway.org/primer/
negative-emissions-primer
Burns, E., & Suarez, V. (2020). Everything you need to know about federal funding for carbon
removal. Medium. Retrieved from https://medium.com/@carbon180/everything-you-
need-to-know-about-federal-funding-for-carbon-removal-bb2548595b41
Burns, W. (2016). The Paris Agreement and Climate Geoengineering Governance: The Need
For a Human-rights Based Component. Retrieved from https://www.cigionline.org/
publications/paris-agreement-and-climate-geoengineering-governance-need-human-
rights-based
Burns, W. (2017). Ensuring That We Hear the Voices of the Vulnerable: Toward a Human
Rights-Based Approach to Bioenergy and Carbon Capture and Storage. Retrieved from
http://ceassessment.org/ensuring-that-we-hear-the-voices-of-the-vulnerable-toward-a-
human-rights-based-approach-to-bioenergy-and-carbon-capture-and-storage-wil-burns/
(2020, June 2). Adding Subtraction to the Climate Toolkit: Discussing Carbon Dioxide Removal
with Wil Burns [Retrieved from https://www.resourcesmag.org/resources-radio/adding-
subtraction-climate-toolkit-discussing-carbon-dioxide-removal-wil-burns/
Burns, W. (2020). The Green New Deal and Carbon Dioxide Removal Approaches. Energy
Central. Retrieved from https://energycentral.com/c/ec/green-new-deal-and-carbon-
dioxide-removal-approaches
Burns, W. (2020). Op-ed: A trillion trees to fight climate change sounds nice. Here's what it
misses. Indianapolis Star. Retrieved from https://www.indystar.com/story/opinion/
2020/12/20/op-ed-fixing-climate-change-trillion-trees-can-create-problems/3938962001/
Burns, W. (2021). Scrubbing the Skies: The Promises, Challenges and Perils of Carbon Dioxide
Removal. Energy Policy Seminar Series: Rutgers Energy Institute.
Burns, W. (2021). Seeing the Forest for the Trees?: The Role of Afforestation and Reforestation
in Combating Climate Change. ABA SEER. Retrieved from https://www.americanbar.org/
groups/environment_energy_resources/publications/fr/20210114-seeing-the-forest-for-
the-trees/
Burns, W. (2021). Seeing the Forest for the Trees?: The Role of Afforestation and Reforestation
in Combating Climate Change. Retrieved from https://www.americanbar.org/groups/
environment_energy_resources/publications/fr/20210114-seeing-the-forest-for-the-trees/
Burns, W., & Corbett, C. R. (2020). Antacids for the Sea? Artificial Ocean Alkalinization and
Climate Change. One Earth, 3(2), 154-156. doi:10.1016/j.oneear.2020.07.016
Burns, W., & Nicholson, S. (2017). Bioenergy and carbon capture with storage (BECCS): the
prospects and challenges of an emerging climate policy response. Journal of
Environmental Studies and Sciences. doi:10.1007/s13412-017-0445-6
Burns, W. C. G. (2017). Human Rights Dimensions of Bioenergy with Carbon Capture and
Storage: A framework for Climate Justice in the Realm of Climate Geoengineering. In R.
S. Abate (Ed.), Climate Justice (pp. 149-172): Environmental Law Institute.
Burton, E., Beyer, J., Bourcier, W., Mateer, N., & Reed, J. (2013). Carbon Utilization to Meet
California's Climate Change Goals. Energy Procedia, 37, 6979-6986. doi:https://doi.org/
10.1016/j.egypro.2013.06.631
Burud, I., Moni, C., Flo, A., Futsaether, C., Steffens, M., & Rasse, D. P. (2015). Qualitative and
quantitative mapping of biochar in a soil profile using hyperspectral imaging. Soil and
Tillage Research, 155, 523-531. doi:10.1016/j.still.2015.06.020
Burwood-Taylor, L. (2019). Indigo Launches Carbon Market to Incentivize Farmers to Transition
to Regenerative Agriculture. Agfunder News. Retrieved from https://agfundernews.com/
indigo-ag-to-incentivize-regenerative-agriculture-with-carbon-sequestration-market.html
Busari, M. A., Kukal, S. S., Kaur, A., Bhatt, R., & Dulazi, A. A. (2015). Conservation tillage
impacts on soil, crop and the environment. International Soil and Water Conservation
Research, 3(2), 119-129. doi:https://doi.org/10.1016/j.iswcr.2015.05.002
Busch, D., et al. (2013). Genotoxic and phytotoxic risk assessment of fresh and treated
hydrochar from hydrothermal carbonization compared to biochar from pyrolysis.
Ecotoxicology and Environmental Safety, 97, 59-66. Retrieved from http://
www.sciencedirect.com/science/article/pii/S0147651313003011
Busch, D., & Glase, B. r. (2015). Stability of co-composted hydrochar and biochar under field
conditions in a temperate soil. Soil Use and Management, 31(2), 251-258. doi:10.1111/
sum.12180
Busch, J., Engelmann, J., Cook-Patton, S. C., Griscom, B. W., Kroeger, T., Possingham, H., &
Shyamsundar, P. (2019). Potential for low-cost carbon dioxide removal through tropical
reforestation. Nature Climate Change, 9(6), 463-466. doi:10.1038/s41558-019-0485-x
Bushnaf, K. M., et al. (2011). Effect of biochar on the fate of volatile petroleum hydrocarbons in
an aerobic sandy soil. Journal of Contaminant Hydrology, 126(3-4), 208-215.
doi:10.1016/j.jconhyd.2011.08.008
Bushnaf, K. M. M. (2014). The effects of biochar or activated carbon amendments on the fate of
volatile petroleum hydrocarbons in an aerobic sandy soil. Newcastle University,
Retrieved from https://theses.ncl.ac.uk/dspace/handle/10443/2276
Bushuyev, O. S., De Luna, P., Dinh, C. T., Tao, L., Saur, G., van de Lagemaat, J., . . . Sargent,
E. H. (2018). What Should We Make with CO2 and How Can We Make It? Joule, 2(5),
825-832. doi:https://doi.org/10.1016/j.joule.2017.09.003
Buss, W., Graham, M. C., Shepherd, J. G., & Mašek, O. (2016). Suitability of marginal biomass-
derived biochars for soil amendment. Science of The Total Environment, 547, 314 - 322.
doi:10.1016/j.scitotenv.2015.11.148
Buss, W., Jansson, S., Wurzer, C., & Mašek, O. (2019). Synergies between BECCS and
Biochar—Maximizing Carbon Sequestration Potential by Recycling Wood Ash. ACS
Sustainable Chemistry & Engineering. doi:10.1021/acssuschemeng.8b05871
Buss, W., Kammann, C., & Koyro, H.-W. (2012). Biochar Reduces Copper Toxicity in
Chenopodium quinoa Willd. in a Sandy Soil. Journal of Environmental Quality, 41, 1157 -
1165. doi:10.2134/jeq2011.0022
Buss, W., & Mašek, O. (2014). Mobile organic compounds in biochar – A potential source of
contamination – Phytotoxic effects on cress seed (Lepidium sativum) germination.
Journal of Environmental Management, 137, 111–119.
Buss, W., Mašek, O., Graham, M., & Wüst, D. (2015). Inherent organic compounds in biochar–
Their content, composition and potential toxic effects. Journal of Environmental
Management, 156, 150-157. doi:10.1016/j.jenvman.2015.03.035
Busscher, W. J., Novak, J. M., Evans, D. E., Watts, D. W., Niandou, M. A. S., & Ahmedna, M.
(2010). Influence of Pecan Biochar on Physical Properties of a Norfolk Loamy Sand. Soil
Science, 175(1), 10-14. Retrieved from http://ovidsp.tx.ovid.com/sp-3.24.1b/
ovidweb.cgi?
WebLinkFrameset=1&S=OFEDFPNFDIDDOAGNNCHKFFIBPPPAAA00&returnUrl=ovid
web.cgi%3fMain%2bSearch%2bPage%3d1%26S%3dOFEDFPNFDIDDOAGNNCHKFFI
BPPPAAA00&directlink=http%3a%2f%2fovidsp.tx.ovid.com%2fovftpdfs%2fFPDDNCIBF
FGNDI00%2ffs047%2fovft%2flive%2fgv024%2f00010694%2f00010694-201001000-000
03.pdf&filename=Influence+of+Pecan+Biochar+on+Physical+Properties+of+a+Norfolk+
Loamy+Sand.&link_from=S.sh.22%7c1&pdf_key=FPDDNCIBFFGNDI00&pdf_index=/
fs047/ovft/live/gv024/00010694/00010694-201001000-00003&D=ovft
Bussewitz, C. (2021). Exxon posts $2.7B quarterly profit after unprecedented year. Star Tribune.
Retrieved from https://www.startribune.com/exxon-posts-2-7b-quarterly-profit-after-
unprecedented-year/600051989/
Bussewitz, C. (2021). Insider Q&A: Occidental wants to be Tesla of carbon capture. AP
Retrieved from https://apnews.com/article/environment-climate-change-
b2ac9969bf69154ff2a6cd45f33295ad
Bustamante, M., RobledoAbad, C., Harper, R., Mbow, C., Ravindranat, N. H., Sperling, F., . . .
Smith, P. (2014). Cobenefits, tradeoffs, barriers and policies for greenhouse gas
mitigation in the agriculture, forestry and other land use (AFOLU) sector. Global Change
Biology, 20(10), 3270-3290. doi:doi:10.1111/gcb.12591
Butenschön, M., Lovato, T., Masina, S., Caserini, S., & Grosso, M. (2021). Alkalinization
Scenarios in the Mediterranean Sea for Efficient Removal of Atmospheric CO2 and the
Mitigation of Ocean Acidification. Frontiers in Climate, 3(14). doi:10.3389/
fclim.2021.614537
Butler, R. (2009). How to Save the Amazon Rainforest. Retrieved from http://
ecosystemmarketplace.com/pages/article.news.php?
component_id=6484&component_version_id=9668&language_id=12
Butnan, S., Deenik, J. L., Toomsan, B., Antal, M. J., & Vityakon, P. (2015). Biochar
characteristics and application rates affecting corn growth and properties of soils
contrasting in texture and mineralogy. Geoderma, 237-238, 105 - 116. doi:10.1016/
j.geoderma.2014.08.010
Butphu, S., et al. (2015). Impact of biochar application on upland rice production, N use
efficiency and greenhouse gas emissions in a rotation system with sugarcane. Food
Security Center. Retrieved from https://fsc.uni-hohenheim.de/fileadmin/einrichtungen/fsc/
FSC_Brief_No.27.pdf
Butphu, S., et al. (2015). Impact of Biochar Application on Upland Rice Production, N Use
Efficiency and Greenhouse Gas Emissions in a Rotation System with Sugarcane. In.
Button, M., & Weber, K. P. (2013). Microbial community metabolic profiles in phytoextraction
plots and activated carbon/biochar-amended soils contaminated with polychlorinated
biphenyls. Paper presented at the CONFERENCE PAPER. http://www.researchgate.net/
profile/Mark_Button2/publication/
278407564_Microbial_community_metabolic_profiles_in_phytoextraction_plots_and_acti
vated_carbonbiochar-amended_soils_contaminated_with_polychlorinated_biphenyls/
links/55805d3008ae47061e5f2fa7.pdf
Buylova, A., Fridahl, M., Nasiritousi, N., & Reischl, G. (2021). Cancel (Out) Emissions? The
Envisaged Role of Carbon Dioxide Removal Technologies in Long-Term National
Climate Strategies. Frontiers in Climate, 3(63). doi:10.3389/fclim.2021.675499
Buyun, W., Cuiping, L., & Hui, L. (2013). Bioleaching of heavy metal from woody biochar using
Acidithiobacillus ferrooxidans and activation for adsorption. Bioresource Technology,
146, 803-806. Retrieved from https://www.ncbi.nlm.nih.gov/pubmed/23978608
Buyx, A., & Tait, J. (2011). Ethical Framework for Biofuels. Science, 332(6029), 540-541.
Retrieved from http://science.sciencemag.org/content/332/6029/540.full
Byrd, J., & Cooperman, E. S. (2018). Investors and stranded asset risk: evidence from
shareholder responses to carbon capture and sequestration (CCS) events. Journal of
Sustainable Finance & Investment, 8(2), 185-202. doi:10.1080/20430795.2017.1418063
C2G. (2019). Evidence Brief: Governing Marine Carbon Dioxide Removal and Solar Radiation
Modification. Retrieved from https://www.c2g2.net/wp-content/uploads/
c2g_evidencebrief_marine.pdf
C2G. (2019). Governing Marine Carbon Dioxide Removal. Retrieved from https://www.c2g2.net/
wp-content/uploads/c2g_policybrief_marine-CDR.pdf
C2G. (2019). Policy Brief: Governing Emerging Marine Climate Techniques. Retrieved from
https://www.c2g2.net/project/policy-brief-governing-emerging-marine-climate-
technologies/
C2G. (2019). Policy Brief: Governing Marine Solar Radiation Management. Retrieved from
https://www.c2g2.net/project/policy-brief-governing-marine-solar-radiation-management/
C2G. (2020). Are we going to be at the table when climate-altering approaches are considered?
An Interview with Ambassador Elizabeth Thompson (Barbados). Retrieved from https://
www.c2g2.net/c2gtalk-ambassador-liz-thompson/
C2G. (2021). Evidence Brief: Carbon Dioxide Removal and its Governance. Retrieved from
https://www.c2g2.net/project/evidence-brief-carbon-dioxide-removal-and-its-governance/
Cabral, R. P., Bui, M., & Mac Dowell, N. (2019). A synergistic approach for the simultaneous
decarbonisation of power and industry via bioenergy with carbon capture and storage
(BECCS). International Journal of Greenhouse Gas Control, 87, 221-237. doi:https://
doi.org/10.1016/j.ijggc.2019.05.020
Cabral, R. P., & Mac Dowell, N. (2017). A novel methodological approach for achieving £/MWh
cost reduction of CO2 capture and storage (CCS) processes. Applied Energy, 205,
529-539. doi:https://doi.org/10.1016/j.apenergy.2017.08.003
Cabral, R. P., & Mac Dowell, N. (2020). Chapter 6 Oxy-fuel Combustion Capture Technology. In
Carbon Capture and Storage (pp. 168-188): The Royal Society of Chemistry.
Cabrera, A., et al. . (2014). Influence of biochar amendments on the sorption–desorption of
aminocyclopyrachlor, bentazone and pyraclostrobin pesticides to an agricultural soil.
Science of The Total Environment, 470–471, 438–443.
Cabrera, F. (2015). La química del suelo en el IRNAS: de la química coloidal a la química
ambiental, pasando por Aznalcóllar (Soil chemistry in IRNAS: colloidal chemistry to
environmental chemistry, through Aznalcóllar). Paper presented at the (IRNAS)
Comunicaciones congresos - [Communications Conference]. http://digital.csic.es/handle/
10261/125268
Cadham, W., Van Dyk, J. S., Linoj Kumar, J. S., & Saddler, J. N. (2016). Chapter 7 - Challenges
and Opportunities for the Conversion Technologies Used to Make Forest Bioenergy. In
E. Thiffault, G. Berndes, M. Junginger, J. N. Saddler, & C. T. Smith (Eds.), Mobilisation of
Forest Bioenergy in the Boreal and Temperate Biomes (pp. 102-126): Academic Press.
Cage, P. (2018). Kelp and Carbon Sequestration: Exporting Terrestrial GHG Accounting to the
Deep Sea. Retrieved from https://ghginstitute.org/2018/09/06/kelp-and-carbon-
sequestration-exporting-terrestrial-ghg-accounting-to-the-deep-sea/?
utm_source=September+newsletter+2018&utm_campaign=September+Newsletter+201
8&utm_medium=email
Cai, D., Wang, L., Zhang, G., Zhang, X., & Wu, Z. (2013). Controlling Pesticide Loss by Natural
Porous Micro/Nano Composites: Straw Ash-Based Biochar and Biosilica. Acs Applied
Materials & Interfaces, 5(18), 9212-9216. doi:10.1021/am402864r
Cai, J., et al. . (2016). Effects and optimization of the use of biochar in anaerobic digestion of
food wastes. Waste Management & Resesarch, 34(5), 409-416. Retrieved from http://
wmr.sagepub.com/content/early/2016/03/04/0734242X16634196.abstract
Cai, J., Wang, S., Zeng, R., Luo, M., & Tang, X. (2018). CaO-BASED CHEMICAL LOOPING
GASIFICATION OF BIOMASS FOR THE PRODUCTION OF HYDROGEN-ENRICHED
GAS AND CO<sub>2</sub> NEGATIVE EMISSIONS: A REVIEW. 19(3-4), 257-302.
doi:10.1615/InterJEnerCleanEnv.2018025185
Cai, W.-J. (2010). Estuarine and Coastal Ocean Carbon Paradox: CO2 Sinks or Sites of
Terrestrial Carbon Incineration? Annual Review of Marine Science, 3(1), 123-145.
doi:10.1146/annurev-marine-120709-142723
Cai, Y., & Chang, S. X. (2015). Biochar Effects on Soil Fertility and Nutrient Cycling. In Biochar:
Production, Characterization, and Applications.
Cairns, E. (2020). Net Zero - Idle Promises? The Corner. Retrieved from http://thecorner.eu/
news-the-world/net-zero-idle-promises/88714/Cairns
Calbry-Muzyka, S., & Edwards, C. F. (2014). Thermodynamic Benchmarking of CO2 Capture
Systems: Exergy Analysis Methodology for Adsorption Processes. Energy Procedia, 63,
1-17. doi:http://dx.doi.org/10.1016/j.egypro.2014.11.002
Caldecott, B., Lomax, G., & Workman, M. (2015). Stranded Carbon Assets and Negative
Emissions Technologies. Retrieved from http://www.interfacecutthefluff.com/wp-content/
uploads/2012/09/Stranded-Carbon-Assets-and-NETs-06.02.15.pdf
Caldeira, K. (2000). Accelerating carbonate dissolution to sequester carbon dioxide in the
ocean: Geochemical implications. Geophysical Research Letters, 27(2), 225-228.
Retrieved from https://www.researchgate.net/profile/Ken_Caldeira/publication/
248813518_Accelerating_carbonate_dissolution_to_sequester_carbon_dioxide_in_the_
ocean_Geochemical_implications/links/53cee7ed0cf25dc05cfad6ba.pdf
Caldeira, K., Herzog, H. J., & Wickett, M. E. (2001). Predicting and evaluating the effectiveness
of ocean carbon sequestration by direct injection. Paper presented at the First National
Conference on Carbon Sequestration. https://www.netl.doe.gov/publications/
proceedings/01/carbon_seq/p48.pdf
Calderón, F. J., Benjamin, J., & Vigil, M. F. (2015). A Comparison of Corn (Zea mays L.) Residue
and Its Biochar on Soil C and Plant Growth. Plos One, 10(4), e0121006. doi:10.1371/
journal.pone.0121006.t005
Calfapietra, C., et al. (2010). Response and potential of agroforestry crops under global change.
Environmental Pollution, 158, 1095-1104. Retrieved from http://aspenface.mtu.edu/pdfs/
Calfapietra%20Response.pdf
Caliandro, R., et al. (2014). Characterization of Plant Biomass Derived Black Carbon (Biochar)
as Soil Amendment by X Ray Powder Diffraction. In.
Callaway, D. (2021). Marine snow, a Croatian plan to store carbon on the bottom of the sea.
Callaway Climate Insights. Retrieved from https://www.callawayclimateinsights.com/p/
zeus-marine-snow-a-croatian-plan?
token=eyJ1c2VyX2lkIjo2Mjg1NTM0LCJwb3N0X2lkIjozMjYxNTI4NCwiXyI6IjBuQTEzIiwia
WF0IjoxNjE1Mzk0MzMzLCJleHAiOjE2MTUzOTc5MzMsImlzcyI6InB1Yi0zMzQyMyIsInN
1YiI6InBvc3QtcmVhY3Rpb24ifQ.x4HkxAm4HDvGwnxfBpzgeUtTc3vj832uXAM3Vs4ec04
Callow, B., Falcon-Suarez, I., Ahmed, S., & Matter, J. (2018). Assessing the carbon
sequestration potential of basalt using X-ray micro-CT and rock mechanics. International
Journal of Greenhouse Gas Control, 70, 146-156. doi:https://doi.org/10.1016/
j.ijggc.2017.12.008
Calma, J. (2020). United makes plans to capture its planet-heating pollution. The Verge.
Retrieved from https://www.theverge.com/2020/12/11/22169798/united-airlines-
emissions-carbon-capture-climate-change-goal
Calvelo Pereira, R., et al. . (2011). Contribution to characterisation of biochar to estimate the
labile fraction of carbon. Organic Geochemistry, 42(11), 1331-1342. doi:10.1016/
j.orggeochem.2011.09.002
Calvelo Pereira, R., et al. . (2013). Detailed carbon chemistry in charcoals from pre-European
Maori gardens of New Zealand as a tool for understanding biochar stability in soils.
European Journal of Soil Science, 65(1), 83-95. Retrieved from http://
onlinelibrary.wiley.com/doi/10.1111/ejss.12096/pdf
Calvelo Pereira, R., et al. (2015). Assessment of the surface chemistry of wood-derived
biochars using wet chemistry, Fourier transform infrared spectroscopy and X-ray
photoelectron spectroscopy. Soil Research, 53(7), 753. doi:10.1071/sr14194
Calvelo Pereira, R., Hedley, M., Camps Arbestain, M., Wisnubroto, E., Green, S., Saggar,
S., . . . Mahmud, A. F. (2015). Net changes of soil C stocks in two grassland soils 26
months after simulated pasture renovation including biochar addition. GCB Bioenergy,
8(3), 600-615. doi:10.1111/gcbb.12271
Calvelo Pereira, R., Muetzel, S., Arbestain, M. C., Bishop, P., Hina, K., & Hedley, M. (2014).
Assessment of the influence of biochar on rumen and silage fermentation: A laboratory-
scale experiment. Animal Feed Science and Technology, 196, 22=31. doi:10.1016/
j.anifeedsci.2014.06.019
Calvin, K., et al. (2013). Trade-offs of different land and bioenergy policies on the path to
achieving climate targets. Climatic Change, 123(3-4), 691-703. Retrieved from https://
link.springer.com/article/10.1007%2Fs10584-013-0897-y
Calvin, W. H. (2013). Emergency 20-year Drawdown of Excess CO via Push-Pull Ocean
Pumps. Retrieved from https://co2foundation.org/mit-proposal/
Calvinho, K. U. D., et al. (2018). Selective CO2 reduction to C3 and C4 oxyhydrocarbons on
nickel phosphides at overpotentials as low as 10 mV. Energy & Environmental Science.
Retrieved from https://pubs.rsc.org/en/content/articlepdf/2018/ee/c8ee00936h
Calvinho, K. U. D., et al. (2018). Using Electrocatalysts To Find New Uses For Captured CO2.
Science Trends. Retrieved from https://sciencetrends.com/using-electrocatalysts-to-find-
new-uses-for-captured-co2/
Campbell, A., & Doswald, N. (2008). The impacts of biofuel production on biodiversity:
A review of the current literature. Retrieved from https://www.cbd.int/agriculture/2011-121/
UNEP-WCMC3-sep11-en.pdf
Campbell, J. E., Lobell, D. B., Genova, R. C., & Field, C. B. (2008). The Global Potential of
Bioenergy on Abandoned Agriculture Lands. Environmental Science & Technology,
42(15), 5791-5794. doi:10.1021/es800052w
Campbell, J. L., Sessions, J., Smith, D., & Trippe, K. (2018). Potential carbon storage in biochar
made from logging residue: Basic principles and Southern Oregon case studies. Plos
One, 13(9), e0203475. doi:10.1371/journal.pone.0203475
Campbell-Arvai, V., Hart, P. S., Raimi, K. T., & Wolske, K. S. (2017). The influence of learning
about carbon dioxide removal (CDR) on support for mitigation policies. Climatic Change,
143(3-4), 321-336. doi:10.1007/s10584-017-2005-1
Campe, J. (2015). Potential of Remineralization as a Global Movement. In T. Goreau, R. Larson,
& J. Campe (Eds.), Geotherapy: Innovative Methods of Soil Fertility Restoration, Carbon
Sequestration, and Reversing CO2 Increase (pp. 82-110).
Camps Arbestain, M., Saggar, S., & Leifeld, J. (2014). Environmental benefits and risks of
biochar application to soil. Agriculture, Ecosystems & Environment, 191, 1-4. doi:http://
dx.doi.org/10.1016/j.agee.2014.04.014
Camps, M., & Tomlinson, T. (2015). The Use of!Biochar!in Composting. Retrieved from http://
www.biochar-international.org/sites/default/files/Compost_biochar_IBI_final.pdf
Camps-Arbestain, M., et al. (2015). A biochar classification system and associated test
methods. In Biochar for Environmental Management: Science and Technology and
Implementation.
Canada, G. o. (2021). Canadian budget Part 2: Creating Jobs and Growth Chapter 5: A Healthy
Environment for a Healthy Economy Retrieved from https://www.budget.gc.ca/2021/
report-rapport/p2-en.html?s=03#chap5
Canadell, J. G., & Raupach, M. R. (2008). Managing Forests for Climate Change Mitigation.
Science, 320(5882), 1456-1457. Retrieved from http://science.sciencemag.org/content/
320/5882/1456.full
Canadell, J. G., & Schulze, E. D. (2013). Global potential of biospheric carbon management for
climate mitigation. Nature Communications, 5(5282), 1-12. Retrieved from http://
www.nature.com/articles/ncomms6282
Cannavan, F. S., Nakamura, F. M., Germano, M. G., de Souza, L. F., & Tsai, S. M. (2016).
Chapter 5 - Next-Generation Sequencing to Elucidate Biochar-Effected Microbial
Community Dynamics. In Biochar Application (pp. 109-132): Elsevier.
Cannell, M. G. R. (2003). Carbon sequestration and biomass energy offset: theoretical, potential
and achievable capacities globally, in Europe and the UK. Biomass and Bioenergy,
24(2), 97-116. doi:https://doi.org/10.1016/S0961-9534(02)00103-4
Canter, C. E., Blowers, P., Handler, R. M., & Shonnard, D. R. (2015). Implications of widespread
algal biofuels production on macronutrient fertilizer supplies: Nutrient demand and
evaluation of potential alternate nutrient sources. Applied Energy, 143, 71-80. doi:http://
dx.doi.org/10.1016/j.apenergy.2014.12.065
Cantrell, K. B., et al. (2011). Impact of Pyrolysis Temperature and Manure Source on
Physicochemical Characteristics of Biochar. Bioresource Technology, 107, 419-428.
doi:10.1016/j.biortech.2011.11.084
Cantrell, K. B., & Martin II, J. (2011). Stochastic state-space temperature regulation of biochar
production. Part II: Application to manure processing via pyrolysis. Journal of the
Science of Food and Agriculture, 92(3), 490-495. doi:10.1002/jsfa.4617
Cao, C. T. N., Farrell, C., Kristiansen, P. E., & Rayner, J. P. (2014). Biochar makes green roof
substrates lighter and improves water supply to plants. Ecological Engineering, 71, 368 -
374. doi:10.1016/j.ecoleng.2014.06.017
Cao, H., Xin, Y., & Yuan, Q. (2016). Prediction of biochar yield from cattle manure pyrolysis via
least squares support vector machine intelligent approach. Bioresource Technology, 202,
158 - 164. doi:10.1016/j.biortech.2015.12.024
Cao, L., & Caldeira, K. (2010). Atmospheric carbon dioxide removal: long-term consequences
and commitment. Environmental Research Letters, 5, 1-6. Retrieved from http://
iopscience.iop.org/article/10.1088/1748-9326/5/2/024011/pdf
Cao, M., & Gu, Y. (2013). Oil recovery mechanisms and asphaltene precipitation phenomenon
in immiscible and miscible CO2 flooding processes. Fuel, 109, 157-166. doi:https://
doi.org/10.1016/j.fuel.2013.01.018
Cao, X., et al. (2011). Simultaneous Immobilization of Lead and Atrazine in Contaminated Soils
Using Dairy-Manure Biochar. Environmental Science & Technology, 45(11), 4884–4889.
doi:10.1021/es103752u
Cao, X., & Harris, W. (2010). Properties of dairy-manure-derived biochar pertinent to its
potential use in remediation. Bioresource Technology, 101(14), 5222-5228. Retrieved
from http://www.sciencedirect.com/science/article/pii/S0960852410003639
Cao, X., Ma, L., Gao, B., & Harris, W. (2009). Dairy-manure derived biochar effectively sorbs
lead and atrazine. Environmental Science & Technology, 43(9), 3285-3291. Retrieved
from http://pubs.acs.org/doi/abs/10.1021/es803092k
Caporale, A. G., Pigna, M., Sommella, A., & Conte, P. (2014). Effect of pruning-derived biochar
on heavy metals removal and water dynamics. Biology and Fertility of Soils, 50(8), 1211
- 1222. doi:10.1007/s00374-014-0960-5
Capron, M. E. (2020). Restoring Pre-Industrial CO2 Levels While Achieving Sustainable
Development Goals. Energies, 13(18), 1-30. Retrieved from https://www.mdpi.com/
1996-1073/13/18/4972
Capron, M. E., Stewart, J. R., Rowe, R. K., & Ieee. (2013). Secure Seafloor Container CO2
Storage. In 2013 Oceans - San Diego. New York: Ieee.
Caputo, A. C., et al. (2005). Economics of biomass energy utilization in combustion and
gasification plants:effects of logistic variables. Biomass & Bioenergy, 28, 35-51.
Retrieved from https://eclass.duth.gr/modules/document/file.php/
TMC233/%CE%92%CE%B9%CE%B2%CE%BB%CE%B9%CE%BF%CE%B3%CF%81
%CE%B1%CF%86%CE%AF%CE%B1/
Economics%20of%20biomass%20energy%20utilization%20in%20combustion%20and%
20gasification%202005.pdf
Carbo, M. C., Smit, R., van der Drift, B., & Jansen, D. (2011). Bio Energy with CCS (BECCS):
Large potential for BioSNG at low CO2 avoidance cost. In J. Gale, C. Hendriks, & W.
Turkenberg (Eds.), 10th International Conference on Greenhouse Gas Control
Technologies (Vol. 4, pp. 2950-2954). Amsterdam: Elsevier Science Bv.
Carbo, M. C., Smit, R., van der Drift, B., & Jansen, D. (2011). Bio energy with CCS (BECCS):
Large potential for BioSNG at low CO2 avoidance cost. Energy Procedia, 4, 2950-2954.
doi:https://doi.org/10.1016/j.egypro.2011.02.203
Carbon180. (2018). SUPPORTING INFORMATION. A Review of Global and U.S. Total Available
Markets for Carbontech. Retrieved from https://static1.squarespace.com/static/
5b9362d89d5abb8c51d474f8/t/5bfc89204ae237fabfd8df98/1543276832241/
MS_Supporting_Info.pdf
CarbonDirect. (2020). 5 Principles for High-Quality Carbon Removal from Nature-Based Climate
Solutions. Retrieved from https://carbon-direct.com/wp-content/uploads/2021/03/CD-
Principles-for-Carbon-Removal.docx.pdf
CarbonDirect. (2021). Voluntary Registry Offsets Database. Retrieved from https://carbon-
direct.com/wp-content/uploads/2021/04/CD-Commentary-on-Voluntary-Registry-Offsets-
Database_April-2021.pdf
Cardelli, R., & Saviozzi, A. (2015). Il biochar e il suo potere fertilizzante: una opportunità per
l'uso ecosostenibile del suolo agrario. (The biochar and its fertilising: an opportunity for
the sustainable use of agricultural soil.). FERTILIZZANTI (FERTILIZERS). Retrieved
from https://arpi.unipi.it/handle/11568/354267#.VZIYSfmqqkp
Cardinael, R., Chevallier, T., Barthès, B. G., Saby, N. P. A., Parent, T., Dupraz, C., . . . Chenu, C.
(2015). Impact of alley cropping agroforestry on stocks, forms and spatial distribution of
soil organic carbon — A case study in a Mediterranean context. Geoderma, 259-260,
288-299. doi:https://doi.org/10.1016/j.geoderma.2015.06.015
Cardinael, R., Chevallier, T., Cambou, A., Béral, C., Barthès, B. G., Dupraz, C., . . . Chenu, C.
(2017). Increased soil organic carbon stocks under agroforestry: A survey of six different
sites in France. Agriculture, Ecosystems & Environment, 236, 243-255. doi:https://
doi.org/10.1016/j.agee.2016.12.011
Carey, D. E., McNamara, P. J., & Zitomer, D. H. (2015). Biochar from Pyrolysis of Biosolids for
Nutrient Adsorption and Turfgrass Cultivation. Water Environment Research, 87(12),
2098 - 2106. doi:10.2175/106143015x14362865227391
Carey, T. (2021). Green Sand Beaches Could Erase Carbon Emissions Retrieved from https://
www.freethink.com/articles/green-sand-carbon
Carey, T. (2021). Should We Genetically Engineer Carbon-Hungry Trees? Retrieved from
https://www.freethink.com/articles/genetically-modified-trees
(2020, April 12). Climate: 60-Second Science [Retrieved from https://
www.scientificamerican.com/podcast/episode/to-fight-climate-change-grow-a-floating-
forest-then-sink-it/?
utm_source=newsletter&utm_medium=email&utm_campaign=earth&utm_content=link&
utm_term=2021-04-14_top-
stories&spMailingID=69968919&spUserID=MTA3NjMxNDQzMjQ4S0&spJobID=210253
4225&spReportId=MjEwMjUzNDIyNQS2
Carlotti, F., Thibault-Botha, D., Nowaczyk, A., & Lefèvre, D. (2008). Zooplankton community
structure, biomass and role in carbon fluxes during the second half of a phytoplankton
bloom in the eastern sector of the Kerguelen Shelf (January–February 2005). Deep Sea
Research Part II: Topical Studies in Oceanography, 55(5), 720-733. doi:https://doi.org/
10.1016/j.dsr2.2007.12.010
Carlson, J., Saxena, J., Basta, N., Hundal, L., Busalacchi, D., & Dick, R. P. (2015). Application
of organic amendments to restore degraded soil: effects on soil microbial properties.
Environmental Monitoring and Assessment, 187(3). doi:10.1007/s10661-015-4293-0
Carnaje, N. P., Amparado, R. F., Jr., & Malaluan, R. M. (2015). Amending acidic soil with
bamboo (Bambusa blumeana) biochar: effect on mung bean (Vigna radiata) growth rate
and yield. AES Bioflux, 7(1), 1-10. Retrieved from http://www.cabdirect.org/abstracts/
20153165022.html
Carne, N. (2019). Rebuilding forests is a cost-effective way to cut carbon. Comos. Retrieved
from https://cosmosmagazine.com/climate/rebuilding-forests-is-a-cost-effective-way-to-
cut-carbon
Carneiro, M. L. N. M., Pradelle, F., Braga, S. L., Gomes, M. S. P., Martins, A. R. F. A., Turkovics,
F., & Pradelle, R. N. C. (2017). Potential of biofuels from algae: Comparison with fossil
fuels, ethanol and biodiesel in Europe and Brazil through life cycle assessment (LCA).
Renewable and Sustainable Energy Reviews, 73, 632-653. doi:https://doi.org/10.1016/
j.rser.2017.01.152
Carnes, M., et al. (2021). E-fuels versus DACCS. Retrieved from https://www.google.com/url?
sa=t&rct=j&q=&esrc=s&source=web&cd=&ved=2ahUKEwjOlu-
Zj6_yAhXDVc0KHf_HCLYQFnoECAQQAQ&url=https%3A%2F%2Fwww.transportenviro
nment.org%2Fsites%2Fte%2Ffiles%2Fpublications%2F2021_08_TE_study_efuels_DA
CCS.pdf&usg=AOvVaw1ISqTfB9c6PZJLJT0NLwoa
Carnice, P. A. B. (2014). Attenuation of Amoeba in Biocharamended Clayey and Sandy Soil.
IAMURE International Journal of Ecology and Conservation, 11(1). doi:10.7718/
ijec.v11i1.807
Caroko, W., Komarudin, H., Obidzinski, K., & Gunarso, P. (2011). Policy and institutional
frameworks for the development of palm oil–based biodiesel in Indonesi. Retrieved from
http://www.cifor.org/publications/pdf_files/WPapers/WP62Komarudin.pdf
Carpenter, B., & Nair, A. (2013). Effect of Biochar on Carrot Production. Retrieved from http://
lib.dr.iastate.edu/cgi/viewcontent.cgi?article=2999&context=farms_reports&sei-
redir=1&referer=http%3A%2F%2Fscholar.google.com%2Fscholar_url%3Fhl%3Den%26
q%3Dhttp%3A%2F%2Flib.dr.iastate.edu%2Fcgi%2Fviewcontent.cgi%253Farticle%253D
2999%2526context%253
Carpenter, C. (2017). First CO2-Enhanced-Oil-Recovery Demonstration Project in Saudi Arabia.
Journal of Petroleum Science and Engineering, 69(7). Retrieved from https://
www.spe.org/en/jpt/jpt-article-detail/?art=3121
Carpenter, C. (2017). Integrating Enhanced Oil Recovery and Carbon Capture and Storage:
Farnsworth Field. Journal of Petroleum Science and Engineering, 69(7). Retrieved from
https://www.spe.org/en/jpt/jpt-article-detail/?art=3120
Carr, M., & Rathi, A. (2020). Britain Is Getting Ready to Scale Up Negative-Emissions
Technology. Bloomberg Green. Retrieved from https://www.bloomberg.com/amp/news/
articles/2020-02-07/britain-is-getting-ready-to-scale-up-negative-emissions-technology?
__twitter_impression=true
Carrera, G. V. S. M. (2017). Bio-inspired Systems for Carbon Dioxide Capture, Sequestration
and Utilization. In Y. Yung (Ed.), (pp. 117-137).
Carrier, M., et al. (2012). Production of char from vacuum pyrolysis of South-African sugar cane
bagasse and its characterization as activated carbon and biochar. Journal of Analytical
and Applied Pyrolysis, 96, 24-32. Retrieved from http://www.sciencedirect.com/science/
article/pii/S016523701200037X
Carrington, D. (2017). Mineral dust sprinkled in oceans could absorb vast amounts of carbon:
study. The Guardian. Retrieved from https://www.theguardian.com/environment/2013/
jan/22/mineral-dust-oceans-carbon-geoengineering
Carrington, D. (2018). ‘Silver bullet’ to suck CO2 from air and halt climate change ruled out. The
Guardian. Retrieved from https://www.theguardian.com/environment/2018/feb/01/silver-
bullet-to-suck-co2-from-air-and-halt-climate-change-ruled-out?CMP=share_btn_fb
Carrington, D. (2021). Trials to suck carbon dioxide from the air to start across the UK. The
Guardian. Retrieved from https://www.theguardian.com/environment/2021/may/24/trials-
to-suck-carbon-dioxide-from-the-air-to-start-across-the-uk?CMP=Share_iOSApp_Other
Carroll, R. (2019). The wrong kind of trees: Ireland's afforestation meets resistance. The
Guardian. Retrieved from https://www.theguardian.com/world/2019/jul/07/the-wrong-
kind-of-trees-irelands-afforestation-meets-resistance
Carter, S., et al. (2013). The Impact of Biochar Application on Soil Properties and Plant Growth
of Pot Grown Lettuce (Lactuca sativa) and Cabbage (Brassica chinensis). Agronomy,
3(2), 404-418. doi:doi:10.3390/agronomy3020404
Carter, S., Arts, B., Giller, K. E., Golcher, C. S., Kok, K., de Koning, J., . . . Herold, M. (2018).
Climate-smart land use requires local solutions, transdisciplinary research, policy
coherence and transparency. Carbon Management, 9(3), 291-301.
doi:10.1080/17583004.2018.1457907
Carter, S., & Shackley, S. (2012). Biochar: biomass energy, agriculture and carbon
sequestration (0263-3167). Retrieved from
Cartier, K. M. S. (2020). Basalts Turn Carbon into Stone for Permanent Storage. Retrieved from
https://eos.org/articles/basalts-turn-carbon-into-stone-for-permanent-storage
Carton, W. (2019). “Fixing” Climate Change by Mortgaging the Future: Negative Emissions,
Spatiotemporal Fixes, and the Political Economy of Delay. Antipode, 51(3), 750-769.
doi:10.1111/anti.12532
Carton, W., Asiyanbi, A., Beck, S., Buck, H. J., & Lund, J. F. (2020). Negative emissions and the
long history of carbon removal. WIREs Climate Change, 11(6), 1-25. doi:10.1002/
wcc.671
Carton, W., & Lund, F. J. (2020). Guest post: Learning from the contentious history of ‘carbon
removal’. Carbon Brief. Retrieved from https://www.carbonbrief.org/guest-post-learning-
from-the-contentious-history-of-carbon-removal
Carton, W., Lund, J. F., & Dooley, K. (2021). Undoing Equivalence: Rethinking Carbon
Accounting for Just Carbon Removal. Frontiers in Climate, 3(30). doi:10.3389/
fclim.2021.664130
Carus, M., et al. (2020). Renewable Carbon – Key to a Sustainable and Future-Oriented
Chemical and Plastic Industry. Retrieved from https://renewable-carbon.eu/publications/
download-confirmation-page/?
somdn_rrpage=somdn_rrpage&somdn_rrtdid=10246&somdn_rrdkey=MTAyNDY&somdn
_rrskey=MTYxNjg1MzgzMg=&somdn_rrpkey=MjE1MA=&somdn_rrukey=MA=&somdn_r
rtype=cmVkaXJlY3Q
Carvalho, M. T. de M., et al. (2015). Growth of aerobic rice in the presence of biochar as soil
amendment: short-term effects in a clayey Rhodic Ferralsol in the Brazilian savanna
(Cerrado). ALICE. Retrieved from http://www.alice.cnptia.embrapa.br/handle/doc/982760
Carvalho, M. T. d. M., et al. . (2014). Biochar increases plant available water in a sandy soil
under an aerobic rice cropping system. Solid Earth Discussions, 6, 887–917. Retrieved
from http://www.solid-earth-discuss.net/6/887/2014/sed-6-887-2014.pdf
Carvalho, R. S., Lombardi, K. C., & Pinheiro, E. G. (2013, 2013//). Physical Attributes of Soil
Evaluated for 9 Months After Application of Biochar in Planting Eucalyptus benthamii.
Paper presented at the Functions of Natural Organic Matter in Changing Environment,
Dordrecht.
Carwardine, J., Hawkins, C., Polglase, P., Possingham, H. P., Reeson, A., Renwick, A. R., . . .
Martin, T. G. (2015). Spatial Priorities for Restoring Biodiverse Carbon Forests.
BioScience, 65(4), 372-382. doi:10.1093/biosci/biv008
Case, S., McNamara, N., Reay, D. S., Chaplow, J., & Whitaker, J. (2014). Soil properties and
soil greenhouse gas emissions in biochar-amended bioenergy soils incubated under
controlled laboratory conditions. Retrieved from http://nora.nerc.ac.uk/508167/
Case, S., McNamara, N., Reay, D. S., Stott, A., Grant, H., & Whitaker, J. (2015). Chemical
analysis of nitrogen transformations in biochar amended soil. NERC Open Research
Archive. Retrieved from http://nora.nerc.ac.uk/508166/
Case, S. D. C., et al. (2012). The effect of biochar addition on N2O and CO2 emissions from a
sandy loam soil – The role of soil aeration. Soil Biology and Biochemistry, 51, 125-134.
Retrieved from http://www.sciencedirect.com/science/article/pii/S0038071712001277
Case, S. D. C. (2013). Biochar amendment and greenhouse gas emissions from agricultural
soils. The University of Edinburgh, Retrieved from https://www.era.lib.ed.ac.uk/handle/
1842/8049
Case, S. D. C., et al. . (2013). Can biochar reduce soil greenhouse gas emissions from a
Miscanthus bioenergy crop? GCB Bioenergy, 6(1), 76-89.
Case, S. D. C., et al. (2015). Biochar suppresses N2O emissions while maintaining N availability
in a sandy loam soil. Soil Biology and Biochemistry, 81, 178 - 185. doi:10.1016/
j.soilbio.2014.11.012
Case, S. D. C., McNamara, N. P., Reay, D. S., & Whitaker, J. (2012). The effect of biochar
addition on N2O and CO2 emissions from a sandy loam soil – The role of soil aeration.
Soil Biology and Biochemistry, 51, 125-134. doi:https://doi.org/10.1016/
j.soilbio.2012.03.017
Case, S. D. C., McNamara, N. P., Reay, D. S., & Whitaker, J. (2014). Can biochar reduce soil
greenhouse gas emissions from a Miscanthus bioenergy crop? GCB Bioenergy, 6(1),
76-89. doi:10.1111/gcbb.12052
Case, S. D. C., Uno, H., Nakajima, Y., Stoumann Jensen, L., & Akiyama, H. (2017). Bamboo
biochar does not affect paddy soil N2O emissions or source following slurry or mineral
fertilizer amendment—a 15N tracer study. Journal of Plant Nutrition and Soil Science,
181(1), 90-98. doi:10.1002/jpln.201600477
Caserini, S., Barreto, B., Lanfredi, C., Cappello, G., Ross Morrey, D., & Grosso, M. (2019).
Affordable CO2 negative emission through hydrogen from biomass, ocean liming, and
CO2 storage. Mitigation and Adaptation Strategies for Global Change, 24, 1231-1246.
doi:10.1007/s11027-018-9835-7
Caserini, S., Dolci, G., Azzellino, A., Lanfredi, C., Rigamonti, L., Barreto, B., & Grosso, M.
(2017). Evaluation of a new technology for carbon dioxide submarine storage in glass
capsules. International Journal of Greenhouse Gas Control, 60, 140-155. doi:https://
doi.org/10.1016/j.ijggc.2017.03.007
Caserini, S., Pagano, D., Campo, F., Abbà, A., De Marco, S., Righi, D., . . . Grosso, M. (2021).
Potential of Maritime Transport for Ocean Liming and Atmospheric CO2 Removal.
Frontiers in Climate, 3(22). doi:10.3389/fclim.2021.575900
Cassar, N., et al. (2007). The Southern Ocean Biological Response to Aeolian Iron Deposition.
Science, 317(5841), 1067-1070. Retrieved from http://science.sciencemag.org/content/
317/5841/1067
Casselman, A. (2007). Special Report: Inspired by Ancient Amazonians, a Plan to Convert Trash
into Environmental Treasure. Retrieved from http://www.scientificamerican.com/
article.cfm?id=pyrolyisis-terra-preta-could-eliminate-garbage-generate-oil-carbon-
sequestration
Casson, A. (2000). The Hesitant boom: Indonesia's oil palm sub-sector in an era of economic
crisis and political change. Bogor, Indonesia: CIFOR.
Casson, A. (2002). The political economy of Indonesia’s oil palm sub-sector. In C. J. P. Colfer &
I. Resosudarmo (Eds.), Which way forward? People, forests and policy making in
Indonesia (pp. 221-245): Resources for the Future.
Casson, A., Tacconi, L., & Deddy, K. (2007). Strategies to Reduce Carbon Emissions from the
oil palm sector in Indonesia. Retrieved from
Castaldi, S., et al. (2011). Impact of biochar application to a Mediterranean wheat crop on soil
microbial activity and greenhouse gas fluxes. Chemosphere, 85(9), 1464-1471.
doi:10.1016/j.chemosphere.2011.08.031
Castañeda-Gómez, L., Walker, J. K. M., Powell, J. R., Ellsworth, D. S., Pendall, E., & Carrillo, Y.
(2020). Impacts of elevated carbon dioxide on carbon gains and losses from soil and
associated microbes in a Eucalyptus woodland. Soil Biology and Biochemistry, 107734.
doi:https://doi.org/10.1016/j.soilbio.2020.107734
Castellini, M., et al. (2014). Effect of Biochar Application on Hydraulic Conductivity of a Clay
Soil. Paper presented at the 2nd Mediterranean Biochar Symposium. http://
www.researchgate.net/publication/
259868036_EFFECT_OF_BIOCHAR_APPLICATION_ON_HYDRAULIC_CONDUCTIVI
TY_OF_A_CLAY_SOIL
Castellini, M., et al. (2015). Impact of biochar addition on the physical and hydraulic properties
of a clay soil. Soil and Tillage Research, 154, 1-13. Retrieved from http://
www.sciencedirect.com/science/article/pii/S0167198715001336
Castracani, C., Maienza, A., Grasso, D. A., Genesio, L., Malcevschi, A., Miglietta, F., . . . Mori, A.
(2015). Biochar–macrofauna interplay: Searching for new bioindicators. Science of The
Total Environment, 536, 449 - 456. doi:10.1016/j.scitotenv.2015.07.019
Castree, N. (2020). The Discourse and Reality of Carbon Dioxide Removal: Toward the
Responsible Use of Metaphors in Post-normal Times. Frontiers in Climate, 2(33).
doi:10.3389/fclim.2020.614014
Caswell, M. (2021). Virgin Atlantic signs MoU with CO2 Direct Air Capture service. Business
Traveller. Retrieved from https://www.businesstraveller.com/business-travel/2021/08/22/
virgin-atlantic-signs-mou-with-co2-direct-air-capture-service/
Catanoso, J. (2017). Carbon sequestration role of savanna soils key to climate goals.
Mongabay. Retrieved from https://news.mongabay.com/2017/11/carbon-sequestration-
role-of-savanna-soils-key-to-climate-goals/
Catanoso, J. (2017). Consensus grows: climate-smart agriculture key to Paris Agreement goals.
Mongabay. Retrieved from https://news.mongabay.com/2017/12/consensus-grows-
climate-smart-agriculture-key-to-paris-agreement-goals/
Catanoso, J. (2019). COP25: Wood pellet CEO claims biomass carbon neutrality, despite
science. Mongaby. Retrieved from https://news.mongabay.com/2019/12/cop25-wood-
pellet-ceo-claims-biomass-carbon-neutrality-despite-science/
Catanoso, J. (2020). Success of Microsoft’s ‘moonshot’ climate pledge hinges on forest
conservation. Mongabay. Retrieved from https://news.mongabay.com/2020/02/success-
of-microsofts-moonshot-climate-pledge-hinges-on-forest-conservation/
Catto, M. L., Tait, C. D., Van Thorre, D. M., & Scalzo, P. J. (2015).
Cava Barrocal, D. (2016). Cork waste for metal removal from aqueous solution. In.
Cavagna, A. J., Fripiat, F., Dehairs, F., Wolf-Gladrow, D., Cisewski, B., Savoye, N., . . . Cardinal,
D. (2011). Silicon uptake and supply during a Southern Ocean iron fertilization
experiment (EIFEX) tracked by Si isotopes. Limnology and Oceanography, 56(1),
147-160. doi:10.4319/lo.2011.56.1.0147
Cavender-Bares, K. K. (1999). Differential response of equatorial Pacific phytoplankton to iron
fertilization. Limnology & Oceanography, 44(2), 237-246. Retrieved from https://
s3.amazonaws.com/academia.edu.documents/46414166/
Differential_response_of_equatorial_Paci20160612-6047-18o8gb9.pdf?
AWSAccessKeyId=AKIAIWOWYYGZ2Y53UL3A&Expires=1543621550&Signature=vWA
EeSwEBWXgaezyI1w1kWoMigw%3D&response-content-
disposition=inline%3B%20filename%3DDifferential_response_of_equatorial_Paci.pdf
Cayuela, M. L., et al. (2010). Bioenergy by-products as soil amendments? Implications for
carbon sequestration and greenhouse gas emissions. GCB Bioenergy, 2, 201–213.
Retrieved from http://onlinelibrary.wiley.com/doi/10.1111/j.1757-1707.2010.01055.x/
abstract
Cayuela, M. L., et al. (2013). Biochar and denitrification in soils: when, how much and why does
biochar reduce N2O emissions? Scientific Reports, 3. Retrieved from http://
www.ncbi.nlm.nih.gov/pmc/articles/PMC3635057/
Cayuela, M. L., Jeffery, S., & Van Zwieten, L. (2015). The molar H:Corg ratio of biochar is a key
factor in mitigating N2O emissions from soil. Agriculture, Ecosystems & Environment,
202, 135 - 138. doi:10.1016/j.agee.2014.12.015
Cayuela, M. L., van Zwieten, L., Singh, B. P., Jeffery, S., Roig, A., & Sánchez-Monedero, M. A.
(2014). Biochar's role in mitigating soil nitrous oxide emissions: A review and meta-
analysis. Agriculture, Ecosystems & Environment, 191, 5-16. doi:http://dx.doi.org/
10.1016/j.agee.2013.10.009
Cebrucean, D., Cebrucean, V., & Ionel, I. (2014). CO2 Capture and Storage from Fossil Fuel
Power Plants. Energy Procedia, 63, 18-26. doi:https://doi.org/10.1016/
j.egypro.2014.11.003
Cebrucean, D., Cebrucean, V., & Ionel, I. (2017). Modeling and Evaluation of a Coal Power
Plant with Biomass Cofiring and CO2 Capture. In Y. Yung (Ed.), (pp. 31-55).
Cely, P., et al. (2014). Agronomic properties of biochars from different manure wastes. Journal of
Analytical and Applied Pyrolysis, 111, 173-182. doi:10.1016/j.jaap.2014.11.014
Cely, P., et al. (2014). Factors driving carbon mineralization priming effect in a soil amended with
different types of biochar. Solid Earth Discussions, 6, 849–868. Retrieved from http://
www.solid-earth-discuss.net/6/849/2014/sed-6-849-2014.pdf
Cely, P., Tarquis, A. M., Paz-Ferreiro, J., Méndez, A., & Gascó, G. (2014). Factors driving the
carbon mineralization priming effect in a sandy loam soil amended with different types of
biochar. Solid Earth, 5(1), 585-594. doi:10.5194/se-5-585-2014
Centi, G., & Perathoner, S. (2010). Towards solar fuels from water and CO2. ChemSusChem, 3,
195.
Centofanti, T., McConnell, L. L., Chaney, R. L., Beyer, N. W., Andrade, N. A., Hapeman, C.
J., . . . Jackson, D. (2016). Organic amendments for risk mitigation of organochlorine
pesticide residues in old orchard soils. Environmental Pollution, 210, 182 - 191.
doi:10.1016/j.envpol.2015.11.039
(2021). Greenhouse Gas Removal: Technological and hybrid solutions [Retrieved from https://
www.youtube.com/watch?v=FM3KfRO7uEU
Centres, H. A. o. G. R. (2012). Sinking carbon: Researchers publish results of an iron
fertilization experiment. ScienceDaily. Retrieved from www.sciencedaily.com/releases/
2012/07/120718131744.ht
Cerasoli, S., Yin, J., & Porporato, A. (2021). Cloud cooling effects of afforestation and
reforestation at midlatitudes. Proceedings of the National Academy of Sciences, 118(33),
e2026241118. doi:10.1073/pnas.2026241118
CERES. (2021). The Role of Natural Climate Solutions in Corporate Climate Commitments: A
Brief for Investors. Retrieved from https://www.ceres.org/resources/reports/role-natural-
climate-solutions-corporate-climate-commitments-brief-investors
Cerqueira, W. V., Rittl, T. F., Novotny, E. H., & Pereira Netto, A. D. (2015). High throughput
pyrogenic carbon (biochar) characterisation and quantification by liquid chromatography.
Analytical Methods, 19, 8190-8196. doi:10.1039/c5ay01242b
César Izaurralde, R., Rosenberg, N. J., & Lal, R. (2001). Mitigation of climatic change by soil
carbon sequestration: Issues of science, monitoring, and degraded lands. In Advances
in Agronomy (Vol. 70, pp. 1-75): Academic Press.
Ch’ng, H. Y., et al. . (2014). Improving Phosphorus Availability in an Acid Soil Using Organic
Amendments Produced from Agroindustrial Wastes. The Scientific World Journal, 1-6.
Retrieved from http://www.hindawi.com/journals/tswj/2014/506356/
Chabangu, N., Beck, B., Hicks, N., Viljoen, J., Davids, S., & Cloete, M. (2014). The investigation
of CO2 storage potential in the Algoa basin in South Africa. Energy Procedia, 63,
2800-2810. doi:https://doi.org/10.1016/j.egypro.2014.11.302
Chabbi, A., Lehmann, J., Ciais, P., Loescher, H. W., Cotrufo, M. F., Don, A., . . . Rumpel, C.
(2017). Aligning agriculture and climate policy. Nature Climate Change, 7, 307.
doi:10.1038/nclimate3286
Chadwick, R., Wu, P., Good, P., & Andrews, T. (2012). Asymmetries in tropical rainfall and
circulation patterns in idealised CO2 removal experiments. Climate Dynamics, 40,
295-316. Retrieved from http://link.springer.com/article/10.1007%2Fs00382-012-1287-2
Chaganti, V. N., & Crohn, D. M. (2015). Evaluating the relative contribution of physiochemical
and biological factors in ameliorating a saline–sodic soil amended with composts and
biochar and leached with reclaimed water. Geoderma, 259-260, 45 - 55. doi:10.1016/
j.geoderma.2015.05.005
Chaganti, V. N., Crohn, D. M., & Šimůnek, J. (2015). Leaching and reclamation of a biochar and
compost amended saline–sodic soil with moderate SAR reclaimed water. Agricultural
Water Management, 158, 255 - 265. doi:10.1016/j.agwat.2015.05.016
Chagas, T., et al. (2020). A close look at the quality of REDD+ carbon credits. Retrieved from
https://www.climatefocus.com/publications/close-look-quality-redd-carbon-credits
Chai, Y., et al. . (2011). Effectiveness of Activated Carbon and Biochar in Reducing the
Availability of Polychlorinated Dibenzo-p-dioxins/dibenzofurans in Soils. Environmental
Science and Technology, 46(2), 1035-1043. doi:10.1021/es2029697
Chaikittisilp, W., Kim, H.-J., & Jones, C. W. (2011). Mesoporous Alumina-Supported Amines as
Potential Steam-Stable Adsorbents for Capturing CO2 from Simulated Flue Gas and
Ambient Air. Energy & Fuels, 25(11), 5528-5537. doi:10.1021/ef201224v
Chaisongkroh, N., Chungsiriporn, J., & Bunyakan, C. (2012). Modeling and optimization of
ammonia treatment by acidic biochar using response surface methodology.
Songklanakarin J. Sci. Technol, 34(4), 423-432. Retrieved from http://rdo.psu.ac.th/
sjstweb/journal/34-4/0353-3345-34-4-423-432.pdf
Chaiwong, K., Kiatsiriroat, T., Vorayos, N., & ThararaxC, h. (2012). Biochar production from
freshwater algae by slow pyrolysis. Maejo international Journal of Science and
Technology, 6(2), 186-195. Retrieved from http://www.mijst.mju.ac.th/vol6/186-195.pdf
Chakravorty, U., Hubert, M.-H., & Nøstbakken, L. (2009). Fuel Versus Food. Annual Review of
Resource Economics, 1, 645-663. Retrieved from http://www.annualreviews.org/doi/abs/
10.1146/annurev.resource.050708.144200
Chalker-Scott, L. (2014). FS147E- Biochar: A Gardener's Primer (Home Garden Series).
Research Exchange: Washington State University. Retrieved from http://
research.wsulibs.wsu.edu/xmlui/handle/2376/5148
Chalmin, A. (2019). Artificial Upwelling: current efforts and anticipated impacts of intermingling
the ocean. Retrieved from http://www.geoengineeringmonitor.org/2019/10/artificial-
upwelling-current-efforts-and-anticipated-impacts-of-intermingling-the-ocean/
Chalmin, A. (2019). Direct Air Capture: Recent Developments and Future Plans.
Geoengineering Monitor. Retrieved from http://www.geoengineeringmonitor.org/2019/07/
direct-air-capture-recent-developments-and-future-plans/
Chalmin, A. (2020). Carbon Capture and Storage (CCS) in the North Sea Region.
Geoengineering Monitor. Retrieved from https://www.geoengineeringmonitor.org/
2020/12/carbon-capture-and-storage-ccs-in-the-north-sea-region-quarterly-4-part-1/
Chalmin, A. (2020). CO2 – based synthetic fuels: new R&D cooperation’s and production sites.
Geoengineering Monitor. Retrieved from http://www.geoengineeringmonitor.org/2020/08/
new-in-geoengineering-marine-geoengineering-ccus-hubs-and-synfuels/
Chalmin, A. (2020). Marine geoengineering: further offshore trials announced. Geoengineering
Monitor. Retrieved from http://www.geoengineeringmonitor.org/2020/08/new-in-
geoengineering-marine-geoengineering-ccus-hubs-and-synfuels/
Chalmin, A. (2020). Support programmes for CCS & CCUS hubs. Geoengineering Monitor.
Retrieved from http://www.geoengineeringmonitor.org/2020/08/new-in-geoengineering-
marine-geoengineering-ccus-hubs-and-synfuels/
Chambers, A., Lal, R., & Paustian, K. (2016). Soil carbon sequestration potential of US
croplands and grasslands: Implementing the 4 per Thousand Initiative. Journal of Soil
and Water Conservation, 71(3), 68A-74A. Retrieved from http://www.jswconline.org/
content/71/3/68A.full.pdf+html
Chami, R., et al. (2019). Nature’s Solution to Climate Change. F&D, 56(4), 34-38. Retrieved
from https://www.imf.org/external/pubs/ft/fandd/2019/12/natures-solution-to-climate-
change-chami.htm
(2019, September 19). The Value of Whales and Every Other Breath [Retrieved from https://
www.imf.org/en/News/Podcasts/All-Podcasts/2019/09/15/value-of-whales
Chan, H. X. M., Yap, E. H., & Ho, J. H. (2013). Overview of Axial Compression Technology for
Direct Capture of CO2. In Q. J. Gao (Ed.), Advances in Material Science, Mechanical
Engineering and Manufacturing (Vol. 744, pp. 392-395).
Chan, K. (2019). Squamish company doubling its capacity to suck up carbon dioxide from the
air.
Chan, K. Y., et al. (2007). Agronomic Values of Greenwaste Biochar as a Soil Amendment.
Australian Journal of Soil Research, 45(8), 629–634. Retrieved from http://
www.publish.csiro.au/paper/SR07109.htm
Chan, K. Y., et al. (2008). Using Poultry Litter Biochars as Soil Amendments. Australian Journal
of Soil Research, 46(5), 437 -444. Retrieved from http://www.publish.csiro.au/paper/
SR08036.htm
Chan, K. Y., & Xu, Z. H. (2009). Biochar - Nutrient Properties and their Enhancement. In J.
Lehmann & S. Joseph (Eds.), Biochar for Environmental Management: Science and
Technology (pp. 67-84). London, UK: Earthscan.
Chandler, D. (2019). MIT engineers develop a new way to remove carbon dioxide from air. MIT
News. Retrieved from http://news.mit.edu/2019/mit-engineers-develop-new-way-remove-
carbon-dioxide-air-1025
Chandler, D. (2021). CCUS “gasphilic” process could double the conversion rate of CO2 into
useful fuels. Retrieved from https://energypost.eu/ccus-gasphilic-process-could-double-
the-conversion-rate-of-co2-into-useful-fuels/
Chandrasekaran, S. R., Murali, D., Marley, K. A., Larson, R. A., Doll, K. M., Moser, B. R., . . .
Sharma, B. K. (2016). Antioxidants from Slow Pyrolysis Bio-Oil of Birch Wood:
Application for Biodiesel and Biobased Lubricants. ACS Sustainable Chemistry &
Engineering, 4(3), 1414-1421. doi:10.1021/acssuschemeng.5b01302
Chang, C. D., & Silvestri, A. J. (1977). The conversion of methanol and other O-compounds to
hydrocarbons over zeolite catalysts. Journal of Catalysis, 47(2), 249-259. Retrieved from
https://www.sciencedirect.com/science/article/abs/pii/0021951777901725
Chang, E. E., Pan, S.-Y., Chen, Y.-H., Chu, H.-W., Wang, C.-F., & Chiang, P.-C. (2011). CO2
sequestration by carbonation of steelmaking slags in an autoclave reactor. Journal of
Hazardous Materials, 195, 107-114. Retrieved from http://www.sciencedirect.com/
science/article/pii/S0304389411010119
Chang, F. M., Wang, Q. B., & Wang, K. J. (2014). Application of Bio-Char from Sewage Sludge
Pyrolysis. Advanced Materials Research, 1065-1069, 3239 - 3245. doi:10.4028/
www.scientific.net/AMR.1065-1069.3239
Chang, J., Luo, X., Li, M., Wang, Z., & Zheng, H. (2016). Short-term Influences of Peanut-
Biochar Addition on Abandoned Orchard Soil Organic N Mineralization in North China.
Polish Journal of Environmental Studies, 25(1), 67 - 72. doi:10.15244/pjoes/60245
Chang, M.-S., & Kung, C.-C. (2014). Nonparametric Forecasting for Biochar Utilization in
Poyang Lake Eco-Economic Zone in China. Sustainability, 6(1), 267-282. Retrieved from
http://www.mdpi.com/2071-1050/6/1/267
Chang, M.-S., Wang, W., & Kung, C.-C. (2015). Economic effects of the biochar application on
rice supply in Taiwan. Agricultural Economics (Zemědělská ekonomika), 61(6), 284 -
295. doi:10.17221/147/2014-agricecon
Chang, Y.-M., Tsai, W.-T., & Li, M.-H. (2014). Chemical characterization of char derived from
slow pyrolysis of microalgal residue. Journal of Analytical and Applied Pyrolysis, 111,
88-93. doi:10.1016/j.jaap.2014.12.004
Change, M. R. I. o. G. C. a. C. (2019). Betting on negative emissions. Retrieved from https://
www.mcc-berlin.net/en/research/policy-briefs/negativeemissions.html
Change, M. R. I. o. G. C. a. C. (2021). Cleaning up emissions from our atmosphere. Policy
Brief: Carbon Removal. Retrieved from https://www.mcc-berlin.net/en/research/policy-
briefs/carbon-removal.html
Changxun, G., Zhiyong, P., & Shu’ang, P. (2016). Effect of biochar on the growth of Poncirus
trifoliata (L.) Raf. seedlings in Gannan acidic red soil. Soil Science and Plant Nutrition,
62(2), 194 - 200. doi:10.1080/00380768.2016.1150789
Chappell, M. A., Mao, J.-D., Ford, L. S., & Price, C. L. (2011). Biochars and soil humic
surfactancy.
Charan, S. N., et al. (2010). Evaluation of Deccan continental flood basalts. Journal of Applied
Geochemistry, 12(4), 560-565.
Charette, M. A., & Buesseler, K. O. (2000). Does iron fertilization lead to rapid carbon export in
the Southern Ocean? Geochemistry, Geophysics, Geosystems, 1(10), 1-7.
doi:10.1029/2000GC000069
Charette, M. A., Gille, S. T., Sanders, R. J., & Zhou, M. (2013). Southern Ocean natural iron
fertilization. Deep Sea Research Part II: Topical Studies in Oceanography, 90, 1-3.
doi:http://dx.doi.org/10.1016/j.dsr2.2013.04.014
Charlson, R. J., et al. (1987). Ocean phytoplankton, atmospheric sulphur, cloud albedo and
cliamte. Nature, 326, 655-661. Retrieved from https://www.researchgate.net/profile/
Meinrat_Andreae/publication/
216027231_Oceanic_Phytoplankton_Atmospheric_Sulfur_Cloud_Albedo_and_Climate/
links/58ac5db8a6fdccd53db8b78f/Oceanic-Phytoplankton-Atmospheric-Sulfur-Cloud-
Albedo-and-Climate.pdf
Charlton, E. (2020). What’s the difference between carbon negative and carbon neutral? World
Economic Forum. Retrieved from https://www.weforum.org/agenda/2020/03/what-s-the-
difference-between-carbon-negative-and-carbon-neutral/
Charnley, S., Diaz, D., & Gosnell, H. (2010). Mitigating Climate Change Through Small-Scale
Forestry in the USA: Opportunities and Challenges. Small-scale Forestry, 9(4), 445-462.
doi:10.1007/s11842-010-9135-x
Chasan, E. (2019). We Already Have the World’s Most Efficient Carbon Capture Technology.
Bloomberg Businessweek. Retrieved from https://www.bloomberg.com/news/features/
2019-08-02/we-already-have-the-world-s-most-efficient-carbon-capture-technology
Chathurika, J. A. S., Indraratne, S. P., Dandeniya, W. S., & Kumaragamage, D. (2015).
Beneficial Management Practices on Growth and Yield Parameters of Maize (Zea mays)
and Soil Fertility Improvement. Tropical Agricultural Research, 27(1), 59-74. Retrieved
from http://www.pgia.ac.lk/files/Annual_congress/journel/v27/Journal-No%201/Papers/
6-38%20J.A.S%20Chathurika%20paper%20modified%202015.12.08.pdf
Chathurika, J. A. S., Indraratne, S. P., Dandeniya, W. S., & Kumaragamage, D. (2015). Use of
Amendments to Improve Soil Properties in Achieving High Yield for Maize (Zea Maize).
Paper presented at the Proceedings Peradeniya University International Research
Sessions. http://www.dlib.pdn.ac.lk/archive/handle/1/4973
Chatrchyan, A. M., Erlebacher, R. C., Chaopricha, N. T., Chan, J., Tobin, D., & Allred, S. B.
(2017). United States agricultural stakeholder views and decisions on climate change.
Wiley Interdisciplinary Reviews: Climate Change, 8(5), e469. doi:doi:10.1002/wcc.469
Chatterjee, S., & Huang, K.-W. (2020). Unrealistic energy and materials requirement for direct
air capture in deep mitigation pathways. Nature Communications, 11(1), 3287.
doi:10.1038/s41467-020-17203-7
Chaturvedi, K. R., Sinha, A. S. K., Nair, V. C., & Sharma, T. (2021). Enhanced carbon dioxide
sequestration by direct injection of flue gas doped with hydrogen into hydrate reservoir:
Possibility of natural gas production. Energy, 227, 120521. doi:https://doi.org/10.1016/
j.energy.2021.120521
Chaudhry, R., Fischlein, M., Larson, J., Hall, D. M., Peterson, T. R., Wilson, E. J., & Stephens, J.
C. (2013). Policy Stakeholders' Perceptions of Carbon Capture and Storage:
A!Comparison of Four U.S. States. Journal of Cleaner Production, 52, 21-32. doi:https://
doi.org/10.1016/j.jclepro.2013.02.002
Chaudhry, U. K., et al. (2016). Integration of biochar and chemical fertilizer to enhance quality of
soil and wheat crop (Triticum aestivum L.). Journal of Biodiversity and Environmental
Sciences, 9(1), 348-358. doi:10.7287/peerj.preprints.1631v1
Chauhan, B. S. (2013). Rice Husk Biochar Influences Seedling Emergence of Junglerice
(Echinochloa colona) and Herbicide Efficacy. American Journal of Plant Sciences, 4(7),
1345-1350. Retrieved from http://file.scirp.org/Html/3-2600847_33969.htm
Chaukura, N., Murimba, E. C., & Gwenzi, W. (2016). Synthesis, characterisation and methyl
orange adsorption capacity of ferric oxide–biochar nano-composites derived from pulp
and paper sludge. Applied Water Science, 1-12. doi:10.1007/s13201-016-0392-5
Chausson, A., Turner, B., Seddon, D., Chabaneix, N., Girardin, C. A. J., Kapos, V., . . . Seddon,
N. (2020). Mapping the effectiveness of nature-based solutions for climate change
adaptation. Global Change Biology, 26(11), 6134-6155. doi:https://doi.org/10.1111/
gcb.15310
Chavez, A. E. (2018). Using Renewable Portfolio Standards to Accelerate Development of
Negative Emissions Technologies William & Mary Environmental Law & Policy Review,
43, 1-51.
Chavez, A. E. (2020). Lessons from Renewable Energy Diffusion for Carbon Removal
Development. Fordam Environmental Law Review, 46, 46-108.
Chazdon, R., & Brancalion, P. (2019). Restoring forests as a means to many ends. Science,
365(6448), 24-25. doi:10.1126/science.aax9539
Chazdon, R. L., Broadbent, E. N., Rozendaal, D. M. A., Bongers, F., Zambrano, A. M. A., Aide,
T. M., . . . Poorter, L. (2016). Carbon sequestration potential of second-growth forest
regeneration in the Latin American tropics. 2(5), e1501639. doi:10.1126/sciadv.1501639
%J Science Advances
Cheah, P. M., Hanif, A. H. M., Abd. Wahid, S., & Abdullah, L. C. (2014). Short-term field
decomposition of pineapple stump biochar in tropical peat soil. Malaysian Journal of Soil
Science, 17, 85-97. Retrieved from http://psasir.upm.edu.my/29441/
Cheah, S., Malone, S. C., & Feik, C. J. (2014). Speciation of Sulfur in Biochar Produced from
Pyrolysis and Gasification of Oak and Corn Stover. Environmental Science &
Technology, 48(15), 8474-8480. doi:10.1021/es500073r
Cheah, W. Y., Ling, T. C., Juan, J. C., Lee, D.-J., Chang, J.-S., & Show, P. L. (2016).
Biorefineries of carbon dioxide: From carbon capture and storage (CCS) to bioenergies
production. Bioresource Technology, 215, 346-356. doi:https://doi.org/10.1016/
j.biortech.2016.04.019
Cheah, W. Y., Show, P. L., Chang, J.-S., Ling, T. C., & Juan, J. C. (2015). Biosequestration of
atmospheric CO2 and flue gas-containing CO2 by microalgae. Bioresource Technology,
184, 190-201. doi:https://doi.org/10.1016/j.biortech.2014.11.026
Chege, P. K. (2014). Effects of biochar and inorganic fertilizer on french beans (phaseolus
vulgaris l) performance in nitisols. Kenyatta University, Retrieved from http://ir-
library.ku.ac.ke/handle/123456789/10813
Cheiky, M. (2016).
Chen, A., Fu, B., Lu, Y., Duan, Z., & Hu, W. (2015). Exogenous organic materials applied to
paddy field improving soil microbial biomass C, N and dissolved organic C, N.
Transactions of the Chinese Society of Agricultural Engineering, 31(21), 160-167.
Retrieved from http://www.ingentaconnect.com/content/tcsae/tcsae/
2015/00000031/00000021/art00021
Chen, B., & Chen, Z. (2009). Sorption of naphthalene and 1-naphthol by biochars of orange
peels with different pyrolytic temperatures. Chemosphere, 76(1), 127-133. Retrieved
from http://www.sciencedirect.com/science/article/pii/S0045653509001659
Chen, B., Chen, Z., & Lv, S. (2011). A novel magnetic biochar efficiently sorbs organic pollutants
and phosphate. Bioresource Technology, 102, 716–723.
Chen, B., & Yuan, M. (2010). Enhanced sorption of polycyclic aromatic hydrocarbons by soil
amended with biochar. Journal of Soils and Sediments, 11(1), 62-71. Retrieved from
https://link.springer.com/article/10.1007/s11368-010-0266-7
Chen, B., Yuan, M., & Qian, L. (2012). Enhanced bioremediation of PAH-contaminated soil by
immobilized bacteria with plant residue and biochar as carriers. Journal of Soils and
Sediments, 12(9), 1350-1359. doi:10.1007/s11368-012-0554-5
Chen, B. L., Zhou, D. D., & Zhu, L. Z. (2008). Transitional adsorption and partition of nonpolar
and polar aromatic contaminants by biochars of pine needles with different pyrolytic
temperatures. Environmental Science & Technology, 42(14), 5137-5143. Retrieved from
http://pubs.acs.org/doi/abs/10.1021/es8002684
Chen, C., Khosrowabadi Kotyk, J. F., & Sheehan, S. W. (2018). Progress toward Commercial
Application of Electrochemical Carbon Dioxide Reduction. Chem, 4(11), 2571-2586.
doi:https://doi.org/10.1016/j.chempr.2018.08.019
Chen, C., & Tavoni, M. (2013). Direct air capture of CO2 and climate stabilization: A model
based assessment. Climatic Change, 118(1), 59-72. doi:10.1007/s10584-013-0714-7
Chen, C., Zhou, W., & Lin, D. (2015). Sorption characteristics of N-nitrosodimethylamine onto
biochar from aqueous solution. Bioresource Technology, 179, 359 - 366. doi:10.1016/
j.biortech.2014.12.059
Chen, C.-P., Cheng, C.-H., Huang, Y.-H., Chen, C.-T., Lai, C.-M., Menyailo, O. V., . . . Yang, Y.-
W. (2014). Converting leguminous green manure into biochar: changes in chemical
composition and C and N mineralization. Geoderma, 232-234, 581 - 588. doi:10.1016/
j.geoderma.2014.06.021
Chen, C. R., , et al. (2012). Impacts of greenwaste biochar on ammonia volatilisation from
bauxite processing residue sand. Plant and Soil, 367(1), 301-312. doi:10.1007/
s11104-012-1468-0
Chen, D., Liu, D., Zhang, H., Chen, Y., & Li, Q. (2015). Bamboo pyrolysis using TG–FTIR and a
lab-scale reactor: Analysis of pyrolysis behavior, product properties, and carbon and
energy yields. Fuel, 148, 79 - 86. doi:10.1016/j.fuel.2015.01.092
Chen, D., Zheng, Z., Fu, K., Zeng, Z., Wang, J., & Lu, M. (2015). Torrefaction of biomass stalk
and its effect on the yield and quality of pyrolysis products. Fuel, 159, 27 - 32.
doi:10.1016/j.fuel.2015.06.078
Chen, D., Zhou, J., & Zhang, Q. (2014). Effects of heating rate on slow pyrolysis behavior,
kinetic parameters and productsproperties of moso bamboo. Bioresource Technology,
169, 313-319. doi:10.1016/j.biortech.2014.07.009
Chen, G., et al. (2014). Co-pyrolysis of corn cob and waste cooking oil in a fixed bed.
Bioresource Technology, 166, 500-507. doi:10.1016/j.biortech.2014.05.090
Chen, G., et al. . (2015). Biomass to hydrogen-rich syngas via catalytic steam gasification of
bio-oil/biochar slurry. Bioresource Technology, 198, 108 - 114. doi:10.1016/
j.biortech.2015.09.009
Chen, G.-j., Peng, C.-y., Fang, J.-y., Dong, Y.-y., Zhu, X.-h., & Cai, H.-m. (2015). Biosorption of
fluoride from drinking water using spent mushroom compost biochar coated with
aluminum hydroxide. Desalination and Water Treatment, 57(26), 1 - 11.
doi:10.1080/19443994.2015.1049959
Chen, H., Lin, G., Wang, X., Chen, Y., Liu, Y., Yang, H., & Shao, J. (2016). Physicochemical
properties and hygroscopicity of tobacco stem biochar pyrolyzed at different
temperatures. Journal of Renewable and Sustainable Energy, 8(1), 1-14.
doi:10.1063/1.4942784
Chen, H., Zhai, Y., Xu, B., Xiang, B., Zhu, L., Qiu, L., . . . Zeng, G. (2014). Characterization of
bio-oil and biochar from high-temperature pyrolysis of sewage sludge. Environmental
Technology, 1 - 9. doi:10.1080/09593330.2014.952343
Chen, H., Zhou, D., Luo, G., Zhang, S., & Chen, J. (2015). Macroalgae for biofuels production:
Progress and perspectives. Renewable and Sustainable Energy Reviews,
47(Supplement C), 427-437. doi:https://doi.org/10.1016/j.rser.2015.03.086
Chen, J., et al. (2013). Biochar soil amendment increased bacterial but decreased fungal gene
abundance with shifts in community structure in a slightly acid rice paddy from
Southwest China. Applied Soil Ecology, 71, 33–44. Retrieved from http://
www.sciencedirect.com/science/article/pii/S0929139313001340
Chen, J., et al. (2013). The Research of Biochar Adsorption on Soil. Applied Mechanics and
Materials, 448 - 453, 417-424. Retrieved from https://www.scientific.net/
AMM.448-453.417
Chen, J., et al. (2015). Consistent increase in abundance and diversity but variable change in
community composition of bacteria in topsoil of rice paddy under short term biochar
treatment across three sites from South China. Applied Soil Ecology, 91, 68 - 79.
doi:10.1016/j.apsoil.2015.02.012
Chen, J., Kim, H., & Yoo, G. (2015). Effects of Biochar Addition on CO2 and N2O Emissions
following Fertilizer Application to a Cultivated Grassland Soil. Plos One, 10(5), 1-17.
Retrieved from http://journals.plos.org/plosone/article/file?id=10.1371/
journal.pone.0126841&type=printable
Chen, J., Li, S., Liang, C., Xu, Q., Li, Y., Qin, H., & Fuhrmann, J. J. (2017). Response of
microbial community structure and function to short-term biochar amendment in an
intensively managed bamboo (Phyllostachys praecox) plantation soil: Effect of particle
size and addition rate. Science of The Total Environment, 574(Supplement C), 24-33.
doi:https://doi.org/10.1016/j.scitotenv.2016.08.190
Chen, J., Liu, C., & Wu, S.-b. (2015). Catalytic Fast Pyrolysis of Alcell Lignin with Nano-NiO.
BioResources, 11(1), 663-673. Retrieved from http://152.1.0.246/index.php/BioRes/
article/view/BioRes_11_1_663_Chen_Catalytic_Fast_Pyrolysis_Alcell
Chen, J., Zhu, D., & Sun, C. (2007). Effect of Heavy Metals on the Sorption of Hydrophobic
Organic Compounds to Wood Charcoal. Environmental Science & Technology, 41(7),
2536-2541. Retrieved from http://pubs.acs.org/doi/abs/10.1021/es062113%2B
Chen, L., et al. (2015). Study on pyrolysis behaviors of non-woody lignins with TG-FTIR and Py-
GC/MS. Journal of Analytical and Applied Pyrolysis, 113, 499-507. doi:10.1016/
j.jaap.2015.03.018
Chen, L., Zheng, H., & Wang, Z. (2013). The Formation of Toxic Compounds during Biochar
Production. Periodical Applied Mechanics and Materials, 361 - 363, 867-870. Retrieved
from https://www.scientific.net/AMM.361-363.867
Chen, L.-F., He, Z.-B., Zhu, X., Du, J., Yang, J.-J., & Li, J. (2016). Impacts of afforestation on
plant diversity, soil properties, and soil organic carbon storage in a semi-arid grassland
of northwestern China. CATENA, 147, 300-307. doi:https://doi.org/10.1016/
j.catena.2016.07.009
Chen, P., et al. (2015). Optimization and determination of polycyclic aromatic hydrocarbons in
biochar-based fertilizers. Journal of Separation Science, 38(5), 864-870. doi:10.1002/
jssc.201400834
Chen, P., et al. (2015). Optimization of ultrasonic-assisted extraction for determination of
polycyclic aromatic hydrocarbons in biochar-based fertilizer by gas chromatography–
mass spectrometry. Analytical and Bioanalytical Chemistry, 407(20), 6149 - 6157.
doi:10.1007/s00216-015-8790-3
Chen, R., et al. . (2010). Preparation and rheology of biochar, lignite char and coal slurry fuels.
Fuel, 90(4), 1689-1695. doi:10.1016/j.fuel.2010.10.041
Chen, R., Senbayram, M., Blagodatsky, S., Myachina, O., Dittert, K., Lin, X., . . . Kuzyakov, Y.
(2014). Soil C and N availability determine the priming effect: microbial N mining and
stoichiometric decomposition theories. 20(7), 2356-2367. doi:doi:10.1111/gcb.12475
Chen, S., Frear, C., Garcia-Perez, M., & et al. (2016). Advancing Organics Management in
Washington State: The Waste to Fuels Technology Partnership. Retrieved from https://
fortress.wa.gov/ecy/publications/SummaryPages/1607008.html
Chen, T., et al. (2014). Influence of pyrolysis temperature on characteristics and heavy metal
adsorptive performance of biochar derived from municipal sewage sludge. Bioresource
Technology, 164, 47-54. doi:10.1016/j.biortech.2014.04.048
Chen, T., et al. (2015). Adsorption behavior comparison of trivalent and hexavalent chromium on
biochar derived from municipal sludge. Bioresource Technology, 190, 388 - 394.
doi:10.1016/j.biortech.2015.04.115
Chen, T., et al. (2015). Adsorption of cadmium by biochar derived from municipal sewage
sludge: Impact factors and adsorption mechanism. Chemosphere, 134, 286 - 293.
doi:10.1016/j.chemosphere.2015.04.052
Chen, T., Cai, J., & Liu, R. (2015). Combustion Kinetics of Biochar from Fast Pyrolysis of Pine
Sawdust: Isoconversional Analysis. Energy Sources, Part A: Recovery, Utilization, and
Environmental Effects, 37(20), 2208 - 2217. doi:10.1080/15567036.2012.684737
Chen, T., Liu, R., & Scott, N. R. (2016). Characterization of energy carriers obtained from the
pyrolysis of white ash, switchgrass and corn stover — Biochar, syngas and bio-oil. Fuel
Processing Technology, 142, 124 - 134. doi:10.1016/j.fuproc.2015.09.034
Chen, W., et al. (2015). Impacts of Biochar Input on Mineralization of Native Soil Organic
Carbon. Europe PubMed Central, 36(6), 2300-2305. Retrieved from http://
europepmc.org/abstract/med/26387339
Chen, W., et al. . (2015). Terra Preta Technologies. Oregon State University, Retrieved from
http://delaneyforestry.com/wp-content/uploads/2015/05/
OSU_MBA_thesis_2014_Terra_Preta_Technologies.pdf
Chen, W. M., et al. (2015). Characterization of Biochar Obtained by Co-Pyrolysis of Waste
Newspaper with High-Density Polyethylene. BioResources, 10(4), 8253-8267. Retrieved
from http://152.1.0.246/index.php/BioRes/article/view/
BioRes_10_4_8253_Chen_Biochar_Co_Pyrolysis_Waste_Newspaper
Chen, X.-W., Wong, J. T.-F., Ng, C. W.-W., & Wong, M.-H. (2015). Feasibility of biochar
application on a landfill final cover—a review on balancing ecology and shallow slope
stability. Environmental Science and Pollution Research, 23(8), 7111-7125. doi:10.1007/
s11356-015-5520-5
Chen, Y., Li, C. W., & Kanan, M. W. (2012). Aqueous CO2 Reduction at Very Low Overpotential
on Oxide-Derived Au Nanoparticles. Journal of the American Chemical Society, 134(49),
19969-19972. doi:10.1021/ja309317u
Chen, Y., Shinogi, Y., & Taira, M. (2010). Influence of biochar use on sugarcane growth, soil
parameters, and groundwater quality. Australian Journal of Soil Research, 48(7),
526-530. Retrieved from https://www.researchgate.net/publication/
262956934_Influence_of_biochar_use_on_sugarcane_growth_soil_parameters_and_gr
oundwater_quality
Chen, Y., Yang, H., Wang, X., Chen, W., & Chen, H. (2016). Biomass Pyrolytic Polygeneration
System: Adaptability for Different Feedstocks. Energy & Fuels, 30(1), 414-422.
doi:10.1021/acs.energyfuels.5b02332
Chen, Z., et al. . (2015). Quantification of Chemical States, Dissociation Constants and
Contents of Oxygen-containing Groups on the Surface of Biochars Produced at Different
Temperatures. Environmental Science & Technology, 49(1), 309 - 317. doi:10.1021/
es5043468
Chen, Z., Wang, Y., Xia, D., Jiang, X., Fu, D., Shen, L., . . . Li, Q. B. (2016). Enhanced
bioreduction of iron and arsenic in sediment by biochar amendment influencing microbial
community composition and dissolved organic matter content and composition. Journal
of Hazardous Materials, 311, 20 - 29. doi:10.1016/j.jhazmat.2016.02.069
Chen, Z.-A., Li, Q., Liu, L.-C., Zhang, X., Kuang, L., Jia, L., & Liu, G. (2015). A large national
survey of public perceptions of CCS technology in China. Applied Energy, 158, 366-377.
doi:https://doi.org/10.1016/j.apenergy.2015.08.046
Chen. De, e. a. (2016). Low uptake affinity cultivars with biochar to tackle Cd-tainted rice - A
field study over four rice seasons in Hunan, China. The Science of the Total
Environment, 541, 1489-1498. doi:10.1016/j.scitotenv.2015.10.052
Chen. Wei-Yin, e. a. (2013). Photochemical and Acoustic Interactions of Biochar with CO2 and
H2O: Applications in Power Generation and CO2 Capture. AIChE Journal, 60(3),
1054-1065. Retrieved from http://onlinelibrary.wiley.com/doi/10.1002/aic.14347/abstract
Cheng, C.-H., et al. (2016). Reduction of Diuron Efficacy with Biochar Amendments.
International Journal of Environmental Science and Development, 7(7), 480 - 485.
doi:10.18178/ijesd.2016.7.7.824
Cheng, C. H., et al. (2006). Oxidation of Black Carbon by Biotic and Abiotic Processes. Organic
Geochemistry, 37(11), 1477-1488. Retrieved from http://www.sciencedirect.com/science/
article/pii/S0146638006001665
Cheng, C. H., et al. (2008). Stability of Black Carbon in Soils Across a Climatic Gradient. Journal
of Geophysical Research (Biogeosciences), 113(G2), 1-10.
Cheng, C. H., & Lehmann, J. (2009). Ageing of black carbon along a temperature gradient.
Chemosphere, 75, 1021-1027. Retrieved from http://www.css.cornell.edu/faculty/
lehmann/publ/Chemosphere%2075,%201021-1027,%202009%20Cheng.pdf
Cheng, C. H., Lehmann, J., & Engelhard, M. (2008). Natural Oxidation of Black Carbon in Soils:
Changes in Molecular Form and Surface Charge Along a Climosequence. Geochimica
Et Cosmochimica Acta, 72, 1598-1610.
Cheng, F., Small, A. A., & Colosi, L. M. (2021). The levelized cost of negative CO2 emissions
from thermochemical conversion of biomass coupled with carbon capture and storage.
Energy Conversion and Management, 237, 114115. doi:https://doi.org/10.1016/
j.enconman.2021.114115
Cheng, H., et al. . (2012). The Deviation on the Determination of Microbial Biomass Carbon in
Biochar Amendment Soil with Fumigation Extraction. Journal of Agricultural Science,
4(9), 251-255. Retrieved from http://www.ccsenet.org/journal/index.php/jas/article/view/
17830/12945
Cheng, H. N., Wartelle, L. H., Klasson, K. T., & Edwards, J. C. (2010). Solid state NMR and ESR
studies of activated carbons produced from pecan shells. Carbon, 48, 2455-2469.
Cheng, J., Yang, Z., Ye, Q., Zhou, J., & Cen, K. (2016). Improving CO2 fixation with microalgae
by bubble breakage in raceway ponds with up–down chute baffles. Bioresource
Technology, 201, 174-181. doi:https://doi.org/10.1016/j.biortech.2015.11.044
Cheng, J.-H., Lu, C.-H., Chen, C.-Y., Ouyang, S., Liao, C.-W., & Shieh, C.-L. (2013). A Study on
Regulatory Requirements of CCS Technology Development in Taiwan. Energy Procedia,
37, 7702-7708. doi:https://doi.org/10.1016/j.egypro.2013.06.716
Cheng, L., Zhang, L., Chen, H., & Gao, C. (2006). Carbon dioxide removal from air by
microalgae cultured in a membrane-photobioreactor. Separation and Purification
Technology, 50(3), 324-329. doi:https://doi.org/10.1016/j.seppur.2005.12.006
Cheng, Q., Huang, Q., Khan, S., Liu, Y., Liao, Z., Li, G., & Ok, Y. S. (2016). Adsorption of Cd by
peanut husks and peanut husk biochar from aqueous solutions. Ecological Engineering,
87, 240 - 245. doi:10.1016/j.ecoleng.2015.11.045
Cheng, S., Wei, L., Zhao, X., Kadis, E., & Julson, J. (2016). Conversion of Prairie Cordgrass to
Hydrocarbon Biofuel over Co-Mo/HZSM-5 Using a Two-Stage Reactor System. Energy
Technology, 4(6), 706-713. doi:10.1002/ente.201500452
Cheng, S.-Y., Liu, Y.-Z., & Qi, G.-S. (2020). Experimental study of CO2 capture enhanced by
coal fly ash-synthesized NH2-MCM-41 coupled with high gravity technology. Chemical
Engineering Journal, 400, 125946. doi:https://doi.org/10.1016/j.cej.2020.125946
Cheng, X. Y., Lan, Y., Liu, Z. Q., Liu, X. L., Yang, X., Meng, J., & Chen, W. F. (2015). Effect of
Biochar on NH3 Volatilization and N2O Emission in Brown Soil. Advanced Materials
Research, 1092-1093, 1229 - 1233. doi:10.4028/www.scientific.net/
AMR.1092-1093.1229
Cheng, Y., et al. (2012). Wheat straw and its biochar have contrasting effects on inorganic N
retention and N2O production in a cultivated Black Chernozem. Biology and Fertility of
Soils, 48(8), 941-946. doi:10.1007/s00374-012-0687-0
Cherepy, N. J., Cooper, J. F., Krueger, R., Fiet, K. J., & Jankowski, A. F. (2005). Direct
conversion of carbon fuels in a molten carbonate fuel cell. Journal of the Electrochemical
Society, 152, A80-A87.
Cherubini, F., et al. (2009). Energy- and greenhouse gas-based LCA of biofuel and bioenergy
systems: Key issues, ranges and recommendations. Resources Conservation and
Recycling, 53(8), 434-437. Retrieved from https://www.researchgate.net/publication/
235704280_Energy-_and_greenhouse_gas-
based_LCA_of_biofuel_and_bioenergy_systems_Key_issues_ranges_and_recommend
ations
Cherubini, F., & Strømman, A. H. (2011). Life cycle assessment of bioenergy systems: State of
the art and future challenges. Bioresource Technology, 102(2), 437-451. doi:https://
doi.org/10.1016/j.biortech.2010.08.010
Chevalier, G., Diamond, L. W., & Leu, W. (2010). Potential for deep geological sequestration of
CO2 in Switzerland: a first appraisal. Swiss Journal of Geosciences, 103(3), 427-455.
doi:10.1007/s00015-010-0030-4
Chew, K. W., Yap, J. Y., Show, P. L., Suan, N. H., Juan, J. C., Ling, T. C., . . . Chang, J.-S.
(2017). Microalgae biorefinery: High value products perspectives. Bioresource
Technology, 229, 53-62. doi:https://doi.org/10.1016/j.biortech.2017.01.006
Chhatre, A., & Agrawal, A. (2009). Trade-offs and synergies between carbon storage and
livelihood benefits from forest commons. Proceedings of the National Academy of
Sciences, 106(42), 17667-17670. doi:10.1073/pnas.0905308106
Chi, T., Zuo, J., & Liu, F. (2017). Performance and mechanism for cadmium and lead adsorption
from water and soil by corn straw biochar. Frontiers of Environmental Science &
Engineering, 11(2), 15. doi:10.1007/s11783-017-0921-y
Chia, C. H., Downie, A., & MUNROE, P. (2015). Characteristics of biochar: physical and
structural properties. In Biochar for Environmental Management: Science and
Technology and Implementation.
Chia, C. H., Gong, B., Joseph, S. D., Marjo, C. E., MUNROE, P., & Rich, A. M. (2012). Imaging
of Mineral-Enriched Biochar by FTIR, Raman and SEM-EDX. Vibrational Spectroscopy.
Chia, C. H., Munroe, P., Joseph, S., & Lin, Y. (2010). Microscopic characterisation of synthetic
Terra Preta. Australian Journal of Soil Research, 48, 593-605.
Chia, C. H., Singh, B. P., Joseph, S., Graber, E. R., & MUNROE, P. (2014). Characterization of
an Enriched Biochar. Journal of Analytical and Applied Pyrolysis, 108, 26-34. Retrieved
from http://www.sciencedirect.com/science/article/pii/S0165237014001272
Chia, S. R., Ong, H. C., Chew, K. W., Show, P. L., Phang, S.-M., Ling, T. C., . . . Chang, J.-S.
(2017). Sustainable approaches for algae utilisation in bioenergy production. Renewable
Energy. doi:https://doi.org/10.1016/j.renene.2017.04.001
Chiang, P.-C., & Pan, S.-Y. (2017). Analytical Methods for Carbonation Material. In Carbon
Dioxide Mineralization and Utilization (pp. 97-126). Singapore: Springer Singapore.
Chiang, P.-C., & Pan, S.-Y. (2017). Applications of Carbonation Technologies. In Carbon Dioxide
Mineralization and Utilization (pp. 159-185). Singapore: Springer Singapore.
Chiang, P.-C., & Pan, S.-Y. (2017). Carbonation Mechanisms and Modelling. In Carbon Dioxide
Mineralization and Utilization (pp. 127-158). Singapore: Springer Singapore.
Chiang, P.-C., & Pan, S.-Y. (2017). CO2 Mineralization and Utilization via Accelerated
Carbonation. In Carbon Dioxide Mineralization and Utilization (pp. 35-49). Singapore:
Springer Singapore.
Chiang, P.-C., & Pan, S.-Y. (2017). Environmental Impact Assessment and CCS Guidance. In
Carbon Dioxide Mineralization and Utilization (pp. 51-68). Singapore: Springer
Singapore.
Chiang, P.-C., & Pan, S.-Y. (2017). Natural Silicate and Carbonate Minerals (Ores). In Carbon
Dioxide Mineralization and Utilization (pp. 221-232). Singapore: Springer Singapore.
Chiang, P.-C., & Pan, S.-Y. (2017). Post-combustion Carbon Capture, Storage, and Utilization.
In Carbon Dioxide Mineralization and Utilization (pp. 9-34). Singapore: Springer
Singapore.
Chiang, P.-C., & Pan, S.-Y. (2017). Principles of Accelerated Carbonation Reaction. In Carbon
Dioxide Mineralization and Utilization (pp. 71-96). Singapore: Springer Singapore.
Chiang, P.-C., & Pan, S.-Y. (2017). System Analysis. In Carbon Dioxide Mineralization and
Utilization (pp. 187-217). Singapore: Springer Singapore.
Chiang, P.-C., & Pan, S.-Y. (2017). Utilization of Carbonation Products. In Carbon Dioxide
Mineralization and Utilization (pp. 277-292). Singapore: Springer Singapore.
Chiappini, D., Andreassi, L., Jannelli, E., & Ubertini, S. (2011). Ultralow Carbon Dioxide
Emission MCFC Based Power Plant. Journal of Fuel Cell Science and Technology, 8(3),
031003-031003-031008. doi:10.1115/1.4002903
Chien, C. C., Huang, Y. P., Sah, J. G., Cheng, W. J., Chang, R. Y., & Lu, Y. S. (2011). Application
of Rice Husk Charcoal on Remediation of Acid Soil. Journal Materials Science Forum,
685, 169-180. doi:10.4028/www.scientific.net/MSF.685.169
Chintala, R., et al. (2013). Phosphorus Sorption and Availability from Biochars and Soil/Biochar
Mixtures. CLEAN – Soil, Air, Water, 42(5), 626-633. Retrieved from http://
onlinelibrary.wiley.com/doi/10.1002/clen.201300089/abstract
Chintala, R., et al. . (2014). Denitrification kinetics in biomass- and biochar-amended soils of
different landscape positions. Environmental Science and Pollution Research, 22(7),
5152-5163. doi:10.1007/s11356-014-3762-2
Chintala, R., et al. (2014). Molecular Characterization of Biochars and Their Influence on
Microbiological Properties of Soil. Journal of Hazardous Materials, 279, 244-256.
doi:10.1016/j.jhazmat.2014.06.074
Chiodo, V., Zafarana, G., Maisano, S., Freni, S., & Urbani, F. (2016). Pyrolysis of different
biomass: Direct comparison among Posidonia Oceanica, Lacustrine Alga and White-
Pine. Fuel, 164, 220 - 227. doi:10.1016/j.fuel.2015.09.093
Chirakkara, R. A., & Reddy, K. R. (2015). Biomass and chemical amendments for enhanced
phytoremediation of mixed contaminated soils. Ecological Engineering, 85, 265 - 274.
doi:10.1016/j.ecoleng.2015.09.029
Chisholm, S. W., Falkowski, P. G., & Cullen, J. J. (2001). Dis-Crediting Ocean Fertilization.
Science, 294(5541), 309-310. doi:10.1126/science.1065349
Chisti, Y. (2007). Biodiesel from microalgae. Biotechnology Advances, 25(3), 294-306.
doi:https://doi.org/10.1016/j.biotechadv.2007.02.001
Chisti, Y. (2008). Biodiesel from microalgae beats bioethanol. Trends in Biotechnology, 26(3),
126-131. doi:https://doi.org/10.1016/j.tibtech.2007.12.002
Chisti, Y. (2013). Constraints to commercialization of algal fuels. Journal of Biotechnology,
167(3), 201-214. doi:https://doi.org/10.1016/j.jbiotec.2013.07.020
Chiu, S.-Y., Kao, C.-Y., Chen, C.-H., Kuan, T.-C., Ong, S.-C., & Lin, C.-S. (2008). Reduction of
CO2 by a high-density culture of Chlorella sp. in a semicontinuous photobioreactor.
Bioresource Technology, 99(9), 3389-3396. doi:https://doi.org/10.1016/
j.biortech.2007.08.013
Chmura, G. L., Anisfeld, S. C., Cahoon, D. R., & Lynch, J. C. (2003). Global carbon
sequestration in tidal, saline wetland soils. Global Biogeochemical Cycles, 17(4), 1-12.
doi:10.1029/2002GB001917
Ch'ng, H. Y., Ahmed, O. H., Muhamad, N., & Muhamad, A. M. (2014). Biochar and compost
influence the phosphorus availability, nutrients uptake, and growth of maize (Zea mays
L.) in tropical acid soil. Pakistan Journal of Agricultural Sciences, 51(4), 797-806.
Retrieved from http://www.cabdirect.org/abstracts/20153182974.html
Cho, B. H., Chino, H., Tsuji, H., Kunito, T., Nagaoka, K., Otsuka, S., . . . Oyaizu, H. (1997).
Laboratory-scale bioremediation of oil-contaminated soil of Kuwait with soil amendment
materials. Chemosphere, 35(7), 1599-1611. Retrieved from https://
www.ncbi.nlm.nih.gov/pubmed/9314191
Cho, D.-W., Cho, S.-H., Song, H., & Kwon, E. E. (2015). Carbon dioxide assisted sustainability
enhancement of pyrolysis of waste biomass: A case study with spent coffee ground.
Bioresource Technology, 189, 1-6. doi:10.1016/j.biortech.2015.04.002
Cho, R. (2018). Can Removing Carbon From the Atmosphere Save Us From Climate
Catastrophe? State of the Planet. Retrieved from https://news.climate.columbia.edu/
2018/11/27/carbon-dioxide-removal-climate-change/
Cho, W., Yu, H., & Mo, Y. (2017). CO2 Conversion to Chemicals and Fuel for Carbon Utilization.
In Y. Yun (Ed.), Recent Advances in Carbon Capture and Storage (pp. Ch. 09). Rijeka:
InTech.
Choi, I.-W., Seo, D.-C., Kang, S.-W., Lee, S.-G., Seo, Y.-J., Lim, B.-J., . . . Cho, J.-S. (2013).
Adsorption Characteristics of Heavy Metals using Sesame Waste Biochar. Korean
Journal of Soil Science and Fertilizer, 46, 8-15. Retrieved from http://
www.koreascience.or.kr/search/articlepdf_ocean.jsp?url=http://ocean.kisti.re.kr/downfile/
volume/ksssf/TBRHBL/2013/v46n1/TBRHBL_2013_v46n1_8.pdf
Choi, J., et al. (2014). Production of brown algae pyrolysis oils for liquid biofuels depending on
the chemical pretreatment methods. Energy Conversion and Management, 66, 371-378.
Retrieved from http://www.sciencedirect.com/science/article/pii/S0196890414004063
Choi, J. H., Woo, H. C., & Suh, D. J. (2017). Pyrolysis of Seaweeds for Bio-oil and Bio-char
Production. Chemical Engineering Transactions, 37, 121-126. Retrieved from http://
www.aidic.it/cet/14/37/021.pdf
Choi, J. Y., et al. (2009). Effect of Wood Vinegar on the Performance, Nutrient Digestibility and
Intestinal Microflora in Weanling Pigs. Asian-australasian journal of animal sciences, 22,
267-274. Retrieved from http://cat.inist.fr/?aModele=afficheN&cpsidt=21350704
Choi, S., Drese, J. H., Eisenberger, P. M., & Jones, C. W. (2011). Application of Amine-Tethered
Solid Sorbents for Direct CO2 Capture from the Ambient Air. Environmental Science &
Technology, 45(6), 2420-2427. doi:10.1021/es102797w
Choi, S., Drese, J. H., & Jones, C. W. (2009). Adsorbent materials for carbon dioxide capture
from large anthropogenic point sources ChemSusChem, 2(9), 796-854. Retrieved from
https://pubmed.ncbi.nlm.nih.gov/19731282/
Choi, S., Gray, M. L., & Jones, C. W. (2011). Amine-Tethered Solid Adsorbents Coupling High
Adsorption Capacity and Regenerability for CO2 Capture From Ambient Air.
ChemSusChem, 4(5), 628-635. doi:https://doi.org/10.1002/cssc.201000355
Choi, W.-J., Park, H.-J., Cai, Y., & Chang, S. X. (2021). Environmental Risks in Atmospheric
CO2 Removal Using Enhanced Rock Weathering Are Overlooked. Environmental
Science & Technology. doi:10.1021/acs.est.1c02505
Choi, Y.-S., Shin, J.-D., Lee, S.-I., & Kim, S.-C. (2015). Adsorption Characteristics of Aqueous
Ammonium Using Rice hull-Derived Biochar. Korean Journal of Environmental
Agriculture, 34(3), 155 - 160. doi:10.5338/kjea.2015.34.3.25
Choppala, G., Bolan, N., Kunhikrishnan, A., & Bush, R. (2016). Differential effect of biochar
upon reduction-induced mobility and bioavailability of arsenate and chromate.
Chemosphere, 144, 374 - 381. doi:10.1016/j.chemosphere.2015.08.043
Choppala, G. K., et al. (2012). The Influence of Biochar and Black Carbon on Reduction and
Bioavailability of Chromate in Soils. Journal of Environmental Quality, 41(4), 1175-1184.
doi:10.2134/jeq2011.0145
Chopra, V. (2016). Development of an Optimized Fitting Routine for Comparing Theoretical Data
with Experiments on Moisture Sensitive Beads for Carbon Dioxide Capture. (M.S.).
Arizona State University, Retrieved from https://search.proquest.com/docview/
1797949537?accountid=14496
Chou, C.-t., et al. (2013). Carbon Dioxide Capture and Hydrogen Purification from Synthesis
Gas by Pressure Swing Adsorption. Chemical Engineering Transactions, 32, 1855-1860.
Retrieved from https://www.aidic.it/cet/13/32/310.pdf
Chou, W.-C., Gong, G.-C., Hsieh, P.-S., Chang, M.-H., Chen, H.-Y., Yang, C.-Y., & Syu, R.-W.
(2015). Potential impacts of effluent from accelerated weathering of limestone on
seawater carbon chemistry: A case study for the Hoping power plant in northeastern
Taiwan. Marine Chemistry, 168, 27-36. doi:https://doi.org/10.1016/
j.marchem.2014.10.008
Choudhury, N. D., Chutia, R. S., Bhaskar, T., & Kataki, R. (2014). Pyrolysis of jute dust: effect of
reaction parameters and analysis of products. Journal of Material Cycles and Waste
Management, 16(3), 449-459. Retrieved from http://link.springer.com/article/10.1007/
s10163-014-0268-4
Chowdhury, R., & Freire, F. (2015). Bioenergy production from algae using dairy manure as a
nutrient source: Life cycle energy and greenhouse gas emission analysis. Applied
Energy, 154, 1112-1121. doi:https://doi.org/10.1016/j.apenergy.2015.05.045
Chowdhury, Z. Z., et al. (2015). Catalytic pretreatment of biochar residues derived from
lignocellulosic feedstock for equilibrium studies of manganese, Mn(II) cations from
aqueous solution. RSC Adv., 5(9), 6345 - 6356. doi:10.1039/c4ra09709b
Chowdhury, Z. Z., et al. (2016). Application of Graphitic Bio-Carbon using Two-Level Factorial
Design for Microwave-assisted Carbonization. BioResources, 11(2), 3637-3659.
Retrieved from http://ojs.cnr.ncsu.edu/index.php/BioRes/article/view/
BioRes_11_2_3637_Chowdhury_Graphitic_Bio_Carbon_Factorial_Design/4298
Chowdhury, Z. Z., et al. (2016). Influence of Carbonization Temperature on Physicochemical
Properties of Biochar derived from Slow Pyrolysis of Durian Wood (Durio zibethinus)
Sawdust. BioResources, 11(2), 3356-3372. Retrieved from http://152.1.0.246/index.php/
BioRes/article/view/
BioRes_11_2_3356_Chowdhury_Carbonization_Temperature_Biochar_Durian_Wood
Christaki, U., Obernosterer, I., Van Wambeke, F., Veldhuis, M., Garcia, N., & Catala, P. (2008).
Microbial food web structure in a naturally iron-fertilized area in the Southern Ocean
(Kerguelen Plateau). Deep Sea Research Part II: Topical Studies in Oceanography,
55(5–7), 706-719. doi:http://dx.doi.org/10.1016/j.dsr2.2007.12.009
Christensen, E. L., et al. (2020). Hitching a Ride on the Omnibus: COVID Relief and
Appropriations Act Includes Major Climate Change and Energy Provisions. The National
Law Review. Retrieved from https://www.natlawreview.com/article/hitching-ride-omnibus-
covid-relief-and-appropriations-act-includes-major-climate
Christensen, J. (2019). Primer: Section 45Q Tax Credit for Carbon Capture Projects. Retrieved
from https://www.betterenergy.org/blog/primer-section-45q-tax-credit-for-carbon-capture-
projects/
Christian, D. G., Riche, A. B., & Yates, N. E. (2008). Growth, yield and mineral content of
Miscanthus giganteus grown as a biofuel for 14 successive harvests. Industrial Crops
and Products, 28(3), 320-327. doi:http://dx.doi.org/10.1016/j.indcrop.2008.02.009
Christian, H., et al. (2018). Ratcheting ambition to limit warming to 1.5°C–trade-offs between
emission reductions and carbon dioxide removal. Environmental Research Letters,
13(6), 064028. Retrieved from http://stacks.iop.org/1748-9326/13/i=6/a=064028
Christian, J., & Mowat, H. (2017). We already have a magic technology that sucks up carbon.
Retrieved from http://www.climatechangenews.com/2017/03/08/already-magic-
technology-sucks-carbon/
Christiansen, K. L., & Carton, W. (2021). What ‘climate positive future’? Emerging sociotechnical
imaginaries of negative emissions in Sweden. Energy Research & Social Science, 76,
102086. doi:https://doi.org/10.1016/j.erss.2021.102086
Christianson, L., et al. . (2011). Influence of Biochar Amendments of Denitification Bioreactor
Performance. Retrieved from http://www.massey.ac.nz/~flrc/workshops/11/Manuscripts/
Christianson_2011.pdf
Christoforou, E., & Fokaides, P. A. (2019). Sustainability Considerations of Solid Biofuels
Production and Exploitation. In E. Christoforou & P. A. Fokaides (Eds.), Advances in
Solid Biofuels (pp. 97-109). Cham: Springer International Publishing.
Chrobak, U. (2021). Sci-fi carbon coins could actually save our planet. Popular Science.
Retrieved from https://www.popsci.com/story/environment/carbon-coin-real/
Chunduwat, S. P. S., et a. (2011). Deconstruction of Lignocellulosic Biomass to Fuels and
Chemicals. Annual Review of Chemical and Biomolecular Engineering, 2, 121-145.
Retrieved from http://www.annualreviews.org/doi/10.1146/annurev-
chembioeng-061010-114205
Chung, I. K., et al. (2013). Installing kelp forests/seaweed beds for mitigation and adaptation
against global warming: Korean Project Overview. ICES Journal of Marine Science,
70(5), 1038-1044. Retrieved from https://academic.oup.com/icesjms/article/
70/5/1038/644026/Installing-kelp-forests-seaweed-beds-for
Chung, I. K., Beardall, J., Mehta, S., Sahoo, D., & Stojkovic, S. (2011). Using marine
macroalgae for carbon sequestration: a critical appraisal. Journal of Applied Phycology,
23(5), 877-886. doi:10.1007/s10811-010-9604-9
Chung, K., et al. (2009). The Conceptual Coastal CO2 Removal Belt and Estimation of Carbon
Sequestration by Seaweed. Phycologia, 48(4), 21. Retrieved from https://
www.researchgate.net/publication/
295169190_THE_CONCEPTUAL_COASTAL_CO2_REMOVAL_BELT_AND_ESTIMATI
ON_OF_CARBON_SEQUESTRATION_BY_SEAWEEDS
Chung, Y.-S., Lee, J.-W., & Chung, C.-H. (2017). Molecular challenges in microalgae towards
cost-effective production of quality biodiesel. Renewable and Sustainable Energy
Reviews, 74, 139-144. doi:https://doi.org/10.1016/j.rser.2017.02.048
ChunMei, Z., et al. (2014). Distillation of liquid yield from carbonization of agricultural residue.
Journal of Shenyang Agricultural University, 45(4), 495-498. Retrieved from http://
www.cabdirect.org/abstracts/20153047139.html
ChunMei, Z., et al. (2015). Bio-Oil Production from Fast Pyrolysis of Corn Wates and Eucalyptus
Wood in a Fluidized Bed Reactor. Journal of Agricultural Machinery, 4(2), 226-235.
Retrieved from http://en.journals.sid.ir/ViewPaper.aspx?ID=418258
Chunxue, Y., et al. (2015). Developing More Effective Enhanced Biochar Fertilisers for
Improvement of Pepper Yield and Quality. Pedosphere, 25(5), 703-712. Retrieved from
http://www.sciencedirect.com/science/article/pii/S1002016015300515
Churkina, G., Organschi, A., Reyer, C. P. O., Ruff, A., Vinke, K., Liu, Z., . . . Schellnhuber, H. J.
(2020). Buildings as a global carbon sink. Nature Sustainability. doi:10.1038/
s41893-019-0462-4
Ciha, T. (2021). The Evaluation of Algae-Derived Activated Carbon Adsorbents for Direct CO2
Capture from Ambient Air. Retrieved from https://repository.asu.edu/items/63823
Cimò, G., et al. (2014). Effect of Heating Time and Temperature on the Chemical Characteristics
of Biochar from Poultry Manure. Journal of Agricultural and Food Chemistry, 62(8),
1912-1918. Retrieved from http://pubs.acs.org/doi/abs/10.1021/jf405549z
Cimons, M. (2019). Scientists Call for Artificial Trees to Fight Climate Change. Nexus Media.
Retrieved from https://nexusmedianews.com/scientists-call-for-artificial-trees-to-fight-
climate-change-21357e04ba71
Cintas, O., Berndes, G., Cowie, A. L., Egnell, G., Holmström, H., & Ågren, G. I. (2016). The
climate effect of increased forest bioenergy use in Sweden: evaluation at different spatial
and temporal scales. Wiley Interdisciplinary Reviews: Energy and Environment, 5(3),
351-369. doi:10.1002/wene.178
Cintas, O., Berndes, G., Cowie, A. L., Egnell, G., Holmström, H., Marland, G., & Ågren, G. I.
(2017). Carbon balances of bioenergy systems using biomass from forests managed
with long rotations: bridging the gap between stand and landscape assessments. GCB
Bioenergy, 9(7), 1-14. doi:10.1111/gcbb.12425
Cipolla, G., Calabrese, S., Noto, L. V., & Porporato, A. (2021). The role of hydrology on
enhanced weathering for carbon sequestration I. Modeling rock-dissolution reactions
coupled to plant, soil moisture, and carbon dynamics. Advances in Water Resources,
103934. doi:https://doi.org/10.1016/j.advwatres.2021.103934
Cipolla, G., Calabrese, S., Noto, L. V., & Porporato, A. (2021). The role of hydrology on
enhanced weathering for carbon sequestration II. From hydroclimatic scenarios to
carbon-sequestration efficiencies. Advances in Water Resources, 103949. doi:https://
doi.org/10.1016/j.advwatres.2021.103949
Citerone, V. R. (2016). Enhancing Gas Transfer at an Air-Water Interface Through Strengthened
Secondary Flows Motivated by Algal Biofuel Production.
CJ, A., JD, F., & NA, H. (2010). Potential mechanisms for achieving agricultural benefits from
biochar application to temperate soils: a review. Plant and Soil, 337(1), 1-18. Retrieved
from http://link.springer.com/article/10.1007/s11104-010-0464-5
Clancy, H. (2020). Carbontech is getting ready for its market moment. GreenBiz. Retrieved from
https://www.greenbiz.com/article/carbontech-getting-ready-its-market-moment
Clancy, H. (2020). How Stripe’s ‘negative emissions’ team picked its first four carbon removal
projects. GreenBiz. Retrieved from https://www.greenbiz.com/article/how-stripes-
negative-emissions-team-picked-its-first-four-carbon-removal-projects
Clancy, H. (2020). Strategy firm BCG pledges net-zero impact, eyes ‘carbon positive’ future.
Green Biz. Retrieved from https://www.greenbiz.com/article/strategy-firm-bcg-pledges-
net-zero-impact-eyes-carbon-positive-future
Clancy, H. (2021). Betting on biochar. Verge Weekly. Retrieved from https://info.greenbiz.com/
index.php/email/emailWebview?md_id=23014
Clancy, H. (2021). New corporate alliance aims to scale climate action, starting with carbon
removal GreenBiz. Retrieved from https://www.greenbiz.com/article/new-corporate-
alliance-aims-scale-climate-action-starting-carbon-removal
Clancy, H. (2021). The potential for carbon-capture tech is captivating. GreenBiz. Retrieved from
https://www.greenbiz.com/article/potential-carbon-capture-tech-captivating
Clancy, H. (2021). U.S. infrastructure bill lays foundation for carbon management economy.
GreenBiz. Retrieved from https://www.greenbiz.com/article/us-infrastructure-bill-lays-
foundation-carbon-management-economy
Clare, A., Barnes, A., McDonagh, J., & Shackley, S. (2014). From rhetoric to reality: farmer
perspectives on the economic potential of biochar in China. International Journal of
Agricultural Sustainability, 12(3), 1-19. doi:10.1080/14735903.2014.927711
Clare, A., Shackley, S., Joseph, S., Hammond, J., Pan, G., & Bloom, A. (2014). Competing uses
for China's straw: the economic and carbon abatement potential of biochar. GCB
Bioenergy, 7(6), 1272-1283. doi:10.1111/gcbb.12220
Clarens, A. F., Nassau, H., Resurreccion, E. P., White, M. A., & Colosi, L. M. (2011).
Environmental Impacts of Algae-Derived Biodiesel and Bioelectricity for Transportation.
Environmental Science & Technology, 45(17), 7554-7560. doi:10.1021/es200760n
Clark, D. (2009, July 5). Just add lime (to the sea) – the latest plan to cut CO2 emissions. The
Guardian. Retrieved from https://www.theguardian.com/environment/2009/jul/06/lime-
sea-carbon-dioxide-emissions
Clark, D. E. (2016). Monitoring of CO2/H2S gas mixture injection in basaltic rocks at Hellisheiði
Geothermal Power Plant, Iceland. Geophysical Research Abstracts,
18(EGU2016-14713-1), 14713. Retrieved from http://meetingorganizer.copernicus.org/
EGU2016/EGU2016-14713-1.pdf
Clark, D. E., Gunnarsson, I., Aradóttir, E. S., Þ. Arnarson, M., Þorgeirsson, Þ. A., Sigurðardóttir,
S. S., . . . Gíslason, S. R. (2018). The chemistry and potential reactivity of the CO2-H2S
charged injected waters at the basaltic CarbFix2 site, Iceland. Energy Procedia, 146,
121-128. doi:https://doi.org/10.1016/j.egypro.2018.07.016
Clark, D. E., Oelkers, E. H., Gunnarsson, I., Sigfússon, B., Snæbjörnsdóttir, S. Ó., Aradóttir, E.
S., & Gíslason, S. R. (2020). CarbFix2: CO2 and H2S mineralization during 3.5 years of
continuous injection into basaltic rocks at more than 250 °C. Geochimica Et
Cosmochimica Acta. doi:https://doi.org/10.1016/j.gca.2020.03.039
Clark, D. E., Oelkers, E. H., Gunnarsson, I., Sigfússon, B., Snæbjörnsdóttir, S. Ó., Aradóttir, E.
S., & Gíslason, S. R. (2020). CarbFix2: CO2 and H2S mineralization during 3.5years of
continuous injection into basaltic rocks at more than 250°C. Geochimica Et
Cosmochimica Acta, 279, 45-66. doi:https://doi.org/10.1016/j.gca.2020.03.039
Clark, E. L., Resasco, J., Landers, A., Lin, J., Chung, L.-T., Walton, A., . . . Bell, A. T. (2018).
Standards and Protocols for Data Acquisition and Reporting for Studies of the
Electrochemical Reduction of Carbon Dioxide. ACS Catalysis, 6560-6570. doi:10.1021/
acscatal.8b01340
Clark, J. H., Luque, R., & Matharu, A. S. (2012). Green Chemistry, Biofuels, and Biorefinery.
Annual Review of Chemical and Biomolecular Engineering, 3, 183-207. Retrieved from
http://www.annualreviews.org/doi/10.1146/annurev-chembioeng-062011-081014
Clark, L., & Anchondo, C. (2021). Biden and CCS: Plans, politics, pitfalls. E&E News. Retrieved
from https://www.eenews.net/stories/1063727843
Clausse, M., Merel, J., & Meunier, F. (2011). Numerical parametric study on CO2 capture by
indirect thermal swing adsorption. International Journal of Greenhouse Gas Control,
5(5), 1206-1213. Retrieved from https://www.mendeley.com/catalog/numerical-
parametric-study-co2-capture-indirect-thermal-swing-adsorption/
Claussen, M., Brovkin, V., & Ganopolski, A. (2001). Biogeophysical versus biogeochemical
feedbacks of large-scale land cover change. Geophysical Research Letters, 28(6),
1011-1014. Retrieved from http://onlinelibrary.wiley.com/doi/10.1029/2000GL012471/
abstract
Clay, S. A., & Malo, D. D. (2011). The Influence of Biochar Production on Herbicide Sorption
Characteristics. In Herbicides – Properties, Synthesis and Control of Weeds (pp. 59 -
74).
Cleary, J., & Caspersen, J. P. (2015). Comparing the life cycle impacts of using harvest residue
as feedstock for small- and large-scale bioenergy systems (part I). Energy, 88, 917-926.
doi:http://dx.doi.org/10.1016/j.energy.2015.07.045
Cleary, J., Wolf, D. P., & Caspersen, J. P. (2015). Comparing the life cycle costs of using harvest
residue as feedstock for small- and large-scale bioenergy systems (part II). Energy, 86,
539-547. doi:10.1016/j.energy.2015.04.057
Clegg, S. L., & Whitfield, M. (1990). A generalized model for the scavenging of trace metals in
the open ocean—I. Particle cycling. Deep Sea Research Part A. Oceanographic
Research Papers, 37(5), 809-832. doi:https://doi.org/10.1016/0198-0149(90)90008-J
Clements, W. H., Stahl, R. G., & Landis, R. C. (2015). Ecological Effects of Biochar on the
Structure and Function of Stream Benthic Communities. Environmental Science &
Technology, 49(24), 14649 - 14654. doi:10.1021/acs.est.5b04400
Clifton-brown, J. C., Stampfl, P. F., & Jones, M. B. (2004). Miscanthus biomass production for
energy in Europe and its potential contribution to decreasing fossil fuel carbon
emissions. Global Change Biology, 10(4), 509-518. doi:10.1111/
j.1529-8817.2003.00749.x
Cliggett, M. S. (2015). Point-of-use treatment of multiple drinking water contaminants by white
spruce biochar. UNIVERSITY OF ALASKA ANCHORAGE, Retrieved from http://
gradworks.umi.com/16/05/1605409.html
Climeworks. (2020). Climeworks raises CHF 73M (USD 75M) – the largest ever private
investment into direct air capture [Press release]. Retrieved from https://
www.climeworks.com/news/climeworks-raises-chf-73m-usd-75m
Climeworks. (2021). Carbon capture: A critical tool in the climate restoration toolbox Grist.
Retrieved from https://grist.org/article/carbon-capture-a-critical-tool-in-the-climate-
restoration-toolbox/
Climeworks. (2021). Climeworks and leading risk knowledge company Swiss Re sign the
world’s first and largest 10-year purchase agreement for direct air capture and storage of
carbon dioxide Retrieved from https://climeworks.com/news/swiss-re-sign-the-worlds-
first-and-largest
Climeworks. (2021). The world’s largest climate-positive direct air capture plant: Orca! .
Retrieved from https://climeworks.com/orca
Clough, T. J., et al. (2013). A Review of Biochar and Soil Nitrogen Dynamics. Agronomy, 3(2),
275-293. doi:10.3390/agronomy3020275
Clough, T. J., Bertram, J. E., Ray, J. L., Condron, L. M., O'Callaghan, M., Sherlock, R. R., &
Wells, N. S. (2010). Unweathered Wood Biochar Impact on Nitrous Oxide Emissions
from a Bovine-Urine-Amended Pasture Soil. Soil Science Society of America Journal,
74(3), 852-860. Retrieved from https://www.researchgate.net/publication/
43252542_Unweathered_Wood_Biochar_Impact_on_Nitrous_Oxide_Emissions_from_a
_Bovine-Urine-Amended_Pasture_Soil
Clough, T. J., & Condron, L. M. (2010). Biochar and the Nitrogen Cycle: Introduction. Journal of
Environmental Quality, 39(4), 1218-1223. doi:10.2134/jeq2010.0204
Club, S. (2020). Climate Resilience, Carbon Dioxide Removal, and Geoengineering Policy-
Preface. Retrieved from https://www.sierraclub.org/sites/www.sierraclub.org/files/2020-
Sierra-Club-Climate-Resilience-Policy.pdf
Coale, K. H., et al. (1996). A massive phytoplankton bloom induced by an ecosystem-scale iron
fertilization experiment in the equatorial Pacific Ocean. Nature, 383, 495-501. Retrieved
from http://bio.classes.ucsc.edu/bioe107/L31996%20Coale%20et%20al%20Nature.pdf
Coale, K. H. (2001). Iron Fertilization* A2 - Steele, John H. In Encyclopedia of Ocean Sciences
(Second Edition) (pp. 331-342). Oxford: Academic Press.
Coale, K. H., et al. (2004). Southern Ocean Iron Enrichment Experiment: Carbon Cycling in
High- and Low-Si Waters. Science, 304(5669), 408-414. Retrieved from http://
science.sciencemag.org/content/304/5669/408
Coale, K. H., Johnson, K. S., Fitzwater, S. E., Gordon, R. M., Tanner, S., Chavez, F. P., . . .
Kudela, R. (1996). A massive phytoplankton bloom induced by an ecosystem-scale iron
fertilization experiment in the equatorial Pacific Ocean. Nature, 383(6600), 495-501.
Retrieved from http://dx.doi.org/10.1038/383495a0
Coale, K. H., & Wong, M. (2018). Ocean Iron Fertilization. In Reference Module in Earth
Systems and Environmental Sciences: Elsevier.
Coalition, C. C. (2021). Carbon Capture Coalition Submits Key Carbon Capture Priorities to
President Biden’s Climate Team. Retrieved from https://carboncapturecoalition.org/
carbon-capture-coalition-submits-key-carbon-capture-priorities-to-president-bidens-
climate-team/
Codur, A.-M., et al. (2017). Hope Below Our Feet: Soil as a Climate Solution. Retrieved from
http://www.ase.tufts.edu/gdae/Pubs/climate/ClimatePolicyBrief4.pdf
Coelho, M. S., Barbosa, F. G., & Souza, M. d. R. A. Z. (2014). The scientometric research on
macroalgal biomass as a source of biofuel feedstock. Algal Research, 6(Part B), 132 -
138. doi:10.1016/j.algal.2014.11.001
Coffey, D. (2020). Could we ever pull enough carbon out of the atmosphere to stop climate
change? Retrieved from https://www.livescience.com/can-carbon-removal-slow-climate-
change.html
Coffield, S. R., Hemes, K. S., Koven, C. D., Goulden, M. L., & Randerson, J. T. (2021). Climate-
Driven Limits to Future Carbon Storage in California's Wildland Ecosystems. AGU
Advances, 2(3), e2021AV000384. doi:https://doi.org/10.1029/2021AV000384
Cohen, R. M. (2019). The Environmental Left Is Softening on Carbon-Capture Technology.
Maybe That’s OK. The Intercept. Retrieved from https://theintercept.com/2019/09/20/
carbon-capture-technology-unions-labor/
Cohen, R. M. (2020). After George Floyd, Carbon Capture Tech Tiptoes into Racial Justice. The
Intercept. Retrieved from https://theintercept.com/2020/12/14/environmental-racial-
justice-carbon-capture/
Cohen-Ofri, I., Popovitz-Biro, R., & Weiner, S. (2007). Structural Characterization of Modern and
Fossilized Charcoal Produced in Natural Fires as Determined by Using Electron Energy
Loss Spectroscopy. Chemistry - A European Journal, 13(8), 2306-2310. Retrieved from
https://www.ncbi.nlm.nih.gov/pubmed/17163552
Colanton, A., et al. (2015). Use of hazelnut’s pruning to produce biochar by gasifier small scale
plant. International Journal of Renewable Energy Research-IJRER, 5(3), 872-876.
Retrieved from http://www.ijrer.org/ijrer/index.php/ijrer/article/viewFile/2460/pdf_73
Colbourn, G., Ridgwell, A., & Lenton, T. M. (2015). The time scale of the silicate weathering
negative feedback on atmospheric CO2. Global Biogeochemical Cycles, 29(5), 583-596.
Retrieved from http://onlinelibrary.wiley.com/doi/10.1002/2014GB005054/pdf
Colchester, M. (2011). Palm Oil and Indigenous Peoples in South Asia. Retrieved from http://
www.forestpeoples.org/sites/fpp/files/publication/2010/08/
palmoilindigenouspeoplesoutheastasiafinalmceng_0.pdf
Coldewey, D. (2021). Heimdal pulls CO2 and cement-making materials out of seawater using
renewable energy. Tech Crunch. Retrieved from https://techcrunch.com/2021/08/30/
heimdal-pulls-co2-and-cement-making-materials-out-of-seawater-using-renewable-
energy/
Cole, A. J., Mata, L., Paul, N. A., & de Nys, R. (2014). Using CO
2
to enhance carbon capture
and biomass applications of freshwater macroalgae. GCB Bioenergy, 6(6), 637-645.
doi:10.1111/gcbb.12097
Cole, D. P. (2015). High resolution mass spectrometry for molecular characterization of pyrolysis
products and kinetics. Iowa State University, Retrieved from http://lib.dr.iastate.edu/etd/
14342/
Cole, D. P., Smith, E. A., & Lee, Y. J. (2012). High-Resolution Mass Spectrometric
Characterization of Molecules on Biochar from Pyrolysis and Gasification of
Switchgrass. Energy Fuels, 26(6), 3803-3809. doi:10.1021/ef300356u
Cole, E. J. (2014). Assessing Kiln-Produced Hardwood Biochar for Improving Soil Health in a
Temperate Climate Agricultural Soil. University of Massachusetts, Retrieved from http://
scholarworks.umass.edu/dissertations_2/486/
Coleman, B. S. L., Easton, Z. M., & Bock, E. M. (2019). Biochar fails to enhance nutrient
removal in woodchip bioreactor columns following saturation. Journal of Environmental
Management, 232, 490-498. doi:https://doi.org/10.1016/j.jenvman.2018.11.074
Coleman, E. A., Schultz, B., Ramprasad, V., Fischer, H., Rana, P., Filippi, A. M., . . . Fleischman,
F. (2021). Limited effects of tree planting on forest canopy cover and rural livelihoods in
Northern India. Nature Sustainability. doi:10.1038/s41893-021-00761-z
Collet, P., Lardon, L., Hélias, A., Bricout, S., Lombaert-Valot, I., Perrier, B., . . . Bernard, O.
(2014). Biodiesel from microalgae – Life cycle assessment and recommendations for
potential improvements. Renewable Energy, 71, 525-533. doi:https://doi.org/10.1016/
j.renene.2014.06.009
Collet, S., & Rousseau, A. (2015). Création d'une entreprise sociale visant à récupérer les sols
dégradés au Burkina Faso à l'aide de techniques agroécologiques innovantes. (Creating
a social enterprise to recover degraded soils in Burkina Faso using innovative
agroecological techniques). Université Catholique de Louvain (Catholic University of
Louvain), Retrieved from http://dial.uclouvain.be/downloader/downloader.php?
pid=thesis%3A2871&datastream=PDF_01
Collins, H. P., et al. (2013). Phosphorus Uptake by Potato from Biochar Amended with
Anaerobic Digested Dairy Manure Effluent. Agronomy Journal, 105(4), 989-998.
Retrieved from https://dl.sciencesocieties.org/publications/aj/pdfs/105/4/989
Collins, L. (2021). 'The amount of energy required by direct air carbon capture proves it is an
exercise in futility' Retrieved from https://www.rechargenews.com/energy-transition/the-
amount-of-energy-required-by-direct-air-carbon-capture-proves-it-is-an-exercise-in-
futility/2-1-1067588
Collison, M., et al. . (2009). Biochar and Carbon Sequestration: A Regional Perspective.
Retrieved from http://www.uea.ac.uk/polopoly_fs/1.118134!
LCIC%20EEDA%20BIOCHAR%20REVIEW%2020-04-09.pdf
Colman, Z., et al. (2021). Biden mulls giving farmers billions to fight climate change. Even
farmers are unsure about the plan. Politico. Retrieved from https://www.politico.com/
news/2021/03/29/biden-carbon-bank-proposal-478224?
utm_medium=email&_hsmi=118979859&_hsenc=p2ANqtz-
_iCzBvGYGc6P5wf-0YBN7VaE1alzAHEzNBf_875VJZBw1MM56Eh0WKuYSyP1rGfrcZ
BT9HJtSHPJHsS2aEAdVdo80bRg&utm_content=118980047&utm_source=hs_email
Colomb, A. (2015). Production Of Activated Carbons From Pyrolytic Char For Environmental
Applications. The University of Western Ontario, Retrieved from http://ir.lib.uwo.ca/cgi/
viewcontent.cgi?article=4536&context=etd
Columbia, S., Center on Global Energy Policy (Producer). (2019). Inventing the Future: Zero
Carbon Fuels and Climate Restoration. Retrieved from https://
energypolicy.columbia.edu/events-calendar/inventing-future-zero-carbon-fuels-and-
climate-restoration
Colvin, R. M., Kemp, L., Talberg, A., De Castella, C., Downie, C., Friel, S., . . . Platow, M. J.
(2019). Learning from the Climate Change Debate to Avoid Polarisation on Negative
Emissions. Environmental Communication, 1-13. doi:10.1080/17524032.2019.1630463
Comet, P. (2010). Biochar for CO2 Reduction. Chemical & Engineering News, 88(11), 4.
Retrieved from http://cen.acs.org/articles/88/i11/Biochar-CO2-Reduction.html?
type=paidArticleContent
Commission, C. B., Foundation, C. B., Corporation, M. T. D., & Coordination, F. P. P. (2012).
Manure To Energy: Sustainable Solutions for the Chesapeake Bay Region. Retrieved
from http://www.biochar-international.org/sites/default/files/manure-to-
energy%20report.pdf
Commission, E. (2018). Our Vision for a Clean Planet for All. Retrieved from https://
sofiesgroup.com/en/news/white-paper-sofies-co2-as-a-resource/
Committee on the Sustainable Development of Algal Biofuels, N. A. o. S. (2012). Sustainable
Development of Algal Biofuels. Retrieved from https://www.ourenergypolicy.org/wp-
content/uploads/2012/10/13437.pdf
Compagnon, D. (2019). Governing a Mirage? False Promises of Negative Emissions
Technologies. Carbon & Climate Law Review, 13(2), 104-112. doi:10.21552/cclr/
2019/2/5 %J Carbon & Climate Law Review
Conant, R. T. (2011). Sequestration through forestry and agriculture. Wiley Interdisciplinary
Reviews: Climate Change, 2(2), 238-254. doi:doi:10.1002/wcc.101
Conant, R. T., et al. (2017). Grasslands; soil sequestration. Ecological Applications, 27(2),
662-668. Retrieved from https://esajournals.onlinelibrary.wiley.com/doi/abs/10.1002/
eap.1473
Conant, R. T., Paustian, K., & Elliot, E. T. (2001). Grassland Management and Conversion into
Grassland: Effects on Soil Carbon. Ecological Applications, 11(2), 343-355. Retrieved
from https://esajournals.onlinelibrary.wiley.com/doi/abs/
10.1890/1051-0761%282001%29011%5B0343%3AGMACIG%5D2.0.CO%3B2
Conca, J. (2019). Carbon Engineering - Taking CO2 Right Out Of The Air To Make Gasoline.
Forbes. Retrieved from https://www.forbes.com/sites/jamesconca/2019/10/08/carbon-
engineering-taking-co2-right-out-of-the-air-to-make-gasoline/#393eb83613cc
Conference, G. (2018). Scientists find way to make mineral which can remove CO2 from
atmosphere. Retrieved from https://phys.org/news/2018-08-scientists-mineral-co2-
atmosphere.html
Conniff, R. (2019). Could Air-Conditioning Fix Climate Change? Scientific American. Retrieved
from https://www.scientificamerican.com/article/could-air-conditioning-fix-climate-
change/?
fbclid=IwAR2ES5QR8_KhuxzOhFTHIh5LuSeHpHXEyOVg91_A06OMPX1HVm4xfDBPT
w4
Conniff, R. (2019). Scrubbing Carbon from the Sky. Scientific American(January). Retrieved
from https://www.scientificamerican.com/article/scrubbing-carbon-from-the-sky/
Connors, P., et al. (2021). IRS Finalizes Guidance Relating to Carbon Capture and
Sequestration. JD Supra. Retrieved from https://www.jdsupra.com/legalnews/irs-
finalizes-guidance-relating-to-4860503/
Consoli, C. (2019). Bionenergy and Carbon Capture and Storage. Retrieved from https://
www.globalccsinstitute.com/wp-content/uploads/2019/03/BECCS-
Perspective_FINAL_18-March.pdf
Constantz, B., et al. (2009). United States Patent No. US8603424B2.
Constantz, B., et al. (2020).
Conte, P., et al. (2012). Nature of water-biochar interface interactions. GCB Bioenergy, 5(2),
116-121. doi:10.1111/gcbb.12009
Conte, P. (2014). Biochar, soil fertility, and environment. Biology and Fertility of Soils, 50(8),
1175 - 1175. doi:10.1007/s00374-014-0973-0
Conte, P. (2014). Effects of ions on water structure: a low-field 1H T1 NMR relaxometry
approach. Magnetic Resonance in Chemistry, 53(9), 711-718. doi:10.1002/mrc.4174
Conte, P., et al. . (2014). Mechanisms of Water Interaction with Pore Systems of Hydrochar and
Pyrochar from Poplar Forestry Waste. Journal of Agricultural and Food Chemistry,
62(21), 4917-4923. Retrieved from http://pubs.acs.org/doi/abs/10.1021/jf5010034
Conte, P., & Nestle, N. (2015). Water dynamics in different biochar fractions. Magnetic
Resonance in Chemistry, 53(9), 726-734. doi:10.1002/mrc.4204
Conte, P., Schmidt, H.-P., & Cimò, G. (2015). SSSA Special PublicationAgricultural and
Environmental Applications of Biochar: Advances and BarriersResearch and Application
of Biochar in Europe: Soil Science Society of America, Inc.
Conti, R., Rombolà, A. G., Modelli, A., Torri, C., & Fabbri, D. (2014). Evaluation of the thermal
and environmental stability of switchgrass biochars by Py–GC–MS. Journal of Analytical
and Applied Pyrolysis, 110, 239-247. doi:10.1016/j.jaap.2014.09.010
Contributor, D. S. (2019). Caution urged over use of ‘carbon unicorns‘ to limit warming. Denton
Daily. Retrieved from https://dentondaily.com/caution-urged-over-use-of-carbon-
unicorns-to-limit-warming/
Conversa, G., et al. (2015). Influence of biochar, mycorrhizal inoculation and fertilizer rate on
growth and flowering of pelargonium (Pelargonium zonale L.) plants. Frontiers in Plant
Science, 16(6), 1-11. Retrieved from http://journal.frontiersin.org/article/10.3389/
fpls.2015.00429/pdf
Converse, B. A., et al. (2020). If humans design the planet: A call for psychological scientists to
engage with climate engineering. American Psychologist. Retrieved from https://
psycnet.apa.org/record/2020-78671-001
Conway, T. M., Hamilton, D. S., Shelley, R. U., Aguilar-Islas, A. M., Landing, W. M., Mahowald,
N. M., & John, S. G. (2019). Tracing and constraining anthropogenic aerosol iron fluxes
to the North Atlantic Ocean using iron isotopes. Nature Communications, 10(1), 2628.
doi:10.1038/s41467-019-10457-w
Conz, R. F. (2015). Characterization of feedstocks and biochars for agricultural use. Escola
Superior de Agricultura Luiz de Queiroz, Retrieved from http://www.teses.usp.br/teses/
disponiveis/11/11140/tde-13052015-142608/en.php
Cook, P. J. (2017). CCS Research Development and Deployment in a Clean Energy Future:
Lessons from Australia over the Past Two Decades. Engineering, 3(4), 477-484.
doi:https://doi.org/10.1016/J.ENG.2017.04.014
Cooke, P. (2020). Investigation: The Problem with Big Oil’s ‘Forest Fever’. Desmog UK.
Retrieved from https://www.desmog.co.uk/2020/07/06/big-oil-forest-fever
Cook-Patton, S. C., Leavitt, S. M., Gibbs, D., Harris, N. L., Lister, K., Anderson-Teixeira, K.
J., . . . Griscom, B. W. (2020). Mapping carbon accumulation potential from global
natural forest regrowth. Nature, 585(7826), 545-550. doi:10.1038/s41586-020-2686-x
Cooks, S. T., Jr. (2014). Adsorption of contaminants found in hydraulic fracking produced water
utilizing cost-effective biochar treatment. THE UNIVERSITY OF TEXAS AT SAN
ANTONIO, Retrieved from http://gradworks.umi.com/15/56/1556483.html
Cookson, C. (2019). Researchers plan to enlist ocean viruses in climate change fight. Financial
Times. Retrieved from https://www.ft.com/content/4397152a-3309-11e9-
bd3a-8b2a211d90d5
Coomer, T. D., et al. (2012). Effect of Poultry Litter Biochar on Early-Season Cotton Growth.
Retrieved from http://arkansasagnews.uark.edu/610-16.pdf
Coomer, T. D. (2014). Influence of Poultry-Litter Biochar on Early-Season Growth in Cotton.
University of Arkansas,
Cooney, G., Littlefield, J., Marriott, J., & Skone, T. J. (2015). Evaluating the Climate Benefits of
CO2-Enhanced Oil Recovery Using Life Cycle Analysis. Environmental Science &
Technology, 49(12), 7491-7500. doi:10.1021/acs.est.5b00700
Cooney, M. J., Lewis, K., Harris, K., Zhang, Q., & Yan, T. (2015). Start up performance of
biochar packed bed anaerobic digesters. Journal of Water Process Engineering, 9, e7-
e13. doi:10.1016/j.jwpe.2014.12.004
Coons, J. E., Kalb, D. M., Dale, T., & Marrone, B. L. (2014). Getting to low-cost algal biofuels: A
monograph on conventional and cutting-edge harvesting and extraction technologies.
Algal Research, 6, 250-270. doi:https://doi.org/10.1016/j.algal.2014.08.005
Cooper, D. J., Watson, A. J., & Nightingale, P. D. (1996). Large decrease in ocean-surface CO2
fugacity in response to in situ iron fertilization. Nature, 383(6600), 511-513. Retrieved
from http://search.proquest.com/openview/5df27d30c28745af50cfffe672fd851e/1?pq-
origsite=gscholar&cbl=40569
Cooper, H. V., Vane, C. H., Evers, S., Aplin, P., Girkin, N. T., & Sjögersten, S. (2019). From peat
swamp forest to oil palm plantations: The stability of tropical peatland carbon.
Geoderma, 342, 109-117. doi:https://doi.org/10.1016/j.geoderma.2019.02.021
Cooper, J. M., Butler, G., & Leifert, C. (2011). Life cycle analysis of greenhouse gas emissions
from organic and conventional food production systems, with and without bio-energy
options. NJAS - Wageningen Journal of Life Sciences, 58(3), 185-192. doi:https://
doi.org/10.1016/j.njas.2011.05.002
Cooper, S. (2021). Biomass - potential to deliver hydrogen and negative emissions? Paper
presented at the ISSST 2021 - International Symposium on Sustainable Systems and
Technology
Cooperman, Y. (2016). Biochar and Carbon Sequestraton. Retrieved from https://ucanr.edu/
blogs/blogcore/postdetail.cfm?postnum=22224
Copley, T. R., Aliferis, K. A., & Jabaji, S. (2015). Maple bark biochar affects Rhizoctonia solani
metabolism and increases damping-off severity. Phytopathology, 105(10), 1334-1346.
doi:10.1094/phyto-08-14-0231-r
Corbeels, M., Cardinael, R., Naudin, K., Guibert, H., & Torquebiau, E. (2019). The 4 per 1000
goal and soil carbon storage under agroforestry and conservation agriculture systems in
sub-Saharan Africa. Soil and Tillage Research, 188, 16-26. doi:https://doi.org/10.1016/
j.still.2018.02.015
Corbett, C. (2020). Antacids for the Sea: Artificial Ocean Alkalinization. Legal Planet. Retrieved
from https://legal-planet.org/2020/01/27/antacids-for-the-sea-artificial-ocean-
alkalinization/
Coren, M. J. (2019). A controversial climate plan to restore a safe atmosphere debuts at the UN.
Quartz. Retrieved from https://qz.com/1710975/climate-restoration-made-its-debut-at-
the-united-nations/
Cornelissen, G., et al. . (2013). Biochar Effect on Maize Yield and Soil Characteristics in Five
Conservation Farming Sites in Zambia. Agronomy, 3(2), 256-274. Retrieved from http://
www.mdpi.com/2073-4395/3/2/256
Cornelissen, G., Elmquist, M., Groth, I., & Gustafsson, O. (2004). Effect of sorbate planarity on
environmental black carbon sorption. Environmental Science & Technology, 38(13),
3574-3580. Retrieved from http://pubs.acs.org/doi/abs/10.1021/es049862g
Cornelissen, G., Kukulska, Z., Kalaitzidis, S., Christanis, K., & Gustafsson, O. (2004). Relations
between environmental black carbon sorption and geochemical sorbent characteristics.
Environmental Science & Technology, 38(13), 3632-3640. Retrieved from http://
pubs.acs.org/doi/abs/10.1021/es0498742
Cornelissen, G., Rutherford, D. W., Arp, H. P. H., Dörsch, P., Kelly, C. N., & Rostad, C. E.
(2013). Sorption of Pure N2O to Biochars and Other Organic and Inorganic Materials
under Anhydrous Conditions. Environmental Science & Technology, 47, 7704-7712.
Retrieved from http://pubs.acs.org/doi/abs/10.1021/es400676q
Cornelissen, S., Koper, M., & Deng, Y. Y. (2012). The role of bioenergy in a fully sustainable
global energy system. Biomass and Bioenergy, 41, 21-33. doi:https://doi.org/10.1016/
j.biombioe.2011.12.049
Coronella, C. J., et al. . (2012). ENGINEERED PELLETS FROM BIOMASS BLEND. Paper
presented at the AIChE Annual Conference. http://www.researchgate.net/profile/
M_Toufiq_Reza/publication/
267311124_268611_Engineering_Pellets_of_Biomass_Blends/links/
54ee67110cf25238f93a51be.pdf
Corradini, G., Brotto, L., Ciccarese, L., & Pettenella, D. (2016). An overview of Italian
participation in afforestation and reforestation projects under the Clean Development
Mechanism. [An overview of Italian participation in afforestation and reforestation
projects under the Clean Development Mechanism]. iForest - Biogeosciences and
Forestry, 9(5), 720-728. doi:10.3832ifor1654-009
Corry, O., & Riesch, H. (2012). Beyond 'for or against': Environmental NGO-evaluations of CCS
as a climate change solution. In The Social Dynamics of Carbon Capture And Storage:
Understanding CCS Representations, Governance and Innovation (pp. 91-108).
Corwall, W. (2017). Is wood a greeen source of energy? Scientists are divided. Science (News).
Retrieved from http://www.sciencemag.org/news/2017/01/wood-green-source-energy-
scientists-are-divided
Costa, J. A. V., & de Morais, M. G. (2011). The role of biochemical engineering in the production
of biofuels from microalgae. Bioresource Technology, 102(1), 2-9. doi:https://doi.org/
10.1016/j.biortech.2010.06.014
Costa Junior, C., Corbeels, M., Bernoux, M., Píccolo, M. C., Siqueira Neto, M., Feigl, B. J., . . .
Lal, R. (2013). Assessing soil carbon storage rates under no-tillage: Comparing the
synchronic and diachronic approaches. Soil and Tillage Research, 134, 207-212.
doi:https://doi.org/10.1016/j.still.2013.08.010
Costa, K. M., McManus, J. F., Anderson, R. F., Ren, H., Sigman, D. M., Winckler, G., . . .
Ravelo, A. C. (2016). No iron fertilization in the equatorial Pacific Ocean during the last
ice age. Nature, 529(7587), 519-522. doi:10.1038/nature16453
Coteur, I., Wustenberghs, H., Debruyne, L., Lauwers, L., & Marchand, F. (2020). How do current
sustainability assessment tools support farmers’ strategic decision making? Ecological
Indicators, 114, 106298. doi:https://doi.org/10.1016/j.ecolind.2020.106298
Coumar, M. V., Parihar, R. S., Dwivedi, A. K., Saha, J. K., Rajendiran, S., Dotaniya, M. L., &
Kundu, S. (2016). Impact of pigeon pea biochar on cadmium mobility in soil and transfer
rate to leafy vegetable spinach. Environmental Monitoring and Assessment, 188(1).
doi:10.1007/s10661-015-5028-y
Coumaravel, K., Santhi, R., Kumar, V. S., & Mansour, M. M. (2011). Biochar – A Promising Soil
Additive-A Review. Agricultural Reviews, 32(2), 134-139. Retrieved from http://
www.arccjournals.com/uploads/articles/R3227.pdf
Coumaravel, K., Santhi, R., & Maragatham, S. (2015). Effect of biochar on yield and nutrient
uptake by hybrid maize and on soil fertility. Indian Journal of Agricultural Research,
49(2), 185. doi:10.5958/0976-058x.2015.00028.1
Council, C. U. R. (2018). Making Carbon a Commodity: The Potential of Carbon Capture RD&D.
Retrieved from http://www.curc.net/making-carbon-a-commodity-the-potential-of-carbon-
capture-rdd
Council, C. U. R. (2021). CURC Commends Bipartisan, Bicameral Introduction of the SCALE
Act. Retrieved from http://www.curc.net/curc-commends-bipartisan-bicameral-
introduction-of-the-scale-act
Council, E. A. S. A. (2018). Negative emission technologies: What role in meeting Paris
Agreement targets? Retrieved from https://easac.eu/fileadmin/PDF_s/
reports_statements/Negative_Carbon/
EASAC_Report_on_Negative_Emission_Technologies.pdf
Council, E. A. S. A. (2019). Forest bioenergy, carbon capture and storage, and carbon dioxide
removal: an update. Retrieved from https://easac.eu/publications/details/forest-
bioenergy-carbon-capture-and-storage-and-carbon-dioxide-removal-an-update/
Council, W. H. E. J. A. (2021). Justice40: Climate and Economic Justice Screening Tool &
Executive Order 12898 Revisions: Interim Final Recommendations. Retrieved from
https://urldefense.com/v3/__https://carbon180.us11.list-manage.com/track/click?
u=4823fd7f19ac2e684f23c310e&id=d561560d2f&e=69f319ee85__;!!IaT_gp1N!
lb7XWIpUOW6Xf8SVx5wzZmdp7VAeLWNxqJgx25inzGl9mJR7HyDAYmt93-
pJa6VOAg$
Covell, P., et al. . (2011). Advancing Biochar in the Chesapeake: A Strategy to Reduce Pollution
from Poultry Litter. Retrieved from http://www.forest-trends.org/publication_details.php?
publicationID=2891
Covey, C., Doutriaux, C., Gleckler, P. J., Taylor, K. E., Trenberth, K. E., & Zhang, Y. (2018). High-
Frequency Intermittency in Observed and Model-Simulated Precipitation. Geophysical
Research Letters, 45(22), 12,514-512,522. doi:10.1029/2018gl078926
Cowie, A. (2011, 08/2011). Rural Climate Change Solutions Symposium. Paper presented at the
Rural Climate Change Solutions Symposium; May 3 - 4, 2011, University of New
England.
Cowie, A., et al. (2012). Biochar can enhance soil fertility and reduce greenhouse gas
emissions. 16 Australian Agronomy Conference, 2012. Retrieved from http://
www.regional.org.au/au/asa/2012/climate-change/8277_cowiea.htm
Cowie, A., et al. (2015). Biochar, carbon accounting and climate change. In J. Lehmann & S.
Joseph (Eds.), Biochar for Environmental Management Science, Technology and
Implementation (pp. 763-794).
Cowie, A. (2020). The Morrison government wants to suck CO out of the atmosphere. Here are
7 ways to do it. The Conversation. Retrieved from https://theconversation.com/the-
morrison-government-wants-to-suck-co-out-of-the-atmosphere-here-are-7-ways-to-do-
it-144941
Cowie, A. L., & Cowie, A. J. (2014). Life cycle assessment of greenhouse gas mitigation benefits
of biochar. University of New England, Retrieved from http://www.ieabioenergy-
task38.org/publications/T38_Biochar_case_study.pdf
Cowie., A. L., et al. (2012). Is sustainability certification for biochar the answer to environmental
risks? Pesq. agropec. bras, 47(5), 637-648. Retrieved from http://www.scielo.br/
scielo.php?pid=S0100-204X2012000500002&script=sci_arttext
Cox, D. (2013). Response of ‘First Lady’ Marigolds to Plant Extract Fertilizers, Granular Organic
Fertilizers, and Biochar. Retrieved from Amherst, MA: http://extension.umass.edu/
floriculture/sites/floriculture/files/pdf-doc-ppt/13PlantExtractOrgFertBiochar.pdf
Cox, E. (2020). Barriers to Negative-Emissions Technologies. One Earth, 3(2), 137-139.
doi:10.1016/j.oneear.2020.07.017
Cox, E. (2020). Climate urgency dampens public acceptance of carbon dioxide removal. Nature
Research. Retrieved from https://socialsciences.nature.com/posts/climate-urgency-
dampens-public-acceptance-of-carbon-dioxide-removal
Cox, E., Boettcher, M., Spence, E., & Bellamy, R. (2021). Casting a Wider Net on Ocean NETs.
Frontiers in Climate, 3(4). doi:10.3389/fclim.2021.576294
Cox, E., & Edwards, N. R. (2019). Beyond carbon pricing: policy levers for negative emissions
technologies. Climate Policy, 1-13. doi:10.1080/14693062.2019.1634509
Cox, E., Pidgeon, N., & Spence, E. (2021). But They Told Us It Was Safe! Carbon Dioxide
Removal, Fracking, and Ripple Effects in Risk Perceptions. Risk Analysis, n/a(n/a).
doi:https://doi.org/10.1111/risa.13717
Cox, E., Spence, E., & Pidgeon, N. (2020). Public perceptions of carbon dioxide removal in the
United States and the United Kingdom. Nature Climate Change. doi:10.1038/
s41558-020-0823-z
Cox, E. M., Pidgeon, N., Spence, E., & Thomas, G. (2018). Blurred Lines: The Ethics and Policy
of Greenhouse Gas Removal at Scale. Frontiers in Environmental Science, 6(38).
doi:10.3389/fenvs.2018.00038
Cox, J., et al. . (2012). Biochar in horticulture - Prospects for the use of biochar in Australian
horticulture. Retrieved from http://www.dpi.nsw.gov.au/__data/assets/pdf_file/
0008/447857/DPI-BioChar-in-Horticulture.pdf
Coyle, W. (2007). The Future of Biofuels: A Global Perspective. Amber Waves, 5, 24-29.
Retrieved from http://ageconsearch.umn.edu/bitstream/125366/2/Biofuels.pdf
Crabbe, M. (2009). Modelling effects of geoengineering options in response to climate change
and global warming: Implications for coral reefs. Computational Biology and Chemistry,
33(6), 415-420. Retrieved from http://www.sciencedirect.com/science/article/pii/
S1476927109001054
Craig, I. P., et al. (2015). Pesticide sustainable management practice (SMP) including porous
biochar/geopolymer structures for contaminated water remediation. International Journal
of GEOMATE, 9(2), 1523-1527. Retrieved from http://www.gi-j.com/
Serial%2018/1523-1527-4216-Ian-Dec-2015.pdf
Craik, N., Blackstock, J., & Hubert, M.-A. (2013). Regulating Geoengineering Research through
Domestic Environmental Protection Frameworks: Reflections on the Recent Canadian
Ocean Fertilization Case. Carbon & Climate Law Review, 7(2), 117-124.
Crane-Droesch, A., et al. (2013). Heterogeneous global crop yield response to biochar: a meta-
regression analysis. Environmental Research Letters, 8(4), 1-8. Retrieved from http://
iopscience.iop.org/article/10.1088/1748-9326/8/4/044049/meta
Crane-Droesch, A. (2015). Technology diffusion, outcome variability, and social learning:
Evidence from a field experiment in Kenya. In.
Creamer, A. E., & Gao, B. (2015). Absorbents for CO2 Capture. In Carbon Dioxide Capture: An
Effective Way to Combat Global Warming (pp. 43-49). Cham: Springer International
Publishing.
Creamer, A. E., & Gao, B. (2015). CO2 Reduction and Utilization. In Carbon Dioxide Capture:
An Effective Way to Combat Global Warming (pp. 51-57). Cham: Springer International
Publishing.
Creamer, A. E., & Gao, B. (2015). SpringerBriefs in Molecular ScienceCarbon Dioxide Capture:
An Effective Way to Combat Global WarmingAdsorbents for CO2 Capture. Cham:
Springer International Publishing.
Creamer, A. E., Gao, B., & Wang, S. (2016). Carbon dioxide capture using various metal
oxyhydroxide–biochar composites. Chemical Engineering Journal, 283, 826 - 832.
doi:10.1016/j.cej.2015.08.037
Creamer, A. E., Gao, B., & Zhang, M. (2014). Carbon dioxide capture using biochar produced
from sugarcane bagasse and hickory wood. Chemical Engineering Journal, 249(1),
174-179. Retrieved from http://www.sciencedirect.com/science/article/pii/
S1385894714003945
Creamer, A. E., Gao, B., Zimmerman, A., & Harris, W. (2018). Biomass-facilitated production of
activated magnesium oxide nanoparticles with extraordinary CO2 capture capacity.
Chemical Engineering Journal, 334, 81-88. doi:https://doi.org/10.1016/j.cej.2017.10.035
Creamer, A. E. G., Bin. (2015). Adsorbents for CO2 Capture. In (pp. 25-41).
Creamer, A. E. G., Bin. (2015). Overview of CO2 Capture Technology. In Carbon Dioxide
Capture: An Effective Way to Combat Global Warming (pp. 17-24).
Creative, G. (2019). The breakthrough that could actually reverse climate change. Grist, (April
8). Retrieved from ttps://grist.org/sponsored/the-breakthrough-that-could-actually-
reverse-climate-change/
Cressey, D. (2014). Rock’s power to mop up carbon revisited. Nature, 505(7484), 464.
Retrieved from http://www.nature.com/news/rock-s-power-to-mop-up-carbon-
revisited-1.14560
Creutzig, F., et al. (2012). Can bioenergy assessments deliver? Economics of Energy &
Environmental Policy, 1, 65-82.
Creutzig, F., et al. (2013). Integrating place-specific livelihood and equity outcomes into global
assessments of bioenergy deployment. Environmental Research Letters(8), 2-12.
Retrieved from http://iopscience.iop.org/article/10.1088/1748-9326/8/3/035047/pdf
Creutzig, F. (2016). Economic and ecological views on climate change mitigation with bioenergy
and negative emissions. GCB Bioenergy, 8(1), 4-10. doi:10.1111/gcbb.12235
Creutzig, F., Breyer, C., Hilaire, J., Minx, J., Peters, G., & Socolow, R. H. (2019). The mutual
dependence of negative emission technologies and energy systems. Energy &
Environmental Science. doi:10.1039/C8EE03682A
Creutzig, F., Erb, K.-H., Haberl, H., Hof, C., Hunsberger, C., & Roe, S. (2021). Considering
sustainability thresholds for BECCS in IPCC and biodiversity assessments. GCB
Bioenergy, 13(4), 510-515. doi:https://doi.org/10.1111/gcbb.12798
Creutzig, F., Popp, A., Plevin, R., Luderer, G., Minx, J., & Edenhofer, O. (2012). Reconciling top-
down and bottom-up modelling on future bioenergy deployment. Nature Climate
Change, 2(5), 320-327. doi:http://www.nature.com/nclimate/journal/v2/n5/abs/
nclimate1416.html#supplementary-information
Creutzig, F., Ravindranath, N. H., Berndes, G., Bolwig, S., Bright, R., Cherubini, F., . . . Masera,
O. (2015). Bioenergy and climate change mitigation: an assessment. GCB Bioenergy,
7(5), 916-944. doi:10.1111/gcbb.12205
Crew, B. (2017). A Canadian Start-Up Is Removing CO2 From The Air And Turning It Into
Pellets. Science Alert. Retrieved from https://www.sciencealert.com/a-canadian-start-up-
is-removing-co2-from-the-air-and-turning-it-into-pellets
Cripps, G., Widdicombe, S., Spicer, J. I., & Findlay, H. S. (2013). Biological impacts of enhanced
alkalinity in Carcinus maenas. Marine Pollution Bulletin, 71(1–2), 190-198. doi:https://
doi.org/10.1016/j.marpolbul.2013.03.015
Cristina Diez, M., et al. . (2013). Biochar as a Partial Replacement of Peat in Pesticide-
Degrading Biomixtures Formulated with Different Soil Types. Journal of Biobased
Materials and Bioenergy, 7, 741-747. Retrieved from https://
lechosbiologicos.files.wordpress.com/2014/05/diez-et-al-2013-biochar-as-partial-
replacement.pdf
Cristina Diez, M., et al. (2013). BIOCHAR AS PARTIAL REPLACEMENT OF PEAT IN A
BIOMIXTURE FORMULATED WITH 3 TYPES OF SOILS TO DEGRADE PESTICIDES.
Paper presented at the III SYMPOSIUM ON AGRICULTURAL AND AGROINDUSTRIAL
WASTE MANAGEMENT 12TH TO 14TH MARCH 2013, SAO PEDRO, SAO PAULO
STATE, BRAZIL. http://www.sbera.org.br/3sigera/obras/ag_tec_02_MCristinaDiez.pdf
Crombie, K., et al. (2012). The effect of pyrolysis conditions on biochar stability as determined
by three methods. GCB Bioenergy, 5(2), 122-131. Retrieved from http://
onlinelibrary.wiley.com/doi/10.1111/gcbb.12030/abstract
Crombie, K., et al. (2014). Biochar – synergies and trade-offs between soil enhancing properties
and C sequestration potential. GCB Bioenergy, 7(5), 1161-1175. Retrieved from http://
onlinelibrary.wiley.com/doi/10.1111/gcbb.12213/abstract
Crombie, K. (2014). Biochar – synergies between carbon storage, environmental functions and
renewable energy production. In.
Crombie, K., & Mašek, O. (2014). Pyrolysis biochar systems, balance between bioenergy and
carbon sequestration. GCB Bioenergy, 7(2), 349-361. Retrieved from http://
onlinelibrary.wiley.com/doi/10.1111/gcbb.12137/abstract
Cronian, J., et al. (2020). Biomass, Afforestation and Energy Demand
Reduction. Retrieved from http://www.ukerc.ac.uk/publications/afforestation-energy-
demand.html
Crooks, E. (2021). The challenge of negative emissions. Wood Mackenzie. Retrieved from
https://www.woodmac.com/news/the-challenge-of-negative-emissions/
Croot, P. L., Bluhm, K., Schlosser, C., Streu, P., Breitbarth, E., Frew, R., & Van Ardelan, M.
(2008). Regeneration of Fe(II) during EIFeX and SOFeX. Geophysical Research Letters,
35(19), n/a-n/a. doi:10.1029/2008GL035063
Croot, P. L., Passow, U., Assmy, P., Jansen, S., & Strass, V. H. (2007). Surface active
substances in the upper water column during a Southern Ocean Iron Fertilization
Experiment (EIFEX). Geophysical Research Letters, 34(3). doi:10.1029/2006gl028080
Cross, A., et al. (2016). The role of biochar in agricultural soils. In Biochar in European Soils and
Agriculture: Science and Practice.
Cross, A., & Sohi, S. P. (2011). The priming potential of biochar products in relation to labile
carbon contents and soil organic matter status. Soil Biology and Biochemistry, 43(10),
2127-2134. doi:10.1016/j.soilbio.2011.06.016
Cross, A., & Sohi, S. P. (2012). A method for screening the relative long-term stability of biochar.
GCB Bioenergy, 5(2), 215-220. Retrieved from http://onlinelibrary.wiley.com/doi/10.1111/
gcbb.12035/abstract
Crowcroft, O. (2020). Brussels says planting three billion trees will help save the planet. Experts
aren't so sure ... Euronews. Retrieved from https://www.euronews.com/2020/10/20/
brussels-says-planting-three-billion-trees-will-help-save-the-planet-experts-aren-t-so-sur
Crowley, K., & Rathi, A. (2020). Exxon Holds Back on Technology That Could Slow Climate
Change. Bloomberg Green. Retrieved from https://www.bloomberg.com/news/features/
2020-12-07/exxon-s-xom-carbon-capture-project-stalled-by-covid-19
Crusius, J. (2020). “Natural” Climate Solutions Could Speed Up Mitigation, With Risks.
Additional Options Are Needed. Earth's Future, 8(4), e2019EF001310.
doi:10.1029/2019ef001310
Crutzen, P. J., & Andreae, M. O. (1990). Biomass burning in the tropics - impact on atmospheric
chemistry and biogeochemical cycles. Science, 250(4988), 1669-1678. Retrieved from
https://www.ncbi.nlm.nih.gov/pubmed/17734705
Crutzen, P. J., Mosier, A. R., Smith, K. A., & Winiwarter, W. (2008). N
2
O release from agro-
biofuel production negates global warming reduction by replacing fossil fuels. Atmos.
Chem. Phys., 8(2), 389-395. doi:10.5194/acp-8-389-2008
Cruz Ceballos, D. C., et al. (2015). Effect of production conditions on self-heating propensity of
torrefied sawmill residues. Fuel, 160, 227 - 237. doi:10.1016/j.fuel.2015.07.097
Crystal-Ornelas, R., Thapa, R., & Tully, K. L. (2021). Soil organic carbon is affected by organic
amendments, conservation tillage, and cover cropping in organic farming systems: A
meta-analysis. Agriculture, Ecosystems & Environment, 312, 107356. doi:https://doi.org/
10.1016/j.agee.2021.107356
Cuellar, A., & Herzog, H. (2015). A Path Forward for Low Carbon Power from Biomass.
Energies, 8(3), 1701-1715. Retrieved from http://www.mdpi.com/1996-1073/8/3/1701
Cuellar, A. D. (2017). Plant Power: The Cost of Using Biomass for Power Generation and
Potential for Decreased Greenhouse Gas Emissions. (MS, Technology & Policy
Masters). MIT, Retrieved from http://sequestration.mit.edu/pdf/
AmandaCuellar_Thesis_June2012.pdf
Cuellar-Franca, R. M., & Azapagic, A. (2015). Carbon capture, storage and utilisation
technologies: A critical analysis and comparison of their life cycle environmental impacts.
Journal of CO2 Utilization, 9, 82-102. doi:10.1016/j.jcou.2014.12.001
Cueto García, M. J. (2016). Potencial de producción de biochar en España a partir de residuos
de la industria papelera, de lodos de E.D.A.R., de residuos sólidos urbanos y de
residuos ganaderos: Estudio de la fijación de carbono (translated from Spanish
language). Retrieved from http://oa.upm.es/39453/
Cui, E., Wu, Y., Zuo, Y., & Chen, H. (2016). Effect of different biochars on antibiotic resistance
genes and bacterial community during chicken manure composting. Bioresource
Technology, 203, 11-17. doi:10.1016/j.biortech.2015.12.030
Cui, H.-J., et al. . (2011). Enhancing phosphorus availability in phosphorus-fertilized zones by
reducing phosphate adsorbed on ferrihydrite using rice straw-derived biochar. Journal of
Soils and Sediments, 11, 1135-1141. doi:10.1007/s11368-011-0405-9
Cui, L., et al. . (2011). Biochar Amendment Greatly Reduces Rice Cd Uptake in a Contaminated
Paddy Soil: A Two-Year Field Experiment. BioResources, 6(3), 2605 - 2618. Retrieved
from http://ojs.cnr.ncsu.edu/index.php/BioRes/article/view/
BioRes_06_3_2605_Cui_LZPBC_Biochar_Amendment_Rice_Cd_Uptake
Cui, L., et al., & n. (2013). Adsorption Behaviour of Pymetrozine by Four Kinds of Biochar from
Aqueous Solution. Adsorption Science & Technology, 31(6), 477-488. Retrieved from
http://journals.sagepub.com/doi/abs/10.1260/0263-6174.31.6.477
Cui, L. e. a. (2012). The Reduction of Wheat Cd Uptake in Contaminated Soil Via Biochar
Amendment: A Two-Year Field Experiment. BioResources, 7, 5666-5676. Retrieved from
http://www.ncsu.edu/bioresources/BioRes_07/
BioRes_07_4_5666_Cui_PLYZBC_Biochar_Wheat_Cd_Uptake_Soil_2Year_3226.pdf
Cui, Q., Lu, H., Li, C., Singh, S., Ba, L., Zhao, X., & Ku, A. Y. (2018). China baseline coal-fired
power plant with post-combustion CO2 capture: 1. Definitions and performance.
International Journal of Greenhouse Gas Control, 78, 37-47. doi:https://doi.org/10.1016/
j.ijggc.2018.07.021
Cui, X., Hao, H., Zhang, C., He, Z., & Yang, X. (2016). Capacity and mechanisms of ammonium
and cadmium sorption on different wetland-plant derived biochars. Science of The Total
Environment, 539, 566 - 575. doi:10.1016/j.scitotenv.2015.09.022
Cui, Z. (2015). 498 Research Paper: A Review of Biochar’s Applications in the Soil Nitrogen
Cycle. New Mexico State University, Retrieved from http://chme.nmsu.edu/files/2014/11/
CHE-498-Final-Report-Cui-S15.pdf
Cukierman, A. L., & Bonelli, P. R. (2016). Potentialities of biochars from different biomasses for
climate change abatement by carbon capture and soil amelioration. Environmental
Research Journal, 9(4), 427-449. Retrieved from http://web.b.ebscohost.com/abstract?
direct=true&profile=ehost&scope=site&authtype=crawler&jrnl=19353049&AN=11216691
1&h=329%2bMyrY%2fqKzLq3PtOWjjsDr0sQeq4VoGfJ%2fVDBl8vRkhd7mI7knrfnij5zTS
C0qNwI%2bx7Ev7t2ZzFsEiLTy5Q%3d%3d&crl=c&resultNs=AdminWebAuth&resultL
Cullen, J. J. (1995). Status of the iron hypothesis after the Open-Ocean Enrichment
Experiment1. Limnology and Oceanography, 40(7), 1336-1343. doi:10.4319/
lo.1995.40.7.1336
Cullen, J. J., & Boyd, P. W. (2008). Predicting and verifying the intended and unintended
consequences of large-scale ocean iron fertilization. Marine Ecology Progress Series,
364, 295-301. Retrieved from http://www.int-res.com/abstracts/meps/v364/p295-301/
Cullenward, D., et al. (2020). Insights from our first project reports. Retrieved from https://
carbonplan.org/research/stripe-reports-insights
Cumicheo, C., Mac Dowell, N., & Shah, N. (2019). Natural gas and BECCS: A comparative
analysis of alternative configurations for negative emissions power generation.
International Journal of Greenhouse Gas Control, 90, 102798. doi:https://doi.org/
10.1016/j.ijggc.2019.102798
Cunningham, A. (2019). Carbon capture and storage must be at the heart of Labour’s green
revolution. LabourList. Retrieved from https://labourlist.org/2019/05/carbon-capture-and-
storage-must-be-at-the-heart-of-labours-green-revolution/
Cunningham, S. C., Mac Nally, R., Baker, P. J., Cavagnaro, T. R., Beringer, J., Thomson, J. R.,
& Thompson, R. M. (2015). Balancing the environmental benefits of reforestation in
agricultural regions. Perspectives in Plant Ecology, Evolution and Systematics, 17(4),
301-317. doi:https://doi.org/10.1016/j.ppees.2015.06.001
Curaqueo, G. (2014). Use of biochar on two volcanic soils: effects on soil properties and barley
yield. Journal of Soil Science and Plant Nutrition, 14(4), 911-924. doi:10.4067/
s0718-95162014005000072!
Curaqueo, G. (2015). Biochar and Arbuscular Mycorrhizal Fungi: An Alternative to Contributing
to Agroecosystem Sustainability. Paper presented at the 20th World Congress of Soil
Science. http://www.researchgate.net/profile/Gustavo_Curaqueo/publication/
265164653_poster_KOREA_2014/links/5401f6a40cf2bba34c1b7b72.pdf
Curaqueo, G., González, A., Cea, M., Meier, S., Borie, F., & Navia, R. (2014). Use of Biochar in
volcanic soils of Southern Chile and its effect on yield parameters of hordeum vulgare.
Journal of Soil Sciences and Plant Nutrition, 14(4), 911-924. Retrieved from
www.researchgate.net/profile/Gustavo_Curaqueo/publication/
260017884_Use_of_Biochar_in_volcanic_soils_of_Southern_Chile_and_its_effect_on_y
ield_parameters_of_Hordeum_vulgare/links/0a85e52f10b4d69c22000000.pdf
Curran, D. T. (2016). Phosphate Removal and Recovery from Wastewater by Natural Materials
for Ecologically Engineered Wastewater Treatment Systems. University of Vermont,
Retrieved from http://scholarworks.uvm.edu/graddis/455/
Currie, D. (2018). Governing the “Big Bad Fix”: Geoengineering, human rights and international
law. Geoengineering Monitor. Retrieved from http://www.geoengineeringmonitor.org/
2018/02/governing-the-big-bad-fix/
Currie, K. I., Macaskill, B., Reid, M. R., & Law, C. S. (2011). Processes governing the carbon
chemistry during the SAGE experiment. Deep-Sea Research Part Ii-Topical Studies In
Oceanography, 58(6), 851-860. doi:10.1016/j.dsr2.2010.10.023
Cusack, D. F., et al. (2014). An interdisciplinary assessment of climate engineering strategies.
Frontiers in Ecology and the Environment, 12(5), 280-287. Retrieved from http://
www.esajournals.org/doi/abs/10.1890/130030
Custelcean, R., Garrabrant, K. A., Agullo, P., & Williams, N. J. (2021). Direct air capture of CO2
with aqueous peptides and crystalline guanidines. Cell Reports Physical Science, 2(4),
100385. doi:https://doi.org/10.1016/j.xcrp.2021.100385
Custelcean, R., Williams, N. J., Garrabrant, K. A., Agullo, P., Brethomé, F. M., Martin, H. J., &
Kidder, M. K. (2019). Direct Air Capture of CO2 with Aqueous Amino Acids and Solid Bis-
iminoguanidines (BIGs). Industrial & Engineering Chemistry Research, 58(51),
23338-23346. doi:10.1021/acs.iecr.9b04800
Cutler, E. (2020). Unf*cking the Future – Afforestation of Scotland with rock dust and biochar.
Retrieved from https://www.remineralize.org/2020/12/unfcking-the-future-afforestation-of-
scotland-with-rock-dust-and-biochar/
Cuvila, C. A., Kantarelis, E., Mellin, P., Saffaripour, M., Hye, A., & Yang, W. (2015). Effect of
zeolite on product yield and composition during pyrolysis of hydrothermally pretreated
Spruce. In.
Cuvila, C. A., Kantarelis, E., & Yang, W. (2015). The Impact of a Mild Sub-Critical Hydrothermal
Carbonization of Pretreatment on Umbila Wood!: A Mass and Energy Balance
Perspective. In.
Cuvila, C. A., Said, M., Kantarelis, E., Saffaripour, M., & Yang, W. (2015). Effect of mild
hydrothermal pretreatment on biomass pyrolysis characteristics and vapors!: A Mass and
Energy Balance Perspective. In.
Cuvilas, C. A. (2015). Mild Wet Torrefaction and Characterization of Woody Biomass from
Mozambique for Thermal Applications. KTH Royal Institute of Technology, Retrieved
from http://www.diva-portal.org/smash/record.jsf?pid=diva2%3A785099&dswid=1271
Ćwik, A., Casanova, I., Rausis, K., Koukouzas, N., & Zarębska, K. (2018). Carbonation of high-
calcium fly ashes and its potential for carbon dioxide removal in coal fired power plants.
Journal of Cleaner Production, 202, 1026-1034. doi:https://doi.org/10.1016/
j.jclepro.2018.08.234
Czekała, W., Malińska, K., Cáceres, R., Janczak, D., Dach, J., & Lewicki, A. (2016). Co-
composting of poultry manure mixtures amended with biochar – The effect of biochar on
temperature and C-CO2 emission. Bioresource Technology, 200, 921 - 927. doi:10.1016/
j.biortech.2015.11.019
Czernichowski-Lauriol, I., Berenblyum, R., Bigi, S., Car, M., Liebscher, A., Persoglia, S., . . .
Wildenborg, T. (2017). CO2GeoNet Perspective on CO2 Capture and Storage: A Vital
Technology for Completing the Climate Change Mitigation Portfolio. Energy Procedia,
114, 7480-7491. doi:https://doi.org/10.1016/j.egypro.2017.03.1881
Czimczik, C. I., & Masiello, C. A. (2007). Controls on black carbon storage in soils. Global
Biogeochemical Cycles, 21(3), 1-8. Retrieved from http://onlinelibrary.wiley.com/doi/
10.1029/2006GB002798/abstract
D’Maris, C., & Andrew, L. (2017). Carbon dioxide removal and the futures market.
Environmental Research Letters, 12(1), 015003. Retrieved from http://stacks.iop.org/
1748-9326/12/i=1/a=015003
da Silva Mendes. Jacqueline, e. a. (2015). Using MB-4 rock powder, poultry litter biochar,
silicate and calcium carbonate to amend different soil types. Australian Journal of Crop
Science, 9(10), 987-995. Retrieved from http://www.cropj.com/
chaves_9_10_2015_987_995.pdf
da Veiga Moline, E. F., Falcão, N. P. d. S., Pereira da Silva, D., Clement, C. R., & Júnior, J. L.
(2015). Efeito da aplicação de biocarvão, cama de frango e formulado NPK no estado
nutricional foliar de laranjeira em terra mulata (EFFECT OF BIOCHAR, POULTRY
LITTER AND NPK ON THE NUTRITIONAL STATUS LEAF OF ORANGE ON TERRA
MULATA). Bioscience Journal, 31(2), 362 - 369. doi:10.14393/BJ-v31n2a2015-22298
Daamen, D. D. L., Terwel, B. W., Mors, E. t., Reiner, D. M., Schumann, D., Anghel, S., . . .
Ziogou, F. (2011). Scrutinizing the impact of CCS communication on opinion quality:
Focus group discussions versus Information-Choice Questionnaires: Results from
experimental research in six countries. Energy Procedia, 4, 6182-6187. doi:https://
doi.org/10.1016/j.egypro.2011.02.629
Daggash, H. A., et al. (2019). Higher Carbon Prices on Emissions Alone Will Not Deliver the
Paris Agreement. Joule. doi:https://doi.org/10.1016/j.joule.2019.08.008
Daggash, H. A., Fajardy, M., & Mac Dowell, N. (2020). Chapter 14 Negative Emissions
Technologies. In Carbon Capture and Storage (pp. 447-511): The Royal Society of
Chemistry.
Daggash, H. A., Heuberger, C. F., & Mac Dowell, N. (2019). The role and value of negative
emissions technologies in decarbonising the UK energy system. International Journal of
Greenhouse Gas Control, 81, 181-198. doi:https://doi.org/10.1016/j.ijggc.2018.12.019
Daggash, H. A., & Mac Dowell, N. (2019). Higher Carbon Prices on Emissions Alone Will Not
Deliver the Paris Agreement. Joule, 3(9), 2120-2133. doi:10.1016/j.joule.2019.08.008
Daggash, H. A., Patzschke, C. F., Heuberger, C. F., Zhu, L., Hellgardt, K., Fennell, P. S., . . .
Mac Dowell, N. (2018). Closing the carbon cycle to maximise climate change mitigation:
power-to-methanol vs. power-to-direct air capture. Sustainable Energy & Fuels.
doi:10.1039/C8SE00061A
Dagnarain, N. (2020). Ocean Crops: Is This The Next Frontier For Agriculture? Forbes.
Retrieved from https://www.forbes.com/sites/nishandegnarain/2020/07/29/ocean-crops-
is-this-the-next-frontier-for-agriculture/#54c120a05c95
Dahal, N., & Bajracharya, R. M. (2013). Use of Biochar for enhancing soil quality in mountain
agricultural lands of Nepal. Paper presented at the Proceedings of International
Conference on Forests, People and Climate: Changing Paradigm, 2013. http://
www.researchgate.net/profile/Ngamindra_Dahal/publication/
281372574_Use_of_Biochar_for_enhancing_soil_quality_in_mountain_agricultural_land
s_of_Nepal/links/55e4357708ae6abe6e8e99bb.pdf
Dahl, M., Asplund, M. E., Björk, M., Deyanova, D., Infantes, E., Isaeus, M., . . . Gullström, M.
(2020). The influence of hydrodynamic exposure on carbon storage and nutrient
retention in eelgrass (Zostera marina L.) meadows on the Swedish Skagerrak coast.
Scientific Reports, 10(1), 13666. doi:10.1038/s41598-020-70403-5
Dai, X., Boutton, T. W., Glaser, B., Ansley, R. J., & Zech, W. (2005). Black carbon in a temperate
mixed-grass savanna. Soil Biology & Biochemistry, 37(10), 1879-1881. Retrieved from
http://www.sciencedirect.com/science/article/pii/S0038071705000908
Dai, Z., et al. (2013). Principle Component and Hierarchical Cluster Analysis of Soil Properties
following Biochar Incorporation. Soil Science Society of America Journal, 78, 205-213.
Retrieved from https://dl.sciencesocieties.org/publications/sssaj/pdfs/78/1/205
Dai, Z., et al. (2014). The Effects and Mechanisms of Soil Acidity Changes, following
Incorporation of Biochars in Three Soils Differing in Initial pH. Soil Science Society of
America Journal, 78(5), 1-9. doi:10.2136/sssaj2013.08.0340
Dai, Z., Brookes, P. C., Yan, H., & Xu, J. (2014). Increased Agronomic and Environmental Value
Provided by Biochars with Varied Physiochemical Properties Derived from Swine
Manure Blended with Rice Straw. Journal of Agricultural and Food Chemistry, 62(44),
10623 - 10631. doi:10.1021/jf504106v
Dai, Z., Meng, J., Shi, Q., Xu, B., Lian, Z., Brookes, P. C., & Xu, J.-M. (2015). Effects of manure-
and lignocellulose-derived biochars on adsorption and desorption of zinc by acidic types
of soil with different properties. European Journal of Soil Science, 67(1), 40-50.
doi:10.1111/ejss.12290
Dai, Z., Middleton, R., Viswanathan, H., Fessenden-Rahn, J., Bauman, J., Pawar, R., . . .
McPherson, B. (2014). An Integrated Framework for Optimizing CO2 Sequestration and
Enhanced Oil Recovery. Environmental Science & Technology Letters, 1(1), 49-54.
doi:10.1021/ez4001033
Dai, Z., Viswanathan, H., Fessenden-Rahn, J., Middleton, R., Pan, F., Jia, W., . . . Grigg, R.
(2014). Uncertainty Quantification for CO2 Sequestration and Enhanced Oil Recovery.
Energy Procedia, 63, 7685-7693. doi:https://doi.org/10.1016/j.egypro.2014.11.802
Dai, Z., Viswanathan, H., Middleton, R., Pan, F., Ampomah, W., Yang, C., . . . White, M. (2016).
CO2 Accounting and Risk Analysis for CO2 Sequestration at Enhanced Oil Recovery
Sites. Environmental Science & Technology, 50(14), 7546-7554. doi:10.1021/
acs.est.6b01744
Daigneault, A. J., Miranda, M. J., & Sohngen, B. (2010). Optimal Forest Management with
Carbon Sequestration Credits and Endogenous Fire Risk. Land Economics, 86(1),
155-172.
Daioglou, V., Woltjer, G., Strengers, B., Elbersen, B., Barberena Ibañez, G., Sánchez Gonzalez,
D., . . . van Vuuren, D. P. (2020). Progress and barriers in understanding and preventing
indirect land-use change. Biofuels, Bioproducts and Biorefining. doi:10.1002/bbb.2124
Daioglous, V., et al. (2015). Competing uses of biomass for energy and chemicals:implications
for long-term global CO2 mitigation potential. GCB Bioenergy, 7, 1321-1334. Retrieved
from http://onlinelibrary.wiley.com/doi/10.1111/gcbb.12228/epdf
Dale, B. (2008). Biofuels: Thinking Clearly about the Issues. Journal of Agricultural and Food
Chemistry, 56, 3885-3891. Retrieved from http://pubs.acs.org/doi/pdf/10.1021/jf800250u
Dale, B. (2017). A sober view of the difficulties in scaling cellulosic biofuels. Biofuels,
Bioproducts and Biorefining, 11(1), 5-7. doi:10.1002/bbb.1745
Dale, B. E., Allen, M. S., Laser, M., & Lynd, L. R. (2009). Protein feeds coproduction in biomass
conversion to fuels and chemicals. Biofuels, Bioproducts and Biorefining, 3(2), 219-230.
doi:10.1002/bbb.132
Dale, B. E., Bals, B. D., Kim, S., & Eranki, P. (2010). Biofuels Done Right: Land Efficient Animal
Feeds Enable Large Environmental and Energy Benefits. Environmental Science &
Technology, 44(22), 8385-8389. doi:10.1021/es101864b
Dale, B. E., & Ong, R. G. (2014). Design, implementation, and evaluation of sustainable
bioenergy production systems. Biofuels, Bioproducts and Biorefining, 8(4), 487-503.
doi:10.1002/bbb.1504
Dale, V. H., Efroymson, R. A., Kline, K. L., & Davitt, M. S. (2015). A framework for selecting
indicators of bioenergy sustainability. Biofuels, Bioproducts and Biorefining, 9(4),
435-446. doi:doi:10.1002/bbb.1562
Dale, V. H., Efroymson, R. A., Kline, K. L., Langholtz, M. H., Leiby, P. N., Oladosu, G. A., . . .
Hilliard, M. R. (2013). Indicators for assessing socioeconomic sustainability of bioenergy
systems: A short list of practical measures. Ecological Indicators, 26, 87-102. doi:https://
doi.org/10.1016/j.ecolind.2012.10.014
Dale, V. H., Kline, K. L., Wright, L. L., Perlack, R. D., Downing, M., & Graham, R. L. (2011).
Interactions among bioenergy feedstock choices, landscape dynamics, and land use.
Ecological Applications, 21(4), 1039-1054. doi:10.1890/09-0501.1
Dalena, F., Senatore, A., Tursi, A., & Basile, A. (2017). 17 - Bioenergy production from second-
and third-generation feedstocks. In F. Dalena, A. Basile, & C. Rossi (Eds.), Bioenergy
Systems for the Future (pp. 559-599): Woodhead Publishing.
D'alessandro, D. (2021). Engineers have built machines to scrub carbon dioxide from the air.
Will it halt climate change? Phys.org. Retrieved from https://phys.org/news/2021-01-
built-machines-carbon-dioxide-air.html
D'Alessandro, D. M., Berend, S., & Long, J. R. (2010). Carbon Dioxide Capture: Prospects for
New Materials. Angewandte Chemie International Edition, 49(35), 6058-6082. Retrieved
from http://onlinelibrary.wiley.com/doi/10.1002/anie.201000431/abstract
D'Alessandro, D. M., Smit B., & J.R.., L. (2010). Carbon dioxide capture: prospects for new
materials. Angewandte Chemie International Edition, 49(35), 6058-6082. Retrieved from
http://sydney.edu.au/science/chemistry/~deanna/images/Angew%20review.pdf
Dalheim, R. (2019). Upcoming mechanical trees suck carbon dioxide from the air. Woodworking
Network. Retrieved from https://www.woodworkingnetwork.com/technology/upcoming-
mechanical-trees-suck-carbon-dioxide-air
DalmasNeto, C. J., Sydney, E. B., Assmann, R., Neto, D., & Soccol, C. R. (2014). Chapter 7 -
Production of Biofuels from Algal Biomass by Fast Pyrolysis. In A. Pandey, D.-J. Lee, Y.
Chisti, & C. R. Soccol (Eds.), Biofuels from Algae (pp. 143-153). Amsterdam: Elsevier.
Dana, J. (2019). ASU air-cleaning 'mechanical tree' to be commercially built. 12 News (Arizona).
Retrieved from https://www.12news.com/article/news/asu-air-cleaning-mechanical-tree-
to-be-commercially-built/75-8d24be9f-7a15-4f9f-85cc-387c55154816
Dana, J. (2020). The financial market can hold back climate change. Asia Times. Retrieved from
https://asiatimes.com/2020/12/how-financial-market-can-hold-back-climate-change/
Danckwerts, P. V., Kennedy, A. M., & Roberts, D. (1963). Kinetics of CO2 absorption in alkaline
solutions—II: Absorption in a packed column and tests of surface-renewal models.
Chemical Engineering Science, 18(2), 63-72. doi:https://doi.org/
10.1016/0009-2509(63)80015-9
Dang, Q., Mba Wright, M., & Brown, R. C. (2015). Ultra-Low Carbon Emissions from Coal-Fired
Power Plants through Bio-Oil Co-Firing and Biochar Sequestration. Environmental
Science & Technology, 49(24), 14688 - 14695. doi:10.1021/acs.est.5b03548
Dang, T., Mosley, L. M., Fitzpatrick, R., & Marschner, P. (2015). Organic Materials Differ in Ability
to Remove Protons, Iron and Aluminium from Acid Sulfate Soil Drainage Water. Water,
Air, & Soil Pollution, 226(11). doi:10.1007/s11270-015-2595-z
Dang, T., Mosley, L. M., Fitzpatrick, R., & Marschner, P. (2016). Addition of organic material to
sulfuric soil can reduce leaching of protons, iron and aluminium. Geoderma, 271, 63 -
70. doi:10.1016/j.geoderma.2016.02.012
Daniel, J. A. J., Christian, A., Mariliis, L., & Glen, P. P. (2020). The role of negative carbon
emissions in reaching the Paris climate targets: The impact of target formulation in
integrated assessment models. Environmental Research Letters. Retrieved from http://
iopscience.iop.org/article/10.1088/1748-9326/abc3f0
Danielson, F., et al. (2009). Biofuel Plantations on Forested Lands: Double Jeopardy for
Biodiversity and Climate. Conservation Biology, 23(2), 348-358. doi:10.1111/
j.1523-1739.2008.01096.x
Danish, S., et al. . (2014). Influence of biochar on growth and photosynthetic attributes of
Triticum aestivum L. under half and full irrigation. International Journal of Biosciences,
5(7), 101-108. Retrieved from http://www.cabdirect.org/abstracts/20153017517.html
Danish, S., et al. (2015). Phosphorus solubilizing bacteria and rice straw biochar consequence
on maize pigments synthesis. International Journal of Biosciences, 5(12), 31-39.
Retrieved from http://citeseerx.ist.psu.edu/viewdoc/
download;jsessionid=1AE856CB5F1C6628FFD7BD83FD59EBA3?
doi=10.1.1.677.7745&rep=rep1&type=pdf
Dansie, A. P., Wiggs, G. F. S., Thomas, D. S. G., & Washington, R. (2017). Measurements of
windblown dust characteristics and ocean fertilization potential: The ephemeral river
valleys of Namibia. Aeolian Research, 29, 30-41. doi:10.1016/j.aeolia.2017.08.002
Dao, T. T., et al. . (2013). Effect of different sources of biochar on growth of maize in sandy and
feralite soils. Livestock Research for Rural Development, 25(4). Retrieved from http://
www.lrrd.cipav.org.co/lrrd25/4/dao25059.htm
Dara, S., Bonakdarpour, A., Ho, M., Govindarajan, R., & Wilkinson, D. P. (2018). Conversion of
Saline waste-water and Gaseous Carbon Dioxide to (Bi)carbonate salts, Hydrochloric
Acid and Desalinated Water for On-site Industrial Utilization. Reaction Chemistry &
Engineering. doi:10.1039/C8RE00259B
Darby, I., Xu, C.-Y., Wallace, H. M., Joseph, S., Pace, B., & Bai, S. H. (2016). Short-term
dynamics of carbon and nitrogen using compost, compost-biochar mixture and organo-
mineral biochar. Environmental Science and Pollution Research, 23(11), 11267 - 11278.
doi:10.1007/s11356-016-6336-7
Darling, P. (2013). Notes on Fungi and Past Human Activity in enhancing Nigeria's Rainforest
Soils. Retrieved from https://www.academia.edu/7544394/
Notes_on_Fungi_and_Past_Human_Activity_in_enhancing_Nigerias_Rainforest_Soils
Darton, R. C., & Yang, A. (2018). Removing Carbon Dioxide from the Atmosphere – Assessing
the Technologies. Chemical Engineering Transactions, 69, 91-96. Retrieved from https://
www.aidic.it/cet/18/69/016.pdf
Darunte, L. A., Oetomo, A. D., Walton, K. S., Sholl, D. S., & Jones, C. W. (2016). Direct Air
Capture of CO2 Using Amine Functionalized MIL-101(Cr). ACS Sustainable Chemistry &
Engineering, 4(10), 5761-5768. doi:10.1021/acssuschemeng.6b01692
Darunte, L. A., Sen, T., Bhawanani, C., Walton, K. S., Sholl, D. S., Realff, M. J., & Jones, C. W.
(2019). Moving Beyond Adsorption Capacity in Design of Adsorbents for CO2 Capture
from Ultradilute Feeds: Kinetics of CO2 Adsorption in Materials with Stepped Isotherms.
Industrial & Engineering Chemistry Research, 58(1), 366-377. doi:10.1021/
acs.iecr.8b05042
Darunte, L. A., Walton, K. S., Sholl, D. S., & Jones, C. W. (2016). CO2 capture via adsorption in
amine-functionalized sorbents. Current Opinion in Chemical Engineering, 12, 82-90.
doi:http://dx.doi.org/10.1016/j.coche.2016.03.002
Daryabeigi Zand, A., & Grathwohl, P. (2016). Enhanced Immobilization of Polycyclic Aromatic
Hydrocarbons in Contaminated Soil Using Forest Wood-Derived Biochar and Activated
Carbon under Saturated Conditions, and the Importance of Biochar Particle Size. Polish
Journal of Environmental Studies, 25(1), 427 - 441. doi:10.15244/pjoes/60160
Das, K. C., Garcia-Perez, M., Bibens, B., & Melear, N. (2008). Slow pyrolysis of poultry litter and
pine woody biomass: Impact of chars and bio-oils on microbial growth. Journal of
Environmental Science and Health Part A-Toxic/hazardous Substances & Environmental
Engineering, 43(7), 714-724. Retrieved from https://www.ncbi.nlm.nih.gov/pubmed/
18444073
Das, K. C., Singh, K., Adolphson, R., Hawkins, B., Oglesby, R., Lakly, D., & Day, D. (2010).
Steam Pyrolysis and Catalytic Steam Reforming of Biomass for Hydrogen and Biochar
Production. Applied Engineering in Agriculture, 26, 137-146. Retrieved from https://
elibrary.asabe.org/azdez.asp?AID=29470&t=2
Das, O., & Sarmah, A. K. (2015). The love–hate relationship of pyrolysis biochar and water: A
perspective. Science of The Total Environment, 512-513, 682-685. doi:10.1016/
j.scitotenv.2015.01.061
Das, O., Sarmah, A. K., & Bhattacharyya, D. (2015). Biocomposites from waste derived
biochars: Mechanical, thermal, chemical, and morphological properties. Waste
Management, 49, 560-570. doi:10.1016/j.wasman.2015.12.007
Das, O., Sarmah, A. K., & Bhattacharyya, D. (2015). A novel approach in organic waste
utilization through biochar addition in wood/polypropylene composites. Waste
Management, 38, 132-140. doi:10.1016/j.wasman.2015.01.015
Das, O., Sarmah, A. K., & Bhattacharyya, D. (2015). Structure–mechanics property relationship
of waste derived biochars. Science of The Total Environment, 538, 611 - 620.
doi:10.1016/j.scitotenv.2015.08.073
Das, O., Sarmah, A. K., & Bhattacharyya, D. (2015). A sustainable and resilient approach
through biochar addition in wood polymer composites. Science of The Total
Environment, 512-513, 326 - 336. doi:10.1016/j.scitotenv.2015.01.063
Das, O., Sarmah, A. K., & Bhattacharyya, D. (2016). Nanoindentation assisted analysis of
biochar added biocomposites. Composites Part B: Engineering, 91, 219 - 227.
doi:10.1016/j.compositesb.2016.01.057
Das, O., Sarmah, A. K., Zujovic, Z., & Bhattacharyya, D. (2016). Characterisation of waste
derived biochar added biocomposites: chemical and thermal modifications. Science of
The Total Environment, 550, 133 - 142. doi:10.1016/j.scitotenv.2016.01.062
Das, S., Kim, G. W., Hwang, H. Y., Verma, P. P., & Kim, P. J. (2019). Cropping With Slag to
Address Soil, Environment, and Food Security. Frontiers in Microbiology, 10(1320).
doi:10.3389/fmicb.2019.01320
Datta, A., et al. (2018). Negative Emissions Technologies: Has Their Time Arrived? Forbes.
Retrieved from https://www.forbes.com/sites/uhenergy/2018/09/14/negative-emissions-
technologies-has-their-time-arrived/
Datta, A., & Krishnamoorti, R. (2019). Opportunities for a Low Carbon Transition-Deploying
Carbon Capture, Utilization, and Storage in Northeast India. 7(12). doi:10.3389/
fenrg.2019.00012
Datta, S. J., et al. (2015). CO2 capture from humid flue gases and humid atmosphere using a
microporous coppersilicate. Science, 350(6258), 302-306. Retrieved from http://
science.sciencemag.org/content/350/6258/302
Dautbayeva, K. A., Kozybayeva, F. E., & Beyseeva, G. B. (2014). Quantitative and qualitative
structure mikroartopod in dark-chestnut soils of the foothills of zailiysky alatau at use of
biocoal as ameliorant. Kaznu Bulletin, 40(1/1). Retrieved from http://bulletin-
ecology.kaznu.kz/index.php/1-eco/article/download/466/453
Dauvergne, P., & Neville, K. J. (2010). Forests, food, and fuel in the tropics: the uneven social
and ecological consequences of the emerging political economy of biofuels. The Journal
of Peasant Studies, 37(4), 631-660. doi:10.1080/03066150.2010.512451
David, A. S., Tim, D., Scott, D., & Tom, B. (2021). Assessing the sequestration time scales of
some ocean-based carbon dioxide reduction strategies. Environmental Research
Letters. Retrieved from http://iopscience.iop.org/article/10.1088/1748-9326/ac0be0
David, B. J. (2016). Transforming a liability into an asset. Retrieved from https://www.env.go.jp/
earth/cop/cop22/common/pdf/event/16/02_presentation3.pdf
Davidson, C. L., Dahowski, R. T., McJeon, H. C., Clarke, L. E., Iyer, G. C., & Muratori, M.
(2017). The Value of CCS under Current Policy Scenarios: NDCs and Beyond. Energy
Procedia, 114, 7521-7527. doi:https://doi.org/10.1016/j.egypro.2017.03.1885
Davidson, E. A., & Ackerman, I. L. (1993). Changes in soil carbon inventories following
cultivation of previously untilled soils. Biogeochemistry, 20(3), 161-193. Retrieved from
https://link.springer.com/article/10.1007/BF00000786
Davidson, R. M. (2010). Advanced adsorption processes and technology for carbon dioxide
(CO2) capture in power plants A2 - Maroto-Valer, M. Mercedes. In Developments and
Innovation in Carbon Dioxide (CO2) Capture and Storage Technology (Vol. 1, pp.
183-202): Woodhead Publishing.
Davies, L. L., Uchitel, K., & Ruple, J. (2013). Understanding barriers to commercial-scale carbon
capture and sequestration in the United States: An empirical assessment. Energy Policy,
59, 745-761. doi:https://doi.org/10.1016/j.enpol.2013.04.033
Davies, P. A. (2015). Solar thermal decomposition of desalination reject brine for carbon dioxide
removal and neutralisation of ocean acidity. Environmental Science: Water Research &
Technology, 1(2), 131-137. doi:10.1039/C4EW00058G
Davies, P. A., et al. (2018). Desalination as a negative emissions technology. Environmental
Science - Water Research and Technology, 4(6), 839-850.
Davis, C. (2019). West Texas Permian to Site Largest DAC, CO2 Sequestration Project. Shale
Daily. Retrieved from https://www.naturalgasintel.com/articles/118457-west-texas-
permian-to-site-largest-dac-co2-sequestration-project
Davis, C. (2020). Oxy Taking ‘Contrarian Approach’ to Net-Zero Emissions by Developing Oil
Resources, Reusing CO2. Natural Gas Intelligence. Retrieved from https://
www.naturalgasintel.com/oxy-taking-contrarian-approach-to-net-zero-emissions-by-
developing-oil-resources-reusing-co2/
Davis, R., Aden, A., & Pienkos, P. T. (2011). Techno-economic analysis of autotrophic
microalgae for fuel production. Applied Energy, 88(10), 3524-3531. doi:https://doi.org/
10.1016/j.apenergy.2011.04.018
Davis, S. C., et al. (2012). Harvesting carbon from Eastern US Forests: Opportunities and
Imapcts of an Expanding Bioenergy Industry. Forests, 3, 370-397.
Davis, S. C. (2012). Impact of second-generation biofuel agriculture on greenhouse-gas
emissions in the corn-growing regions of the US. Frontiers in Ecology & the
Environment, 10(2), 69-74. Retrieved from http://onlinelibrary.wiley.com/doi/
10.1890/110003/abstract
Davis, S. J., Lewis, N. S., Shaner, M., Aggarwal, S., Arent, D., Azevedo, I. L., . . . Caldeira, K.
(2018). Net-zero emissions energy systems. Science, 360(6396). doi:10.1126/
science.aas9793
Dawson, C. (2016). Venture Seeks to Cut Emissions --- Canadian pilot project grabs carbon-
dioxide particles from air to reduce gas discharges. Wall Street Journal. Retrieved from
http://www.wsj.com/articles/green-venture-seeks-to-turn-back-clock-on-carbon-
emissions-1456930222
Day, D., Evans, R. J., Lee, J. W., & Reicosky, D. (2005). Economical CO2, SOx, and NOx
capture from fossil-fuel utilization with combined renewable hydrogen production and
large-scale carbon sequestration. Energy, 30(14), 2558-2579. doi:https://doi.org/
10.1016/j.energy.2004.07.016
Day, J. G., Slocombe, S. P., & Stanley, M. S. (2012). Overcoming biological constraints to
enable the exploitation of microalgae for biofuels. Bioresource Technology, 109,
245-251. doi:https://doi.org/10.1016/j.biortech.2011.05.033
Day, R. M. (2015). Effects of Biochar on Soil Water Retention, pH and Radish (Raphanus
sativus) Plant Growth. Paper presented at the Georgia Southern Research Forum.
de Andrade, C. A., et al. (2015). Mineralização e efeitos de biocarvão de cama de frango sobre
a capacidade de troca catiônica do solo (Mineralization and biochar effects of poultry
litter on the ability of the soil exchange). Pesquisa Agropecuaria Brasileira (Brazilian
Agricultural Research), 50(5), 407-416. Retrieved from http://www.scielo.br/pdf/pab/
v50n5/0100-204X-pab-50-05-00407.pdf
de Andrade, C. A., et al. (2015). Mineralização e efeitos de biocarvão de cama de frangosobre a
capacidade de troca catiônica do solo. Pesquisa Agropecuária Brasileira, 50(5), 407 -
416. doi:10.1590/s0100-204x2015000500008
de Arruda, M. R., Pereira, J. C. R., Moreira, A., & Teixeira, W. G. (2007). Survival rate of
guarana herbaceous cuttings in different substrates. Ciencia E Agrotecnologia, 31,
236-241.
de Baar, H. (1995). Importance of iron for plankton blooms and carbon dioxide drawdown in the
Southern Ocean. Nature, 373(6513), 412-414. Retrieved from https://
www.researchgate.net/publication/
232796466_Importance_of_iron_for_plankton_blooms_and_carbon_dioxide_drawdown_
in_the_Southern_Ocean
de Baar, H. J. W., et al. (2005). Synthesis of iron fertilization experiments: From the Iron Age in
the Age of Enlightenment. Journal of Geophysical Research, 110(C09S16), 1-24.
Retrieved from http://onlinelibrary.wiley.com/doi/10.1029/2004JC002601/epdf
de Baar, H. J. W., Gerringa, L. J. A., Laan, P., & Timmermans, K. R. (2008). Efficiency of carbon
removal per added iron in ocean iron fertilization. Marine Ecology Progress Series, 364,
269-282. Retrieved from http://www.int-res.com/abstracts/meps/v364/p269-282/
De Beenhouwer, M., Geeraert, L., Mertens, J., Van Geel, M., Aerts, R., Vanderhaegen, K., &
Honnay, O. (2016). Biodiversity and carbon storage co-benefits of coffee agroforestry
across a gradient of increasing management intensity in the SW Ethiopian highlands.
Agriculture, Ecosystems & Environment, 222(Supplement C), 193-199. doi:https://
doi.org/10.1016/j.agee.2016.02.017
de Best-Waldhober, M., Brunsting, S., & Paukovic, M. (2012). Public concepts of CCS:
Understanding of the Dutch general public and its reflection in the media. International
Journal of Greenhouse Gas Control, 11, S139-S147. doi:https://doi.org/10.1016/
j.ijggc.2012.08.016
de Best-Waldhober, M., Daamen, D., & Faaij, A. (2009). Informed and uninformed public
opinions on CO2 capture and storage technologies in the Netherlands. International
Journal of Greenhouse Gas Control, 3(3), 322-332. doi:http://dx.doi.org/10.1016/
j.ijggc.2008.09.001
de Best-Waldhober, M., Paukovic, M., Brunsting, S., & Daamen, D. (2011). Awareness,
knowledge, beliefs, and opinions regarding CCS of the Dutch general public before and
after information. Energy Procedia, 4, 6292-6299. doi:http://dx.doi.org/10.1016/
j.egypro.2011.02.644
de Coninck, H., & Benson, S. M. (2014). Carbon Dioxide Capture and Storage: Issues and
Prospects. Annual Review of Environment and Resources, 39(1), 243-270. doi:10.1146/
annurev-environ-032112-095222
De Coninck, H., De Best-Waldhober, M., & Groenenberg, H. (2010). Regulatory and social
analysis for the legitimation and market formation of carbon dioxide (CO2) capture and
storage technologies A2 - Maroto-Valer, M. Mercedes. In Developments and Innovation
in Carbon Dioxide (CO2) Capture and Storage Technology (Vol. 1, pp. 64-92):
Woodhead Publishing.
De Coninck, H. C., et al. (2006). Acceptability of CO2 capture and storage. A review of legal,
regulatory, economic and social aspects of CO2 capture and storage. Retrieved from
https://www.osti.gov/etdeweb/biblio/20767364
De Corato, U., Pane, C., Bruno, G. L., Cancellara, F. A., & Zaccardelli, M. (2015). Co-products
from a biofuel production chain in crop disease management: A review. Crop Protection,
68, 12 - 26. doi:10.1016/j.cropro.2014.10.025
de Figueiredo, M. A. (2005). The International Law of Sub-Seabed Carbon Dioxide Storage.
Retrieved from https://sequestration.mit.edu/pdf/
international_law_subsea_co2_storage.pdf
de Fraiture, C., Giordano, M., & Liao, Y. (2008). Biofuels and implications for agricultural water
use: blue impacts of green energy. Water Policy, 10(Supplement 1), 67-81. Retrieved
from http://wp.iwaponline.com/content/ppiwawaterpol/10/S1/67.full.pdf
De Gisi, S., Petta, L., & Wendland, C. (2014). History and Technology of Terra Preta Sanitation.
Sustainability, 6(3), 1328-1345. Retrieved from http://www.mdpi.com/
2071-1050/6/3/1328
De Gryze, S., Cullen, M., & Durschinger, L. (2010). Evaluation of the Opportunities for
Generating Carbon Offsets from Soil Sequestration of Biochar: An issues paper
commissioned by the Climate Action Reserve. Retrieved from http://
www.climateactionreserve.org/how/protocols/future-protocol-development/
#soil_carbon_sequestration
de Jong, E., & Gosselink, R. J. A. (2014). Chapter 17 - Lignocellulose-Based Chemical
Products. In V. K. Gupta, M. G. Tuohy, C. P. Kubicek, J. Saddler, & F. Xu (Eds.),
Bioenergy Research: Advances and Applications (pp. 277-313). Amsterdam: Elsevier.
de Jonge, M. M. J., Daemen, J., Loriaux, J. M., Steinmann, Z. J. N., & Huijbregts, M. A. J.
(2019). Life cycle carbon efficiency of Direct Air Capture systems with strong hydroxide
sorbents. International Journal of Greenhouse Gas Control, 80, 25-31. doi:https://doi.org/
10.1016/j.ijggc.2018.11.011
de la Fuente, M., Calvo, E., Skinner, L., Pelejero, C., Evans, D., Muller, W., . . . Cacho, I. (2017).
The Evolution of Deep Ocean Chemistry and Respired Carbon in the Eastern Equatorial
Pacific Over the Last Deglaciation. Paleoceanography, 32(12), 1371-1385.
doi:10.1002/2017pa003155
de la Rosa, A., & Korscha, R. (2014). Biochar systems for carbon finance -- an evaluation based
on Life Cycle Assessment studies in New Zealand : a thesis presented in partial
fulfilment of the requirements of Doctor of Philosophy in Science at Massey University,
Wellington, New Zealand. (Ph.D.). Massey University, Retrieved from http://
mro.massey.ac.nz/handle/10179/5973
De la Rosa, J. M., Knicker, H., Lopez-Capel, E., Manning, D. A. C., Gonzalez-Perez, J. A., &
Gonzalez-Vila, F. J. (2008). Direct Detection of Black Carbon in Soils by py-GC/MS,
Carbon-13 NMR Spectroscopy and Thermogravimetric Techniques. Soil Science Society
of America Journal Soil Science Society of America Journal, 72(1), 258-267.
de la Rosa, J. M., Paneque, M., Hilber, I., Blum, F., Knicker, H. E., & Bucheli, T. D. (2015).
Assessment of polycyclic aromatic hydrocarbons in biochar and biochar-amended
agricultural soil from Southern Spain. Journal of Soils and Sediments. doi:10.1007/
s11368-015-1250-z
de la Rosa, J. M., Paneque, M., Miller, A. Z., & Knicker, H. (2014). Relating physical and
chemical properties of four different biochars and their application rate to biomass
production of Lolium perenne on a Calcic Cambisol during a pot experiment of 79days.
Science of The Total Environment, 499, 175 - 184. doi:10.1016/j.scitotenv.2014.08.025
de Lannoy, C.-F., Eisaman, M. D., Jose, A., Karnitz, S. D., DeVaul, R. W., Hannun, K., & Rivest,
J. L. B. (2018). Indirect ocean capture of atmospheric CO2: Part I. Prototype of a
negative emissions technology. International Journal of Greenhouse Gas Control, 70,
243-253. doi:https://doi.org/10.1016/j.ijggc.2017.10.007
De Matos, A. T., Brandao, V. S., Neves, J. C. L., & Martinez, M. A. (2003). Removal of Cu and
Zn from swine raising wastewater using organic filters. Environmental Technology, 24(2),
171-178. Retrieved from https://www.ncbi.nlm.nih.gov/pubmed/12666787
de Melo Carvalho, M. T., et al. . (2013). Biochar improves fertility of a clay soil in the Brazilian
Savannah: short term effects and impact on rice yield. Journal of Agriculture and Rural
Development in the Tropics and Subtropics, 114(2), 101–107. Retrieved from http://
www.jarts.info/index.php/jarts/article/view/2013081343330
de Melo Carvalho, M. T., et al. (2014). Biochar increases plant-available water in a sandy loam
soil under an aerobic rice crop system. Solid Earth, 5(2), 939-952. Retrieved from http://
www.solid-earth.net/5/939/2014/se-5-939-2014.pdf
de Morais, M. G., & Costa, J. A. V. (2007). Biofixation of carbon dioxide by Spirulina sp. and
Scenedesmus obliquus cultivated in a three-stage serial tubular photobioreactor. Journal
of Biotechnology, 129(3), 439-445. doi:https://doi.org/10.1016/j.jbiotec.2007.01.009
de Morais, M. G., & Costa, J. A. V. (2007). Isolation and selection of microalgae from coal fired
thermoelectric power plant for biofixation of carbon dioxide. Energy Conversion and
Management, 48(7), 2169-2173. doi:https://doi.org/10.1016/j.enconman.2006.12.011
de Oliveira Garcia, W., Amann, T., & Hartmann, J. (2018). Increasing biomass demand enlarges
negative forest nutrient budget areas in wood export regions. Scientific Reports, 8(1),
5280. doi:10.1038/s41598-018-22728-5
de Oliveira Garcia, W., Amann, T., Hartmann, J., Karstens, K., Popp, A., Boysen, L. R., . . . Goll,
D. (2020). Impacts of enhanced weathering on biomass production for negative emission
technologies and soil hydrology. Biogeosciences, 17(7), 2107-2133. doi:10.5194/
bg-17-2107-2020
de Oliveira Mendes, G., et al. (2015). Optimization of Aspergillus niger rock phosphate
solubilization in solid-state fermentation and use of the resulting product as a P fertilizer.
Microbial Biotechnology, 8(6), 930-939. doi:10.1111/1751-7915.12289
de Oliveira, P. R., et al. , Lamy-Mendes, A. C., Gogola, J. L., Mangrich, A. S., Marcolino Junior,
L. H., & Bergamini, M. F. (2015). Mercury nanodroplets supported at biochar for
electrochemical determination of zinc ions using a carbon paste electrode.
Electrochimica Acta, 151, 525 - 530. doi:10.1016/j.electacta.2014.11.057
De Pasquale, C., et al. (2012). Fast field cycling NMR relaxometry characterization of biochars
obtained from an industrial thermochemical process. Journal of Soils and Sediments,
12(8), 1211-1221. doi:10.1007/s11368-012-0489-x
de Puy Kamp, M. (2021). How marginalized communities in the South are paying the price for
‘green energy’ in Europe. Retrieved from https://www.cnn.com/interactive/2021/07/us/
american-south-biomass-energy-invs/
de Queiroz Fernandes Araújo, O., Luiz de Medeiros, J., Yokoyama, L., & do Rosário Vaz
Morgado, C. (2015). Metrics for sustainability analysis of post-combustion abatement of
CO2 emissions: Microalgae mediated routes and CCS (carbon capture and storage).
Energy, 92, 556-568. doi:https://doi.org/10.1016/j.energy.2015.03.116
de Richter, R., Caillol, S., & Ming, T. (2019). 20 - Geoengineering: Sunlight reflection methods
and negative emissions technologies for greenhouse gas removal. In T. M. Letcher (Ed.),
Managing Global Warming (pp. 581-636): Academic Press.
de Richter, R. K., Ming, T. Z., & Caillol, S. (2013). Fighting global warming by photocatalytic
reduction of CO2 using giant photocatalytic reactors. Renewable & Sustainable Energy
Reviews, 19, 82-106. doi:10.1016/j.rser.2012.10.026
de Rozari, P., Greenway, M., & El Hanandeh, A. (2015). An investigation into the effectiveness
of sand media amended with biochar to remove BOD5, suspended solids and coliforms
using wetland mesocosms. In.
de Souza, J. F. T., Pacca, S. A. J. M., & Change, A. S. f. G. (2019). How far can low-carbon
energy scenarios reach based on proven technologies? Mitigation Adapt. Strat. Global
Change, 24(5), 687-705. doi:10.1007/s11027-018-9826-8
de Torres Vincent, T., & Boyer, T. H. (2020). Beneficial reuse of treated municipal wastewater
and flue gas carbon dioxide via combined ion exchange. Journal of Water Process
Engineering, 37, 101405. doi:https://doi.org/10.1016/j.jwpe.2020.101405
de Visser, E., Hendriks, C., Hamelinck, C., van de Brug, E., Jung, M., Meyer, S., . . . Gerling, P.
(2011). PlantaCap: A ligno-cellulose bio-ethanol plant with CCS. Energy Procedia, 4,
2941-2949. doi:https://doi.org/10.1016/j.egypro.2011.02.202
de Wild, P. (2011). BIOMASS PYROLYSIS FOR CHEMICALS. (PhD). Rijksuniversiteit
Groningen, the Netherlands, Retrieved from http://www.biochar-international.org/sites/
default/files/Thesis_pyrolyse_compleet_Paul_de_Wild.pdf
de_Richter, R., Ming, T., Davies, P., Liu, W., & Caillol, S. (2017). Removal of non-CO2
greenhouse gases by large-scale atmospheric solar photocatalysis. Progress in Energy
and Combustion Science, 60, 68-96. doi:https://doi.org/10.1016/j.pecs.2017.01.001
de_Richter, R. K., Ming, T., Caillol, S., & Liu, W. (2016). Fighting global warming by GHG
removal: Destroying CFCs and HCFCs in solar-wind power plant hybrids producing
renewable energy with no-intermittency. International Journal of Greenhouse Gas
Control, 49, 449-472. doi:http://dx.doi.org/10.1016/j.ijggc.2016.02.027
Dean, J. (2009). Iron Fertilization: A Scientific Review with International Policy
Recommendations. Environs Environmental Law and Policy, 32, 321-344. Retrieved
from http://www.lexisnexis.com/hottopics/lnacademic/?
Deb, D., Kloft, M., Lässig, J., & Walsh, S. (2016). Variable effects of biochar and P solubilizing
microbes on crop productivity in different soil conditions. Agroecology and Sustainable
Food Systems, 40(2), 145 - 168. doi:10.1080/21683565.2015.1118001
deB Richter, D., & Houghton, R. A. (2011). Gross CO2 fluxes from land-use change:
implications for reducing global emissions and increasing sinks. Carbon Management,
2(1), 41-47. doi:10.4155/cmt.10.43
Dechene, A., et al. (2014). Sorption of polar herbicides and herbicide metabolites by biochar-
amended soil. Chemosphere, 109, 180-186. Retrieved from http://
www.sciencedirect.com/science/article/pii/S0045653514002124
DeCicco, J. M. (2013). Biofuel’s carbon balance: doubts, certainties and implications. Climatic
Change, 121(4), 801-814. doi:10.1007/s10584-013-0927-9
DeCicco, J. M., Liu, D. Y., Heo, J., Krishnan, R., Kurthen, A., & Wang, L. (2016). Carbon
balance effects of U.S. biofuel production and use. Climatic Change, 138(3), 667-680.
doi:10.1007/s10584-016-1764-4
Deenik, J., & Cooney, M. (2016). The Potential Benefits and Limitations of Corn Cob and
Sewage Sludge Biochars in an Infertile Oxisol. Sustainability, 8(2), 131. doi:10.3390/
su8020131
Deenik, J. L., et al. (2011). Charcoal Effects on Soil Properties and Plant Growth: Charcoal Ash
and Volatile Matter Effects on Soil Properties and Plant Growth in an Acid Ultisol. Soil
Science, 176(7), 336-345. Retrieved from https://www.researchgate.net/publication/
232114108_Charcoal_Ash_and_Volatile_Matter_Effects_on_Soil_Properties_and_Plant
_Growth_in_an_Acid_Ultisol
DEFRA, U. (2009). An Assessment of the Potential Benefits, Costs and Issues Surrounding the
addition of Biochar to Soil: An Expert Elicitation Approach. Retrieved from http://
randd.defra.gov.uk/Document.aspx?Document=SP0576_9141_FRP.pdf
DeGryze, S., Cullen, M., & Durschinger, L. (2010). Evaluation of the opportunities for generating
Carbon Offsets from soil sequestration of Biochar. Retrieved from
Dehkhoda, A. M., & Ellis, N. (2012). Biochar-based catalyst for simultaneous reactions of
esterification and transesterification. Catalysis Today, 207, 86-92. Retrieved from http://
www.sciencedirect.com/science/article/pii/S0920586112004002
Dehkhoda, A. M., Ellis, N., & Gyenge, E. (2013). Electrosorption on activated biochar: effect of
thermo-chemical activation treatment on the electric double layer capacitance. Journal of
Applied Electrochemistry, 44(1), 141-157. Retrieved from https://link.springer.com/article/
10.1007/s10800-013-0616-4
Dehkhoda, A. M., Ellis, N., & Gyenge, E. (2016). Effect of activated biochar porous structure on
the capacitive deionization of NaCl and ZnCl2 solutions. Microporous and Mesoporous
Materials, 224, 217 - 228. doi:10.1016/j.micromeso.2015.11.041
Dehkhoda, A. M., West, A. H., & Ellis, N. (2010). Biochar based solid acid catalyst for biodiesel
production. Applied Catalysis, 382, 197-204. doi:10.1016/j.apcata.2010.04.051
Deich, N. (2015). Direct Air Capture Explained in 10 Questions. Retrieved from http://
www.centerforcarbonremoval.org/blog-posts/2015/9/20/direct-air-capture-explained-
in-10-questions
Deich, N., & Reali, E. (2019). Big Oil is funding climate tech – but should they? Blog Retrieved
from https://medium.com/@carbon180/big-oil-is-funding-future-climate-tech-but-should-
they-c103aed36011
Delaney, J. (2019). John Delaney's plan for Negative Emissions Technologies. Delaney for
President 2020. Retrieved from https://www.johndelaney.com/issues/negative-
emissions-technologies/
del-Campo, B. G. (2015). Optimizing the production of activated carbon from fast pyrolysis char.
Iowa State University, Retrieved from http://www.worldscientific.com/doi/abs/10.1142/
S2339547815400026
Delille, B., Borges, A. V., & Delille, D. (2009). Influence of giant kelp beds (Macrocystis pyrifera)
on diel cycles of pCO2 and DIC in the Sub-Antarctic coastal area. Estuarine, Coastal
and Shelf Science, 81(1), 114-122. doi:https://doi.org/10.1016/j.ecss.2008.10.004
Delrue, F., Li-Beisson, Y., Setier, P. A., Sahut, C., Roubaud, A., Froment, A. K., & Peltier, G.
(2013). Comparison of various microalgae liquid biofuel production pathways based on
energetic, economic and environmental criteria. Bioresource Technology, 136, 205-212.
doi:https://doi.org/10.1016/j.biortech.2013.02.091
DeLuca, T. H., et al. , & . (2006). Wildfire-produced charcoal directly influences nitrogen cycling
in ponderosa pine forests. Soil Science Society of America Journal, 70(2), 448-453.
Retrieved from https://dl.sciencesocieties.org/publications/sssaj/abstracts/70/2/448?
access=0&view=pdf
DeLuca, T. H., & Aplet, G. H. (2008). Charcoal and carbon storage in forest soils of the rocky
mountain west. Frontiers in Ecology and the Environment, 6(1), 18-24. Retrieved from
http://onlinelibrary.wiley.com/doi/10.1890/070070/abstract
DeLuca, T. H., MacKenzie, M. D., & Gundale, M. J. (2009). Biochar Effects on Soil Nutrient
Transformation. In J. Lehmann & S. Joseph (Eds.), Biochar for Environmental
Management: Science and Technology (pp. 251-270). London, UK: Earthscan.
Delucchi, M. (2011). A conceptual framework for estimating the climate impacts of land-use
change due to energy crop programs. Biomass & Bioenergy, 35(6), 2337-2360.
Retrieved from http://www.sciencedirect.com/science/article/pii/S0961953410004198
Delucchi, M. A. (2010). Impacts of biofuels on climate change, water use, and land use. Annals
of the New York Academy of Sciences, 1195(1), 28-45. doi:10.1111/
j.1749-6632.2010.05457.x
DeLucia, E. H. (2015). How Biofuels Can Cool Our Climate and Strengthen Our Ecosystems.
EOS. Retrieved from https://eos.org/features/how-biofuels-can-cool-our-climate-and-
strengthen-our-ecosystems
Delzeit, R., Pongratz, J., Schneider, J. M., Schuenemann, F., Mauser, W., & Zabel, F. (2019).
Forest restoration: Expanding agriculture. Science, 366(6463), 316-317. doi:10.1126/
science.aaz0705
DeMessie, B., Sahle-Demessie, E., & Sorial, G. A. (2015). Cleaning Water Contaminated With
Heavy Metal Ions Using Pyrolyzed Biochar Adsorbents. Separation Science and
Technology, 150707112535009. doi:10.1080/01496395.2015.1064134
Demirbas, A. (2004). Bioenergy, Global Warming, and Environmental Impacts. Energy Sources,
26(3), 225-236. doi:10.1080/00908310490256581
Demirbas, A. (2004). Determination of calorific values of bio-chars and pyro-oils from pyrolysis
of beech trunkbarks. Journal of Analytical and Applied Pyrolysis, 72(2), 215-219.
Demirbas, A. (2004). Effects of temperature and particle size on bio-char yield from pyrolysis of
agricultural residues. Journal of Analytical and Applied Pyrolysis, 72(2), 243-248.
doi:http://dx.doi.org/10.1016/j.jaap.2004.07.003
Demirbas, A. (2006). Production and characterization of bio-chars from biomass via pyrolysis.
Energy Sources Part A-Recovery Utilization and Environmental Effects, 28(5), 413-422.
Demirbas, A. (2008). Bio-fuels from Agricultural Residues. Energy Sources Part A-Recovery
Utilization and Environmental Effects, 30(2), 101-109.
Demirbas, A. (2008). Biofuels sources, biofuel policy, biofuel economy and global biofuel
projections. Energy Conversion and Management, 49(8), 2106-2116.
Demirbas, A. (2009). Political, economic and environmental impacts of biofuels: A review.
Applied Energy, 86, Supplement 1, S108-S117. doi:https://doi.org/10.1016/
j.apenergy.2009.04.036
Demirbas, A. (2010). Use of algae as biofuel sources. Energy Conversion and Management,
51(12), 2738-2749. doi:https://doi.org/10.1016/j.enconman.2010.06.010
Demirbaş, A. (2008). Production of Biodiesel from Algae Oils. Energy Sources, Part A:
Recovery, Utilization, and Environmental Effects, 31(2), 163-168.
doi:10.1080/15567030701521775
Demirbas, A., & Fatih Demirbas, M. (2011). Importance of algae oil as a source of biodiesel.
Energy Conversion and Management, 52(1), 163-170. doi:https://doi.org/10.1016/
j.enconman.2010.06.055
Demirbas, A., Pehlivan, E., & Altun, T. (2006). Potential evolution of Turkish agricultural residues
as bio-gas, bio-char and bio-oil sources. International Journal of Hydrogen Energy,
31(5), 613-620. doi:http://dx.doi.org/10.1016/j.ijhydene.2005.06.003
Demirbas, M. F. (2011). Biofuels from algae for sustainable development. Applied Energy,
88(10), 3473-3480. doi:https://doi.org/10.1016/j.apenergy.2011.01.059
Demisie, W., Liu, Z., & Zhang, M. (2014). Effect of biochar on carbon fractions and enzyme
activity of red soil. CATENA, 121, 214-221. Retrieved from http://www.sciencedirect.com/
science/article/pii/S0341816214001556
Demisie, W., & Zhang, M. (2015). Effect of biochar application on microbial biomass and
enzymatic activities in degraded red soil. African Journal of Agricultural Research, 10(8),
755-766. doi:10.5897/ajar2013.8209!
Dempster, D. N., et al. (2011). Decreased soil microbial biomass and nitrogen mineralisation
with Eucalyptus biochar addition to a coarse textured soil. Plant and Soil, 354(1),
311-324. doi:10.1007/s11104-011-1067-5
Dempster, D. N., Jones, D. L., & Murphy, D. V. (2012). Clay and biochar amendments
decreased inorganic but not dissolved organic nitrogen leaching in soil. Soil Research,
50(3), 216-221. Retrieved from https://www.researchgate.net/publication/
274433159_Clay_and_biochar_amendments_decreased_inorganic_but_not_dissolved_
organic_nitrogen_leaching_in_soil
Dempster, D. N., Jones, D. L., & Murphy, D. V. (2012). Organic nitrogen mineralisation in two
contrasting agro-ecosystems is unchanged by biochar addition. Soil Biology and
Biochemistry, 48, 47-50. Retrieved from http://www.sciencedirect.com/science/article/pii/
S0038071712000260
Demus, T., et al. (2015). Biochar Usage in EAF-Steelmaking Potential and Feasibility. In.
den hond, B. (2019). Looking for Climate Solutions Down in the Dirt. EOS, (April 17). Retrieved
from https://eos.org/articles/looking-for-climate-solutions-down-in-the-dirt
Denevan, W. M. (1996). A bluff model of riverine settlement in prehistoric amazonia. Annals of
the Association of American Geographers, 86(4), 654-681. Retrieved from https://
www.jstor.org/stable/2564346?seq=1#page_scan_tab_contents
Deng, B., Tammeorg, P., Luukkanen, O., Helenius, J., & Starr, M. (2016). Effects of Acacia seyal
and biochar on soil properties and sorghum yield in agroforestry systems in South
Sudan. Agroforestry Systems, 91(1), 137-148. doi:10.1007/s10457-016-9914-2
Deng, C., Lin, R., Kang, X., Wu, B., O’Shea, R., & Murphy, J. D. (2020). Improving gaseous
biofuel yield from seaweed through a cascading circular bioenergy system integrating
anaerobic digestion and pyrolysis. Renewable and Sustainable Energy Reviews, 128,
109895. doi:https://doi.org/10.1016/j.rser.2020.109895
Deng, G. Z., et al. (2013). Adsorption Characteristics of Phenol in Aqueous Solution by Pinus
massoniana Biochar. Applied Mechanics and Materials, 295-298, 1154-1160. Retrieved
from https://www.scientific.net/AMM.295-298.1154
Deng, H. (2013). Effect of Biochar Amendment on Soil Nitrous Oxide Emission. (Master of
Science). McGill University, Retrieved from http://webpages.mcgill.ca/staff/deptshare/
FAES/066-Bioresource/Theses/theses/442HongyuanDeng2012/HongyuanDeng.pdf
Deng, H. (2013). Sorption of Atrazine by Biochar Prepared from Manioc Wastes in Tropical
Soils. Paper presented at the Selected Proceedings of the Eighth International
Conference on Waste Management and Technology.
deng, H., et al. (2014). Sorption of Atrazine in Tropical Soil by Biochar Prepared from Cassava
Waste. BioResources, 9(4), 6627-6643. Retrieved from http://ojs.cnr.ncsu.edu/index.php/
BioRes/article/view/BioRes_09_4_6627_Deng_Sorption_Atrazine_Tropical_Soil/3060
Deng, S., et al. (2014). Energy efficient considerations on carbon dioxide capture: Solar thermal
engineering (Part II). Energy Procedia, 61, 2674-2677. Retrieved from https://
www.academia.edu/33985434/
Energy_Efficient_Considerations_on_Carbon_Dioxide_Capture_Solar_Thermal_Engine
ering_Part_I_
Deng, W., Zwieten, L. V., Lin, Z., Liu, X., Sarmah, A. K., & Wang, H. (2016). Sugarcane bagasse
biochars impact respiration and greenhouse gas emissions from a latosol. Journal of
Soils and Sediments, 17(3), 632-640. doi:10.1007/s11368-015-1347-4
Deng, X., Zhan, Y., Wang, F., Ma, W., Ren, Z., Chen, X., . . . Lv, X. (2016). Soil organic carbon
of an intensively reclaimed region in China: Current status and carbon sequestration
potential. Science of The Total Environment, 565, 539-546. doi:https://doi.org/10.1016/
j.scitotenv.2016.05.042
Deng, Y., Li, J., Miao, Y., & Izikowitz, D. (2021). A comparative review of performance of
nanomaterials for Direct Air Capture. Energy Reports, 7, 3506-3516. doi:https://doi.org/
10.1016/j.egyr.2021.06.002
Denman, K. L. (2008). Climate change, ocean processes and ocean iron fertilization. Marine
Ecology Progress Series, 354, 219-225. Retrieved from http://www.int-res.com/articles/
theme/m364p219.pdf
Denman, K. L., Voelker, C., Angelica Peña, M., & Rivkin, R. B. (2006). Modelling the ecosystem
response to iron fertilization in the subarctic NE Pacific: The influence of grazing, and Si
and N cycling on CO2 drawdown. Deep Sea Research Part II: Topical Studies in
Oceanography, 53(20–22), 2327-2352. doi:http://dx.doi.org/10.1016/j.dsr2.2006.05.026
Dennis, J., & Kou, K. C. S. (2014). Evaluating the agronomic benefits of biochar amended soils
in an organic system : results from a field study at the UBC Farm, Vancouver. Centre for
Sustainable Food Systems at UBC Farm. Retrieved from https://circle.ubc.ca/handle/
2429/51197?show=full
Dennis, S., Deng, Q., Hui, D., Wang, J., Iwuozo, S., Yu, C.-L., & Reddy, C. (2015). In-Field
Management Practices for Mitigating Soil CO2 and CH4 Fluxes under Corn (Zea mays)
Production System in Middle Tennessee. American Journal of Climate Change, 04(04),
367 - 378. doi:10.4236/ajcc.2015.44029
Denyes, M., Zeeb, B., & Rutter, A. (2015). The Use of Biochar and Activated Carbon to Minimize
Hydrophobic Organic Contaminant Bioavailability in Soils. Retrieved from http://
espace.rmc.ca/handle/11264/422
Denyes, M. J., et al. (2012). The use of biochar to reduce soil PCB bioavailability to Cucurbita
pepo and Eisenia fetida. Science of The Total Environment, 437, 76–82. Retrieved from
http://www.sciencedirect.com/science/article/pii/S0048969712010339
Denyes, M. J., et al. (2014). Physical, Chemical and Biological Characterization of Six Biochars
Produced for the Remediation of Contaminated Sites. Journal of Visualized
Experiments, 93, 1-12. doi:10.3791/52183
Denyes, M. J., Rutter, A., & Zee, B. A. (2013). In situ application of activated carbon and biochar
to PCB-contaminated soil and the effects of mixing regime. Environmental Pollution,
182, 201–208. Retrieved from http://www.sciencedirect.com/science/article/pii/
S0269749113003850
Denyes, M. J., Rutter, A., & Zeeb, B. A. (2016). Bioavailability assessments following biochar
and activated carbon amendment in DDT-contaminated soil. Chemosphere, 144, 1428 -
1434. doi:10.1016/j.chemosphere.2015.10.029
DePaolo, D. (2020). Rock Solid: Harnessing Mineralization for Large-Scale Carbon
Management. Retrieved from https://energyfuturesinitiative.org/efi-reports
der Horst, D., & Vermeylen, S. (2011). Spatial scale and social impacts of biofuel production.
Biomass and Bioenergy, 35(6), 2435-2444. Retrieved from http://
www.research.lancs.ac.uk/portal/en/publications/spatial-scale-and-social-impacts-of-
biofuel-production(5c757982-9b73-437a-a425-f99f9c769392).html
Derevschikov, V. S., Veselovskaya, J. V., Shalygin, A. S., A.Yatsenko, D., Sheshkovas, A. Z., &
Martyanov, O. N. (2021). Operating limits and features of direct air capture on K2CO3/
ZrO2 composite sorbent. Chinese Journal of Chemical Engineering. doi:https://doi.org/
10.1016/j.cjche.2021.07.005
Desbarats, J., et al. (2010). Review of the public participation practices for CCS and non-CCS
projects in Europe. Retrieved from https://www.researchgate.net/publication/
236146889_Review_of_the_public_participation_practices_for_CCS_and_non-
CCS_projects_in_Europe
Deseta, N. (2020). Mining CO2 – Is Mining Atmospheric Carbon the Future of Environmental
Sustainability? Geology for Investors. Retrieved from https://
www.geologyforinvestors.com/mining-co2-is-mining-atmospheric-carbon-the-future-of-
environmental-sustainability/
Desideri, U. (2010). Advanced absorption processes and technology for carbon dioxide (CO2)
capture in power plants A2 - Maroto-Valer, M. Mercedes. In Developments and
Innovation in Carbon Dioxide (CO2) Capture and Storage Technology (Vol. 1, pp.
155-182): Woodhead Publishing.
Dessert, C., Dupré, B., Gaillardet, J., François, L. M., & Allègre, C. J. (2003). Basalt weathering
laws and the impact of basalt weathering on the global carbon cycle. Chemical Geology,
202(3), 257-273. doi:https://doi.org/10.1016/j.chemgeo.2002.10.001
Deutz, S., & Bardow, A. (2021). Life-cycle assessment of an industrial direct air capture process
based on temperature–vacuum swing adsorption. Nature Energy. doi:10.1038/
s41560-020-00771-9
DeVallance, D. B., Oporto, G. S., & Quigley, P. (2015). Investigation of hardwood biochar as a
replacement for wood flour in wood-polypropylene composites. Journal of Elastomers
and Plastics. doi:10.1177/0095244315589655
Deveci, H., & Kar, Y. (2012). Adsorption of hexavalent chromium from aqueous solutions by bio-
chars obtained during biomass pyrolysis. Journal of Industrial and Engineering
Chemistry, 19(1), 190-196. Retrieved from http://www.sciencedirect.com/science/article/
pii/S1226086X12002602
Devereux, R. C., Sturrock, C. J., & Mooney, S. J. (2013). The effects of biochar on soil physical
properties and winter wheat growth. Earth and Environmental Science Transactions of
the Royal Society of Edinburgh, 103, 13-18. Retrieved from https://www.cambridge.org/
core/services/aop-cambridge-core/content/view/S1755691012000011
Devi, P., & Saroh, A. K. a. (2014). Risk analysis of pyrolyzed biochar made from paper mill
effluent treatment plant sludge for bioavailability & eco-toxicity of heavy metals.
Bioresource Technology, 162, 308-315. Retrieved from http://www.sciencedirect.com/
science/article/pii/S0960852414003988
Devi, P., & Saroha, A. K. (2013). Effect Of Temperature On Biochar Properties During Paper Mill
Sludge Pyrolysis. International Journal of ChemTech Research, 5, 682-687. Retrieved
from http://sphinxsai.com/2013/conf/PDFS%20ICGSEE%202013/
CT=21(682-687)ICGSEE.pdf
Devi, P., & Saroha, A. K. (2014). Synthesis of the magnetic biochar composites for use as an
adsorbent for the removal of pentachlorophenol from the effluent. Bioresource
Technology, 169, 525 - 531. doi:10.1016/j.biortech.2014.07.062
Devi, P., & Saroha, A. K. (2015). Effect of pyrolysis temperature on polycyclic aromatic
hydrocarbons toxicity and sorption behaviour of biochars prepared by pyrolysis of paper
mill effluent treatment plant sludge. Bioresource Technology, 192, 312 - 320.
doi:10.1016/j.biortech.2015.05.084
Devi, P., & Saroha, A. K. (2015). Simultaneous adsorption and dechlorination of
pentachlorophenol from effluent by Ni–ZVI magnetic biochar composites synthesized
from paper mill sludge. Chemical Engineering Journal, 271, 195 - 203. doi:10.1016/
j.cej.2015.02.087
Devi, R. A., Jature, S. D., & Chattopadhyay, S. B. (2015). Effect of flyash, biochar, coal and
vermicompost on the growth, yield and quality of palak (Beta vulgaris!L.) cv All Green.
Environment and Ecology, 33(1A), 306-309. Retrieved from http://www.cabdirect.org/
abstracts/20153099501.html
Devi, S. B. (2015). Climate Change Mitigation by Soil Carbon Sequestration in Tropics—A
Review. Green India: Strategic Knowledge for Combating Climate Change: Prospects &
Challenges, 315-319. Retrieved from http://groupexcelindia.com/Online_cd/PDF/
315.pdf.pdf
Dhanapal, S., Sekar, D. S., & Satheesh, P. M. (2014). Efficiency of RAPD, SSR and ISSR
markers in evaluating the genetic fidelity for micropropogated Musa accuminata plant
exposed to coal extracted humic acid and commercially available products. International
Journal of Agricultural Science and Research, 4, 77-86. Retrieved from http://
www.cabdirect.org/abstracts/
20143319109.html;jsessionid=D07DBC3D7E402AF09D8E8ED61B0AA814
Dharmakeerthi, R. S., Chandrasiri, J. A., & Edirimanne, V. U. (2012). Effect of rubber wood
biochar on nutrition and growth of nursery plants of Hevea brasiliensis established in an
Ultisol. SpringerPlus, 1, 1-12. doi:10.1186/2193-1801-1-84
Dharmakeerthi, R. S., Chandrasiri, J. A. S., & Edirimanne, V. U. (2010). Use of charcoal as a
soil amendment in rubber (Hevea brasiliensis) plantations: Effectiveness in young
budding polybagged plants. Paper presented at the Third Symposium on Plantation
Crop Research - Stakeholder Empowerment through Technological Advances, Colombo,
Sri Lanka.
Dhillon, R. S., & von Wuehlisch, G. (2013). Mitigation of global warming through renewable
biomass. Biomass and Bioenergy, 48, 75-89. doi:https://doi.org/10.1016/
j.biombioe.2012.11.005
Dhiman, J., et al. (2015). "USE OF SUPER ABSORBENT POLYMERS (HYDROGELS) TO
PROMOTE SAFE USE OF WASTEWATER IN AGRICULTURE ". Paper presented at the
22nd Canadian Hydrotechnical Conference. http://www.researchgate.net/profile/
Jaskaran_Dhiman/publication/
275660614_USE_OF_SUPER_ABSORBENT_POLYMERS_(HYDROGELS)_TO_PRO
MOTE_SAFE_USE_OF_WASTEWATER_IN_AGRICULTURE/links/
55445f890cf24107d3965045.pdf
Di Maria, A., Snellings, R., Alaerts, L., Quaghebeur, M., & Van Acker, K. (2020). Environmental
assessment of CO2 mineralisation for sustainable construction materials. International
Journal of Greenhouse Gas Control, 93, 102882. doi:https://doi.org/10.1016/
j.ijggc.2019.102882
Di Sacco, A., Hardwick, K. A., Blakesley, D., Brancalion, P. H. S., Breman, E., Cecilio Rebola,
L., . . . Antonelli, A. (2021). Ten golden rules for reforestation to optimize carbon
sequestration, biodiversity recovery and livelihood benefits. Global Change Biology, n/
a(n/a). doi:https://doi.org/10.1111/gcb.15498
Di Salvatore, M., Carafa, A. M., & Carratu, G. (2008). Assessment of heavy metals phytotoxicity
using seed germination and root elongation tests: A comparison of two growth
substrates. Chemosphere, 73(9), 1461-1464. Retrieved from http://
www.sciencedirect.com/science/article/pii/S0045653508009831
Diakun, A. T. (2015). Clearing the Air on ‘Geoengineering’ and Intellectual Property Rights
Towards a framework approach. (MRP). University of Waterloo, Retrieved from https://
www.academia.edu/17877265/
_Clearing_the_Air_on_Geoengineering_and_Intellectual_Property_Rights_Towards_a_F
ramework_Approach_University_of_Waterloo_Masters_Research_Paper_?
email_work_card=thumbnail
Diallo, O. (2014). Effect of Poultry Litter Biochar on Saccharomyces cerevisiae Growth and
Ethanol Production from Steam-Exploded Poplar and Corn Stover. Utah State University,
Retrieved from http://digitalcommons.usu.edu/etd/3901/
Diallo, O., & Agblevor, F. (2015). Enhanced productivity and very high gravity fermentation of
glucose and steam exploded corn stover using poultry litter biochar. Paper presented at
the Symposium on Biotechnology for Fuels and Chemicals. https://sim.confex.com/sim/
37th/webprogram/Paper29028.html
Diamandis, P. H. (2019). The Promise of Direct Air Capture: Making Stuff Out of Thin Air.
Singularity Hub. Retrieved from https://singularityhub.com/2019/08/23/the-promise-of-
direct-air-capture-making-stuff-out-of-thin-air/
Diao, Y.-F., Zheng, X.-Y., He, B.-S., Chen, C.-H., & Xu, X.-C. (2004). Experimental study on
capturing CO2 greenhouse gas by ammonia scrubbing. Energy Conversion and
Management, 45(13–14), 2283-2296. doi:https://doi.org/10.1016/
j.enconman.2003.10.011
Dias, B. O., Sanchez-Monedero, M. A., Silva, C. A., Higashikawa, F. S., & Roig, A. (2009). Use
of biochar as bulking agent for the composting of poultry manure: Effect on organic
matter degradation and humification. Bioresource Technology, 101, 1239-1246.
Dias, C. M. d. F. (2014). Estudos de adsorção de CO2 gasoso em biocarvão (Studies of
adsorption of gaseous CO2 into biochar). Unibersidade de Coimbra, Retrieved from
https://estudogeral.sib.uc.pt/handle/10316/27290
Díaz-Rey, M. R., Cortés-Reyes, M., Herrera, C., Larrubia, M. A., Amadeo, N., Laborde, M., &
Alemany, L. J. (2014). Hydrogen-rich gas production from algae-biomass by low
temperature catalytic gasification. Catalysis Today, 257(2), 177-184. doi:10.1016/
j.cattod.2014.04.035
Dibenedetto, A. (2019). Enhanced Fixation of CO2 in Land and Aquatic Biomass. In M. Aresta, I.
Karimi, & S. Kawi (Eds.), An Economy Based on Carbon Dioxide and Water: Potential of
Large Scale Carbon Dioxide Utilization (pp. 379-412). Retrieved from https://
link.springer.com/chapter/10.1007/978-3-030-15868-2_11
Dichicco, M. C., et al. (2015). Serpentinite carbonation for CO2 sequestration in the southern
Apennines: preliminary study. Energy Procedia, 76, 477-486. Retrieved from https://
ac.els-cdn.com/S1876610215016641/1-s2.0-S1876610215016641-main.pdf?
_tid=b0d4bf41-c5d5-40fc-
b5b9-4dd336b053c6&acdnat=1524877239_bc681dbdff6de881f6e763277c5be652
Dicke, C., Lanza, G., Mumme, J., Ellerbrock, R., & Kern, J. (2014). Effect of Hydrothermally
Carbonized Char Application on Trace Gas Emissions from Two Sandy Soil Horizons.
Journal of Environment Quality, 43(5), 1790. doi:10.2134/jeq2013.12.0513
Dickinson, D., et al. (2015). Biochar priming of native SOC and the net carbon balance:
observations from a 13C-biochar microcosm study. Paper presented at the Symposium
des ANS e.V. 2015. https://biblio.ugent.be/publication/6951712
Dickinson, D., Balduccio, L., Buysse, J., Ronsse, F., van Huylenbroeck, G., & Prins, W. (2015).
Cost-benefit analysis of using biochar to improve cereals agriculture. GCB Bioenergy,
7(4), 850-864. doi:10.1111/gcbb.12180
Dicko, M., et al. (2015). Fast pyrolysis of Miscanthus x Giganteus in an IR heated reactor. Paper
presented at the European Congress of Chemical Engineering. https://hal-mines-
paristech.archives-ouvertes.fr/hal-01250841/
Didas, S. A., et al. (2012). Role of Amine Structure on Carbon Dioxide Adsorption from
Ultradilute Gas Streams such as Ambient Air. ChemSusChem, 5(10), 2058-2064.
Retrieved from http://onlinelibrary.wiley.com/doi/10.1002/cssc.201200196/abstract
Didas, S. A., Choi, S., Chaikittisilp, W., & Jones, C. W. (2015). Amine-Oxide Hybrid Materials for
CO2 Capture from Ambient Air. Accounts of Chemical Research, 48(10), 2680-2687.
doi:10.1021/acs.accounts.5b00284
Diego, M. E., & Alonso, M. (2016). Operational feasibility of biomass combustion with in situ
CO2 capture by CaO during 360h in a 300kWth calcium looping facility. Fuel, 181,
325-329. doi:https://doi.org/10.1016/j.fuel.2016.04.128
Diego, M. E., Arias, B., & Abanades, J. C. (2017). Evolution of the CO2 carrying capacity of CaO
particles in a large calcium looping pilot plant. International Journal of Greenhouse Gas
Control, 62(Supplement C), 69-75. doi:https://doi.org/10.1016/j.ijggc.2017.04.005
Dieguez Alonso, A. (2016). Fixed-bed biomass pyrolysis: mechanisms and biochar production.
In.
Dietrich, J. P., et al. (2013). Forecasting technological change in agriculture-An endogenous
implementation in a global, and use model. Technological Forecasting and Social
Change, 81, 236-249. Retrieved from https://www.researchgate.net/publication/
256543549_Forecasting_technological_change_in_agriculture-
An_endogenous_implementation_in_a_global_and_use_model
Dietrich, T. (2018). NASA Langley scientist touts biochar: an 'environmental superstar'. Daily
Press. Retrieved from http://www.dailypress.com/news/science/dp-nws-biochar-nasa-
langley-20180102-story.html
Dietzen, C., Harrison, R., & Michelsen-Correa, S. (2018). Effectiveness of enhanced mineral
weathering as a carbon sequestration tool and alternative to agricultural lime: An
incubation experiment. International Journal of Greenhouse Gas Control, 74, 251-258.
doi:https://doi.org/10.1016/j.ijggc.2018.05.007
Digdaya, I. A., Sullivan, I., Lin, M., Han, L., Cheng, W.-H., Atwater, H. A., & Xiang, C. (2020). A
direct coupled electrochemical system for capture and conversion of CO2 from
oceanwater. Nature Communications, 11(1), 4412. doi:10.1038/s41467-020-18232-y
Digges, C. (2021). Russian parliament adopts law aimed at limiting greenhouse gasses.
Retrieved from https://bellona.org/news/climate-change/2021-06-russian-parliament-
adopts-law-aimed-at-limiting-greenhouse-gasses
Dikgwatlhe, S. B., Chen, Z.-D., Lal, R., Zhang, H.-L., & Chen, F. (2014). Changes in soil organic
carbon and nitrogen as affected by tillage and residue management under wheat–maize
cropping system in the North China Plain. Soil and Tillage Research, 144, 110-118.
doi:https://doi.org/10.1016/j.still.2014.07.014
Dil, M., & Oelbermann, M. (2014). Evaluating the long-term effects of pre-conditioned biochar on
soil organic carbon in two southern Ontario soils using the century model. In Sustainable
agroecosystems in climate change mitigation.
Dil, M., Oelbermann, M., & Xue, W. (2014). An Evaluation of Biochar pre-conditioned with Urea
Ammonium Nitrate on Maize (Zea mays L.) Production and Soil Biochemical
Characteristics. Canadian Journal of Soil Science, 94(4), 551-562. doi:10.4141/
cjss-2014-010
Dillon, J. (2019). Hill warms to CO2 air capture technologies. E&E Daily. Retrieved from https://
www.eenews.net/eedaily/stories/1061428337
Di'Lonardo, S., et al. . (2012). Biochar successfully replaces activated charcoal for in vitro
culture of two white poplar clones reducing ethylene concentration. Plant Growth
Regulation, 69(1), 43-50. doi:10.1007/s10725-012-9745-8
Dimitriou, I., García-Gutiérrez, P., Elder, R. H., Cuéllar-Franca, R. M., Azapagic, A., & Allen, R.
W. K. (2015). Carbon dioxide utilisation for production of transport fuels: process and
economic analysis. Energy & Environmental Science, 8(6), 1775-1789. doi:10.1039/
C4EE04117H
Ding, H., Zheng, H., Liang, X., & Ren, L. (2020). Getting ready for carbon capture and storage in
the iron and steel sector in China: Assessing the value of capture readiness. Journal of
Cleaner Production, 244, 118953. doi:https://doi.org/10.1016/j.jclepro.2019.118953
Ding, W., et al. . (2013). Effects of phosphorus concentration on Cr(VI) sorption onto
phosphorus-rich sludge biochar. Frontiers of Environmental Science & Engineering, 8(3),
379-385. Retrieved from https://link.springer.com/article/10.1007/s11783-013-0606-0
Ding, W., Fu, L., Ouyang, J., & Yang, H. (2014). CO 2 mineral sequestration by wollastonite
carbonation. Physics and Chemistry of Minerals, 41(7), 489-496. doi:10.1007/
s00269-014-0659-z
Ding, W. C., Tian, X. M., Wang, D. Y., Zeng, X. L., Xu, Q., Chen, J. K., & Ai, X. Y. (2012).
Mechanism of Cr( VI) removal from aqueous solution using biochar promoted by humic
acid. Huan Jing Ke Xue., 33(11), 3847-3853. Retrieved from https://
www.ncbi.nlm.nih.gov/pubmed/23323415
Ding, Y., Liu, Y., Liu, S., Li, Z., Tan, X., Huang, X., . . . Zheng, B. (2016). Biochar to improve soil
fertility. A review. Agronomy for Sustainable Development, 36(2), 36. doi:10.1007/
s13593-016-0372-z
Ding, Y., Liu, Y. X., Wu, W. X., Shi, D. Z., Yang, M., & Zhong, Z. K. (2010). Evaluation of Biochar
Effects on Nitrogen Retention and Leaching in Multi-Layered Soil Columns. Water Air
and Soil Pollution, 213(1), 47-55. Retrieved from https://link.springer.com/article/
10.1007/s11270-010-0366-4
Ding, Z., Hu, X., Wan, Y., Wang, S., & Gao, B. (2016). Removal of lead, copper, cadmium, zinc,
and nickel from aqueous solutions by alkali-modified biochar: Batch and column tests.
Journal of Industrial and Engineering Chemistry, 33, 239 - 245. doi:10.1016/
j.jiec.2015.10.007
Directors, C. E. C. (2021). Bechtel working with Drax to build biomass plants with carbon
capture & storage. Power Engineering. Retrieved from https://www.power-eng.com/
emissions/bechtel-working-with-drax-to-build-biomass-plants-with-carbon-capture-
storage/
Dismukes, D. C., et al. (2008). Aquatic phototrophs: efficient alternatives to land-based crops for
biofuels. Current Opinion in Biotechnology, 19(3), 235-240.
Dismukes, D. E., Layne, M., & Snyder, B. F. (2019). Understanding the challenges of industrial
carbon capture and storage: an example in a U.S. petrochemical corridor. International
Journal of Sustainable Energy, 38(1), 13-23. doi:10.1080/14786451.2018.1494172
Dispenza, V. (2015). Utilizzo del biochar come substrato alternativo nella coltivazione di specie
ornamentali in vaso (Use of biochar as an alternative substrate in the cultivation of
ornamental plants in pots). UNIVERSITA DEGLI STUDI DI PALERMO (UNIVERSITY OF
PALERMO), Retrieved from https://iris.unipa.it/retrieve/handle/10447/105093/144552/
Tesi%20dottorato%20XXV%20ciclo%20-%20Vincenzo%20Dispenza.pdf
Dissanayake, P. D., Choi, S. W., Igalavithana, A. D., Yang, X., Tsang, D. C. W., Wang, C.-H., . . .
Ok, Y. S. (2020). Sustainable gasification biochar as a high efficiency adsorbent for CO2
capture: A facile method to designer biochar fabrication. Renewable and Sustainable
Energy Reviews, 124, 109785. doi:https://doi.org/10.1016/j.rser.2020.109785
Dissanayake, P. D., You, S., Igalavithana, A. D., Xia, Y., Bhatnagar, A., Gupta, S., . . . Ok, Y. S.
(2019). Biochar-based adsorbents for carbon dioxide capture: A critical review.
Renewable and Sustainable Energy Reviews, 109582. doi:https://doi.org/10.1016/
j.rser.2019.109582
Dissanayake, P. D., You, S., Igalavithana, A. D., Xia, Y., Bhatnagar, A., Gupta, S., . . . Ok, Y. S.
(2020). Biochar-based adsorbents for carbon dioxide capture: A critical review.
Renewable and Sustainable Energy Reviews, 119, 109582. doi:https://doi.org/10.1016/
j.rser.2019.109582
Dissanayake, P. D., You, S., Igalavithana, A. D., Xia, Y., Bhatnagar, A., Gupta, S., . . . Ok, Y. S.
(2020). Biochar-based adsorbents for carbon dioxide capture: A critical review.
Renewable and Sustainable Energy Reviews, 119, 109582. doi:https://doi.org/10.1016/
j.rser.2019.109582
Dittmeyer, R., Klumpp, M., Kant, P., & Ozin, G. (2019). Crowd oil not crude oil. Nature
Communications, 10(1), 1818. doi:10.1038/s41467-019-09685-x
Diversity, S. o. t. C. o. B. (2016). Update on Climate Geoengineering in Relation to the
Convention on Biological Diversity: Potential Impacts and Regulatory Framework (CBD
Technical Series No. 84). Retrieved from https://www.cbd.int/doc/publications/cbd-ts-84-
en.pdf
Dixon, M. (2017). Farmers can be profitable AND sequester carbon to help climate change. Red
Green and Blue. Retrieved from http://redgreenandblue.org/2017/10/03/farmers-can-
profitable-sequester-carbon-help-climate-change/
Dixon, R. (2021). Burning trees will not save us from the climate crisis - Richard Dixon. The
Scotsman. Retrieved from https://www.scotsman.com/news/opinion/burning-trees-will-
not-save-us-climate-crisis-richard-dixon-3112293
Dixon, R. K., Winjum, J. K., Andrasko, K. J., Lee, J. J., & Schroeder, P. E. (1994). Integrated
land-use systems: Assessment of promising agroforest and alternative land-use
practices to enhance carbon conservation and sequestration. Climatic Change, 27(1),
71-92. doi:10.1007/bf01098474
Dixon, T., Garrett, J., & Kleverlaan, E. (2014). Update on the London Protocol – Developments
on Transboundary CCS and on Geoengineering. Energy Procedia, 63, 6623-6628.
doi:http://dx.doi.org/10.1016/j.egypro.2014.11.698
Dixon, T., Leamon, G., Zakkour, P., & Warren, L. (2013). CCS Projects as Kyoto Protocol CDM
Activities. Energy Procedia, 37, 7596-7604. doi:https://doi.org/10.1016/
j.egypro.2013.06.704
Dixon, T., McCoy, S. T., & Havercroft, I. (2015). Legal and Regulatory Developments on CCS.
International Journal of Greenhouse Gas Control, 40(Supplement C), 431-448.
doi:https://doi.org/10.1016/j.ijggc.2015.05.024
Dlugogorski, B. Z., & Balucan, R. D. (2014). Dehydroxylation of serpentine minerals:
Implications for mineral carbonation. Renewable and Sustainable Energy Reviews, 31,
353-367. doi:https://doi.org/10.1016/j.rser.2013.11.002
Do, X.-H., & Lee, B.-K. (2013). Removal of Pb2+ using a biochar–alginate capsule in aqueous
solution and capsule regeneration. Journal of Environmental Management, 131, 375–
382. Retrieved from http://www.sciencedirect.com/science/article/pii/
S0301479713006476
Doan, T. T., . et al. . (2014). Influence of buffalo manure, compost, vermicompost and biochar
amendments on bacterial and viral communities in soil and adjacent aquatic systems.
Applied Soil Ecology, 73, 78–86. Retrieved from http://www.sciencedirect.com/science/
article/pii/S0929139313002199
Doan, T. T., et al. (2015). Impact of compost, vermicompost and biochar on soil fertility, maize
yield and soil erosion in Northern Vietnam: A three year mesocosm experiment. Science
of The Total Environment, 514, 147 - 154. doi:10.1016/j.scitotenv.2015.02.005
Doassans-Carrère, N., Muller, S., & Mitzkat, M. (2014). REVE — a new industrial technology for
biomass torrefaction: pilot studies. Fuel Processing Technology, 126, 155-162.
doi:10.1016/j.fuproc.2014.04.026
Dobbs, J. M., & Rosenfeld, J. (2014).
Dockrill, P. (2017). Scientists Have Discovered a Way to Make Alcohol Out of Thin Air. Retrieved
from http://www.sciencealert.com/scientists-may-have-discovered-how-to-make-alcohol-
out-of-thin-air
Dodor, D. E., Amanor, Y. J., Asamoah-Bediako, A., MacCarthy, D. S., & Dovie, D. B. K. (2019).
Kinetics of Carbon Mineralization and Sequestration of Sole and/or Co-amended Biochar
and Cattle Manure in a Sandy Soil. Communications in Soil Science and Plant Analysis,
50(20), 2593-2609. doi:10.1080/00103624.2019.1671443
Dolejš, P., Poštulka, V., Sedláková, Z., Jandová, V., Vejražka, J., Esposito, E., . . . Izák, P.
(2014). Simultaneous hydrogen sulphide and carbon dioxide removal from biogas by
water–swollen reverse osmosis membrane. Separation and Purification Technology, 131,
108-116. doi:https://doi.org/10.1016/j.seppur.2014.04.041
Dolor, R. (2019). Climate Change Threat: Invasive Insects Are Releasing Carbon Stored In US
Forests. International Business Times. Retrieved from https://www.ibtimes.com/climate-
change-threat-invasive-insects-are-releasing-carbon-stored-us-forests-2813485
Domene, X., et al. (2014). Medium-term effects of corn biochar addition on soil biota activities
and functions in a temperate soil cropped to corn. Soil Biology and Biochemistry, 72,
152-162. Retrieved from http://www.sciencedirect.com/science/article/pii/
S0038071714000455
Domene, X., et al. (2015). Short-term mesofauna responses to soil additions of corn stover
biochar and the role of microbial biomass. Applied Soil Ecology, 89, 10 - 17. doi:10.1016/
j.apsoil.2014.12.005
Domene, X., Enders, A., Hanley, K., & Lehmann, J. (2015). Ecotoxicological characterization of
biochars: Role of feedstock and pyrolysis temperature. Science of The Total
Environment, 512-513, 552 - 561. doi:10.1016/j.scitotenv.2014.12.035
Domingues, M., Bueno, C., Fraceto, L., Watanabe, C. H., Loyola, C., Crowley, D., & Rosa, A. H.
(2014). Polymeric alginate microspheres containing biochar to immobilize phosphate
ions. Chemical Engineering Transactions, 37, 109-114. doi:10.3303/cet1437019
Domingues, M. T., et al. . (2014). "ANÁLISE TERMOGRAVIMÉTRICA DO BIOCHAR DE
BAGAÇO DE CANA-DE-AÇÚCAR PRODUZIDO SOB DIFERENTES CONDIÇÕES DE
ATMOSFERA ( Thermogravimetric analysis biochar BAGASSE OF CANE SUGAR
PRODUCED UNDER DIFFERENT CONDITIONS OF ATMOSPHERE)". IX Congresso
Brasileiro de Análise Térmica e Calorimetria (IX Brazilian Congress of Thermal Analysis
and Calorimetry). Retrieved from http://abratec.com.br/cbratec9/trabalhos/023B.pdf
Domingues, M. T., et al. (2014). Short-Term Effect of Alginate-Biochar Microbeads in Corn
Germination. Paper presented at the 2nd International Conference on Food and
Agricultural Sciences. http://www.ipcbee.com/vol77/007-ICFAS2014-F0014.pdf
Domingues, M. T. (2015). Imobilização de fosfatos em microesferas poliméricas contendo
biochar: preparação, caracterização e liberação lenta em sistemas aquosos
(Immobilization of phosphates into polymeric microspheres containing biochar:
preparation, characterization and slow re. Universidade Estadual Paulista, Retrieved
from http://base.repositorio.unesp.br/handle/11449/123203?show=full
Domke, G. M., Oswalt, S. N., Walters, B. F., & Morin, R. S. (2020). Tree planting has the
potential to increase carbon sequestration capacity of forests in the United States.
Proceedings of the National Academy of Sciences, 117(40), 24649-24651. doi:10.1073/
pnas.2010840117
Don, A., Osborne, B., Hastings, A., Skiba, U., Carter, M. S., Drewer, J., . . . Zenone, T. (2012).
Land-use change to bioenergy production in Europe: implications for the greenhouse
gas balance and soil carbon. GCB Bioenergy, 4(4), 372-391. doi:10.1111/
j.1757-1707.2011.01116.x
Donato, D. C., Kauffman, J. B., Murdiyarso, D., Kurnianto, S., Stidham, M., & Kanninen, M.
(2011). Mangroves among the most carbon-rich forests in the tropics. Nature
Geoscience, 4, 293. doi:10.1038/ngeo1123
https://www.nature.com/articles/ngeo1123#supplementary-information
Dong, D., et al. (2013). Responses of methane emissions and rice yield to applications of
biochar and straw in a paddy field. Journal of Soils and Sediments, 13(8), 1450-1460.
Retrieved from http://link.springer.com/article/10.1007/s11368-013-0732-0
Dong, D., et al. (2014). Effects of biochar amendment on rice growth and nitrogen retention in a
waterlogged paddy field. Journal of Soils and Sediments, 15(1), 153-162. doi:10.1007/
s11368-014-0984-3
Dong, D., Wu, W., & Zhong, T. (2015). Effects of Straw-Derived Biochar on Rice Paddy. In
Biochar: Production, Characterization, and Applications.
Dong, P., Li, X., Yu, Y., Zhang, Z., & Feng, J. (2021). Direct Air Capture via Natural Draft Dry
Cooling Tower. International Journal of Greenhouse Gas Control, 109, 103375.
doi:https://doi.org/10.1016/j.ijggc.2021.103375
Dong, T., Gao, D., Miao, C., Yu, X., Degan, C., Garcia-Pérez, M., . . . Chen, S. (2015). Two-step
microalgal biodiesel production using acidic catalyst generated from pyrolysis-derived
bio-char. Energy Conversion and Management, 105, 1389-1396. doi:10.1016/
j.enconman.2015.06.072
Dong, W., Walkiewicz, A., Bieganowski, A., Oenema, O., Nosalewicz, M., He, C., . . . Hu, C.
(2020). Biochar promotes the reduction of N2O to N2 and concurrently suppresses the
production of N2O in calcareous soil. Geoderma, 362, 114091. doi:https://doi.org/
10.1016/j.geoderma.2019.114091
Dong, X., et al. (2013). Enhanced Cr(VI) reduction and As(III) oxidation in ice phase: important
role of dissolved organic matter from biochar. Journal of Hazardous Materials, 267,
62-70. Retrieved from http://www.sciencedirect.com/science/article/pii/
S0304389413009576
Dong, X., Guan, T., Li, G., Lin, Q., & Zhao, X. (2016). Long-term effects of biochar amount on
the content and composition of organic matter in soil aggregates under field conditions.
Journal of Soils and Sediments, 16(5), 1481-1497. doi:10.1007/s11368-015-1338-5
Dong, X., Singh, B. P., Li, G., Lin, Q., & Zhao, X. (2019). Biochar increased field soil inorganic
carbon content five years after application. Soil and Tillage Research, 186, 36-41.
doi:https://doi.org/10.1016/j.still.2018.09.013
DongXiaoling, Ma, L. Q., Gao, B., & Li, Y. (2011). Characteristics and mechanisms of hexavalent
chromium removal by biochar from sugar beet tailing. Journal of Hazardous Materials.
doi:10.1016/j.jhazmat.2011.04.008
Donner, S. D., & Kucharik, C. J. (2008). Corn-based ethanol production compromises goal of
reducing nitrogen export by the Mississippi River. Proceedings of the National Academy
of Sciences, 105(11), 4513-4518. doi:10.1073/pnas.0708300105
Donnison, C. (2020). Guest post: Where in the UK might be suitable for BECCS? CarbonBrief.
Retrieved from https://www.carbonbrief.org/guest-post-where-in-the-uk-might-be-
suitable-for-beccs
Donnison, C., Holland, R. A., Hastings, A., Armstrong, L.-M., Eigenbrod, F., & Taylor, G. (2020).
Bioenergy with Carbon Capture and Storage (BECCS): Finding the win–wins for energy,
negative emissions and ecosystem services—size matters. GCB Bioenergy, 12(8),
586-584. doi:10.1111/gcbb.12695
Dooley, J. J., et al. (2010). CO2-driven Enhanced Oil Recovery as a Stepping Stone to What?
Retrieved from https://www.pnnl.gov/main/publications/external/technical_reports/
PNNL-19557.pdf
Dooley, J. J. (2013). Estimating the Supply and Demand for Deep Geologic CO2 Storage
Capacity over the Course of the 21st Century: A Meta-analysis of the Literature. Energy
Procedia, 37(Supplement C), 5141-5150. doi:https://doi.org/10.1016/
j.egypro.2013.06.429
Dooley, J. J., Dahowski, R. T., Davidson, C. L., Bachu, S., Gupta, N., & Gale, J. (2005). A CO2-
storage supply curve for North America and its implications for the deployment of carbon
dioxide capture and storage systems. In Greenhouse Gas Control Technologies 7 (pp.
593-601). Oxford: Elsevier Science Ltd.
Dooley, J. J., Trabucchi, C., & Patton, L. (2010). Design considerations for financing a national
trust to advance the deployment of geologic CO2 storage and motivate best practices.
International Journal of Greenhouse Gas Control, 4(2), 381-387. doi:https://doi.org/
10.1016/j.ijggc.2009.09.009
Dooley, K., et al. (2020). Safeguarding biodiversity in carbon dioxide removal approaches.
Retrieved from https://www.c2g2.net/safeguarding-biodiversity-in-carbon-dioxide-
removal-approaches/
Dooley, K., Christoff, P., & Nicholas, K. A. (2018). Co-producing climate policy and negative
emissions: trade-offs for sustainable land-use. Global Sustainability, 1, 1-10.
doi:10.1017/sus.2018.6
Dooley, K., Harrould-Kolieb, E., & Talberg, A. (2021). Carbon-dioxide Removal and Biodiversity:
A Threat Identification Framework. Global Policy, 12(S1), 34-44. doi:https://doi.org/
10.1111/1758-5899.12828
Dooley, K., & Kartha, S. (2018). Land-based negative emissions: risks for climate mitigation and
impacts on sustainable development. International Environmental Agreements: Politics,
Law and Economics, 18, 79-98. doi:10.1007/s10784-017-9382-9
Dooley, K., & Stabinsky, D. (2018). Missing Pathways to 1.5°C: The role of the land sector in
ambitious climate action. Retrieved from https://static1.squarespace.com/static/
5b22a4b170e802e32273e68c/t/5bef947f4fa51adec11bfa69/1542427787745/
MissingPathwaysCLARAreport_2018r2.pdf
Dorais, M., Gravel, V., & Ménard, C. (2013). Organic potted plants amended with biochar: its
effect on growth and Pythium colonization. Canadian Journal of Plant Science, 93(6),
1217-1227. Retrieved from http://www.nrcresearchpress.com/doi/pdf/10.4141/
cjps2013-315
Dorgan, B., & Barbour, H. (2019). Capturing carbon emissions could move world to clean
energy future. The Hill. Retrieved from https://thehill.com/opinion/energy-environment/
451985-capturing-carbon-emissions-could-move-world-to-clean-energy-future
Dornburg, V., van Dam, J., & Faaij, A. (2007). Estimating GHG emission mitigation supply
curves of large-scale biomass use on a country level. Biomass and Bioenergy, 31(1),
46-65. doi:https://doi.org/10.1016/j.biombioe.2006.04.006
Dornburg, V., van Vuuren, D., van de Ven, G., Langeveld, H., Meeusen, M., Banse, M., . . .
Faaij, A. (2010). Bioenergy revisited: Key factors in global potentials of bioenergy.
Energy & Environmental Science, 3(3), 258-267. doi:10.1039/B922422J
Dorndorf, T., et al. . (2021). Carbon removal experts support splitting “net zero” into twin targets.
Climate Home News. Retrieved from https://www.climatechangenews.com/2021/05/11/
carbon-removal-experts-support-splitting-net-zero-twin-targets/
dos Passos, A. M. A., Rezende, P. M. d., Carvalho, E. R., & de Ávila, F. W. (2015). Biochar,
farmyard manure and poultry litter on chemical attributes of a Distrophic Cambissol and
soybean crop. Brazilian Journal of Agricultural Sciences / Revista Brasileira de Ciências
Agrárias, 10(3), 382-388. Retrieved from http://web.b.ebscohost.com/abstract?
direct=true&profile=ehost&scope=site&authtype=crawler&jrnl=19811160&AN=11054392
0&h=Kjcn%2b%2btIXVKeJ70RzxNPAPpB2hNHYDfVkwfzOVdvDvrjfj43Dt26LOfUAb3uP
by%2fvS2%2fP9sFE7EBM2KsO79Q5g%3d%3d&crl=c&resultNs=AdminWebAuth&result
L
Dos Reis, G. S., Cazacliu, B., Artoni, R., Torrenti, J.-M., Hoffmann, C. S., & Lima, E. C. (2021).
Coupling of attrition and accelerated carbonation for CO2 sequestration in recycled
concrete aggregates. Cleaner Engineering and Technology, 3, 100106. doi:https://
doi.org/10.1016/j.clet.2021.100106
Dou, L., Komatsuzaki, M., & Nakagawa, M. (2012). Effects of Biochar, Mokusakueki and
Bokashi application on soil nutrients, yields and qualities of sweet potato. International
Research Journal of Agricultural Science and Soil Science, 2, 318-327. Retrieved from
http://interesjournals.org/IRJAS/Pdf/2012/August/Dou%20et%20al.pdf
Doucet, F. (2011). Scoping study on CO2 mineralization technologies. Retrieved from https://
www.academia.edu/4061042/Scoping_study_on_CO2_mineralization_technologies?
email_work_card=view-paper
Doughty, C. E., et al. (2013). The production, allocation and cycling of carbon in a forest on
fertile terra preta soil in eastern Amazonia compared with a forest on adjacent infertile
soil. Plant Ecology & Diversity, 7(1-2), 41-53. Retrieved from http://www.tandfonline.com/
doi/abs/10.1080/17550874.2013.798367
Doumer, M. E., Rigol, A., Vidal, M., & Mangrich, A. S. (2015). Removal of Cd, Cu, Pb, and Zn
from aqueous solutions by biochars. Environmental Science and Pollution Research,
23(3), 2684-2692. doi:10.1007/s11356-015-5486-3
Dowd, A.-M., et al. (2012). CCS in the media: An Analysis of international coverage. Energy &
Environment, 23(2&3), 284-298. Retrieved from http://journals.sagepub.com/doi/pdf/
10.1260/0958-305X.23.2-3.283
Dowd, A.-M., Itaoka, K., Ashworth, P., Saito, A., & de Best-Waldhober, M. (2014). Investigating
the link between knowledge and perception of CO2 and CCS: An international study.
International Journal of Greenhouse Gas Control, 28, 79-87. doi:http://dx.doi.org/
10.1016/j.ijggc.2014.06.009
Dowd, A.-M., & James, M. (2014). A Social Licence for Carbon Dioxide Capture and Storage:
How Engineers and Managers Describe Community Relations. Social Epistemology,
28(3-4), 364-384. doi:10.1080/02691728.2014.922639
Dowd, A.-M., Rodriguez, M., & Jeanneret, T. (2015). Social Science Insights for the BioCCS
Industry. Energies, 8(5), 4024. Retrieved from http://www.mdpi.com/1996-1073/8/5/4024
Dowell, G., et al. (2020). Rooting carbon dioxide removal research in the social sciences.
Interface Focus, 10(5), 20190138. doi:doi:10.1098/rsfs.2019.0138
Dowell, N. M., & Fajardy, M. (2016). On the potential for BECCS efficiency improvement through
heat recovery from both post-combustion and oxy-combustion facilities. Faraday
Discussions, 192, 241-250. doi:10.1039/C6FD00051G
Downie, A., et al. (2012). Biochar as a Geoengineering Climate Solution: Hazard Identification
and Risk Management. Critical Reviews in Environmental Science and Technology,
42(3), 225-250. doi:10.1080/10643389.2010.507980
Downie, A., Crosky, A., & Munroe, P. (2009). Physical Properties of Biochar. In J. Lehmann & S.
Joseph (Eds.), Biochar for Environmental Management: Science and Technology (pp.
13-32). London, UK: Earthscan.
Downie, A., Lau, D., Cowie, A., & Munroe, P. (2014). Approaches to greenhouse gas accounting
methods for biomass carbon. Biomass and Bioenergy, 60, 18-31. doi:https://doi.org/
10.1016/j.biombioe.2013.11.009
Downie, A., & Van Zwieten, L. (2013). Biochar: A Coproduct to Bioenergy from Slow-Pyrolysis
Technology. In Advanced Biofuels and Bioproducts (Vol. 2, pp. 97-117).
Downie, A. E., et al. . (2011). Terra Preta Australis: Reassessing the carbon storage capacity of
temperate soils. Agriculture, Ecosystems and Environment, 140(1-2), 137–147.
Retrieved from http://www.sciencedirect.com/science/article/pii/S0167880910003117
Dowson, G. R. M., Cooper, J., & Styring, P. (2021). Reactive capture using metal looping: the
effect of oxygen. Faraday Discussions, 230(0), 292-307. doi:10.1039/D1FD00001B
Doydora, S. A. (2011). Release of Nitrogen and Phosphorus from Poultry Litter Amended with
Acidified Biochar. International Journal of Environmental Research and Public Health, 8,
1491-1502. doi:10.3390/ijerph8051491
Doyle, A. (2017). Scientists dim sunlight, suck up carbon dioxide to cool planet. Reuters.
Retrieved from https://www.reuters.com/article/us-climatechange-geoengineering-
idUSKBN1AB0J3
Doyle, A. (2019). Capturing CO2 with C-Capture. The Chemical Engineer. Retrieved from
https://www.thechemicalengineer.com/features/capturing-co2-with-c-capture/
Doyle, A. (2019). Drax announces ambition to be world’s first carbon negative company by
2030. The Chemical Engineer. Retrieved from https://www.thechemicalengineer.com/
news/drax-announces-ambition-to-be-world-s-first-carbon-negative-company-by-2030/
Doyle, A. (2021). Scared by global warming? In Iceland, one solution is petrifying. Reuters.
Retrieved from https://www.reuters.com/article/climate-change-technology-emissions-
idUSL8N2K84OU
Drake, J. A., Carrucan, A., Jackson, W. R., Cavagnaro, T. R., & Patti, A. F. (2015). Biochar
application during reforestation alters species present and soil chemistry. Science of The
Total Environment, 514, 359 - 365. doi:10.1016/j.scitotenv.2015.02.012
Drake, J. A., Cavagnaro, T. R., Cunningham, S. C., Jackson, W. R., & Patti, A. F. (2015). Does
Biochar Improve Establishment of Tree Seedlings in Saline Sodic Soils? Land
Degradation & Development, 27(1), 52-59. doi:10.1002/ldr.2374
Draper, K. (2014). Biochar Paper – elevating biochar from novelty to ubiquity. the Biochar
Journal. Retrieved from http://www.biochar-journal.org/en/ct/15
Drax. (2019). Carbon dioxide now being captured in first of its kind BECCS pilot [Press release].
Retrieved from https://www.drax.com/press_release/world-first-co2-beccs-ccus/
Drax. (2021). Achieving UK climate goals is £4.5bn cheaper with BECCS at Drax. Retrieved
from https://www.drax.com/press_release/achieving-uk-climate-goals-is-4-5bn-cheaper-
with-beccs-at-drax/
Drax. (2021). Value of Biomass with Carbon Capture and Storage (BECCS) in Power: Summary
Report. Retrieved from https://www.drax.com/wp-content/uploads/2021/04/Drax-Baringa-
Report-Summary-2021.pdf
Drever, J. I., & Stillings, L. L. (1997). The role of organic acids in mineral weathering. Colloids
and Surfaces A: Physicochemical and Engineering Aspects, 120(1), 167-181. doi:https://
doi.org/10.1016/S0927-7757(96)03720-X
Dri, M., Sanna, A., & Maroto-Valer, M. M. (2014). Mineral carbonation from metal wastes: Effect
of solid to liquid ratio on the efficiency and characterization of carbonated products.
Applied Energy, 113, 515-523. doi:https://doi.org/10.1016/j.apenergy.2013.07.064
Drigo, B., & Anderson, I. C. (2015). The future of dirt: re-establishing self-sustaining vegetative
cover on reclaimed mine lands. In.
Driver, T., Bajhaiya, A., & Pittman, J. K. (2014). Potential of Bioenergy Production from
Microalgae. Current Sustainable/Renewable Energy Reports, 1(3), 94-103. doi:10.1007/
s40518-014-0011-8
Drollette, D. (2019). What if the Arctic melts, and we lose the great white shield? Interview with
environmental policy expert Durwood Zaelke. Bulletin of the Atomic Scientists, 75(5),
239-246. doi:10.1080/00963402.2019.1654269
Druckenmiller, M. L., & Maroto-Valer, M. M. (2005). Carbon sequestration using brine of
adjusted pH to form mineral carbonates. Fuel Processing Technology, 86(14),
1599-1614. doi:https://doi.org/10.1016/j.fuproc.2005.01.007
Drugmand, D., & Muffett, C. (2021). https://www.ewg.org/news-insights/news/confronting-myth-
carbon-free-fossil-fuels-why-carbon-capture-not-climate#_ftn3. Retrieved from https://
www.ewg.org/news-insights/news/confronting-myth-carbon-free-fossil-fuels-why-carbon-
capture-not-climate#_ftn3
Drumea, P., Matache, G., & Pavel, I. (2015). THE IMPORTANCE OF THE BYPRODUCT
BIOCHAR ACHIEVED IN THE PROCESS OF OBTAINING ENERGY FROM BIOMASS.
Paper presented at the 4th International Conference on Thermal Equipment, Renewable
Energy and Rural Development. http://www.researchgate.net/profile/Monica_Vasile/
publication/278021508_Proceedings_TE-RE-RD_2015_(CD-ROM)/links/
55792a6608ae752158704081.pdf#page=237
Du, Z., et al. . (2014). Consecutive Biochar Application Alters Soil Enzyme Activities in the
Winter Wheat–Growing Season. Soil Science, 179(2), 75 - 83. doi:10.1097/
ss.0000000000000050
Du, Z.-L., Zhao, J.-K., Wang, Y.-D., & Zhang, Q.-Z. (2016). Biochar addition drives soil
aggregation and carbon sequestration in aggregate fractions from an intensive
agricultural system. Journal of Soils and Sediments. doi:10.1007/s11368-015-1349-2
Duan, P., Zhang, X., Zhang, Q., Wu, Z., & Xiong, Z. (2018). Field-aged biochar stimulated N2O
production from greenhouse vegetable production soils by nitrification and denitrification.
Science of The Total Environment, 642, 1303-1310. doi:https://doi.org/10.1016/
j.scitotenv.2018.06.166
Duarte, C. M., et al. (2010). Seagrass community metabolism: Assessing the carbon sink
capacity of seagrass meadows. Global Biogeochemical Cycles, 24, 1-8. Retrieved from
http://digital.csic.es/bitstream/10261/46309/1/SeagrassCommunity.pdf
Duarte, C. M., et al. (2011). Assessing the capacity of seagrass meadows for carbon burial:
Current limitations and future strategies. Ocean and Coastal Management, 83, 32-38.
Retrieved from https://imedea.uib-csic.es/master/cambioglobal/Modulo_III_cod101608/
tema%201-caracteristicas,funciones,servicios/
Duarte%20et%20al%202011%20(ocean&coastal%20management).pdf
Duarte, C. M., Agusti, S., Barbier, E., Britten, G. L., Castilla, J. C., Gattuso, J.-P., . . . Worm, B.
(2020). Rebuilding marine life. Nature, 580(7801), 39-51. doi:10.1038/
s41586-020-2146-7
Duarte, C. M., Losada, I. J., Hendriks, I. E., Mazarrasa, I., & Marbà, N. (2013). The role of
coastal plant communities for climate change mitigation and adaptation. Nature Climate
Change, 3, 961. doi:10.1038/nclimate1970
https://www.nature.com/articles/nclimate1970#supplementary-information
Duarte, C. M., Middelburg, J. J., & Caraco, N. (2005). Major role of marine vegetation on the
oceanic carbon cycle. Biogeosciences, 2(1), 1-8. doi:10.5194/bg-2-1-2005
Duarte, C. M., Wu, J., Xiao , X., Bruhn, A., & Krause-Jensen, D. (2017). Can Seaweed Farming
Play a Role in Climate Change Mitigation and Adaptation? Frontiers in Marine Science,
4(100). doi:10.3389/fmars.2017.00100
Dubey, M., et al. (2003). Chemical Extraction of Carbon Dioxide from Air to Sustain Fossil
Energy by Avoiding Climate Change. Paper presented at the 2nd Annual Conference on
Carbon Sequestration. https://www.netl.doe.gov/publications/proceedings/03/carbon-
seq/PDFs/064.pdf
Dubhashi, V. S. (2021). Dynamic analysis and characterization of a desorption column for a
continuous air capture process. (Masters Thesis). Delft University of Technology,
Retrieved from http://resolver.tudelft.nl/uuid:a2931657-274d-4e2f-baab-f31d317974ce
Duce, R. A., & Tindale, N. W. (1991). Atmospheric transport of iron and its deposition in the
ocean. Limnology and Oceanography, 36(8), 1715-1726. doi:10.4319/lo.1991.36.8.1715
Ducey, T., Novak, J., & Johnson, M. (2015). Effects of Biochar Blends on Microbial Community
Composition in Two Coastal Plain Soils. Agriculture, 5(4), 1060 - 1075. doi:10.3390/
agriculture5041060
Ducey, T. F., et al. (2013). Addition of activated switchgrass biochar to an aridic subsoil
increases microbial nitrogen cycling gene abundances. Applied Soil Ecology, 65, 65-72.
Retrieved from http://www.scielo.cl/pdf/jsspn/v16n1/aop1016.pdf
Duckworth, B. (2017). Scientists look to grazing to aid carbon retention in soil. The Western
Producer.
Ducrot, Y. (2020). Congress' Commitment to Carbon Removal in New $900 Billion Stimulus
Package. The Ritz Herald. Retrieved from https://ritzherald.com/congress-commitment-
to-carbon-removal-in-new-900-billion-stimulus-package/
Dudek, M., & Socha, R. (2014). Direct Electrochemical Conversion of the Chemical Energy of
Raw Waste Wood to Electrical Energy in Tubular Direct Carbon Solid Oxide Fuel Cells.
International Journal of ELECTROCHEMICAL SCIENCE, 9, 7414-7430. Retrieved from
http://electrochemsci.org/papers/vol9/91207414.pdf
Duenisch, O., Lima, V. C., Seehann, G., Donath, J., Montoia, V. R., & Schwarz, T. (2007).
Retention properties of wood residues and their potential for soil amelioration. Wood
Science and Technology, 41(2), 169-189. Retrieved from http://link.springer.com/article/
10.1007/s00226-006-0098-1
Duetschke, E., Schumann, D., Pietzner, K., Wohlfarth, K., & Höller, S. (2014). Does it Make a
Difference to the Public Where CO2 Comes from and Where it is Stored?: An
Experimental Approach to Enhance Understanding of CCS Perceptions. Energy
Procedia, 63, 6999-7010. doi:https://doi.org/10.1016/j.egypro.2014.11.733
Dugan, E., et al. . (2010). Bio-char from sawdust, maize stover and charcoal: Impact on water
holding capacities (WHC) of three soils from Ghana. Retrieved from http://www.iuss.org/
19th%20WCSS/symposium/pdf/1158.pdf
Dugar, D., & Stephanopoulos, G. (2011). Relative potential of biosynthetic pathways for biofuels
and bio-based products. Nature Biotechnology, 29(12), 1074-1078. doi:10.1038/nbt.2055
http://www.nature.com/nbt/journal/v29/n12/abs/nbt.2055.html#supplementary-information
Duguid, A., Glier, J., Heinrichs, M., Hawkins, J., Peterson, R., & Mishra, S. (2021). Practical
leakage risk assessment for CO2 assisted enhanced oil recovery and geologic storage
in Ohio's depleted oil fields. International Journal of Greenhouse Gas Control, 109,
103338. doi:https://doi.org/10.1016/j.ijggc.2021.103338
Duguma, L. A., Minang, P. A., Aynekulu, B. E., Nzyoka, J., Bah, A., Jamnadass, R. H., & Carsan,
S. (2020). From Tree Planting to Tree Growing: Rethinking Ecosystem Restoration
Through Trees.
Duhoux, B., Mehrani, P., Lu, D. Y., Symonds, R. T., Anthony, E. J., & Macchi, A. (2016).
Combined Calcium Looping and Chemical Looping Combustion for Post-Combustion
Carbon Dioxide Capture: Process Simulation and Sensitivity Analysis. Energy
Technology, 4(10), 1158-1170. doi:10.1002/ente.201600024
Duiker, S. W., & Lal, R. (1999). Crop residue and tillage effects on carbon sequestration in a
Luvisol in central Ohio. Soil and Tillage Research, 52(1), 73-81. doi:https://doi.org/
10.1016/S0167-1987(99)00059-8
Duku, M. H. (2015). Bio-Oil Production from Lignocellulosic Biomass Using Fast Pyrolysis in a
Fluidized-Bed Reactor. Kwame Nkrumah University Of Science And Technology,
Retrieved from http://ir.knust.edu.gh/handle/123456789/6796
Duku, M. H., Gu, S., & Hagan, E. B. (2011). Biochar production potential in Ghana—A review.
Renewable and Sustainable Energy Reviews, 15, 3539– 3551. Retrieved from http://
www.sinig.net/mose1.pdf
Dumanski, J. (2004). Carbon Sequestration, Soil Conservation, and the Kyoto Protocol:
Summary of Implications. Climatic Change, 65(3), 255-261. doi:10.1023/
b:Clim.0000038210.66057.61
Dumbrell, N. P., Kragt, M. E., & Gibson, F. L. (2015). What carbon farming activities are West
Australian farmers willing to adopt? Paper presented at the 17th Australian Agronomy
Conference. http://2015.agronomyconference.com/977
Dumbrell, N. P., Kragt, M. E., & Gibson, F. L. (2016). What carbon farming activities are farmers
likely to adopt? A best–worst scaling survey. Land Use Policy, 54, 29 - 37. doi:10.1016/
j.landusepol.2016.02.002
Dume, B., Berecha, G., & Tulu, S. (2015). Characterization of Biochar Produced at Different
Temperatures and its Effect on Acidic Nitosol of Jimma, Southwest Ethiopia.
International Journal of Soil Science, 10(2), 63 - 73. doi:10.3923/ijss.2015.63.73
Dumroese, R. K., et al. (2011). Pelleted biochar: Chemical and physical properties show
potential use as a substrate in container nurseries. Biomass and Bioenergy, 35(6),
2018-2027. doi:doi:10.1016/j.biombioe.2011.01.053
Duncan, L. A., et al. (2015). Fate and Transport of 17beta-estradiol Beneath Animal Waste
Holding Ponds. In.
Dundee, U. o. (2018). A biological solution to carbon capture and recycling? [Press release].
Retrieved from https://www.eurekalert.org/pub_releases/2018-01/uod-abs010818.php
Dunia, R., Rochelle, G., Edgar, T. F., & Nixon, M. (2014). Multivariate monitoring of a carbon
dioxide removal process. Computers & Chemical Engineering, 60, 381-395. doi:https://
doi.org/10.1016/j.compchemeng.2013.09.010
Dunlop, S. J., et al. (2015). Closing the Loop: Use of Biochar Produced from Tomato Crop
Green waste as a Substrate for Soilless, Hydroponic Tomato Production. HortScience,
50(10), 1572-1581. Retrieved from http://hortsci.ashspublications.org/content/
50/10/1572.short
Dunne, D. (2018). UK could become ‘net zero by 2050’ using negative emissions. CarbonBrief.
Retrieved from https://www.carbonbrief.org/uk-could-become-net-zero-by-2050-using-
negative-emissions
Dunne, D. (2020). Restoring soils could remove up to ‘5.5bn tonnes’ of greenhouse gases every
year. CarbonBrief. Retrieved from https://www.carbonbrief.org/restoring-soils-could-
remove-up-to-5-5bn-tonnes-of-greenhouse-gases-every-year
Dunnigan, L., Ashman, P., Zhang, X., & Kwong, C. W. (2015). Atmospheric emissions from the
co-combustion of biomass tars and synthesis gas during biochar and bioenergy
production. Paper presented at the Asia Pacific Confederation of Chemical Engineering
Congress. http://search.informit.com.au/
documentSummary;dn=710088032094475;res=IELENG
Dunning, H. (2020). Putting the Great Barrier Reef marine cloud brightening experiment into
context. Retrieved from https://www.imperial.ac.uk/news/197993/countries-must-work-
together-co2-removal/
Dunphy, S. (2019). Carbon capture could become big business: Is it the right approach?
European Science. Retrieved from https://www.europeanscientist.com/en/energy/
carbon-capture-could-become-big-business/
Dunsmore, H. E. (1992). A geological perspective on global warming and the possibility of
carbon dioxide removal as calcium carbonate mineral. Energy Conversion and
Management, 33(5), 565-572. doi:https://doi.org/10.1016/0196-8904(92)90057-4
Duong, Q. V. (2014). Greenhouse Gas Emissions from Manure Management Chains on
Smallholder Livestock Farms with and without Biogas. University of Copenhagen,
Retrieved from http://forskningsbasen.deff.dk/Share.external?
sp=S99d06b13-4515-4dee-94ad-67bbd973c5bd&sp=Sku
Durak, H., & Aysu, T. (2014). Effect of pyrolysis temperature and catalyst on production of bio-oil
and bio-char from avocado seeds. Research on Chemical Intermediates, 41(1),
8067-8097. doi:10.1007/s11164-014-1878-0
Durall, C., & Lindblad, P. (2015). Mechanisms of carbon fixation and engineering for increased
carbon fixation in cyanobacteria. Algal Research, 11, 263-270. doi:https://doi.org/
10.1016/j.algal.2015.07.002
Durenkamp, M., Luo, Y., & Brookes, P. C. (2010). Impact of black carbon addition to soil on the
determination of soil microbial biomass by fumigation extraction. Soil Biology &
Biochemistry, 42(11), 2026-2029. Retrieved from http://www.sciencedirect.com/science/
article/pii/S0038071710002646
Duricova, A., & Hybska, H. (2014). INFLUENCE THE PROPERTIES OF SEWAGE SLUDGE
CREATING MIXTURES WITH BIOCHAR. Paper presented at the 14th SGEM
GeoConference on Ecology, Economics, Education And Legislation. http://
www.citeulike.org/group/18367/article/13484437
Durucan, S., Korre, A., Shi, J.-Q., Idiens, M., Stańczyk, K., Kapusta, K., . . . Mastalerz, M.
(2014). TOPS: Technology Options for Coupled Underground Coal Gasification and CO2
Capture and Storage. Energy Procedia, 63, 5827-5835. doi:https://doi.org/10.1016/
j.egypro.2014.11.616
Dutreuil, S., Bopp, L., & Tagliabue, A. (2009). Impact of enhanced vertical mixing on marine
biogeochemistry: lessons for geo-engineering and natural variability. Biogeosciences
Discussions, 6, 901 - 912. doi:10.5194/bg-6-901-2009
Dütschke, E., Wohlfarth, K., Höller, S., Viebahn, P., Schumann, D., & Pietzner, K. (2016).
Differences in the public perception of CCS in Germany depending on CO2 source,
transport option and storage location. International Journal of Greenhouse Gas Control,
53, 149-159. doi:https://doi.org/10.1016/j.ijggc.2016.07.043
Dutta, B., et al. (2015). Surface characterisation and classification of microwave pyrolysed
maple wood biochar. Biosystems Engineering, 131, 49-64. doi:10.1016/
j.biosystemseng.2015.01.002
Dutta, B., Raghavan, G. S. V., & Ngadi, M. (2012). Surface Characterization and Classification
of Slow and Fast Pyrolyzed Biochar Using Novel Methods of Pycnometry and
Hyperspectral Imaging. Journal of Wood Chemistry and Technology, 32, 105-120.
doi:10.1080/02773813.2011.607535
Dutta, B., & Raghavan, V. (2014). A life cycle assessment of environmental and economic
balance of biochar systems in Quebec. International Journal of Energy and
Environmental Engineering, 5, 1-11. Retrieved from http://link.springer.com/article/
10.1007/s40095-014-0106-4
Dutta, S., Neto, F., & Coelho, M. C. (2016). Microalgae biofuels: A comparative study on techno-
economic analysis & life-cycle assessment. Algal Research, 20, 44-52. doi:https://
doi.org/10.1016/j.algal.2016.09.018
Duveiller, G., Filipponi, F., Ceglar, A., Bojanowski, J., Alkama, R., & Cescatti, A. (2021).
Revealing the widespread potential of forests to increase low level cloud cover. Nature
Communications, 12(1), 4337. doi:10.1038/s41467-021-24551-5
Duvenage, I., Langston, C., Stringer, L. C., & Dunstan, K. (2013). Grappling with biofuels in
Zimbabwe: depriving or sustaining societal and environmental integrity? Journal of
Cleaner Production, 42(Supplement C), 132-140. doi:https://doi.org/10.1016/
j.jclepro.2012.11.011
Duyar, M. S., Treviño, M. A. A., & Farrauto, R. J. (2015). Dual function materials for CO2 capture
and conversion using renewable H2. Applied Catalysis B: Environmental, 168–169,
370-376. doi:http://dx.doi.org/10.1016/j.apcatb.2014.12.025
Dvořáčková, H., et al. (2015). The Effect of Biochar, Inoculated Biochar and Compost Biological
Component of the Soil. International Journal of Biological, Biomolecular, Agricultural,
Food and Biotechnological Engineering, 9(12), 1233-1236. Retrieved from http://
waset.org/publications/10003095/the-effect-of-biochar-inoculated-biochar-and-compost-
biological-component-of-the-soil
Dwyer, J. M., Fensham, R. J., Butler, D. W., & Buckley, Y. M. (2009). Carbon for conservation:
Assessing the potential for win–win investment in an extensive Australian regrowth
ecosystem. Agriculture, Ecosystems & Environment, 134(1), 1-7. doi:https://doi.org/
10.1016/j.agee.2009.06.003
Dyke, J., et al. (2021). Climate scientists: concept of net zero is a dangerous trap. Retrieved
from https://theconversation.com/climate-scientists-concept-of-net-zero-is-a-dangerous-
trap-157368
Dyson, F. J. (1977). Can we control the carbon dioxide in the atmosphere? Energy, 2(3),
287-291. doi:https://doi.org/10.1016/0360-5442(77)90033-0
DzomekuI, K., & Illiasu, O. (2015). Evaluation of Type and Application Timing of Indigenous
Organic Materials on the Productivity of Maize (Zea mays L.) in Guinea Savannah of
Ghana. Ghana Journal of Science, Technology & Development, 3(1), 25-35. Retrieved
from http://gjstd.org/index.php/GJSTD/article/view/60/22
Dzonzi-Undi, J., Masek, O., & Abass, O. (2014). Determination of Spontaneous Ignition
Behaviour of Biochar Accumulations. International Journal of Science and Research,
3(8), 656-661. Retrieved from http://www.ijsr.net/archive/v3i8/MDIwMTUyNzU=.pdf
Earth Institute, C. U. (2020). The world's first carbon dioxide removal law database. Phys.org.
Retrieved from https://phys.org/news/2020-10-world-carbon-dioxide-law-database.html
Eastman, C. M. (2011). Soil Physical Characteristics of an Aeric Ochraqualf amended with
Biochar. (Degree Master of Science). Ohio State University, Retrieved from http://
rave.ohiolink.edu/etdc/view?acc_num=osu1316548127
Easton, Z. M., Rogers, M., Davis, M., Wade, J., Eick, M., & Bock, E. (2015). Mitigation of sulfate
reduction and nitrous oxide emission in denitrifying environments with amorphous iron
oxide and biochar. Ecological Engineering, 82, 605 - 613. doi:10.1016/
j.ecoleng.2015.05.008
Ebeheakey, A. A. (2014). The use of biochar and charcoal as soil amendments to improve
allelochemical-laden soils in the landscape. KNUST, Retrieved from http://
ir.knust.edu.gh/handle/123456789/6626
Eberly, B. C. (2010). A component based model for the prediction of the product yields of the
pyrolysis of a biomass particle.
Ebersbach, F., Assmy, P., Martin, P., Schulz, I., Wolzenburg, S., & Nöthig, E.-M. (2014). Particle
flux characterisation and sedimentation patterns of protistan plankton during the iron
fertilisation experiment LOHAFEX in the Southern Ocean. Deep Sea Research Part I:
Oceanographic Research Papers, 89, 94-103. doi:https://doi.org/10.1016/
j.dsr.2014.04.007
Echterhof, T., & Pfeifer, H. (2012). Study on biochar usage in the electric arc furnace. Paper
presented at the 2nd International Conference Clean Technologies in the Steel Industry.
Eckmeier, E., Gerlach, R., Skjemstad, J. O., Ehrmann, O., & Schmidt, M. W. I. (2007). Minor
changes in soil organic carbon and charcoal concentrations detected in a temperate
deciduous forest a year after an experimental slash-and-burn. Biogeosciences, 4(3),
377-383. Retrieved from http://www.biogeosciences.net/4/377/2007/
Eckmeier, E., Rosch, M., Ehrmann, O., Schmidt, M. W. I., Schier, W., & Gerlach, R. (2007).
Conversion of biomass to charcoal and the carbon mass balance from a slash-and-burn
experiment in a temperate deciduous forest. Holocene, 17(4), 539-542. Retrieved from
http://journals.sagepub.com/doi/abs/10.1177/0959683607077041
Eddy, L. B., Wolstenholme, J., Tiege, P. B., Meza Trevino, N. Y., & Quezada Rivera, J. J. (2015).
Eden, M. J., Bray, W., Herrera, L., & Mcewan, C. (1984). Terra-preta soils and their
archaeological context in the caqueta basin of southeast colombia. American Antiquity,
49(1), 125-140. Retrieved from https://www.jstor.org/stable/280517?
seq=1#page_scan_tab_contents
Edenborn, S. L., Edenborn, H. M., Krynock, R. M., & Haug, K. L. Z. (2015). Influence of biochar
application methods on the phytostabilization of!a hydrophobic soil contaminated with
lead and acid tar. Journal of Environmental Management, 150, 226 - 234. doi:10.1016/
j.jenvman.2014.11.023
Edmonds, J., Luckow, P., Calvin, K., Wise, M., Dooley, J., Kyle, P., . . . Clarke, L. (2013). Can
radiative forcing be limited to 2.6 Wm(-2) without negative emissions from bioenergy
AND CO2 capture and storage? Climatic Change, 118(1), 29-43. doi:10.1007/
s10584-012-0678-z
Edmunds, C. W. (2012). The Effects of Biochar Amendment to Soil on Bioenergy Crop Yield and
Biomass Composition. (Master of Science). University of Tennessee, Retrieved from
http://trace.tennessee.edu/utk_gradthes/1150
Edrisi, S. A., & Abhilash, P. C. (2016). Exploring marginal and degraded lands for biomass and
bioenergy production: An Indian scenario. Renewable and Sustainable Energy Reviews,
54, 1537-1551. doi:https://doi.org/10.1016/j.rser.2015.10.050
Edwards, D. P., et al. (2017). Climate change mitigation: potential benefits and pitfalls of
enhanced rock weathering in tropical agriculture. Biology Letters, 13(4), 1-7. Retrieved
from http://rsbl.royalsocietypublishing.org/content/13/4/20160715
Edwards, D. P., Fisher, B., & Boyd, E. (2010). Protecting degraded rainforests: enhancement of
forest carbon stocks under REDD+. Conservation Letters, 3(5), 313-316. doi:10.1111/
j.1755-263X.2010.00143.x
Edwards, R., & Spokas, K. (2018). A Promising Technology to Fight Climate Change Is Finally
Becoming a Reality. Slate.com. Retrieved from https://slate.com/technology/2018/03/
carbon-capture-and-storage-a-technology-to-fight-climate-change-is-becoming-a-
reality.html
EdwinGeo, V., Fol, G., Aloui, F., Thiyagarajan, S., Jerome Stanley, M., Sonthalia, A., . . .
Saravanan, C. G. (2021). Experimental analysis to reduce CO2 and other emissions of
CRDI CI engine using low viscous biofuels. Fuel, 283, 118829. doi:https://doi.org/
10.1016/j.fuel.2020.118829
Effendi, R. (2016). Economic analysis of biochar application in agroforestry systems. In Biochar
for future food security: learning from experiences and identifying research priorities.
Efroymson, R. A., Dale, V. H., Kline, K. L., McBride, A. C., Bielicki, J. M., Smith, R. L., . . . Shaw,
D. M. (2013). Environmental Indicators of Biofuel Sustainability: What About Context?
Environmental Management, 51(2), 291-306. doi:10.1007/s00267-012-9907-5
Efroymson, R. A., Dale, V. H., & Langholtz, M. H. (2017). Socioeconomic indicators for
sustainable design and commercial development of algal biofuel systems. GCB
Bioenergy, 9(6), 1005-1023. doi:10.1111/gcbb.12359
Egamberdieva, D., Wirth, S., Behrendt, U., Abd_Allah, E. F., & Berg, G. (2016). Biochar
Treatment Resulted in a Combined Effect on Soybean Growth Promotion and a Shift in
Plant Growth Promoting Rhizobacteria. Frontiers in Microbiology, 7, 1-11. doi:10.3389/
fmicb.2016.00209
Egeskog, A., Berndes, G., Freitas, F., Gustafsson, S., & Sparovek, G. (2011). Integrating
bioenergy and food production—A case study of combined ethanol and dairy production
in Pontal, Brazil. Energy for Sustainable Development, 15(1), 8-16. doi:https://doi.org/
10.1016/j.esd.2011.01.005
Eggleston, G., & Lima, I. (2015). Sustainability Issues and Opportunities in the Sugar and
Sugar-Bioproduct Industries. Sustainability, 7(9), 12209 - 12235. doi:10.3390/
su70912209
Ehlert, D., & Zickfeld, K. (2018). Irreversible ocean thermal expansion under carbon dioxide
removal. Earth System Dynamics, 9, 197-210. Retrieved from https://www.earth-syst-
dynam.net/9/197/2018/esd-9-197-2018.pdf
Ehrenstein, V. (2018). Carbon sink geopolitics. Economy and Society, 47(1), 162-186.
doi:10.1080/03085147.2018.1445569
Ehsan, M., Barakat, M. A., Husein, D. Z., & Ismail, S. M. (2014). Immobilization of Ni and Cd in
Soil by Biochar Derived From Unfertilized Dates. Water, Air, & Soil Pollution, 225(11).
doi:10.1007/s11270-014-2123-6
Eichenauer, S., Weber, B., & Stadlbauer, E. A. (2015). Thermochemical Processing of Animal
Fat and Meat and Bone Meal to Hydrocarbon Based Fuels. Paper presented at the
ASME 2015 9th International Conference on Energy Sustainability, San Diego,
California, USA. http://proceedings.asmedigitalcollection.asme.org/proceeding.aspx?
articleid=2467400
Eide, A. (2008). The Right to Food and the Impact of Liquid Biofuels (Agrofuels). Retrieved from
https://www.fuhem.es/media/ecosocial/file/Boletin%20ECOS/ECOS%20CDV/
Bolet%C3%ADn%204/Right__Food_and_Biofuels.pdf
Eide, J. (2013). Rethinking CCS – Strategies for Technology Development in Times of
Uncertainty. (Master of Science in Technology & Policy). MIT, Retrieved from https://
sequestration.mit.edu/pdf/2013_JanEide_Thesis.pdf
Eikeland, E., Blichfeld, A. B., Tyrsted, C., Jensen, A., & Iversen, B. B. (2015). Optimized
Carbonation of Magnesium Silicate Mineral for CO2 Storage. Acs Applied Materials &
Interfaces, 7(9), 5258-5264. doi:10.1021/am508432w
Eilers, J., Postuma, S. A., & Sie, S. T. (1990). The Shell Middle Distillate Synthesis Process
(SMDS). Catal. Lett., 7, 253.
(2020). Peter Eisenberger on the Promise of Direct Air Capture [Retrieved from https://
soundcloud.com/elephantpodcast/peter-eisenberger-on-the-promise-of-direct-air-
capture?utm_source=Global+Thermostat+News&utm_campaign=ca2381341b-
EMAIL_CAMPAIGN_2020_07_16_06_03&utm_medium=email&utm_term=0_1c3bf0840
4-ca2381341b-230160973
Einsiedel, E. F., Boyd, A. D., Medlock, J., & Ashworth, P. (2013). Assessing socio-technical
mindsets: Public deliberations on carbon capture and storage in the context of energy
sources and climate change. Energy Policy, 53, 149-158. doi:http://dx.doi.org/10.1016/
j.enpol.2012.10.042
Eisaman, M. D., et al. (2012). CO
2
extraction from seawater using bipolar membrane
electrodialysis. Energy & Environmental Science, 5(6), 7346-7352. Retrieved from http://
pubs.rsc.org/en/Content/ArticleLanding/2012/EE/C2EE03393C#!divAbstract
Eisaman, M. D. (2020). Negative Emissions Technologies: The Tradeoffs of Air-Capture
Economics. Joule, 4(3), 516-520. doi:https://doi.org/10.1016/j.joule.2020.02.007
Eisaman, M. D., Parajuly, K., Tuganov, A., Eldershaw, C., Chang, N., & Littau, K. A. (2012). CO2
extraction from seawater using bipolar membrane electrodialysis. Energy &
Environmental Science, 5(6), 7346-7352. doi:10.1039/C2EE03393C
Eisaman, M. D., Rivest, J. L. B., Karnitz, S. D., de Lannoy, C.-F., Jose, A., DeVaul, R. W., &
Hannun, K. (2018). Indirect ocean capture of atmospheric CO2: Part II. Understanding
the cost of negative emissions. International Journal of Greenhouse Gas Control, 70,
254-281. doi:https://doi.org/10.1016/j.ijggc.2018.02.020
Eisenberger, P., et al. (2021). Mobilize Now: Setting Up Direct Air Capture. Retrieved from
https://www.mobilizeforclimate.org/
Eisenberger, P. M., Cohen, R. W., Chichilnisky, G., Eisenberger, N. M., Chance, R. R., & Jones,
C. W. (2009). Global Warming and Carbon-Negative Technology: Prospects for a Lower-
Cost Route to a Lower-Risk Atmosphere. Energy & Environment, 20(6), 973-984.
doi:10.1260/095830509789625374
Eisenburg, A. (2013). Company looks to pull carbon dioxide from the atmosphere -- at a profit.
International Herald Tribune. Retrieved from https://search.proquest.com/docview/
1266621389?accountid=14496
Ekebafe, M. O., Ekebafe, L. O., & Maliki, M. (2013). Utilisation of biochar and superabsorbent
polymers for soil amendment. Science Progress, 96 (Pt. 1), 85-94. Retrieved from
https://www.ncbi.nlm.nih.gov/pubmed/23738439
Ekebafe, M. O., Ekebafe, L. O., & Ugbesia, S. O. (2015). Biochar composts and composites.
Science Progress, 98(2), 169 - 176. doi:10.3184/003685015x14301544319061
Ekebafe, M. O., Oviasogie, P., & Asueni, N. O. (2015). Laboratory Incubation Studies of Biochar
Amendment on Non-Co2 Greenhouse Gas Emissions From Soil Cultivated to Coconut
Seedlings. Nigerian Journal of Soil Science, 23(2), 20-26. Retrieved from http://
soilsnigeria.net/wp-content/
Nigerian%20Journal%20of%20Soil%20Science%2023(2)%202013%20.pdf#page=27
Ekhardt, F., & von Bredow, H. (2012). Managing the Ecological and Social Ambivalences of
Bioenergy. Journal of Renewable Energy Law & Policy, 3, 49-64.
El Hanandeh, A. (2011). Trade-offs in the production and end-use of biochar and bio-oil from the
solid waste generated from the olive oil industry in Australia. Paper presented at the 19th
International Congress on Modelling and Simulation, Perth, Australia. http://
www.mssanz.org.au/modsim2011/F1/elhanandeh.pdf
Elad, Y., Cytryn, E., Meller-Harel, Y., Lew, B., & Graber, E. R. (2012). The Biochar Effect: Plant
resistance to biotic stresses. Phytopathologia Mediterranea, 50, 335-349. Retrieved from
http://www.fupress.net/index.php/pm/article/view/9807/9897
Elad, Y., Rav David, D., Meller-Harel, Y., Borenshtein, M., H., B. K., Silber, A., & Graber, E. R.
(2010). Induction of systemic resistance in plants by biochar, a soil-applied carbon
sequestering agent. Phytopathology, 100, 913-921. Retrieved from http://
apsjournals.apsnet.org/doi/pdfplus/10.1094/PHYTO-100-9-0913
El-Adly, R. A., et al. . (2015). Biogrease Based on Biochar from Rice Straw and Waste Cooking
Oil. International Journal of Advances in Pharmacy, Biology and Chemistry, 4(1), 91-97.
Retrieved from http://www.ijapbc.com/files/12-34210.pdf
Elaigwu, S. E. (2014). Pollution reduction with processed waste materials. University of Hull,
Retrieved from http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.612668
Elangovan, R., & Sekaran, N. C. (2014). Effect of biochar application on growth, yield and soil
fertility status in cotton. Asian Journal of Soil Science 2014, 9(1), 41-49. Retrieved from
http://www.cabdirect.org/abstracts/20143335040.html
Elangovan, R., & Sekaran, N. C. (2014). Effect of biochar application on soil properties and
quality parameters in cotton. Asian Journal of Soil Science 2014, 9(1), 1-10. Retrieved
from http://www.cabdirect.org/abstracts/20143335033.html
Elbana, T. A., Mohammad, S. G., & Ahmed, S. M. (2015). Chromium removal from industrial
wastewater using biochar materials: kinetic batch experiments. http://
www.researchgate.net/profile/Tamer_Elbana/publication/
277624444_Chromium_removal_from_industrial_wastewater_using_biochar_materials_
kinetic_batch_experiments/links/556ffaea08aec226830abac9.pdf
Eldardiry, H., & Habib, E. (2018). Carbon capture and sequestration in power generation: review
of impacts and opportunities for water sustainability. Energy, Sustainability and Society,
8(6), 1-15. doi:DOI 10.1186/s13705-018-0146-3
Elfving, J., Bajamundi, C., & Kauppinen, J. (2017). Characterization and Performance of Direct
Air Capture Sorbent. Energy Procedia, 114, 6087-6101. doi:https://doi.org/10.1016/
j.egypro.2017.03.1746
Elfving, J., Bajamundi, C., Kauppinen, J., & Sainio, T. (2017). Modelling of equilibrium working
capacity of PSA, TSA and TVSA processes for CO2 adsorption under direct air capture
conditions. Journal of CO2 Utilization, 22, 270-277. doi:https://doi.org/10.1016/
j.jcou.2017.10.010
Elfving, J., & Sainio, T. (2021). Kinetic approach to modelling CO2 adsorption from humid air
using amine-functionalized resin: Equilibrium isotherms and column dynamics. Chemical
Engineering Science, 246, 116885. doi:https://doi.org/10.1016/j.ces.2021.116885
Elgin, B. (2020). These Trees Are Not What They Seem. Bloomberg Green. Retrieved from
https://www.bloomberg.com/features/2020-nature-conservancy-carbon-offsets-trees/
Elgin, B. (2021). A Top U.S. Seller of Carbon Offsets Starts Investigating Its Own Projects.
Bloomberg Green. Retrieved from https://www.bloomberg.com/news/features/
2021-04-05/a-top-u-s-seller-of-carbon-offsets-starts-investigating-its-own-projects
Elkamel, A., Mirzaesmaeeli, H., Croiset, E., & Douglas, P. L. (2010). Energy supply planning for
the introduction of carbon dioxide (CO2) capture technologies A2 - Maroto-Valer, M.
Mercedes. In Developments and Innovation in Carbon Dioxide (CO2) Capture and
Storage Technology (Vol. 1, pp. 93-152): Woodhead Publishing.
Elkind, E., et al. (2020). Capturing Opportunity: Law and Policy Solutions to Accelerate
Engineered Carbon Removal in California. Retrieved from https://www.law.berkeley.edu/
research/clee/research/climate/climate-change-and-business-research-initiative/
accelerating-engineered-carbon-removal-in-california/
Elleuch, A., et al. (2013). Experimental Investigation of a three-layer planar Direct Carbon Fuel
Cell using almond shell biochar as fuel. Paper presented at the Journées Internationales
de Thermique (JITH 2013).
Elleuch, A. e. a. (2013). Experimental investigation of Direct Carbon Fuel Cell fueled by almond
shell biochar: Part II. Improvement of cell stability and performance by a three-layer
planar configuration. International Journal of Hydrogen Energy, 38(36), 16605–16614.
Retrieved from http://www.sciencedirect.com/science/article/pii/S0360319913018089
Elliot, T. R., & Celia, M. A. (2012). Potential Restrictions for CO2 Sequestration Sites Due to
Shale and Tight Gas Production. Environmental Science & Technology, 46(7),
4223-4227. doi:10.1021/es2040015
Elliott, R. (2020). Carbon Capture Wins Fans Among Oil Giants. The Wall Street Journal.
Retrieved from https://www.wsj.com/articles/carbon-capture-is-winning-fans-among-oil-
giants-11581516481#:~:text=Chevron%20has%20invested%20in%20companies,natural
%20gas%20or%20making%20cement
Ellis, L. D., Badel, A. F., Chiang, M. L., Park, R. J.-Y., & Chiang, Y.-M. (2020). Toward
electrochemical synthesis of cement—An electrolyzer-based process for decarbonating
CaCO<sub>3</sub> while producing useful gas streams. Proceedings of the National
Academy of Sciences, 117(23), 12584-12591. doi:10.1073/pnas.1821673116
Ellison, D., Morris, C. E., Locatelli, B., Sheil, D., Cohen, J., Murdiyarso, D., . . . Sullivan, C. A.
(2017). Trees, forests and water: Cool insights for a hot world. Global Environmental
Change, 43, 51-61. doi:https://doi.org/10.1016/j.gloenvcha.2017.01.002
EL-MAHROUKY, M., EL-NAGGAR, A. H., USMAN, A. R., & Al-WABEL, M. (2014). Dynamics of
CO2 emission and biochemical properties of a sandy calcareous soil amended with
Conocarpus waste and biochar. Pedosphere, 25(1), 46-56. Retrieved from http://
pedosphere.issas.ac.cn/trqen/ch/reader/view_abstract.aspx?file_no=20150105&flag=1
Elmay, Y., Delmotte, L., Gadiou, R., Le Brech, Y., Dufour, A., & Brosse, N. (2014). Effect of
pyrolysis temperature on the property modifications of lignocellulosic biomass and its
components. Renewable Energy Congress (IREC). Retrieved from http://
ieeexplore.ieee.org/xpl/articleDetails.jsp?
tp=&arnumber=6826991&url=http%3A%2F%2Fieeexplore.ieee.org%2Fxpls%2Fabs_all.j
sp%3Farnumber%3D6826991
Elmer, W. H., Lattao, C. V., & Pignatello, J. J. (2014). Active removal of biochar by earthworms
(Lumbricus terrestris). Pedobiologia, 58(1), 1-6. doi:10.1016/j.pedobi.2014.11.001
Elmer, W. H., & Pignatello, J. (2011). Effect of biochar amendment on mycorrhizal associations
and Fusarium crown and root rot of asparagus in replant soils. Plant Disease, 95(8),
960-966. doi:10.1094/pdis-10-10-0741
Elmquist, M., Cornelissen, G., Kukulska, Z., & Gustafsson, Ö. (2006). Distinct oxidative
stabilities of char versus soot black carbon: implications for quantification and
environmental recalcitrance. Global Biogeochemical Cycles, 20(2), 1-11.
El-Nagar, R. A., Nessim, M., Abd El-Wahab, A., Ibrahim, R., & Faramawy, S. (2017).
Investigating the efficiency of newly prepared imidazolium ionic liquids for carbon dioxide
removal from natural gas. Journal of Molecular Liquids, 237, 484-489. doi:https://doi.org/
10.1016/j.molliq.2017.04.042
El-Naggar, A., Awad, Y. M., Tang, X.-Y., Liu, C., Niazi, N. K., Jien, S.-H., . . . Lee, S. S. (2018).
Biochar influences soil carbon pools and facilitates interactions with soil: A field
investigation. 29(7), 2162-2171. doi:doi:10.1002/ldr.2896
El-Naggar, A. H., Usman, A. R. A., Al-Omran, A., Ok, Y. S., Ahmad, M., & Al-Wabel, M. I. (2015).
Carbon mineralization and nutrient availability in calcareous sandy soils amended with
woody waste biochar. Chemosphere, 138, 67 - 73. doi:10.1016/
j.chemosphere.2015.05.052
Elobeid, A., et al. . (2013). Biofuel Expansion, Fertilizer Use, and GHG Emissions: Unintended
Consequences of Mitigation Policies. Economics Research International, 2013, 1-12.
Retrieved from https://www.academia.edu/attachments/53468961/download_file?
s=work_strip&ct=MTUwMjY3OTUwMSwxNTAyNjgwMjU0LDI1NDM4NQ==
Eloka-Eboka, A. C., Bwapwa, J. K., & Maroa, S. (2019). Biomass for CO2 Sequestration. In
Reference Module in Materials Science and Materials Engineering: Elsevier.
Eloneva, S., Said, A., Fogelholm, C. J., & Zevenhoven, R. (2012). Preliminary assessment of a
method utilizing carbon dioxide and steelmaking slags to produce precipitated calcium
carbonate. Applied Energy, 90(1), 329-334. doi:10.1016/j.apenergy.2011.05.045
Eloneva, S., Teir, S., Salminen, J., Fogelholm, C.-J., & Zevenhoven, R. (2008). Fixation of CO2
by carbonating calcium derived from blast furnace slag. Energy, 33(9), 1461-1467.
doi:https://doi.org/10.1016/j.energy.2008.05.003
Elsaidi, S. K., Venna, S. R., Mohamed, M. H., Gipple, M. J., & Hopkinson, D. P. (2020). Dual-
Layer MOF Composite Membranes with Tuned Interface Interaction for Postcombustion
Carbon Dioxide Separation. Cell Reports Physical Science, 1(5). doi:10.1016/
j.xcrp.2020.100059
Elsgaard, L., & Karki, S. (2015). Greenhouse gas emissions from biochar-amended soil.
AARHUS Universitet, Retrieved from http://www.refertil.info/sites/default/files/
tolede_poster_lel_saka.pdf
EL-Tawil, A. A. e. a. (2015). Effect of Volalitle Matter on Reduction of Iron Oxide-Containing
Carbon Composite. http://www.researchgate.net/profile/Asmaa_Eltawil/publication/
280102656_EFFECT_OF_VOLATILE_MATTER_ON_REDUCTION_OF_IRON_OXIDE-
_CONTAINING_CARBON_COMPOSITE/links/55f0c1f608aedecb68ffc1c3.pdf
Emerson, D. (2019). Biogenic Iron Dust: A Novel Approach to Ocean Iron Fertilization as a
Means of Large Scale Removal of Carbon Dioxide From the Atmosphere. Frontiers in
Marine Science, 6, 1-8. doi:10.3389/fmars.2019.00022
Emissions, C. f. N. (2021). The case for Negative Emissions. Retrieved from https://
coalitionfornegativeemissions.org/wp-content/uploads/2021/06/The-Case-for-Negative-
Emissions-Coalition-for-Negative-Emissions-report-FINAL.pdf
Emissions, T. C. f. N. (2020). Building back better by supporting negative emissions
technologies. Retrieved from https://www.drax.com/energy-policy/coalition-negative-
emissions/
Enders, A., Hanley, K., Whitman, T., Joseph, S., & Lehmann, J. (2012). Characterization of
biochars to evaluate recalcitrance and agronomic performance. Bioresour Technol., 114,
644-653. Retrieved from https://www.ncbi.nlm.nih.gov/pubmed/22483559
Enders, A., & Lehmann, J. (2012). Comparison of Wet-Digestion and Dry-Ashing Methods for
Total Elemental Analysis of Biochar. Communications in Soil Science and Plant Analysis,
43, 1042-1052. doi:10.1080/00103624.2012.656167
Endo, T., et al. (2018). Carbon Storage in Tidal Flats. In T. Kuwae & M. Hori (Eds.), Blue Carbon
in Shallow Coastal Ecosystems: Carbon Dynamics, Policy, and Implementation (pp.
129-151).
Endres, J. (2013). U.S. Federal and State Water Laws’ Impact on Bioenergy Policy. In J. F.
Dellemand & P. W. Gerbens-Leenes (Eds.), Bioenergy and Water (pp. 211-224):
European Commission.
Endres, J. M. (2012). Bioenergy, Resource Scarcity, and the Rising Importance of Land Use
Definitions. North Dakota Law Review, 88, 559-594. Retrieved from https://
poseidon01.ssrn.com/delivery.php?
ID=70709112511411203010708712009700807711802002408406108900000711610602
0065002073108096026057102032006102108122125123115086107015038034045078
0211070971241100690941000010690300170070790010290800940040020250230691
21116103075124116122099013116109012017104025&EXT=pdf
Endres, J. M. (2013). Barking up the Wrong Tree? Forest Sustainability in the Wake of
Emerging Bioenergy Policies. Vermont Law Review, 37, 763-832. Retrieved from https://
lawreview.vermontlaw.edu/wp-content/uploads/2013/07/10-Endres.pdf
Endrődi, B., Samu, A., Kecsenovity, E., Halmágyi, T., Sebők, D., & Janáky, C. (2021). Operando
cathode activation with alkali metal cations for high current density operation of water-
fed zero-gap carbon dioxide electrolysers. Nature Energy, 6(4), 439-448. doi:10.1038/
s41560-021-00813-w
Energy Futures Institute, e. a. (2020). An Action Plan for Carbon Capture and Storage in
California: Opportunities, Challenges, and Solutions. Retrieved from https://
energyfuturesinitiative.org/efi-reports
Energy, P. B. D. (2021). Storegga attracts investment from GIC, Mitsui & Co., Ltd. and
Macquarie. Retrieved from https://pale-blu.com/2021/03/03/storegga-attracts-
investment-from-gic-mitsui-co-ltd-and-macquarie-highlights/amp/
Energy, U. S. D. o. (2018). 2016 Billion-Ton Report: Advancing Domestic Resources for a
Thriving Bioeconomy. Retrieved from https://www.energy.gov/eere/bioenergy/2016-
billion-ton-report
Energy, U. S. D. o. (2019). U.S. Department of Energy Announces $110M for Carbon Capture,
Utilization, and Storage. Retrieved from https://www.energy.gov/articles/us-department-
energy-announces-110m-carbon-capture-utilization-and-storage
Energy, U. S. D. o. (2021). DOE Invests $24 Million to Advance Transformational Air Pollution
Capture [Press release]. Retrieved from https://www.energy.gov/articles/doe-invests-24-
million-advance-transformational-air-pollution-capture
Engineering, C. (2013). Direct Air Capture as an Enabler of Ultra-Low Carbon Fuels. Retrieved
from http://carbonengineering.com/wp-content/uploads/2017/06/CE-DAC-CCS-
Comparison.pdf
Engineering, C. (2019). Carbon Engineering concludes USD$68 million private investment
round and proceeds with commercialization of carbon dioxide removal technology.
Retrieved from https://carbonengineering.com/carbon-engineering-concludes-usd68-
million-private-investment-round/
Engineering, C. (2019). Oxy Low Carbon Ventures and Carbon Engineering begin engineering
of the world’s largest Direct Air Capture and sequestration plant [Press release].
Retrieved from https://carbonengineering.com/worlds-largest-direct-air-capture-and-
sequestration-plant/
Engineering, C. (2020). CE Breaks Ground at Direct Air Capture Innovation Centre [Press
release]. Retrieved from https://carbonengineering.com/news-updates/innovation-centre/
Engineering, N. T. S. o. (2020). NYU Tandon's Urban Future Lab and leading organizations
launch carbontech initiative. EurekaAlert! Retrieved from https://www.eurekalert.org/
pub_releases/2020-07/ntso-ntu071620.php
Ennes, J. (2021). Amazon, meet Amazon: Tech giant rolls out rainforest carbon offset project.
Mongabay. Retrieved from https://news.mongabay.com/2021/09/amazon-meet-amazon-
tech-giant-rolls-out-rainforest-carbon-offset-project/
Ennis, C. J., Evans, A. G., Islam, M., Ralebitso-Senior, T. K., & Senior, E. (2012). Biochar:
Carbon Sequestration, Land Remediation, and Impacts on Soil Microbiology. Critical
Reviews in Environmental Science and Technology, 42(22), 2311-2364.
doi:10.1080/10643389.2011.574115
Eom, J., Edmonds, J., Krey, V., Johnson, N., Longden, T., Luderer, G., . . . Van Vuuren, D. P.
(2015). The impact of near-term climate policy choices on technology and emission
transition pathways. Technological Forecasting and Social Change, 90, 73-88.
doi:https://doi.org/10.1016/j.techfore.2013.09.017
EPRI. (2011). “Blue Sky” Approaches to Greenhouse Gas Mitigation: An Initial Assessment of
Potential New Types of Greenhouse Gas Emissions Offsets. Retrieved from Palo Alto,
CA: http://my.epri.com/portal/server.pt?Abstract_id=000000000001023662
Erans, M., Manovic, V., & Anthony, E. J. (2016). Calcium looping sorbents for CO2 capture.
Applied Energy, 180(Supplement C), 722-742. doi:https://doi.org/10.1016/
j.apenergy.2016.07.074
Erans, M., Nabavi, S. A., & Manović, V. (2020). Carbonation of lime-based materials under
ambient conditions for direct air capture. Journal of Cleaner Production, 242, 118330.
doi:https://doi.org/10.1016/j.jclepro.2019.118330
Erawati, E., Budiyati, E., & Sediawan, W. B. (2015). Research Report of the Inter-University
Cooperation (Character) Product Characteristics Pyrolysis Of Rice Husk, Corn Cob, And
Sawdust Teak Using Zeolite Catalysts [translated from Indonesian language]. In.
Erb, K.-H., Haberl, H., & Plutzar, C. (2012). Dependency of global primary bioenergy crop
potentials in 2050 on food systems, yields, biodiversity conservation and political
stability. Energy Policy, 47, 260-269. doi:http://dx.doi.org/10.1016/j.enpol.2012.04.066
Erb, K.-H., Kastner, T., Plutzar, C., Bais, A. L. S., Carvalhais, N., Fetzel, T., . . . Luyssaert, S.
(2017). Unexpectedly large impact of forest management and grazing on global
vegetation biomass. Nature. doi:10.1038/nature25138
https://www.nature.com/articles/nature25138#supplementary-information
Erb, K.-H., Mayer, A., Krausmann, F., Lauk, C., Plutzar, C., Steinberger, J., & Haberl, H. (2012).
The interrelations of Future Global Bioenergy Potentials, Food demand, and Agricultural
Technology. In A. Gasparatos & P. Stromberg (Eds.), Socioeconomic and Environmental
Impacts of Biofuels: Evidence from Developing Nations (pp. 27-52). Cambridge:
Cambridge University Press.
Ercoli, L., Mariotti, M., Masoni, A., & Bonari, E. (1999). Effect of irrigation and nitrogen
fertilization on biomass yield and efficiency of energy use in crop production of
Miscanthus. Field Crops Research, 63(1), 3-11. doi:https://doi.org/10.1016/
S0378-4290(99)00022-2
Erickson, C. (2020). Act aimed at boosting carbon capture approved. Rocket Miner. Retrieved
from https://www.wyomingnews.com/rocketminer/news/state/act-aimed-at-boosting-
carbon-capture-approved/article_63b87360-e95a-54ee-b073-89130a2a6f50.html
Erickson, C. (2020). UW carbon capture project enters third phase in Wyoming Casper Star
Tribune. Retrieved from https://trib.com/business/energy/uw-carbon-capture-project-
enters-third-phase-in-wyoming/article_f9b4b893-1945-50b2-8856-29fcfd521e1c.html
Erickson, J. (2021). Climate benefits vs. burdens: Which products are best suited for emerging
carbon capture technologies? [Press release]. Retrieved from https://news.umich.edu/
climate-benefits-vs-burdens-which-products-are-best-suited-for-emerging-carbon-
capture-technologies/
Eriksen, N. T., Riisgård, F. K., Gunther, W. S., & Lønsmann Iversen, J. J. J. J. o. A. P. (2006).
On-line estimation of O2 production, CO2 uptake, and growth kinetics of microalgal
cultures in a gas-tight photobioreactor. Journal of Applied Phycology, 19(2). doi:10.1007/
s10811-006-9122-y
Ernani, P. R., Almeida, J. A., Miquelluti, D. J., Fontoura, S. M. V., & Kaminski, J. (2006).
Downward movement of soil cations in highly weathered soils caused by addition of
gypsum. Communications in Soil Science and Plant Analysis, 37, 571-586. Retrieved
from http://www.tandfonline.com/doi/abs/10.1080/00103620500449443
Ernsting, A. (2009). Biochar: can charcoal really stop global warming? Ecologist. Retrieved from
https://theecologist.org/2009/jun/30/biochar-can-charcoal-really-stop-global-warming
Ernsting, A. (2013). Biochar: a cause for concern? Ecologist. Retrieved from https://
theecologist.org/2013/jul/24/biochar-cause-concern
Ernsting, A., & Munnion, O. (2015). Last-ditch climate option, or wishful thinking: Bioenergy with
carbon capture and storage. Retrieved from http://www.biofuelwatch.org.uk/wp-content/
uploads/BECCS-report-web.pdf
Ertas, M., & Alma, M. H. (2010). Pyrolysis of laurel (Laurus nobilis L.) extraction residues in a
fixed-bed reactor: Characterization of bio-oil and bio-char. Journal of Analytical and
Applied Pyrolysis, 88(1), 22-29. Retrieved from http://www.sciencedirect.com/science/
article/pii/S0165237010000173
Escobar, P., & Emir, J. (2015). Application of Ligninolytic Enzymes in the Production of Biofuels
from Cotton Wastes. Texas A & M University, Retrieved from https://
oaktrust.library.tamu.edu/handle/1969.1/154082?show=full
Escudero, A. I., Espatolero, S., Romeo, L. M., Lara, Y., Paufique, C., Lesort, A.-L., & Liszka, M.
(2016). Minimization of CO2 capture energy penalty in second generation oxy-fuel power
plants. Applied Thermal Engineering, 103, 274-281. doi:http://dx.doi.org/10.1016/
j.applthermaleng.2016.04.116
Essandoh, M., Kunwar, B., Pittman, C. U., Mohan, D., & Mlsna, T. (2015). Sorptive removal of
salicylic acid and ibuprofen from aqueous solutions using pine wood fast pyrolysis
biochar. Chemical Engineering Journal, 265, 219 - 227. doi:10.1016/j.cej.2014.12.006
Eswarlal, V. K., et al. (2014). Role of community acceptance in sustainable bioenergy projects in
India. Energy Policy, 73, 333-343. Retrieved from http://econpapers.repec.org/article/
eeeenepol/v_3a73_3ay_3a2014_3ai_3ac_3ap_3a333-343.htm
Ettehadtavakkol, A., Lake, L. W., & Bryant, S. L. (2014). CO2-EOR and storage design
optimization. International Journal of Greenhouse Gas Control, 25, 79-92. doi:https://
doi.org/10.1016/j.ijggc.2014.04.006
Eufrasio-Espinosa, R. M., & Lenny Koh, S. C. (2019). The UK Path and the Role of NETs to
Achieve Decarbonisation. In N. Shurpali, A. K. Agarwal, & V. K. Srivastava (Eds.),
Greenhouse Gas Emissions: Challenges, Technologies and Solutions (pp. 87-109).
Singapore: Springer Singapore.
Europa, B. (2016). Bellona Europa response to the consultation on a sustainable bioenergy
policy for the period after 2020. Retrieved from network.bellona.org/content/uploads/
sites/3/2016/05/Bellona-Response-to-EC-Consultation-on-bioenergy-sustainability-
policy-after-2020.pdf
Europa, B. (2016). CCU in the EU ETS: risk of CO2 laundering preventing a permanent CO2
solution. Retrieved from http://network.bellona.org/content/uploads/sites/3/2016/10/
BellonaBrief_CCU-in-the-EU-ETS-risk-of-CO2-laundering-preventing-a-permanent-CO2-
solution-October-2016-2.pdf
Europe, B. (2019). Europe Launches CCUS Knowledge Exchange Network to Support Industry
´s Climate Action. Retrieved from https://bellona.org/news/ccs/2019-04-europe-
launches-ccus-knowledge-exchange-network-to-support-industrys-climate-action
Europe, B. (2020). Takeaways on defining Real and Credible Carbon Dioxide Removal.
Retrieved from https://bellona.org/news/carbon-dioxide-removal/2020-11-takeaways-on-
defining-real-and-credible-carbon-dioxide-removal
Europe, B. (2020). Why we need transparency on Carbon Dioxide Removal. Retrieved from
https://bellona.org/news/eu/2020-07-why-we-need-transparency-on-carbon-dioxide-
removal
Europe, B. (2021). Bio-CCS’ role on path to net-zero – dependent on legislative framework’s
recognition of shipping and CO2 storage. Retrieved from https://bellona.org/news/ccs/
2021-03-bio-ccs-role-on-path-to-net-zero-dependent-on-legislative-frameworks-
recognition-of-shipping-and-co2-storage
Evangelou, M. W. H., et al. (2014). Soil application of biochar produced from biomass grown on
trace element contaminated land. Journal of Environmental Management, 146, 100 -
106. doi:10.1016/j.jenvman.2014.07.046
Evans, A., Strezov, V., & Evans, T. J. (2010). Sustainability considerations for electricity
generation from biomass. Renewable and Sustainable Energy Reviews, 14(5),
1419-1427. doi:https://doi.org/10.1016/j.rser.2010.01.010
Evans, A. M. (2015). Effects of Novel Feed Ingredients and Additives on Feed Quality and
Broiler Performance. West Virginia University, Retrieved from http://gradworks.umi.com/
36/72/3672843.html
Evans, A. M., Loop, S. A., & Moritz, J. S. (2015). Effect of poultry litter biochar diet inclusion on
feed manufacture and 4- to 21-d broiler performance. The Journal of Applied Poultry
Research, 24(3), 380 - 386. doi:10.3382/japr/pfv039
Evans, M. (2020). Climate fix? ‘Fertilizing’ oceans with iron unlikely to sequester more carbon.
Retrieved from https://news.mongabay.com/2020/03/climate-fix-fertilizing-oceans-with-
iron-unlikely-to-sequester-more-carbon/
Evans, S. (2017). The Swiss company hoping to capture 1% of global CO2 emissions by 2025.
Carbon Brief. Retrieved from https://www.carbonbrief.org/swiss-company-hoping-
capture-1-global-co2-emissions-2025
Evans, S. (2019). Direct CO2 capture machines could use ‘a quarter of global energy’ in 2100.
Carbon Brief. Retrieved from https://www.carbonbrief.org/direct-co2-capture-machines-
could-use-quarter-global-energy-in-2100
Evans, S. G., Ramage, B. S., DiRocco, T. L., & Potts, M. D. (2015). Greenhouse Gas Mitigation
on Marginal Land: A Quantitative Review of the Relative Benefits of Forest Recovery
versus Biofuel Production. Environmental Science & Technology, 49(4), 2503-2511.
doi:10.1021/es502374f
Ewing, M., & Msangi, S. (2009). Biofuels production in developing countries: assessing tradeoffs
in welfare and food security. Environmental Science & Policy, 12(4), 520-528. doi:https://
doi.org/10.1016/j.envsci.2008.10.002
Eykelbosh, A. J., et al. . (2014). Biochar from Sugarcane Filtercake Reduces Soil CO2
Emissions Relative to Raw Residue and Improves Water Retention and Nutrient
Availability in a Highly-Weathered Tropical Soil. Plos One, 9(6), 1-9. Retrieved from
http://www.plosone.org/article/info%3Adoi%2F10.1371%2Fjournal.pone.0098523
Eykelbosh, A. J. (2014). Closing the carbon loop in sugarcane bioethanol : effects of filtercake
biochar amendment on soil quality, leaching and carbon utilization. The University of
British Columbia, Retrieved from https://circle.ubc.ca/handle/2429/50410
Eykelbosh, A. J., Johnson, M. S., & Couto, E. G. (2014). Biochar decreases dissolved organic
carbon but not nitrate leaching in relation to vinasse application in a Brazilian sugarcane
soil. Journal of Environmental Management, 149, 9-16. doi:10.1016/
j.jenvman.2014.09.033
Eyles, A., Bound, S. A., Oliver, G., Corkrey, R., Hardie, M., Green, S., & Close, D. C. (2015).
Impact of biochar amendment on the growth, physiology and fruit of a young commercial
apple orchard. Trees, 29(6), 1817-1826. doi:10.1007/s00468-015-1263-7
Eynck, C., et al. (2013). Sustainable Oil Crops Production. In B. P. Singh (Ed.), Biofuel Crop
Sustainabilty (pp. 164-202).
Ezawa, T., Yamamoto, K., & Yoshida, S. (2002). Enhancement of the effectiveness of
indigenous arbuscular mycorrhizal fungi by inorganic soil amendments. Japanese
Society of Soil Science and Plant Nutrition, 48(6), 897-900. Retrieved from http://
www.tandfonline.com/doi/abs/10.1080/00380768.2002.10408718
Ezcurra, P., Ezcurra, E., Garcillán, P. P., Costa, M. T., & Aburto-Oropeza, O. (2016). Coastal
landforms and accumulation of mangrove peat increase carbon sequestration and
storage. Proceedings of the National Academy of Sciences, 113(16), 4404-4409.
doi:10.1073/pnas.1519774113
Ezzati, G., & Asghari, A. (2015). Ammonia Removal Efficiency of Peat against Biochar in
Biofiltration of Domestic Wastewater. In.
Faaij, A. (2008). Bioenergy and global food security. Retrieved from http://np-net.pbworks.com/f/
WBGU,+Faaij+(2008)+Bioenergy+and+Food+Security.pdf
Faaij, A. P. C. (2018). Securing sustainable resource availability of biomass for energy
applications in Europe; review of recent literature. Retrieved from https://
bioenergyeurope.org/wp-content/uploads/2018/11/Bioenergy-Europe-EU-Biomass-
Resources-Andr%C3%A9-Faaij-Final.pdf
Fabbri, A., Bonijoly, D., Bouc, O., Bureau, G., Castagnac, C., Chapuis, F., . . . Zammit, C.
(2011). From geology to economics: Technico-economic feasibility of a biofuel-CCS
system. Energy Procedia, 4, 2901-2908. doi:https://doi.org/10.1016/
j.egypro.2011.02.197
Fabbri, D., et al. (2012). Determination of polycyclic aromatic hydrocarbons in biochar and
biochar amended soil. Journal of Analytical and Applied Pyrolysis, 103, 60-67. Retrieved
from http://www.sciencedirect.com/science/article/pii/S0165237012001830
Fabbri, D., et al., Torri, C., & Spokas, K. A. (2011). Analytical pyrolysis of synthetic chars derived
from biomass with potential agronomic application (biochar). Relationships with impacts
on microbial carbon dioxide production. Journal of Analytical and Applied Pyrolysis, 93,
77-84. doi:10.1016/j.jaap.2011.09.012
Faé Gomes, G. M., & Encarnação, F. (2012). The environmental impact on air quality and
exposure to carbon monoxide from charcoal production in southern Brazil.
Environmental Research, 116, 136-139. doi:https://doi.org/10.1016/j.envres.2012.03.012
Fagan, M. E., et al. (2019). How feasible are global forest restoration commitments?
Conservation Letters. Retrieved from https://conbio.onlinelibrary.wiley.com/doi/pdf/
10.1111/conl.12700
Fagbenro, J. A., et al. (2015). Biomass Production, Tissue Nutrient Concentration and N2 -
fixing Potentials of Seven Tropical Leguminous Species. Communications in Soil
Science and Plant Analysis, 46(6), 709-723. doi:10.1080/00103624.2015.1005221
Fagbenro, J. A., Oshunsanya, S. O., & Onawumi, O. A. (2013). Effect of Saw Dust Biochar and
NPK 15:15:15 Inorganic Fertilizer on Moringa oleifera Seedlings Grown in an Oxisol.
African Journals Online: Afrika Statistika, 46(5), 619-626. Retrieved from http://
www.ajol.info/index.php/agrosh/article/view/93728/83151
Fagbenro, J. A., Oshunsanya, S. O., & Oyeleye, B. A. (2015). Effect of Gliricidia Biochar and
Inorganic Fertilizer on Moringa Plant Grown in an Oxisol. In.
Fahad, S., Hussain, S., Saud, S., Hassan, S., Tanveer, M., Ihsan, M. Z., . . . Huang, J. (2016). A
combined application of biochar and phosphorus alleviates heat-induced adversities on
physiological, agronomical and quality attributes of rice. Plant Physiology and
Biochemistry, 103, 191 - 198. doi:10.1016/j.plaphy.2016.03.001
Fahad, S., Hussain, S., Saud, S., Tanveer, M., Bajwa, A. A., Hassan, S., . . . Huang, J. (2015). A
biochar application protects rice pollen from high-temperature stress. Plant Physiology
and Biochemistry, 96, 281 - 287. doi:10.1016/j.plaphy.2015.08.009
Fairs, M. (2020). "One tonne of olivine sand can take in up to one tonne of CO2" says Teresa
van Dongen. Retrieved from https://www.dezeen.com/2021/06/15/carbon-capture-
material-library-aireal-olivine-teresa-van-dongen/amp/
Fairs, M. (2021). Planting trees "doesn't make any sense" in the fight against climate change
say experts. de Zeen. Retrieved from https://www.dezeen.com/2021/07/05/carbon-
climate-change-trees-afforestation/
Fajardy, M., et al. . (2019). BECCS deployment: a reality check. Retrieved from https://
www.imperial.ac.uk/media/imperial-college/grantham-institute/public/publications/
briefing-papers/BECCS-deployment---a-reality-check.pdf
Fajardy, M., et al. (2020). The economics of bioenergy with carbon capture and storage
(BECCS) deployment in a 1.5°C or 2°C world. Retrieved from https://
globalchange.mit.edu/publication/17489
Fajardy, M., Chiquier, S., & Mac Dowell, N. (2018). Investigating the BECCS resource nexus:
delivering sustainable negative emissions. Energy & Environmental Science, 11(12),
3408-3430. doi:10.1039/C8EE01676C
Fajardy, M., & Mac Dowell, N. (2017). Can BECCS deliver sustainable and resource efficient
negative emissions? Energy & Environmental Science, 10, 1389-1426. Retrieved from
http://pubs.rsc.org/en/content/articlepdf/2017/ee/c7ee00465f
Fajardy, M., & mac Dowell, N. (2018). The energy return on investment of BECCS: is BECCS a
threat to energy security? Energy & Environmental Science, 11(6), 1581-1594. Retrieved
from http://pubs.rsc.org/en/content/articlehtml/2018/ee/c7ee03610h
Fajardy, M., Morris, J., Gurgel, A., Herzog, H., Mac Dowell, N., & Paltsev, S. (2021). The
economics of bioenergy with carbon capture and storage (BECCS) deployment in a
1.5!°C or 2!°C world. Global Environmental Change, 68, 102262. doi:https://doi.org/
10.1016/j.gloenvcha.2021.102262
Fajardy, M., Patrizio, P., Daggash, H. A., & Mac Dowell, N. (2019). Negative Emissions:
Priorities for Research and Policy Design. Frontiers in Climate: Negative Emissions
Technologies, 1(6). doi:10.3389/fclim.2019.00006
Fall, A. B. (2012). THE BIOCHAR: an alternative energy for the development of the Sahel
countries¹. (Doctorate). University Gaston Berger, Saint-louis, Senegal. Retrieved from
http://periodicos.fundaj.gov.br/index.php/CIT/article/viewFile/1489/1305
Fallah Talooki, E., Ghorbani, M., & Ghoreyshi, A. A. (2015). Investigation of α-iron oxide-coated
polymeric nanocomposites capacity for efficient heavy metal removal from aqueous
solution. Polymer Engineering & Science, 55(12), 2735-2742. doi:10.1002/pen.24162
Fan, J., Gephart, J., Marker, T., Stover, D., Updike, B., & Shonnard, D. R. (2016). Carbon
Footprint Analysis of Gasoline and Diesel from Forest Residues and Corn Stover using
Integrated Hydropyrolysis and Hydroconversion. ACS Sustainable Chemistry &
Engineering, 4(1), 284 - 290. doi:10.1021/acssuschemeng.5b01173
Fan, J.-L., Xu, M., Wei, S.-J., Zhong, P., Zhang, X., Yang, Y., & Wang, H. (2018). Evaluating the
effect of a subsidy policy on carbon capture and storage (CCS) investment decision-
making in China — A perspective based on the 45Q tax credit. Energy Procedia, 154,
22-28. doi:https://doi.org/10.1016/j.egypro.2018.11.005
Fan, R.-Q., et al. (2015). Effects of biochar and super absorbent polymer on substrate
properties and water spinach growth. Pedosphere, 25(5), 737-748. Retrieved from http://
pedosphere.issas.ac.cn/trqen/ch/reader/view_abstract.aspx?file_no=20150512
Fan, W., Chen, J., Pan, Y., Huang, H., Arthur Chen, C.-T., & Chen, Y. (2013). Experimental study
on the performance of an air-lift pump for artificial upwelling. Ocean Engineering, 59,
47-57. doi:https://doi.org/10.1016/j.oceaneng.2012.11.014
Fan, W., Zhang, Z., Yao, Z., Xiao, C., Zhang, Y., Zhang, Y., . . . Pan, Y. (2020). A sea trial of
enhancing carbon removal from Chinese coastal waters by stimulating seaweed
cultivation through artificial upwelling. Applied Ocean Research, 101, 102260. doi:https://
doi.org/10.1016/j.apor.2020.102260
Fan, X., Ji, Z., Gan, M., Chen, X., Li, Q., & Jiang, T. (2015). Influence of Preformation Process
on Combustibility of Biochar and its Application in Iron Ore Sintering. ISIJ International,
55(11), 2342 - 2349. doi:10.2355/isijinternational.ISIJINT-2015-332
Fan, X., Ji, Z., Gan, M., Chen, X., Yin, L., & Jiang, T. (2015). Characteristics of Prepared Coke–
biochar Composite and Its Influence on Reduction of NOx Emission in Iron Ore
Sintering. ISIJ International, 55(3), 521 - 527. doi:10.2355/isijinternational.55.521
Fan, X.-h., DENG, Q., Gan, M., & WANG, H.-b. (2015). Effect of Biochar as Reductant on
Magnetizing-roasting Behavior of Pyrite Cinder. Journal of Iron and Steel Research,
International, 22(5), 371 - 376. doi:10.1016/s1006-706x(15)30014-5
Fang, B., Lee, X., Zhang, J., Li, Y., Zhang, L., Cheng, J., . . . Cheng, H. (2016). Impacts of straw
biochar additions on agricultural soil quality and greenhouse gas fluxes in karst area,
Southwest China. Soil Science and Plant Nutrition, 62(5-6), 526-533.
doi:10.1080/00380768.2016.1202734
Fang, C., et al. (2014). Application of Magnesium Modified Corn Biochar for Phosphorus
Removal and Recovery from Swine Wastewater. International Journal of Environmental
Research and Public Health, 11(9), 9217 - 9237. doi:10.3390/ijerph110909217
Fang, C., et al. (2015). Phosphorus recovery from biogas fermentation liquid by Ca–Mg loaded
biochar. Journal of Environmental Sciences, 29, 106-114. doi:10.1016/j.jes.2014.08.019
Fang, G., et al. (2014). Key Role of Persistent Free Radicals in Hydrogen Peroxide Activation by
Biochar: Implications to Organic Contaminant Degradation. Environmental Science and
Technology, 48(3), 1902-1910. Retrieved from http://pubs.acs.org/doi/abs/10.1021/
es4048126
Fang, G., et al. (2015). Mechanism of hydroxyl radical generation from biochar suspensions:
Implications to diethyl phthalate degradation. Bioresource Technology, 176, 210 - 217.
doi:10.1016/j.biortech.2014.11.032
Fang, Q., et al. (2013). Aromatic and Hydrophobic Surfaces of Wood-derived Biochar Enhance
Perchlorate Adsorption via Hydrogen Bonding to Oxygen-containing Organic Groups.
Environmental Science and Technology, 48(1), 279-288. Retrieved from http://
pubs.acs.org/doi/abs/10.1021/es403711y
Fang, S. e., Tsang, D. C. W., Zhou, F., Zhang, W., & Qiu, R. (2016). Stabilization of cationic and
anionic metal species in contaminated soils using sludge-derived biochar.
Chemosphere, 149, 263 - 271. doi:10.1016/j.chemosphere.2016.01.060
Fang, Y. (2014). Biochar Carbon stability in some contrasting soils from Australia. (PhD).
University of Sydney,
Fang, Y., et al. (2014). Effect of temperature on biochar priming effects and its stability in soils.
Soil Biology and Biochemistry, 80, 136 - 145. doi:10.1016/j.soilbio.2014.10.006
Fang, Y., Singh, B., Singh, B. P., & Krull, E. (2013). Biochar carbon stability in four contrasting
soils. European Journal of Soil Science, 65(1), 60-71. Retrieved from http://
onlinelibrary.wiley.com/doi/10.1111/ejss.12094/abstract
Fang, Y., Singh, B. P., & Singh, B. (2014). Temperature sensitivity of biochar and native carbon
mineralisation in biochar-amended soils. Agriculture, Ecosystems & Environment, 191,
158-167. doi:http://dx.doi.org/10.1016/j.agee.2014.02.018
Faran, T. S., & Olsson, L. (2018). Geoengineering: neither economical, nor ethical—a risk–
reward nexus analysis of carbon dioxide removal. International Environmental
Agreements: Politics, Law and Economics, 18(1), 63-77. doi:10.1007/
s10784-017-9383-8
Farand, C. (2020). Mark Carney oversees blueprint for scaling up carbon market as offset
demand soars. Climate Home News. Retrieved from https://
www.climatechangenews.com/2020/11/10/mark-carney-oversees-blueprint-scaling-
carbon-market-offset-demand-soars/
Fargione, J., Hill, J., Polasky, S., & Hawthorne, P. (2008). Land clearing and the biofuel carbon
debt. Science, 319(5867), 1235-1238. Retrieved from https://www.ncbi.nlm.nih.gov/
pubmed/18258862
Fargione, J. E., Bassett, S., Boucher, T., Bridgham, S. D., Conant, R. T., Cook-Patton, S. C., . . .
Griscom, B. W. (2018). Natural climate solutions for the United States. 4(11), eaat1869.
doi:10.1126/sciadv.aat1869 %J Science Advances
Farine, D. R., O'Connell, D. A., John Raison, R., May, B. M., O'Connor, M. H., Crawford, D.
F., . . . Kriticos, D. (2012). An assessment of biomass for bioelectricity and biofuel, and
for greenhouse gas emission reduction in Australia. GCB Bioenergy, 4(2), 148-175.
doi:10.1111/j.1757-1707.2011.01115.x
Farmer, M. (2020). UK 2020 Budget announces funding for carbon capture schemes. Offshore
Technology. Retrieved from https://www.offshore-technology.com/news/uk-budget-2020-
carbon-capture/
Farogh, S. I. (2015). Carbon-based catalyst. Aalto University, Retrieved from https://
aaltodoc.aalto.fi/handle/123456789/18678?show=full
Farrell, A. E., Plevin, R. J., Turner, B. T., Jones, A. D., O'Hare, M., & Kammen, D. M. (2006).
Ethanol Can Contribute to Energy and Environmental Goals. Science, 311(5760),
506-508. doi:10.1126/science.1121416
Farrell, M., et al. (2013). Biochar and fertiliser applications influence phosphorus fractionation
and wheat yield. Biology and Fertility of Soils, 50(1), 169-178. Retrieved from https://
link.springer.com/article/10.1007/s00374-013-0845-z
Farrell, M., et al. (2013). Microbial utilisation of biochar-derived carbon. Science of The Total
Environment, 465, 288-297. Retrieved from http://www.sciencedirect.com/science/article/
pii/S0048969713003951
Farrell, M., Macdonald, L. M., & Baldock, J. A. (2014). Biochar differentially affects the cycling
and partitioning of low molecular weight carbon in contrasting soils. Soil Biology and
Biochemistry, 80, 79 - 88. doi:10.1016/j.soilbio.2014.09.018
Farrelly, D. J., Everard, C. D., Fagan, C. C., & McDonnell, K. P. (2013). Carbon sequestration
and the role of biological carbon mitigation: A review. Renewable and Sustainable
Energy Reviews, 21, 712-727. doi:https://doi.org/10.1016/j.rser.2012.12.038
Fasahati, P., Saffron, C. M., Woo, H. C., & Liu, J. J. (2017). Potential of brown algae for
sustainable electricity production through anaerobic digestion. Energy Conversion and
Management, 135, 297-307. doi:https://doi.org/10.1016/j.enconman.2016.12.084
Fasihi, M., Efimova, O., & Breyer, C. (2019). Techno-economic assessment of CO2 direct air
capture plants. Journal of Cleaner Production, 224, 957-980. doi:https://doi.org/10.1016/
j.jclepro.2019.03.086
Faße, A., Winter, E., & Grote, U. (2014). Bioenergy and rural development: The role of
agroforestry in a Tanzanian village economy. Ecological Economics, 106, 155-166.
doi:http://dx.doi.org/10.1016/j.ecolecon.2014.07.018
Faulkner, T. (2018). Carbon-Capture Machines Part of Southern New England's 'Climate
Change Moonshot' Initiative. Eco RI News. Retrieved from https://www.ecori.org/climate-
change/2018/1/12/carbon-capture-machines-part-of-southern-new-england-climate-
change-moonshot
Favero, A., & Massetti, E. (2014). Trade of woody biomass for electricity generation under
climate mitigation policy. Resource and Energy Economics, 36(1), 166-190. doi:10.1016/
j.reseneeco.2013.11.005
Favero, A., & Mendelsohn, R. (2014). Using Markets for Woody Biomass Energy to Sequester
Carbon in Forests. Journal of the Association of Environmental and Resource
Economists, 1(1/2), 75-95. doi:10.1086/676033
Fawzy, E. M. (2008). Soil remediation using in situ immobilisation techniques. Chemistry and
Ecology, 24(2), 147-156. Retrieved from http://www.tandfonline.com/doi/pdf/
10.1080/02757540801920154
Fawzy, S., Osman, A. I., Doran, J., & Rooney, D. W. (2020). Strategies for mitigation of climate
change: a review. Environmental Chemistry Letters. doi:10.1007/s10311-020-01059-w
Fawzy, S., Osman, A. I., Yang, H., Doran, J., & Rooney, D. W. (2021). Industrial biochar systems
for atmospheric carbon removal: a review. Environmental Chemistry Letters.
doi:10.1007/s10311-021-01210-1
Federal Office for the Environment, S. (2019). Negative emissions technologies. Retrieved from
ttps://www.bafu.admin.ch/bafu/en/home/topics/climate/info-specialists/climate-
target2050/negative-emissionstechnologien.html#-2080617483
Federico, d. A., Lovisotto, L., & Bezzo, F. (2020). Introducing social acceptance into the design
of CCS supply chains: A case study at a European level. Journal of Cleaner Production,
249, 119337. doi:https://doi.org/10.1016/j.jclepro.2019.119337
Fehrenbach, H. (2013). Certification systems and other schemes for bioenergy-related water
impacts. In J. F. Dellemand & P. W. Gerbens-Leenes (Eds.), Bioenergy and Water (pp.
225-242): European Commission.
Fehrenbacher, K. (2018). Y Combinator Is Looking for Carbon Removal Startups. Retrieved
from https://www.greentechmedia.com/articles/read/y-combinator-is-looking-for-carbon-
removal-startups#gs._ue=3H8
Fei, L., et al., & g. (2014). Characterization of Contaminants in Rapeseed Cake-Derived
Biochars and Evaluation of Their Suitability for Soil Improvement. 环境科学研究
(Environmental Science), 27(11), 1292-1297. Retrieved from http://www.hjkxyj.org.cn/
hjkxyj/ch/reader/view_abstract.aspx?file_no=20141111
Fei, S., Morin, R. S., Oswalt, C. M., & Liebhold, A. M. (2019). Biomass losses resulting from
insect and disease invasions in US forests. 201820601. doi:10.1073/pnas.1820601116
%J Proceedings of the National Academy of Sciences
Feigl, V., et al. (2015). Ecotoxicity of biochars from organic wastes focusing on their use as soil
ameliorant. Retrieved from http://enfo.agt.bme.hu/drupal/sites/default/files/
Paper_Aquaconsoil%202015_Feigl_fin.pdf
Feiner, R., et al. (2013). Liquefaction of Pyrolysis derived Biochar: A new step towards biofuel
from renewable resource. RSC Advances, 3, 17898-17903. Retrieved from http://
pubs.rsc.org/en/content/articlepdf/2013/ra/c3ra43516d
Feiner, R., et al. . (2014). Chemical loop systems for biochar liquefaction: hydrogenation of
Naphthalene. RSC Advances, 4(66), 34955-34962. doi:10.1039/c4ra03487b
Feiner, R., et al. (2014). Kinetics of Biochar Liquefaction. BioEnergy Research, 7(4), 1343-1350.
doi:10.1007/s12155-014-9469-x
Felber, R., et al. (2013). Nitrous oxide emission reduction with greenwaste biochar: comparison
of laboratory and field experiments. European Journal of Soil Science, 65(1), 128-138.
Retrieved from http://onlinelibrary.wiley.com/doi/10.1111/ejss.12093/abstract
Felber, R., Hüppi, R., Leifeld, J., & Neftel, A. (2012). Nitrous oxide emission reduction in
temperate biochar-amended soils. Biogeosciences Discussions, 2012, 151-189.
doi:10.5194/bgd-9-151-2012
Feldpausch, T. R., et al. (2006). Biomass Variation, Harvestable Area, and Forest Structure
Estimated from Commercial Timber Inventories and Remotely Sensed Imagery in
Southern Amazonia. Forest Ecology and Management, 233, 121-132. Retrieved from
http://eprints.whiterose.ac.uk/75370/
Feldpausch-Parker, A., Burnham, M., Melnik, M., Callaghan, M., & Selfa, T. (2015). News Media
Analysis of Carbon Capture and Storage and Biomass: Perceptions and Possibilities.
Energies, 8(4), 3058. Retrieved from http://www.mdpi.com/1996-1073/8/4/3058
Feldpausch-Parker, A. M., Chaudhry, R., Stephens, J. C., Fischlein, M., Hall, D. M., Melnick, L.
L., . . . Wilson, E. J. (2011). A comparative state-level analysis of carbon capture and
storage (CCS) discourse among U.S. energy stakeholders and the public. Energy
Procedia, 4, 6368-6375. doi:https://doi.org/10.1016/j.egypro.2011.02.654
Feldpausch-Parker, A. M., Ragland, C. J., Melnick, L. L., Chaudhry, R., Hall, D. M., Peterson, T.
R., . . . Wilson, E. J. (2013). Spreading the News on Carbon Capture and Storage: A
State-Level Comparison of US Media. Environmental Communication, 7(3), 336-354.
doi:10.1080/17524032.2013.807859
Feliciano, D., Ledo, A., Hillier, J., & Nayak, D. R. (2018). Which agroforestry options give the
greatest soil and above ground carbon benefits in different world regions? Agriculture,
Ecosystems & Environment, 254, 117-129. doi:https://doi.org/10.1016/
j.agee.2017.11.032
Feliciano-Bruzual, C. (2014). Charcoal injection in blast furnaces (Bio-PCI): CO2 reduction
potential and economic prospects. Journal of Materials Research and Technology, 3(3),
233 - 243. doi:10.1016/j.jmrt.2014.06.001
Fellet, G. (2011). Application of biochar on mine tailings: Effects and perspectives for land
reclamation. Chemosphere, 83(9), 1262-1267. doi:10.1016/j.chemosphere.2011.03.053
Fellet, G., Marmiroli, M., & Marchiolm, L. (2014). Elements uptake by metal accumulator species
grown on mine tailings amended with three types of biochar. Science of The Total
Environment, 468–469, 598–608.
Fellman, M. (2021). Northwestern receives DOE funding to study carbon capture systems
[Press release]. Retrieved from https://news.northwestern.edu/stories/2021/08/doe-
funding-carbon-capture-systems/
Fendt, A., et al. . (2012). Hyphenation of two simultaneously employed soft photo ionization
mass spectrometers with Thermal Analysis of biomass and biochar. Thermochimica
Acta, 551, 155-163.
Feng, D., et al. (2013). Preparation, Characterization of Bagasse-Based Biochar and its
Adsorption Performance in Tropical Soils. Paper presented at the Selected Proceedings
of the Eighth International Conference on Waste Management and Technology.
Feng, D., et al. . (2015). Adsorption Characteristics of Norfloxacin by Biochar Prepared by
Cassava Dreg: Kinetics, Isotherms, and Thermodynamic Analysis. BioResources, 10(4),
6751-6768. Retrieved from http://152.1.0.246/index.php/BioRes/article/view/
BioRes_10_4_6751_Feng_Adsorption_Norfloxacin_Biochar
Feng, D., Wang, S., Zhang, Y., Zhao, Y., Sun, S., Chang, G., . . . Qin, Y. (2020). Review of
Carbon Fixation Evaluation and Emission Reduction Effectiveness for Biochar in China.
Energy & Fuels, 34(9), 10583-10606. doi:10.1021/acs.energyfuels.0c02396
Feng, E. Y., David, P. K., Wolfgang, K., & Andreas, O. (2016). Could artificial ocean
alkalinization protect tropical coral ecosystems from ocean acidification? Environmental
Research Letters, 11(7), 074008. Retrieved from http://stacks.iop.org/1748-9326/11/i=7/
a=074008
Feng, E. Y., Koeve, W., Keller, D. P., & Oschlies, A. (2017). Model-Based Assessment of the
CO2 Sequestration Potential of Coastal Ocean Alkalinization. Earth's Future, 5(12),
1252-1266. doi:10.1002/2017EF000659
Feng, E. Y., Sawall, Y., Wall, M., Lebrato, M., & Fu, Y. (2020). Modeling Coral Bleaching
Mitigation Potential of Water Vertical Translocation – An Analogue to Geoengineered
Artificial Upwelling. Frontiers in Marine Science, 7(816). doi:10.3389/fmars.2020.556192
Feng Feng, M., et al. (2015). Characteristics phosphate adsorption onto biochars derived from
dairy manure and its influencing factors. China Environmental Science. Retrieved from
http://www.cabdirect.org/abstracts/
20153171894.html;jsessionid=7DEE7DF8F509AF7F92BD13AAEF0ED6C1
Feng, Y., Xu, Y., Yu, Y., Xie, Z., & Lin, X. (2012). Mechanisms of biochar decreasing methane
emission from Chinese paddy soils. Soil Biology and Biochemistry, 46, 80-88. doi:https://
doi.org/10.1016/j.soilbio.2011.11.016
Feng, Y., Yang, B., Hou, Y., Duan, T.-H., Yang, L., & Wang, Y. (2021). Comparative
environmental benefits of power generation from underground and surface coal
gasification with carbon capture and storage. Journal of Cleaner Production,
310(127383), 1-15. doi:https://doi.org/10.1016/j.jclepro.2021.127383
Feng, Z., & Zhu, L. (2017). Impact of biochar on soil N2O emissions under different biochar-
carbon/fertilizer-nitrogen ratios at a constant moisture condition on a silt loam soil.
Science of The Total Environment, 584-585, 776-782. doi:https://doi.org/10.1016/
j.scitotenv.2017.01.115
Ferguson, K. M., Saafan, H., Wildeboer, E. K., Reeves, T., & Croiset, E. (2021). Production of
Carbon Neutral Methanol Using Co-Electrolysis of CO2 and Steam in Solid Oxide
Electrolysis Cell in Tandem with Direct Air Capture. ECS Transactions, 103(1), 663-676.
doi:10.1149/10301.0663ecst
FERN. (2017). How the EU Governance Regulation can help achieve negative emissions.
Retrieved from http://www.fern.org/sites/fern.org/files/
briefingnote%20negative%20emissions.pdf
Fernández, B. M., et al. (2004). A review of accelerated carbonation technology in the treatment
of cement-based materials and sequestration of CO2. Journal of Hazardous Materials,
112(3), 193-205. Retrieved from https://www.ncbi.nlm.nih.gov/pubmed/15302440
Fernandez, F. G. A., Gonzalez-Lopez, C. V., Sevilla, J. M. F., & Grima, E. M. (2012). Conversion
of CO2 into biomass by microalgae: how realistic a contribution may it be to significant
CO2 removal? Applied Microbiology and Biotechnology, 96(3), 577-586. doi:10.1007/
s00253-012-4362-z
Fernández, J. M., et al. . (2014). Carbon dioxide emissions from semi-arid soils amended with
biochar alone or combined with mineral and organic fertilizers. Science of The Total
Environment, 482–483, 1–7.
Fernández-Ugalde, O., Gartzia-Bengoetxea, N., Arostegi, J., Moragues, L., & Arias-González, A.
(2017). Storage and stability of biochar-derived carbon and total organic carbon in
relation to minerals in an acid forest soil of the Spanish Atlantic area. Science of The
Total Environment, 587-588, 204-213. doi:https://doi.org/10.1016/j.scitotenv.2017.02.121
Ferreira, A. F., et al. (2014). Bio-oil and bio-char characterization from microalgal biomass.
Paper presented at the V Conferência Nacional de Mecânica dos Fluidos,
Termodinâmica e Energia (Fifth National Conference on Fluid Mechanics,
Thermodynamics and Energy). http://paginas.fe.up.pt/~mefte2014/wp-content/uploads/
2014/preprint/mefte2014_submission_45.pdf
Ferreira Cunha, B. E., T. J., M., Canellas, L. P., Ribeiro, L. P., Benites, V. d. M., & Santos, G. d.
A. (2009). Soil organic matter and fertility of anthropogenic dark earths (terra preta de
indio) in the brazilian amazon basin. Revista Brasileira de Ciencia do Solo, 33(1), 85-93.
Ferreira, J., Lennox, G. D., Gardner, T. A., Thomson, J. R., Berenguer, E., Lees, A. C., . . .
Barlow, J. (2018). Carbon-focused conservation may fail to protect the most biodiverse
tropical forests. Nature Climate Change, 8(8), 744-749. doi:10.1038/s41558-018-0225-7
Ferrer González, M. (2017). Climate engineering by enhancement of ocean alkalinity: impacts
on the Earth system and a comparison with solar radiation management. (Ph.D.). Max
Planck-Institut für Meteorologie, Retrieved from http://pubman.mpdl.mpg.de/pubman/
item/escidoc:2472753:3/component/escidoc:2472752/WEB_BzE_193.pdf
Fiato, R. A., Sun, Y., Allen, M., & Zhao, Q. (2014).
Fiaz, K., Danish, S., Younis, U., Malik, S. A., Raza Shah, M. H., & Niaz, S. (2014). Drought
impact on Pb/Cd toxicity remediated by biochar in Brassica campestris. Journal of Soil
Science and Plant Nutrition, 14(4), 845-854. doi:10.4067/s0718-95162014005000067
Fidel, R. B. (2012). Evaluation and implementation of methods for quantifying organic and
inorganic components of biochar alkalinity. (Master of Science). IOWA STATE
UNIVERSITY,
Fidel, R. B. (2016). Biochar properties and impact on soil CO2 and N 2O emissions. IOWA
STATE UNIVERSITY, Retrieved from http://gradworks.umi.com/10/00/10009021.html
Fidel, R. B., Laird, D. A., & Parkin, T. B. (2019). Effect of Biochar on Soil Greenhouse Gas
Emissions at the Laboratory and Field Scales. Soil Systems, 3(1), 8. Retrieved from
http://www.mdpi.com/2571-8789/3/1/8
Fiekowsky, P. (2017). Where Do We Put Trillions of Tons of CO2? Retrieved from https://
brainscienceandclimatechange.wordpress.com/2017/03/05/where-do-we-put-a-trillion-
tons-of-co2/?fb_action_ids=10212541004470421&fb_action_types=news.publishes
Fiekowsky, P. (2019). The Green New Deal Doesn't Go Far Enough. Here's Why (Op-Ed). Live
Science. Retrieved from https://www.livescience.com/65484-green-new-deal-climate-
change.html
Field, C. B., et al. (2007). Biomass energy: the scale of the potential resource. Trends in
Ecology & Evolution, 23, 65-72. Retrieved from https://www.ncbi.nlm.nih.gov/pubmed/
18215439
Field, C. B., Campbell, J. E., & Lobell, D. B. (2008). Biomass energy: the scale of the potential
resource. Trends in Ecology and Evolution, 23(2), 65-72. Retrieved from http://np-
net.pbworks.com/f/Field%2Bet%2Bal%2B2007_bioenergy.pdf
Field, C. B., & Mach, K. J. (2017). Rightsizing carbon dioxide removal. Science, 356(6339),
706-707. doi:10.1126/science.aam9726
Field, J. L. (2015). Towards the systematic identification of low-cost ecosystem-mediated carbon
sequestration opportunities in bioenergy supply chains. Colorado State University,
Retrieved from https://dspace.library.colostate.edu/handle/10217/167235
Field, J. L. (2021). Revisiting “Additional Carbon”: Tracking Atmosphere–Ecosystem Carbon
Exchange to Establish Mitigation and Negative Emissions From Bio-Based Systems.
Frontiers in Climate, 3(27). doi:10.3389/fclim.2021.603239
Field, J. L., Keske, C. M. H., Birch, G. L., DeFoort, M. W., & Cotrufo, M. F. (2012). Distributed
biochar and bioenergy coproduction: a regionally specific case study of environmental
benefits and economic impacts. GCB Bioenergy, 5(2), 177-191. Retrieved from http://
onlinelibrary.wiley.com/doi/10.1111/gcbb.12032/full
Field, J. L., Marx, E., Easter, M., Adler, P. R., & Paustian, K. (2016). Ecosystem model
parameterization and adaptation for sustainable cellulosic biofuel landscape design.
GCB Bioenergy, 8(6), 1106-1123. doi:10.1111/gcbb.12316
Field, J. L., Richard, T. L., Smithwick, E. A. H., Cai, H., Laser, M. S., LeBauer, D. S., . . . Lynd, L.
R. (2020). Robust paths to net greenhouse gas mitigation and negative emissions via
advanced biofuels. Proceedings of the National Academy of Sciences, 201920877.
doi:10.1073/pnas.1920877117
Field, L., Ivanova, D., Bhattacharyya, S., Mlaker, V., Sholtz, A., Decca, R., . . . Katuri, K. (2018).
Increasing Arctic Sea Ice Albedo Using Localized Reversible Geoengineering. Earth's
Future, 6(6), 882-901. doi:doi:10.1029/2018EF000820
Field, M. (2019). The world can support far more trees. Planting them can reduce carbon
pollution a lot: An interview with professor Tom Crowther. Bulletin of the Atomic
Scientists, 75(5), 236-238. doi:10.1080/00963402.2019.1654267
Fieldsend, A., & Singh, H. P. (2013). Biofuel Food Sustainability. In B. P. Singh (Ed.), (pp.
357-382).
Figueroa, J. D., Fout, T., Plasynski, S., McIlvried, H., & Srivastava, R. D. (2008). Advances in
CO2 capture technology—The U.S. Department of Energy's Carbon Sequestration
Program. International Journal of Greenhouse Gas Control, 2(1), 9-20. doi:https://
doi.org/10.1016/S1750-5836(07)00094-1
Fike, J. H., Parrish, D. J., & Fike, W. B. (2013). Sustainable Cellulosic Grass Production. In B. P.
Singh (Ed.), Biofuels Crop Production (pp. 110-164).
Fike, J. H., Parrish, D. J., Wolf, D. D., Balasko, J. A., Green, J. T., Rasnake, M., & Reynolds, J.
H. (2006). Long-term yield potential of switchgrass-for-biofuel systems. Biomass and
Bioenergy, 30(3), 198-206. doi:http://dx.doi.org/10.1016/j.biombioe.2005.10.006
Filbee-Dexter, K., & Wernberg, T. (2020). Substantial blue carbon in overlooked Australian kelp
forests. Scientific Reports, 10(1), 12341-12341. doi:10.1038/s41598-020-69258-7
Filho, J. P. N., et al. . (2007). Distribuição Espacial de Carbono em Solo Sob Floresta Primária
na Amazônia Meridional (Spatial Distribution of Soil Carbon under Primary Forest Cover
in Southern Amazônia). Revista Árvore (Tree Journal), 31(1), 83-92. Retrieved from
http://www.scielo.br/scielo.php?script=sci_arttext&pid=S0100-67622007000100010
Filho, J. P. N., et al. (2007). Variabilidade Espacial de Atributos Fisicos de Solo Usada na
Identificacao de Classes Pedologicas de Microbasias na Amazonia Meridional. Revista
Brasileira de Ciencia do Solo, 31, 91-100.
Filiberto, D. M., & Gaunt, J. L. (2013). Practicality of Biochar Additions to Enhance Soil and Crop
Productivity. Agriculture, 3(4), 715-725. Retrieved from http://www.mdpi.com/
2077-0472/3/4/715/htm
Fimrite, P. (2019). Could putting pebbles on beaches help solve climate change? San Francisco
Chronicle. Retrieved from https://www.sfchronicle.com/environment/article/Could-putting-
pebbles-on-beaches-help-solve-14911295.php
Findley, J., Al-Haj, H., Shanaa, J., Al-Duaiji, A., & Economou, S. (2014). A Potential Solution for
Waste Management at Remote Sites. Paper presented at the SPE Middle East Health,
Safety, Environment & Sustainable Development Conference and ExhibitionSPE Middle
East Health, Safety, Environment & Sustainable Development Conference and
Exhibition, Doha, Qatar. https://www.onepetro.org/conference-paper/SPE-170351-MS
Finkenrath, M. (2012). Carbon Dioxide Capture from Power Generation – Status of Cost and
Performance. Chemical Engineering & Technology, 35(3), 482-488. doi:doi:10.1002/
ceat.201100444
Finley, R. J., et al. (2013). Early Operational Experience at a One-million Tonne CCS
Demonstration Project, Decatur, Illinois, USA (Vol. 37).
Finney, K. N., Akram, M., Diego, M. E., Yang, X., & Pourkashanian, M. (2019). Chapter 2 -
Carbon capture technologies. In J. C. Magalhães Pires & A. L. D. Cunha Gonçalves
(Eds.), Bioenergy with Carbon Capture and Storage (pp. 15-45): Academic Press.
Firdaus, A. H. (2014). Fast Pyrolysis of Palm Kernel Shell Biomass in Fluidized Bed Reactor.
National Central University, Retrieved from http://ir.lib.ncu.edu.tw/handle/
987654321/65979
Fischer, D., & Glaser, B. (2012). Synergisms between Compost and Biochar for Sustainable Soil
Amelioration. In S. Kumar (Ed.), Management of Organic Waste (pp. 167-199).
Fischer, G., Prieler, S., & van Velthuizen, H. (2005). Biomass potentials of miscanthus, willow
and poplar: results and policy implications for Eastern Europe, Northern and Central
Asia. Biomass and Bioenergy, 28(2), 119-132. doi:https://doi.org/10.1016/
j.biombioe.2004.08.013
Fischer, G., & Schrattenholzer, L. (2001). Global bioenergy potentials through 2050. Biomass
and Bioenergy, 20(3), 151-159. doi:https://doi.org/10.1016/S0961-9534(00)00074-X
Fishman, Z. (2019). 3(2). Retrieved from https://q.sustainability.illinois.edu/scrubbing-the-skies-
is-clean-coal-a-fact-or-fantasy/
Fitzgerald, M. (2016). Prison or Precaution: Unilateral, State-Mandated. Geoengineering Under
Principles of International Environmental Law. New York University School of Law
Environmental Law, 24, 256-282. Retrieved from https://www.nyuelj.org/wp-content/
uploads/2016/09/nye_24-2-Fitzgerald.pdf
Fitzherbert, E. B., Struebig, M. J., Morel, A., Danielsen, F., Brühl, C. A., Donald, P. F., & Phalan,
B. (2008). How will oil palm expansion affect biodiversity? Trends in Ecology &
Evolution, 23(10), 538-545. doi:http://dx.doi.org/10.1016/j.tree.2008.06.012
Flaathen, T. K., Gislason, S. R., Oelkers, E. H., & Sveinbjörnsdóttir, Á. E. (2009). Chemical
evolution of the Mt. Hekla, Iceland, groundwaters: A natural analogue for CO2
sequestration in basaltic rocks. Applied Geochemistry, 24(3), 463-474. doi:https://
doi.org/10.1016/j.apgeochem.2008.12.031
Flam, F. (2018). Bet on Carbon Capture (But Not Only on Carbon Capture). Bloomberg.
Retrieved from https://www.bloomberg.com/opinion/articles/2018-10-16/carbon-capture-
is-one-of-the-keys-to-averting-climate-disaster
Flamholz, A. I. (2020). Functional reconstitution of a bacterial CO2 concentrating mechanism in
Escherichia coli. eLife, 9, 1-30.
Flannery, B. P., Kheshgi, H. S., Hoffert, M. I., & Lapenis, A. G. (1993). Assessing the
effectiveness of marine CO2 disposal. Energy Conversion and Management, 34(9),
983-989. doi:https://doi.org/10.1016/0196-8904(93)90045-C
Flannery, T. (2017). How farming giant seaweed can feed fish and fix the climate. The
Conversation. Retrieved from https://theconversation.com/how-farming-giant-seaweed-
can-feed-fish-and-fix-the-climate-81761?
utm_medium=email&utm_campaign=Latest+from+The+Conversation+for+August+1+20
17+-+79876393&utm_content=Latest+from+The+Conversation+for+August+1+2017+-
+79876393+CID_f76edd14b7481ffe21e9c07f485f705c&utm_source=campaign_monitor
&utm_term=How+farming+giant+seaweed+can+feed+fish+and+fix+the+climate
Flannery, T. (2017). Sunlight and Seaweed. Melbourne: Text Publishing.
Flavia, N. (2012). Potential Role of Biochar in Water Management in Rainfed Agriculture. (MSc
Environment & Development thesis). Retrieved from http://hdl.handle.net/1842/6366
Fleischman, F., Basant, S., Chhatre, A., Coleman, E. A., Fischer, H. W., Gupta, D., . . . Veldman,
J. W. (2020). Pitfalls of Tree Planting Show Why We Need People-Centered Natural
Climate Solutions. BioScience. doi:10.1093/biosci/biaa094
Fleishman, L., De Bruin, W., & Morgan, M. G. (2010). Informed public preferences for electricity
portfolios with CCS and other low-carbon technologies. Risk Analysis, 30, 1399-1410.
Retrieved from https://www.ncbi.nlm.nih.gov/pubmed/20561264
Fleming, A. (2021). Cloud spraying and hurricane slaying: how ocean geoengineering became
the frontier of the climate crisis. The Guardian. Retrieved from https://
www.theguardian.com/environment/2021/jun/23/cloud-spraying-and-hurricane-slaying-
could-geoengineering-fix-the-climate-crisis
Fleming, J. R. (2021). Excuse Us, While We Fix the Sky: WEIRD Supermen and Climate
Intervention. In P. M. Pulé & M. Hultman (Eds.), Men, Masculinities, and Earth:
Contending with the (m)Anthropocene (pp. 501-513). Cham: Springer International
Publishing.
Fleming, J. S., Habibi, S., & MacLean, H. L. (2006). Investigating the sustainability of
lignocellulose-derived fuels for light-duty vehicles. Transportation Research Part D:
Transport and Environment, 11(2), 146-159. doi:https://doi.org/10.1016/j.trd.2006.01.001
Flesher, J. (2021). Carbon storage offers hope for climate, cash for farmers. AP. Retrieved from
https://apnews.com/article/climate-change-climate-business-science-environment-and-
nature-cb5a64441149f73d183c2cbc56f773cf
Fletcher, A. J., et al. (2013). Production Factors Controlling the Physical Characteristics of
Biochar Derived from Phytoremediation Willow for Agricultural Applications. BioEnergy
Research, 7(1), 371-380. Retrieved from http://link.springer.com/article/10.1007/
s12155-013-9380-x
Florey, J. (2012). The Potential for Activated Biochar to Remove Waterborne Viruses from
Environmental Waters. (Masters). Texas A&M University,
Flynn, K. (2017). Algal biofuel production is neither environmentally nor commercially
sustainable. The Conversation. Retrieved from https://phys.org/print421402047.html
Foereid, B. (2015). Biochar in Nutrient Recycling—The Effect and Its Use in Wastewater
Treatment. Open Journal of Soil Science, 05(02), 39 - 44. doi:10.4236/ojss.2015.52004
Foereid, B., Lehmann, J., & Major, J. (2011). Modeling black carbon degradation and movement
in soil. Plant Soil, 345, 223–236.
Fogarassy, C., Lukacs, A., & Borocz, M. (2008). Basic structure of Co2 emission management
practice in agricultural land use. Cereal Research Communications, 36(5), 327-330.
Retrieved from https://www.cabdirect.org/cabdirect/abstract/20103108636
Fogel, C. (2005). Biotic Carbon Sequestration and the Kyoto Protocol: The Construction of
Global Knowledge by the Intergovernmental Panel on Climate Change. International
Environmental Agreements: Politics, Law and Economics, 5(2), 191-210. doi:10.1007/
s10784-005-1749-7
Foley, J. (2021). Occam’s Razor for the Planet. Retrieved from https://globalecoguy.org/
occams-razor-for-the-planet-b3a720cc961c
Foley, J. (2021). Opinion: The world needs better climate pledges. Retrieved from https://
drawdown.org/news/insights/opinion-the-world-needs-better-climate-pledges
Foley, J. (2021). We Need 4 Waves of Climate Action. Retrieved from https://globalecoguy.org/
we-need-4-waves-of-climate-solutions-6e58adbc5ad6
Foley, J. (2021). Why the world needs better climate pledges. Retrieved from https://
www.greenbiz.com/article/why-world-needs-better-climate-pledges
Follett, R. F., et al. (2001). The Potential of U.S. Grazing Lands to Sequester Carbon and
Mitigate the Greenhouse Effect.
Follett, R. F., & Reed, D. A. (2010). Soil Carbon Sequestration in Grazing Lands: Societal
Benefits and Policy Implications. Rangeland Ecology & Management, 63(1), 4-15.
doi:https://doi.org/10.2111/08-225.1
Forbes, M. S., Raison, R. J., & Skjemstad, J. O. (2006). Formation, transformation and transport
of black carbon (charcoal) in terrestrial and aquatic ecosystems. Science of The Total
Environment, 370(1), 190-206.
Forbes, S. M., Almendra, F., & Ziegler, M. S. (2010). CCS and Community Engagement.
Retrieved from http://pdf.wri.org/ccs_and_community_engagement.pdf
Forests, A. (2020). Statement of American Forests on Re-Introduction of the Trillion Trees Act.
Retrieved from https://www.americanforests.org/media-release/statement-of-american-
forests-on-re-introduction-of-the-trillion-trees-act/
Forján, R., Asensio, V., Rodríguez-Vila, A., & Covelo, E. F. (2016). Contribution of waste and
biochar amendment to the sorption of metals in a copper mine tailing. CATENA, 137,
120 - 125. doi:10.1016/j.catena.2015.09.010
Forján, R., Asensio, V., Vila, A. R.-., & Covelo, E. F. (2015). Contributions of a compost-biochar
mixture to the metal sorption capacity of a mine tailing. Environmental Science and
Pollution Research. doi:10.1007/s11356-015-5489-0
Forschungskommunikation. (2017). Human impacts on forests and grasslands much larger and
older than previously assumed. Retrieved from https://www.aau.at/en/blog/globale-
treibhausgasemissionen-der-wald-und-weidewirtschaft-viel-groesser-und-aelter-als-
bisher-angenommen/
Fortner, S. K., Lyons, W. B., Carey, A. E., Shipitalo, M. J., Welch, S. A., & Welch, K. A. (2012).
Silicate weathering and CO2 consumption within agricultural landscapes, the Ohio-
Tennessee River Basin, USA. Biogeosciences, 9(3), 941-955. doi:10.5194/
bg-9-941-2012
Fortuna, G. (2021). EU sets the scene for carbon removal actions in farming. Retrieved from
https://www.euractiv.com/section/agriculture-food/news/eu-sets-the-scene-for-carbon-
removal-actions-in-farming/
Forum, W. E. (2021). Consultation: Nature and Net Zero. Retrieved from https://
www.mckinsey.com/~/media/McKinsey/Business%20Functions/Sustainability/
Our%20Insights/
Why%20investing%20in%20nature%20is%20key%20to%20climate%20mitigation/
Nature-and-net-zero.pdf
Fosso-Kankeu, E., Waanders, F. B., & Steyn, F. W. (2016). The Preparation and
Characterization of ClayBiochar Composites for the Removal of Metal Pollutants. In.
Fotrum. (2019). World’s first marketplace for CO2 removals is launched to reverse climate
change [Press release]. Retrieved from https://www.fortum.com/media/2019/04/worlds-
first-marketplace-co2-removals-launched-reverse-climate-change
Fountain, H. (2012). A Rogue Climate Experiment Outrages Scientists. New York Times.
Retrieved from http://www.nytimes.com/2012/10/19/science/earth/iron-dumping-
experiment-in-pacific-alarms-marine-experts.html?_r=0
Fountain, H. (2018). How Oman’s Rocks Could Help Save the Planet. N.Y. Times.
Fourqurean, J. W., Duarte, C. M., Kennedy, H., Marba, N., Holmer, M., Mateo, M. A., . . .
Serrano, O. (2012). Seagrass ecosystems as a globally significant carbon stock. Nature
Geoscience, 5(7), 505-509. doi:http://www.nature.com/ngeo/journal/v5/n7/abs/
ngeo1477.html#supplementary-information
Fowler, S. (2020). 'Foaming at the mouth': First responders describe scene after pipeline
rupture, gas leak. Clarion Ledger. Retrieved from https://www.clarionledger.com/story/
news/local/2020/02/27/yazoo-county-pipe-rupture-co-2-gas-leak-first-responders-
rescues/4871726002/
Fox, A. (2019). Adding 1 billion hectares of forest could help check global warming. Science.
Retrieved from https://www.sciencemag.org/news/2019/07/adding-1-billion-hectares-
forest-could-help-check-global-warming
Fox, A., Kwapinski, W., Griffiths, B. S., & Schmalenberger, A. (2014). The role of sulfur and
phosphorus mobilizing bacteria in biochar induced growth promotion of Lolium perenne.
FEMS Microbiology Ecology, 90(1), 78-91. doi:10.1111/1574-6941.12374
Fox, T. A. (2012). Energy Innovation and Avoiding Policy Complexity: The Air Capture Approach.
Energy & Environment, 23(6-7), 1075-1092. doi:10.1260/0958-305x.23.6-7.1075
Francaviglia, R., Di Bene, C., Farina, R., Salvati, L., Vicente-Vicente, J. L. J. M., & Change, A.
S. f. G. (2019). Assessing “4 per 1000” soil organic carbon storage rates under
Mediterranean climate: a comprehensive data analysis. 24(5), 795-818. doi:10.1007/
s11027-018-9832-x
Francavilla, M., Kamaterou, P., Intini, S., Monteleone, M., & Zabaniotou, A. (2015). Cascading
microalgae biorefinery: Fast pyrolysis of Dunaliella tertiolecta lipid extracted-residue.
Algal Research, 11, 184-193. doi:https://doi.org/10.1016/j.algal.2015.06.017
Francavilla, M., Manara, P., Kamaterou, P., Monteleone, M., & Zabaniotou, A. (2014). Cascade
approach of red macroalgae Gracilaria gracilis sustainable valorization by extraction of
phycobiliproteins and pyrolysis of residue. Bioresource Technology, 184, 305-313.
doi:10.1016/j.biortech.2014.10.147
France-Lanord, C., & Derry, L. A. (1997). Organic carbon burial forcing of the carbon cycle from
himalayan erosion. Nature, 390, 65-67. Retrieved from https://www.nature.com/nature/
journal/v390/n6655/full/390065a0.html
Franceschini, S., Chitarra, W., Pugliese, M., Gisi, U., Garibaldi, A., & Lodovica Gullino, M.
(2016). Quantification of Aspergillus fumigatus and enteric bacteria in European compost
and biochar. Compost Science & Utilization, 24(1), 20 - 29.
doi:10.1080/1065657x.2015.1046612
Francischinelli Rittl, T., Arts, B., & Kuyper, T. W. (2015). Biochar: An emerging policy
arrangement in Brazil? Environmental Science & Policy, 51, 45 - 55. doi:10.1016/
j.envsci.2015.03.010
Francisco, É. C., Neves, D. B., Jacob-Lopes, E., & Franco, T. T. (2010). Microalgae as feedstock
for biodiesel production: Carbon dioxide sequestration, lipid production and biofuel
quality. Journal of Chemical Technology & Biotechnology, 85(3), 395-403. doi:10.1002/
jctb.2338
Franco, J., et al. (2010). Assumptions in the European Union biofuels policy: frictions with
experiences in Germany, Brazil and Mozambique. Journal of Peasant Studies, 37(4),
661-698. Retrieved from https://www.ncbi.nlm.nih.gov/pubmed/21125723
Frank, S., et. al. (2017). Reducing greenhouse gas emissions in agriculture without
compromising food security? Environmental Research Letters, 12(10), 105004.
Retrieved from http://stacks.iop.org/1748-9326/12/i=10/a=105004
Franscisco Brazao Vieira Alho, C., et al. . (2013). Biochar Stable Fraction Quantification by
Thermo-Chemical Oxidation and Assessment by 13C NMR Spectrocopy. Embrapa.
Retrieved from http://www.alice.cnptia.embrapa.br/bitstream/doc/
979469/1/2013ClaudiaMEBSHBiocharStable.pdf
Frantz, J., Alkhateeb, F., & Thurbide, K. (2015). A Novel Micro Pressurized Liquid Extraction
Method for Rapid Sample Preparation of Polycyclic Aromatic Hydrocarbons in Various
Solids. Chromatography, 2(3), 488 - 501. doi:10.3390/chromatography2030488
Frazier, R., Jin, E., & Kumar, A. (2015). Life Cycle Assessment of Biochar versus Metal
Catalysts Used in Syngas Cleaning. Energies, 8(1), 621 - 644. doi:10.3390/en8010621
Frazin, R. (2020). Government probe finds companies claiming carbon capture tax credit didn't
follow EPA requirements. The Hill. Retrieved from https://thehill.com/policy/energy-
environment/495526-government-probe-finds-companies-claiming-carbon-capture-tax-
credit
Freddo, A., et al. (2012). Environmental contextualisation of potential toxic elements and
polycyclic aromatic hydrocarbons in biochar. Environmental Pollution, 171, 18–24.
Retrieved from http://www.sciencedirect.com/science/article/pii/S0269749112003375
Fredin, O., et al. (2017). The inheritance of a Mesozoic landscape in western Scandinavia.
Nature Communications, 8, 1-11. Retrieved from https://www.nature.com/articles/
ncomms14879
Free, H. F., McGill, C. R., Rowarth, J. S., & Hedley, M. J. (2010). The effect of biochars on
maize (Zea mays) germination. New Zealand Journal of Agricultural Research, 53(1),
1-4. Retrieved from http://www.tandfonline.com/doi/abs/10.1080/00288231003606039
Freeman, C., Fenner, N., & Shirsat, A. H. (2012). Peatland geoengineering: an alternative
approach to terrestrial carbon sequestration. Philosophical Transactions of the Royal
Society A: Mathematical, Physical and Engineering Sciences,
370(1974), 4404-4421. doi:10.1098/rsta.2012.0105
Freeman, M., & Yellen, D. (2018). We Need to Capture Carbon to Fight Climate Change.
Scientific American. Retrieved from https://www.scientificamerican.com/article/we-need-
to-capture-carbon-to-fight-climate-change/?
utm_source=newsletter&utm_medium=email&utm_campaign=sustainability&utm_conten
t=link&utm_term=2018-08-16_top-
stories&spMailingID=57193683&spUserID=NTY1OTMzMTQ5OAS2&spJobID=1462210
331&spReportId=MTQ2MjIxMDMzMQS2
Freer, M., Gough, C., Welfle, A., & Lea-Langton, A. (2021). Carbon optimal bioenergy with
carbon capture and storage supply chain modelling: How far is too far? Sustainable
Energy Technologies and Assessments, 47, 101406. doi:https://doi.org/10.1016/
j.seta.2021.101406
Freestone, D., & Rayfuse, R. (2008). Ocean iron fertilization and international law. Marine
Ecology Progress Series, 364, 227-233. Retrieved from http://www.int-res.com/articles/
theme/m364p227.pdf
Freibauer, A., Rounsevell, M. D. A., Smith, P., & Verhagen, J. (2004). Carbon sequestration in
the agricultural soils of Europe. Geoderma, 122(1), 1-23. doi:https://doi.org/10.1016/
j.geoderma.2004.01.021
Frew, R., Bowie, A., Croot, P., & Pickmere, S. (2001). Macronutrient and trace-metal
geochemistry of an in situ iron-induced Southern Ocean bloom. Deep Sea Research
Part II: Topical Studies in Oceanography, 48(11–12), 2467-2481. doi:http://dx.doi.org/
10.1016/S0967-0645(01)00004-2
Fricker, K. J. (2014). Magnesium hydroxide sorbents for combined carbon dioxide capture and
storage in energy conversion systems. (Ph.D. Dissertation/Thesis). Columbia University,
Retrieved from https://search.proquest.com/docview/1614119336?accountid=14496
Fridahl, M. (2017). Socio-political prioritization of bioenergy with carbon capture and storage.
Energy Policy, 104, 89-99. doi:http://dx.doi.org/10.1016/j.enpol.2017.01.050
Fridahl, M. (2019). Chapter 3 - Pre- and post-Paris views on bioenergy with carbon capture and
storage. In J. C. Magalhães Pires & A. L. D. Cunha Gonçalves (Eds.), Bioenergy with
Carbon Capture and Storage (pp. 47-62): Academic Press.
Fridahl, M., & Bellamy, R. (2018). Multilevel Policy Incentives for BECCS in Sweden. In M.
Fridahl (Ed.), Bioenergy with carbon capture and storage: From global potentials to
domestic realities (pp. 57-67).
Fridahl, M., Haikola, S., Rogers, P. M., & Hansson, A. (2020). Biochar Deployment Drivers and
Barriers in Least Developed Countries. In W. Leal Filho, J. Luetz, & D. Ayal (Eds.),
Handbook of Climate Change Management: Research, Leadership, Transformation (pp.
1-30). Cham: Springer International Publishing.
Fridahl, M., & Lehtveer, M. (2018). Bioenergy with carbon capture and storage (BECCS): Global
potential, investment preferences, and deployment barriers. Energy Research & Social
Science, 42, 155-165. doi:https://doi.org/10.1016/j.erss.2018.03.019
Fridlund, J. (2014). The Effects of Increasing Rates of Biochar on Corn Grown in Salinas Clay
Loam. Retrieved from http://digitalcommons.calpoly.edu/agedsp/44/
Friedlander, B. (2018). Forests can capture more carbon to ease climate change. Cornell
Chronicle. Retrieved from http://news.cornell.edu/stories/2018/02/forests-can-capture-
more-carbon-ease-climate-change
Friedlingstein, P., Allen, M., Canadell, J. G., Peters, G. P., & Seneviratne, S. I. (2019). Comment
on “The global tree restoration potential”. Science, 366(6463), eaay8060. doi:10.1126/
science.aay8060
Friedman, G. (2021). Shopify hopes to 'kickstart the market' by buying contract to suck CO2 out
of the air — 10,000 tons of it Financial Post. Retrieved from https://financialpost.com/
technology/kickstart-the-market-shopify-will-pay-to-remove-10000-tonnes-of-co2-from-
the-atmosphere
Friedmann, J. S. (2020). NET-ZERO AND GEOSPHERIC RETURN: ACTIONS TODAY FOR
2030 AND BEYOND. Retrieved from https://www.energypolicy.columbia.edu/research/
report/net-zero-and-geospheric-return-actions-today-2030-and-beyond?
utm_source=Center+on+Global+Energy+Policy+Mailing+List&utm_campaign=f2e06d4f5
4-
EMAIL_CAMPAIGN_2019_09_24_06_19_COPY_01&utm_medium=email&utm_term=0
_0773077aac-f2e06d4f54-102075069
Friedmann, S. J. (2019). Engineered CO2 Removal, Climate Restoration, and Humility.
Frontiers in Climate, 1(3). doi:10.3389/fclim.2019.00003
Friedmann, S. J., Ochu, E., & Brown, J. D. (2020). Capturing Investment: Policy Design to
Finance CCUS Projects in the U.S. Power Sector. Retrieved from https://
energypolicy.columbia.edu/research/report/capturing-investment-policy-design-finance-
ccus-projects-us-power-sector
Friggens, N. L., Hester, A. J., Mitchell, R. J., Parker, T. C., Subke, J.-A., & Wookey, P. A. (2020).
Tree planting in organic soils does not result in net carbon sequestration on decadal
timescales. Global Change Biology, 26(9), 5178-5188. doi:https://doi.org/10.1111/
gcb.15229
Frings, P. J., & Buss, H. L. (2019). The Central Role of Weathering in the Geosciences.
Elements, 15(4), 229-234. doi:10.2138/gselements.15.4.229 %J Elements
Frischmann, C. J., Mehra, M., Allard, R., Bayuk, K., Gouveia, J. P., & Gorman, M. R. (2020).
Drawdown’s “System of Solutions” Helps to Achieve the SDGs. In W. Leal Filho, A. M.
Azul, L. Brandli, A. Lange Salvia, & T. Wall (Eds.), Partnerships for the Goals (pp. 1-25).
Cham: Springer International Publishing.
Frišták, V., Friesl-Hanl, W., Wawra, A., Pipíška, M., & Soja, G. (2015). Effect of biochar artificial
ageing on Cd and Cu sorption characteristics. Journal of Geochemical Exploration, 159,
178 - 184. doi:10.1016/j.gexplo.2015.09.006
Frišták, V., Pipíška, M., Lesný, J., Soja, G., Friesl-Hanl, W., & Packová, A. (2015). Utilization of
biochar sorbents for Cd2+, Zn2+, and Cu2+ ions separation from aqueous solutions:
comparative study. Environmental Monitoring and Assessment, 187(1), 1-16.
doi:10.1007/s10661-014-4093-y
Frišták, V., & Soja, G. (2015). Effect Of Wood-Based Biochar And Sewage Sludge Amendments
For Soil Phosphorus AvailabilityAbstract. Nova Biotechnologica et Chimica, 14(1),
104-115. doi:10.1515/nbec-2015-0020
Fritsche, U. R., Iriarte, L., de Jong, J., Agostini, A., & Scarlat, N. (2014). Extending the EU
Renewable Energy Directive sustainability criteria to solid bioenergy from forests.
Natural Resources Forum, 38(2), 129-140. doi:10.1111/1477-8947.12042
Fritsche, U. R., Sims, R. E. H., & Monti, A. (2010). Direct and indirect land-use competition
issues for energy crops and their sustainable production – an overview. Biofuels,
Bioproducts and Biorefining, 4(6), 692-704. Retrieved from http://onlinelibrary.wiley.com/
doi/10.1002/bbb.258/abstract
Fritz, S., See, L., van der Velde, M., Nalepa, R. A., Perger, C., Schill, C., . . . Obersteiner, M.
(2013). Downgrading Recent Estimates of Land Available for Biofuel Production.
Environmental Science & Technology, 47(3), 1688-1694. doi:10.1021/es303141h
Froehlich, H. E., Afflerbach, J. C., Frazier, M., & Halpern, B. S. (2019). Blue Growth Potential to
Mitigate Climate Change through Seaweed Offsetting. Current Biology, 29(18),
3087-3093.e3083. doi:https://doi.org/10.1016/j.cub.2019.07.041
Frost, C. D., & Jakle, A. C. (2010). Geologic carbon sequestration in Wyoming: prospects and
progress. Rocky Mountain Geology, 45(2), 83-91. Retrieved from https://
www.google.com/url?
sa=t&rct=j&q=&esrc=s&source=web&cd=&ved=2ahUKEwiEzra33dTwAhXTB80KHUATA
ZQQFjACegQIAhAD&url=http%3A%2F%2Fwww.uwyo.edu%2Fgeolgeophys%2Fpeople
%2Ffaculty%2Fcfrost%2F_files%2Fdocs%2Fintroduction_screen.pdf&usg=AOvVaw0kB
BeefYafCKKM2-8l8jTx
Fruth, D. A., & Ponzi, J. A. (2010). Adjusting Carbon Management Policies to Encourage
Renewable, Net-Negative Projects such as Biochar Sequestration. William Mitchell Law
Review, 36, 992-1013. Retrieved from http://www.lexisnexis.com/hottopics/lnacademic/?
Fry, J. M., Joyce, J., & Aumônier, S. (2012). Carbon Footprint of Seaweed as a Biofuel.
Retrieved from https://www.researchgate.net/file.PostFileLoader.html?
id=56a87dc36307d9231f8b45d0&assetKey=AS%3A322422358642688%401453882888
282
Fryda, L., & Visser, R. (2015). Biochar for Soil Improvement: Evaluation of Biochar from
Gasification and Slow Pyrolysis. Agriculture, 5(4), 1076 - 1115. doi:10.3390/
agriculture5041076
Fu, H., Liu, H., Mao, J., Chu, W., Li, Q., Alvarez, P. J. J., . . . Zhu, D. (2016). Photochemistry of
Dissolved Black Carbon Released from Biochar: Reactive Oxygen Species Generation
and Phototransformation. Environmental Science & Technology, 50(3), 1218-1226.
doi:10.1021/acs.est.5b04314
Fu, P., et al. (2012). Evolution of char structure during steam gasification of the chars produced
from rapid pyrolysis of rice husk. Bioresource Technology, 114, 691-697. Retrieved from
http://www.sciencedirect.com/science/article/pii/S0960852412005366
Fu, P., Li, Z. H., Yi, W. M., & Bai, X. Y. (2011). Structural Change of Rice Husk Char Particles
during Steam Gasification. Advanced Materials Research, 236-238, 233-236.
doi:10.4028/www.scientific.net/AMR.236-238.233
Fuchs, J., Schmid, J. C., Muller, S., & Hofbauer, H. (2019). Dual fluidized bed gasification of
biomass with selective carbon dioxide removal and limestone as bed material: A review.
Renewable & Sustainable Energy Reviews, 107, 212-231. doi:10.1016/
j.rser.2019.03.013
Fuchs, M. R., Garcia-Perez, M., Small, P., & Flora, G. (2014). Campfire Lessons: Breaking
Down the Combustion Process to Understand Biochar Production and Characterization.
the Biochar Journal, 1. Retrieved from http://www.biochar-journal.org/itjo/media/doc/
1420082881242.pdf
Fuentes-George, K. (2017). Consensus, Certainty, and Catastrophe: Discourse, Governance,
and Ocean Iron Fertilization. Global Environmental Politics, 17(2), 125-143. Retrieved
from http://www.mitpressjournals.org/doi/abs/10.1162/GLEP_a_00404#.WQzEvdIrLb1
Fuentes-George, K. (2017). Consensus, Certainty, and Catastrophe: The Debate Over Ocean
Iron Fertilization. Retrieved from https://www.newsecuritybeat.org/2017/05/consensus-
certainty-catastrophe-ocean-iron-fertilization-debate/
Fuertes, A. B., Camps Arbestain, M., Sevilla, M., Macia-Agullo, J. A., Fiol, S., Lopez, R., . . .
Macias, F. (2010). Chemical and structural properties of carbonaceous products
obtained by pyrolysis and hydrothermal carbonisation of corn stover. Australian Journal
of Soil Research, 48, 618-626. Retrieved from https://www.researchgate.net/publication/
224893622_Chemical_and_structural_properties_of_carbonaceous_products_obtained_
by_pyrolysis_and_hydrothermal_carbonisation_of_corn_stover
Fuhrman, J., Clarens, A. F., McJeon, H., Patel, P., Ou, Y., Doney, S. C., . . . Pradhan, S. (2021).
The role of negative emissions in meeting China’s 2060 carbon neutrality goal. Oxford
Open Climate Change, 1(1). doi:10.1093/oxfclm/kgab004
Fuhrman, J., McJeon, H., Doney, S. C., Shobe, W., & Clarens, A. F. (2019). From Zero to Hero?:
Why Integrated Assessment Modeling of Negative Emissions Technologies Is Hard and
How We Can Do Better. Frontiers in Climate, 1(11). doi:10.3389/fclim.2019.00011
Fuhrman, J., McJeon, H., Patel, P., Doney, S. C., Shobe, W. M., & Clarens, A. F. (2020). Food–
energy–water implications of negative emissions technologies in a +1.5°C future. Nature
Climate Change. doi:10.1038/s41558-020-0876-z
Fuhrmann, J. A., & Capone, D. G. (1991). Possible biogeochemical consequences of ocean
fertilization. Limnology and Oceanography, 36(8), 1951-1959. Retrieved from http://
onlinelibrary.wiley.com/doi/10.4319/lo.1991.36.8.1951/pdf
Fujii, M., & Chai, F. (2009). Influences of initial plankton biomass and mixed-layer depths on the
outcome of iron-fertilization experiments. Deep Sea Research Part II: Topical Studies in
Oceanography, 56(26), 2936-2947. doi:http://dx.doi.org/10.1016/j.dsr2.2009.07.007
Fujii, M., Yoshie, N., Yamanaka, Y., & Chai, F. (2005). Simulated biogeochemical responses to
iron enrichments in three high nutrient, low chlorophyll (HNLC) regions. Progress in
Oceanography, 64(2), 307-324. doi:https://doi.org/10.1016/j.pocean.2005.02.017
Fujikawa, S., Selyanchyn, R., & Kunitake, T. (2021). A new strategy for membrane-based direct
air capture. Polymer Journal, 53(1), 111-119. doi:10.1038/s41428-020-00429-z
Fujita, R. (2021). Seaweeds to the rescue, redux. Retrieved from http://blogs.edf.org/edfish/
2021/02/23/seaweeds-to-the-rescue-redux/
Fukai, I., Mishra, S., & Moody, M. A. (2016). Economic analysis of CO2-enhanced oil recovery in
Ohio: Implications for carbon capture, utilization, and storage in the Appalachian Basin
region. International Journal of Greenhouse Gas Control, 52, 357-377. doi:https://
doi.org/10.1016/j.ijggc.2016.07.015
Fukai, I., Mishra, S., & Pasumarti, A. (2017). Technical and Economic Performance Metrics for
CCUS Projects: Example from the East Canton Consolidated Oil Field, Ohio, USA.
Energy Procedia, 114, 6968-6979. doi:https://doi.org/10.1016/j.egypro.2017.03.1838
Full, J., Merseburg, S., Miehe, R., & Sauer, A. (2021). A New Perspective for Climate Change
Mitigation—Introducing Carbon-Negative Hydrogen Production from Biomass with
Carbon Capture and Storage (HyBECCS). Sustainability, 13(7), 4026. Retrieved from
https://www.mdpi.com/2071-1050/13/7/4026
Fulton, W., Gray, M., Prahl, F., & Kleber, M. (2012). A simple technique to eliminate ethylene
emissions from biochar amendment in agriculture. Biomedical and Life Sciences
Agronomy for Sustainable Development, 33(3), 469-474. doi:10.1007/
s13593-012-0118-5
Fungo, B. (2014). N2O and CH4 emission from soil amended with steam-activated biochar.
Journal of Plant Nutrition and Soil Science, 177(1), 34-38.
Funk, J. M., Field, C. B., Kerr, S., & Daigneault, A. (2014). Modeling the impact of carbon
farming on land use in a New Zealand landscape. Environmental Science & Policy, 37,
1-10. doi:https://doi.org/10.1016/j.envsci.2013.08.008
Fuss, S. (2017). The 1.5°C Target, Political Implications, and the Role of BECCS. Oxford
Research Encyclopedia of Climate Science, 1-28. Retrieved from http://
climatescience.oxfordre.com/view/10.1093/acrefore/9780190228620.001.0001/
acrefore-9780190228620-e-585?print=pdf
Fuss, S., et al. (2018). Negative emissions—Part 2: Costs, potentials and side effects.
Environmental Research Letters, 13(6), 063002. Retrieved from http://stacks.iop.org/
1748-9326/13/i=6/a=063002
Fuss, S., Canadell, J. G., Ciais, P., Jackson, R. B., Jones, C. D., Lyngfelt, A., . . . Van Vuuren, D.
P. (2020). Moving toward Net-Zero Emissions Requires New Alliances for Carbon
Dioxide Removal. One Earth, 3(2), 145-149. doi:10.1016/j.oneear.2020.08.002
Fuss, S., Canadell, J. G., Peters, G. P., Tavoni, M., Andrew, R. M., Ciais, P., . . . Yamagata, Y.
(2014). Betting on negative emissions. Nature Clim. Change, 4(10), 850-853.
doi:10.1038/nclimate2392
Fuss, S., & Johnsson, F. (2021). The BECCS Implementation Gap–A Swedish Case Study.
Frontiers in Energy Research, 8(385). doi:10.3389/fenrg.2020.553400
Fuss, S., Jones, C. D., Kraxner, F., Peters, G. P., Smith, P., Tavoni, M., . . . Yamagata, Y. (2016).
Research priorities for negative emissions. Environmental Research Letters, 11(11), 11.
doi:10.1088/1748-9326/11/11/115007
Fuss, S., Reuter, W. H., Szolgayova, J., & Obersteiner, M. (2013). Optimal mitigation strategies
with negative emission technologies and carbon sinks under uncertainty. Climatic
Change, 118(1), 73-87. doi:10.1007/s10584-012-0676-1
Futter, M. N. e. a. (2012). Uncertainty in silicate mineral weathering rate estimates: source
partitioning and policy implications. Environmental Research Letters, 7(2), 1-8. Retrieved
from http://iopscience.iop.org/article/10.1088/1748-9326/7/2/024025/pdf
Fyson, C. (2020). Who should be responsible for removing CO2 from the atmosphere?
Retrieved from https://climateanalytics.org/blog/2020/who-should-be-responsible-for-
removing-co2-from-the-atmosphere/
Fyson, C. L., Baur, S., Gidden, M., & Schleussner, C.-F. (2020). Fair-share carbon dioxide
removal increases major emitter responsibility. Nature Climate Change, 10(9), 836-841.
doi:10.1038/s41558-020-0857-2
Gabbatiss, J. (2019). Massive restoration of world’s forests would cancel out a decade of CO2
emissions, analysis suggests. The Independent. Retrieved from https://
www.independent.co.uk/environment/forests-climate-change-co2-greenhouse-gases-
trillion-trees-global-warming-a8782071.html?
fbclid=IwAR1zxCgeF6YTyeVABg9dmeHkgkOhUtCArUw3q1PHPAFeT1LPVG0_JoEJrHs
Gadikota, G. (2020). Multiphase carbon mineralization for the reactive separation of CO2 and
directed synthesis of H2. Nature Reviews Chemistry, 4(2), 78-89. doi:10.1038/
s41570-019-0158-3
Gadikota, G., Matter, J., Kelemen, P., & Park, A.-h. A. (2014). Chemical and morphological
changes during olivine carbonation for CO2 storage in the presence of NaCl and
NaHCO3. Physical Chemistry Chemical Physics, 16(10), 4679-4693. doi:10.1039/
C3CP54903H
Gadikota, G., Swanson, E. J., Zhao, H., & Park, A.-H. A. (2014). Experimental Design and Data
Analysis for Accurate Estimation of Reaction Kinetics and Conversion for Carbon
Mineralization. Industrial & Engineering Chemistry Research, 53(16), 6664-6676.
doi:10.1021/ie500393h
Gaede, J., & Rowlands, I. H. (2018). Visualizing social acceptance research: A bibliometric
review of the social acceptance literature for energy technology and fuels. Energy
Research & Social Science, 40, 142-158. doi:https://doi.org/10.1016/j.erss.2017.12.006
Gaffney, F., Deane, J. P., Drayton, G., Glynn, J., & Gallachóir, B. P. Ó. (2020). Comparing
negative emissions and high renewable scenarios for the European power system. BMC
Energy, 2(1), 3. doi:10.1186/s42500-020-00013-4
Gaffron, H. (1942). Reduction of Carbon Dioxide Coupled with the Oxyhydrogen Reaction in
Algae. The Journal of General Physiology, 26(2), 241-267. doi:10.1085/jgp.26.2.241
Gagern, A., et al. (2019). Ocean Alkalinity Enhancement: Current state of knowledge and
potential role of philanthropy. Retrieved from https://oursharedseas.com/oss_downloads/
ocean-alkalinity-enhancement-current-state-of-knowledge-and-potential-role-of-
philanthropy/
Gagern, A. (2021). Demystifying Ocean-based Carbon Dioxide Removal: An Explainer. Our
Shared Seas. Retrieved from https://oursharedseas.com/demystifying-ocean-based-
carbon-dioxide-removal-an-explainer/
Gagern, A., & Kapsenberg, L. (2021). Ocean –based carbon dioxide removal: A primer for
philanthropy. Retrieved from https://www.climateworks.org/report/ocean-carbon-dioxide-
removal-the-need-and-the-opportunity/
Gai, X., Wang, H., Liu, J., Zhai, L., Liu, S., Ren, T., & Liu, H. (2014). Effects of Feedstock and
Pyrolysis Temperature on Biochar Adsorption of Ammonium and Nitrate. Plos One,
9(12), e113888. doi:10.1371/journal.pone.0113888.s002
Gaillardet, J., Dupré, B., Louvat, P., & Allègre, C. J. (1999). Global silicate weathering and CO2
consumption rates deduced from the chemistry of large rivers. Chemical Geology,
159(1–4), 3-30. doi:http://dx.doi.org/10.1016/S0009-2541(99)00031-5
Galdos, M. V., Pires, L. F., Cooper, H. V., Calonego, J. C., Rosolem, C. A., & Mooney, S. J.
(2019). Assessing the long-term effects of zero-tillage on the macroporosity of Brazilian
soils using X-ray Computed Tomography. Geoderma, 337, 1126-1135. doi:https://doi.org/
10.1016/j.geoderma.2018.11.031
Gale, J., & Freund, P. (2001). Coal-Bed Methane Enhancement with CO2 Sequestration
Worldwide Potential. Environmental Geosciences, 8(3), 210-217.
doi:10.1046/1526-0984.2001.008003210.x
Gale, J. J. (2004). Using Coal Seams for CO
2
Sequestration. Geologica Belgica, 7(3-4), 99-103.
Retrieved from https://popups.uliege.be/1374-8505/index.php?id=1452&file=1&pid=239
Gale, R. (2019). Nature should be our greatest ally in the fight against climate change. The
Telegraph. Retrieved from https://www.telegraph.co.uk/politics/2019/10/15/nature-
should-greatest-ally-fight-against-climate-change/?
utm_campaign=Carbon%20Brief%20Daily%20Briefing&utm_medium=email&utm_sourc
e=Revue%20newsletter
Galgani, P., van der Voet, E., & Korevaar, G. (2014). Composting, anaerobic digestion and
biochar production in Ghana. Environmental–economic assessment in the context of
voluntary carbon markets. Waste Management, 34(12), 2454–2465. doi:10.1016/
j.wasman.2014.07.027
Galik, C. S., & Jackson, R. B. (2009). Risks to forest carbon offset projects in a changing
climate. Forest Ecology and Management, 257(11), 2209-2216. doi:http://dx.doi.org/
10.1016/j.foreco.2009.03.017
Galina, N. R., Arce, G. L. A. F., & Ávila, I. (2019). Evolution of carbon capture and storage by
mineral carbonation: Data analysis and relevance of the theme. Minerals Engineering,
142, 105879. doi:https://doi.org/10.1016/j.mineng.2019.105879
Galinato, S. P., Yoder, J. K., & Granatstein, D. (2011). The economic value of biochar in crop
production and carbon sequestration. Energy Policy, 39(10), 6344-6350. doi:10.1016/
j.enpol.2011.07.035
Gall, E. T., & Nazaroff, W. W. (2015). New directions: Potential climate and productivity benefits
from CO2 capture in commercial buildings. Atmospheric Environment, 103, 378-380.
doi:http://dx.doi.org/10.1016/j.atmosenv.2015.01.004
Gall, M. P., Boyd, P. W., Hall, J., Safi, K. A., & Chang, H. (2001). Phytoplankton processes. Part
1: Community structure during the Southern Ocean Iron RElease Experiment (SOIREE).
Deep Sea Research Part II: Topical Studies in Oceanography, 48(11–12), 2551-2570.
doi:http://dx.doi.org/10.1016/S0967-0645(01)00008-X
Gall, M. P., Strzepek, R., Maldonado, M., & Boyd, P. W. (2001). Phytoplankton processes. Part
2: Rates of primary production and factors controlling algal growth during the Southern
Ocean Iron RElease Experiment (SOIREE). Deep Sea Research Part II: Topical Studies
in Oceanography, 48(11–12), 2571-2590. doi:http://dx.doi.org/10.1016/
S0967-0645(01)00009-1
Gallagher, E. (2008). The Gallagher Review of the indirect effects of biofuels production.
Retrieved from https://www.unido.org/fileadmin/user_media/UNIDO_Header_Site/
Subsites/Green_Industry_Asia_Conference__Maanila_/GC13/Gallagher_Report.pdf
Gallucci, M. (2020). Capture Carbon in Concrete Made With CO2. IEEE Spectrum. Retrieved
from https://spectrum.ieee.org/energywise/energy/fossil-fuels/carbon-capture-power-
plant-co2-concrete
Galvez, A., et al. (2012). Short term effects of bioenergy by-products on soil C and N dynamics,
nutrient availability and biochemical properties. Agriculture, Ecosystems & Environment,
160, 3–14.
Galy, V., France-Lanord, C., Beyssac, O., Faure, P., Kudrass, H., & Palhol, F. (2007). Efficient
organic carbon burial in the bengal fan sustained by the himalayan erosional system.
Nature, 450, 407-410. Retrieved from http://www.nature.com/nature/journal/v450/n7168/
abs/nature06273.html
Gamage, D. V., et al. (2015). Effect of rice husk biochar on selected soil properties in tropical
Alfisols. Soil, Land Care & Environmental Research, 54(3), 302-331-. Retrieved from
http://www.publish.csiro.au/view/journals/dsp_journals_pip_abstract_Scholar1.cfm?
nid=84&pip=SR15102
Gambardella, S. (2019). The Stormy Emergence of Geoengineering in the International Law of
the Sea. Carbon & Climate Law Review, 13(2), 122-129. doi:10.21552/cclr/2019/2/7 %J
Carbon & Climate Law Review
Gambhir, A., Butnar, I., Li, P.-H., Smith, P., & Strachan, N. (2019). A Review of Criticisms of
Integrated Assessment Models and Proposed Approaches to Address These, through
the Lens of BECCS. 12(9), 1747. Retrieved from https://www.mdpi.com/
1996-1073/12/9/1747
Gambhir, A., & Tavoni, M. (2019). Direct Air Carbon Capture and Sequestration: How It Works
and How It Could Contribute to Climate-Change Mitigation. One Earth, 1(4), 405-409.
doi:https://doi.org/10.1016/j.oneear.2019.11.006
Gambill, P. (2018). Blog. Retrieved from https://medium.com/nori-carbon-removal/why-a-
carbon-removal-market-belongs-on-the-blockchain-91da31127228
Gamborg, C., Anker, H. T., & Sandøe, P. (2014). Ethical and legal challenges in bioenergy
governance: Coping with value disagreement and regulatory complexity. Energy Policy,
69, 326-333. doi:https://doi.org/10.1016/j.enpol.2014.02.013
Gamborg, C., Millar, K., Shortall, O., & Sandøe, P. (2012). Bioenergy and Land Use: Framing
the Ethical Debate. Journal of Agricultural and Environmental Ethics, 25(6), 909-925.
doi:10.1007/s10806-011-9351-1
Gambrill, D. (2021). The future of carbon removal insurance: As big as oil and gas? . Retrieved
from https://www.canadianunderwriter.ca/insurance/the-future-of-carbon-removal-
insurance-as-big-as-oil-and-gas-1004205962/
Gámiz, B., Pignatello, J. J., Cox, L., Hermosín, M. C., & Celis, R. (2016). Environmental fate of
the fungicide metalaxyl in soil amended with composted olive-mill waste and its biochar:
An enantioselective study. Science of The Total Environment, 541, 776 - 783.
doi:10.1016/j.scitotenv.2015.09.097
Gan, C., Liu, Y., Tan, X., Wang, S., Zeng, G., Zheng, B., . . . Liu, W. (2015). Effect of porous
zinc–biochar nanocomposites on Cr(VI) adsorption from aqueous solution. RSC Adv.,
5(44), 35107 - 35115. doi:10.1039/c5ra04416b
Gan, M., Fan, X.-h., Jiang, T., Chen, X.-l., Yu, Z.-y., & Ji, Z.-y. (2014). Fundamental study on iron
ore sintering new process of flue gas recirculation together with using biochar as fuel.
Journal of Central South University, 21(11), 4109 - 4114. doi:10.1007/
s11771-014-2405-6
Gan, M., Xiaohui, F., Tao, J., Hui-ling, C., Yuan, S., & Jìzhìyún. (2014). Fundamental study on
iron ore sintering new process of flue gas recirculation together with using biochar as
fuel. Journal of Central South University, 21(11), 4109-4114. Retrieved from http://
www.cnki.com.cn/Article/CJFDTOTAL-ZNGY201411011.htm
Gandahi, A. W., et al. . (2015). Impact of rice husk biochar and macronutrient fertilizer on fodder
maize and soil properties. International Journal of Biosciences (IJB), 7(4), 12 - 21.
doi:10.12692/ijb/7.4.12-21
Ganguli, S. S. (2017). Ankleshwar Oil Field: A Proposed CO2 Injection Site. In Integrated
Reservoir Studies for CO2-Enhanced Oil Recovery and Sequestration: Application to an
Indian Mature Oil Field (pp. 11-20). Cham: Springer International Publishing.
Ganguli, S. S. (2017). Implication of CO2-EOR and Storage at Ankleshwar Oil Field—A
Reservoir Geomechanics Viewpoint. In Integrated Reservoir Studies for CO2-Enhanced
Oil Recovery and Sequestration: Application to an Indian Mature Oil Field (pp. 99-115).
Cham: Springer International Publishing.
Ganguli, S. S. (2017). Time-Lapse Monitoring of CO2 Response at Ankleshwar Oil Field: A
Seismic Modeling Approach for Feasible CO2-EOR and Storage. In Integrated Reservoir
Studies for CO2-Enhanced Oil Recovery and Sequestration: Application to an Indian
Mature Oil Field (pp. 117-130). Cham: Springer International Publishing.
Gannon, K., & Hulme, M. (2017). Geoengineering at the “Edge of the World”: Exploring
perceptions of ocean fertilisation through the Haida Salmon Restoration Corporation.
Retrieved from http://www.lse.ac.uk/GranthamInstitute/wp-content/uploads/2017/09/
Working-Paper-280-Gannon-Hulme-1.pdf
Gannon, K. E. (2016). 40 Million Salmon Might Be Wrong’ : Ecological Worldviews and
Geoengineering Technologies: The Case of the Haida Salmon Restoration Corporation.
(Ph.D. Thesis). King's College, Retrieved from https://kclpure.kcl.ac.uk/portal/files/
60866652/2016_Gannon_Kate_Elizabeth_1351341_ethesis.pdf
Gannon, K. E., & Hulme, M. (2018). Geoengineering at the “Edge of the World”: Exploring
perceptions of ocean fertilisation through the Haida Salmon Restoration Corporation.
Geo: Geography and Environment, 5(1), e00054. doi:10.1002/geo2.54
Gao, C., Li, X., Guo, L., & Zhao, F. (2013). Heavy oil production by carbon dioxide injection.
Greenhouse Gases: Science and Technology, 3(3), 185-195. doi:10.1002/ghg.1346
Gao, F., Xue, Y., Deng, P., Cheng, X., & Yang, K. (2015). Removal of aqueous ammonium by
biochars derived from agricultural residuals at different pyrolysis temperatures. Chemical
Speciation & Bioavailability, 27(2), 92 - 97. doi:10.1080/09542299.2015.1087162
Gao, K., Aruga, Y., Asada, K., Ishihara, T., Akano, T., & Kiyohara, M. (1991). Enhanced growth
of the red algaPorphyra yezoensis Ueda in high CO2 concentrations. Journal of Applied
Phycology, 3(4), 355-362. doi:10.1007/bf00026098
Gao, K., Aruga, Y., Asada, K., & Kiyohara, M. J. J. o. A. P. (1993). Influence of enhanced CO2
on growth and photosynthesis of the red algaeGracilaria sp. andG. chilensis. 5(6),
563-571. doi:10.1007/bf02184635
Gao, K., & McKinley, K. R. (1994). Use of macroalgae for marine biomass production and CO2
remediation: a review. Journal of Applied Phycology, 6(1), 45-60. doi:10.1007/
bf02185904
Gao, W., Zhang, M., & Wu, H. (2016). Fuel properties and ageing of bioslurry prepared from
glycerol/methanol/bio-oil blend and biochar. Fuel, 176, 72 - 77. doi:10.1016/
j.fuel.2016.02.056
Gao, X., & Wu, H. (2011). Biochar as a Fuel: 4. Emission Behavior and Characteristics of PM1
and PM10 from the Combustion of Pulverized Biochar in a Drop-Tube Furnace. Energy
Fuels, 25(6), 2702-2710. doi:10.1021/ef200296u
Gao, X., & Wu, H. (2013). Aerodynamic Properties of Biochar Particles: Effect of Grinding and
Implications. Environmental Science & Technology Letters, 1(1), 60-64. Retrieved from
http://pubs.acs.org/doi/abs/10.1021/ez400165g
Gao, X., Yani, S., & Wu, H. (2014). Pyrolysis of Spent Biomass from Mallee Leaf Steam
Distillation: Biochar Properties and Recycling of Inherent Inorganic Nutrients. Energy
Fuels, 28(7), 4642-4649. Retrieved from http://pubs.acs.org/doi/abs/10.1021/ef501114v
Gao, Y., et al. (2012). Algae biodiesel - a feasibility report. Chemistry Central Journal, 6, 1-16.
Retrieved from https://www.ourenergypolicy.org/wp-content/uploads/
2012/04/1752-153X-6-S1-S1.pdf
Garba, N. A., Duckers, L. J., & Hall, W. J. (2014). Climate change impacts on life cycle
greenhouse gas (GHG) emissions savings of biomethanol from corn and soybean.
International Journal of Life Cycle Assessment, 19(4), 806-813. doi:10.1007/
s11367-013-0680-3
Garcia, B., Beaumont, V., Perfetti, E., Rouchon, V., Blanchet, D., Oger, P., . . . Haeseler, F.
(2010). Experiments and geochemical modelling of CO2 sequestration by olivine:
Potential, quantification. Applied Geochemistry, 25(9), 1383-1396. doi:https://doi.org/
10.1016/j.apgeochem.2010.06.009
Garcia, C., Nannipieri, P., & Hernandez, T. (2018). Chapter 9 - The Future of Soil Carbon. In C.
Garcia, P. Nannipieri, & T. Hernandez (Eds.), The Future of Soil Carbon (pp. 239-267):
Academic Press.
Garcia, C. A., Riegelhaupt, E., Ghilardi, A., Skutsch, M., Islas, J., Manzini, F., & Masera, O.
(2015). Sustainable bioenergy options for Mexico: GHG mitigation and costs. Renewable
& Sustainable Energy Reviews, 43, 545-552. doi:10.1016/j.rser.2014.11.062
Garcia Freites, S., & Jones, C. (2021). A Review of the Role of Fossil Fuel-Based Carbon
Capture and Storage in the Energy System
Retrieved from https://www.google.com/url?
sa=t&rct=j&q=&esrc=s&source=web&cd=&cad=rja&uact=8&ved=2ahUKEwjyidnIyIbyAh
WBWM0KHY5NBJcQFjABegQICRAD&url=https%3A%2F%2Fwww.research.mancheste
r.ac.uk%2Fportal%2Ffiles%2F184755890%2FCCS_REPORT_FINAL_v2_UPLOAD.pdf
&usg=AOvVaw2CWQTyNLTdncwfxUmJ6jUp
Garcia Izquierdo, C., et al. . (2014). Enmiendas orgánicas de nueva generación: biochar y otras
biomoléculas (Organic amendments next generation: biochar and other biomolecules).
In De Residuo a Recurso: El Camino hacia la Sostenibilidad (Waste to Resource: The
Path to Sustainability).
Garcia, S. F., & Jones, C. (2021). A Review of the Role of Fossil Fuel Based Carbon Capture
and Storage in the Energy System. Retrieved from
García-Delgado, C., Alfaro, I., & Eymar, E. (2015). Assessment of the combination of biochar
amendment and Pleurotus ostreatus application in bioremediation of creosote polluted
soil. Paper presented at the International Conference on Solid Waste. https://
arcpe.hkbu.edu.hk/conf2015/implement/files/D5E_A268a_GARCIA_DELGADO_C.pdf
García-Delgado, C., Alfaro-Barta, I., & Eymar, E. (2015). Combination of biochar amendment
and mycoremediation for polycyclic aromatic hydrocarbons immobilization and
biodegradation in creosote-contaminated soil. Journal of Hazardous Materials, 285, 259
- 266. doi:10.1016/j.jhazmat.2014.12.002
García-Freites, S., Gough, C., & Röder, M. (2021). The greenhouse gas removal potential of
bioenergy with carbon capture and storage (BECCS) to support the UK's net-zero
emission target. Biomass and Bioenergy, 151, 106164. doi:https://doi.org/10.1016/
j.biombioe.2021.106164
García-Jaramillo Rodríguez, M. (2015). Application of organic amendments and biochars
derived from olive oil industry in the cultivation of rice: influence on the dynamics of
pesticides and agronomic properties (translated from Spanish language). Universidad de
Sevilla (University of Seville), Retrieved from https://idus.us.es/xmlui/handle/
11441/30430
Garcia-Perez, M., et al. (2012). Methods for Producing Biochar and Advanced Bio-fuels in
Washington State. Part 3: Literature Review of Technologies for Product Collection and
Refining. Retrieved from Pullman, WA:
Garcia-Perez, M., et al.,. (2013). Methods for Producing Biochar and Advanced Biofuels in
Washington State - Part 4: Literature Review of Sustainability Issues, Business Models,
and Financial Analyses. Retrieved from https://fortress.wa.gov/ecy/publications/
documents/1207035.pdf
Garcia-Perez, M., et al. . (2015). Sustainability, Business Models, and Techno-Economic
Analysis of Biomass Pyrolysis Technologies. In Innovative Solutions in Fluid-Particle
Systems and Renewable Energy Management (pp. 1-45).
Gardarsdottir, S. O., Normann, F., Andersson, K., & Johnsson, F. (2014). Process Evaluation of
CO2 Capture in three Industrial case Studies. Energy Procedia, 63, 6565-6575.
doi:http://dx.doi.org/10.1016/j.egypro.2014.11.693
Gardiner, W. (2019). How Drax Power Station will go carbon negative by 2030 and lead the
world. The Yorkshire Post. Retrieved from https://www.yorkshirepost.co.uk/news/opinion/
columnists/how-drax-power-station-will-go-carbon-negative-by-2030-and-lead-the-world-
will-gardiner-1-10147543
Gardiner, W. (2020). Putting the North at the heart of a green industrial revolution. The
Spectator. Retrieved from https://www.spectator.co.uk/article/putting-the-north-at-the-
heart-of-a-green-industrial-revolution
Garedew, M. (2014). Lignin depolymerization and upgrading via fast pyrolysis and
electrocatalysis for the production of liquid fuels and value-added products. Michigan
State University, Retrieved from http://gradworks.umi.com/15/64/1564309.html
Garg, A., & Shukla, P. R. (2009). Coal and energy security for India: Role of carbon dioxide
(CO2) capture and storage (CCS). Energy, 34(8), 1032-1041. doi:https://doi.org/10.1016/
j.energy.2009.01.005
Garner, J. (2011). Can Biochar Help you Realize more Value from Manure? In.
Garrett, J., & McCoy, S. (2013). Carbon Capture and Storage and the London Protocol: Recent
Efforts to Enable Transboundary CO2 Transfer. Energy Procedia, 37, 7747-7755.
doi:http://dx.doi.org/10.1016/j.egypro.2013.06.721
Gartner, E., et al. (2015). A Novel Atmospheric Pressure Approach to the Mineral Capture of
CO2 from Industrial Point Sources. Paper presented at the Thirteenth Annual
Conference on Carbon Capture, Utilization and Storage. https://www.academia.edu/
18448501/
A_Novel_Atmospheric_Pressure_Approach_to_the_Mineral_Capture_of_CO2_from_Ind
ustrial_Point_Sources?email_work_card=title
Gascó, G., Paz-Ferreiro, J., & Méndez, A. (2011). Thermal analysis of soil amended with
sewage sludge and biochar from sewage sludge pyrolysis. Journal of Thermal Analysis
and Calorimetry, 108(2), 1-7. doi:10.1007/s10973-011-2116-2
Gaskin, J. W., Das, K. C., Tassistro, A., Sonon, L., Harris, K., & Hawkins, B. (2009).
Characterization of Char for Agricultural Use in the Soils of the Southeastern United
States. Amazonian Dark Earths: Wim Sombroek's Vision.
Gaskin, J. W., Harris, K., Lee, D., Speir, A., Morris, L. M., Ogden, L., & Das, K. C. (2007, 2007).
Potential for pyrolysis char to affect soil moisture and nutrient status of loamy sand soil.
Paper presented at the Georgia Water Resources Conference, University of Georgia.
Gaskin, J. W., Speir, R. A., Harris, K., Das, K. C., Lee, R. D., Morris, L. A., & Fisher, D. S.
(2010). Effect of Peanut Hull and Pine Chip Biochar on Soil Nutrients, Corn Nutrient
Status, and Yield. Agronomy Journal, 102, 623-633.
Gaskin, J. W., Steiner, C., Harris, K., Das, K. C., & Bibens, B. (2008). Effect of Low-Temperature
Pyrolysis Conditions on Biochar for Agricultural Use. Transactions of the ASABE, 51(6),
2061-2029. Retrieved from https://elibrary.asabe.org/azdez.asp?AID=25409&T=2
Gaspar Ravagnani, A. T. F. S., Ligero, E. L., & Suslick, S. B. (2009). CO2 sequestration through
enhanced oil recovery in a mature oil field. Journal of Petroleum Science and
Engineering, 65(3), 129-138. doi:https://doi.org/10.1016/j.petrol.2008.12.015
Gassensmith, J. J., Furukawa, H., Smaldone, R. A., Forgan, R. S., Botros, Y. Y., Yaghi, O. M., &
Stoddart, J. F. (2011). Strong and Reversible Binding of Carbon Dioxide in a Green
Metal–Organic Framework. Journal of the American Chemical Society, 133(39),
15312-15315. doi:10.1021/ja206525x
Gasser, T., Guivarch, C., Tachiiri, K., Jones, C. D., & Ciais, P. (2015). Negative emissions
physically needed to keep global warming below 2 degrees C. Nature Communications,
6, 7. doi:10.1038/ncomms8958
Gathorne-Hardy, A. (2012). The role of biochar in English agriculture : agronomy, biodiversity,
economics and climate change. Imperial College London (University of London),
Gattinger, A., et al. (2012). Enhanced top soil carbon stocks under organic farming. Proceedings
of the National Academy of Sciences, 109(4), 18226-18231. Retrieved from http://
www.pnas.org/content/109/44/18226.full
Gattuso, J.-P., Magnan, A. K., Bopp, L., Cheung, W. W. L., Duarte, C. M., Hinkel, J., . . . Rau, G.
H. (2018). Ocean Solutions to Address Climate Change and Its Effects on Marine
Ecosystems. Frontiers in Marine Science, 5(337). doi:10.3389/fmars.2018.00337
Gattuso, J.-P., Williamson, P., Duarte, C. M., & Magnan, A. K. (2021). The Potential for Ocean-
Based Climate Action: Negative Emissions Technologies and Beyond. Frontiers in
Climate, 2(37). doi:10.3389/fclim.2020.575716
Gauder, M., Graeff-Hönninger, S., Lewandowski, I., & Claupein, W. (2012). Long-term yield and
performance of 15 different Miscanthus genotypes in southwest Germany. Annals of
Applied Biology, 160(2), 126-136. Retrieved from http://onlinelibrary.wiley.com/doi/
10.1111/j.1744-7348.2011.00526.x/abstract
Gaunt, J. L., & Cowie, A. (2009). Biochar, Greenhouse Gas Acounting and Emissions Trading.
In J. Lehmann & S. Joseph (Eds.), Biochar for Environmental Management: Science and
Technology (pp. 317-340). London, UK: Earthscan.
Gaunt, J. L., & Lehmann, J. (2008). Energy Balance and Emissions Associated with Biochar
Sequestration and Pyrolysis Bioenergy Production. Environmental Science &
Technology, 42(11), 4152-4158. doi:10.1021/es071361i
Gautam, S., Pulkki, R., Shahi, C., & Leitch, M. (2010). Economic and energy efficiency of
salvaging biomass from wildfire burnt areas for bioenergy production in northwestern
Ontario: A case study. Biomass & Bioenergy, 34(11), 1562-1572. doi:10.1016/
j.biombioe.2010.06.001
Gaworecki, M. (2021). Is planting trees as good for the Earth as everyone says? Mongabay.
Retrieved from https://news.mongabay.com/2021/05/is-planting-trees-as-good-for-the-
earth-as-everyone-says/?
utm_source=Mongabay+Newsletter&utm_campaign=89d58f8ce9-
Newsletter_2020_04_30_COPY_01&utm_medium=email&utm_term=0_940652e1f4-89d
58f8ce9-77159097&mc_cid=89d58f8ce9&mc_eid=ceaae677fe
Gayán, P., Abad, A., de Diego, L. F., García-Labiano, F., & Adánez, J. (2013). Assessment of
technological solutions for improving chemical looping combustion of solid fuels with
CO2 capture. Chemical Engineering Journal, 233, 56-69. doi:https://doi.org/10.1016/
j.cej.2013.08.004
Gearino, D. (2021). A Lifeline for a Coal Plant Gives Hope to a North Dakota Town. Others See
It as a Boondoggle. Inside Climate News, (July 17). Retrieved from https://
insideclimatenews.org/news/17072021/north-dakota-coal-energy-transition-jobs-carbon-
capture/
Gebald, C., Wurzbacher, J. A., Tingaut, P., & Steinfeld, A. (2013). Stability of Amine-
Functionalized Cellulose during Temperature-Vacuum-Swing Cycling for CO2 Capture
from Air. Environmental Science & Technology, 47(17), 10063-10070. doi:10.1021/
es401731p
Gebhardt, M. M. (2015). Soil Amendment Effects on Degraded Soils and Consequences for
Plant Growth and Soil Microbial Communities. The University of Arizona, Retrieved from
http://arizona.openrepository.com/arizona/handle/10150/556614
Gebremedhin, G. H., & Haileselassie, B. (2015). Effect of Biochar on Yield and Yield
Components of Wheat and Post-harvest Soil Properties in Tigray, Ethiopia. Journal of
Biofertilizers & Biopesticides, 06(02). doi:10.4172/jbfbp.1000158
Gebreslassie, B. H., Waymire, R., & You, F. (2013). Sustainable design and synthesis of algae-
based biorefinery for simultaneous hydrocarbon biofuel production and carbon
sequestration. 59(5), 1599-1621. doi:10.1002/aic.14075
Geden, O. (2017). Define limits for temperature overshoot targets. Nature Geoscience, 10,
881-882. Retrieved from https://www.nature.com/articles/s41561-017-0026-z
Geden, O. (2019). Targeting Net Zero Emissions. Retrieved from https://
kleinmanenergy.upenn.edu/policy-digests/targeting-net-zero-emissions
Geden, O., Peters, G. P., & Scott, V. (2019). Targeting carbon dioxide removal in the European
Union. Climate Policy, 19(4), 487-494. doi:10.1080/14693062.2018.1536600
Geden, O., & Schafer, S. (2016). “Negative Emissions”: A Challenge for Climate Policy.
Retrieved from https://www.swp-berlin.org/fileadmin/contents/products/comments/
2016C53_gdn_Schaefer.pdf
Geden, O., & Schenuit, F. (2020). Unconventional Mitigation: Carbon Dioxide Removal as a
New Approach in EU Climate Policy. Retrieved from https://www.swp-berlin.org/
10.18449/2020RP08/
Geden, O., Scott, V., & Palmer, J. (2018). Integrating carbon dioxide removal into EU climate
policy: Prospects for a paradigm shift. Wiley Interdisciplinary Reviews: Climate Change,
9(4), e521. doi:doi:10.1002/wcc.521
Geerlings, H., & Zevenhoven, R. (2013). CO
2
Mineralization—Bridge Between Storage and
Utilization of CO
2
. Annual Review of Chemical and Biomolecular Engineering, 4,
103-117. Retrieved from http://www.annualreviews.org/doi/pdf/10.1146/annurev-
chembioeng-062011-080951
Gehrig-Fasel, J., et al. (2020). Scaling-up Nature-based Solutions. Carbon Mechanisms Review,
9(2), 36-43. Retrieved from https://www.carbon-mechanisms.de/en/publications/details/
cmr-02-2021
Gelardi, D. L., Li, C., & Parikh, S. J. (2019). An emerging environmental concern: Biochar-
induced dust emissions and their potentially toxic properties. Science of The Total
Environment, 678, 813-820. doi:https://doi.org/10.1016/j.scitotenv.2019.05.007
Gelfand, I., Hamilton, S. K., Kravchenko, A. N., Jackson, R. D., Thelen, K. D., & Robertson, G.
P. (2020). Empirical Evidence for the Potential Climate Benefits of Decarbonizing Light
Vehicle Transport in the U.S. with Bioenergy from Purpose-Grown Biomass with and
without BECCS. Environmental Science & Technology, 54(5), 2961-2974. doi:10.1021/
acs.est.9b07019
Gelfand, I., Sahajpal, R., Zhang, X., Izaurralde, R. C., Gross, K. L., & Robertson, G. P. (2013).
Sustainable bioenergy production from marginal lands in the US Midwest. Nature,
493(7433), 514-517. doi:http://www.nature.com/nature/journal/v493/n7433/abs/
nature11811.html#supplementary-information
Gelinas, Y., Prentice, K. M., Baldock, J. A., & Hedges, J. I. (2001). An improved thermal
oxidation method for the quantification of soot/graphitic black carbon in sediments and
soils. Environmental Science & Technology, 35(17), 3519-3525.
Geman, B. (2020). Making sense of United Airlines' carbon pledge. Axios. Retrieved from
https://www.axios.com/united-airlines-carbon-pledge-2050-
airlines-7d2db06a-48c6-4120-b17f-8b1496dd5819.html
Geman, B. (2021). 1 big thing: The expanding carbon removal market. Axios. Retrieved from
https://www.axios.com/newsletters/axios-generate-9b7f6efd-2b41-4bdb-ba5c-
c77d8b642199.html?chunk=0&utm_term=emshare
Geman, B. (2021). Direct air capture player throws open its doors. Axios. Retrieved from https://
www.axios.com/newsletters/axios-
generate-6ba74e11-9016-49aa-90dc-385eee0a3478.html?
utm_source=newsletter&utm_medium=email&utm_campaign=newsletter_axiosgenerate
&stream=top
Genes, E. J. E. (2014). DESTILACIÓN SECUNDARIA DE ALQUITRANES GENERADOS EN
LA GASIFICACIÓN DE CUESCO DE PALMA AFRICANA (HIGH TAR DISTILLATION
GENERATED GASIFICATION AFRICAN PALM CUESCO). National University of
Columbia, Retrieved from http://www.bdigital.unal.edu.co/12907/1/73119247.2014.pdf
Genes, É. J. E. (2015). Destilación secundaria de alquitranes generados en la gasificación de
cuesco de palma africana (Secondary distillation of tar generated in the gasification of
palm cuesco). Unibersidad Nacional de Colombia, Retrieved from http://
www.bdigital.unal.edu.co/12907/
Genesio, L., et al. (2012). Surface albedo following biochar application in durum wheat.
Environmental Research Letters, 7. Retrieved from http://iopscience.iop.org/
1748-9326/7/1/014025/article
Genesio, L., et al. (2015). Biochar increases vineyard productivity without affecting grape
quality: Results from a four years field experiment in Tuscany. Agriculture, Ecosystems &
Environment, 201, 20 - 25. doi:10.1016/j.agee.2014.11.021
Genesio, L., Vaccari, F. P., & Miglietta, F. (2016). Black carbon aerosol from biochar threats its
negative emission potential. Global Change Biology, 22(7), 2313-2314. doi:10.1111/
gcb.13254
GenLin, W., et al. . (2015). Effects of bio-char on soil microbes in herbicide residual soils.
Journal of Agricultural Resources and Environment, 32(5), 471-476. Retrieved from
http://www.cabdirect.org/abstracts/
20163033487.html;jsessionid=E4E1DE088D070530E5108D3B0284E023
Genovese, M., Jiang, J., Lian, K., & Holm, N. (2014). High capacitive performance of exfoliated
biochar nanosheets from biomass waste corn cob. J. Mater. Chem. A, 3, 2903-2913.
doi:10.1039/c4ta06110a
GenXing, P., et al. . (2015). Industrialization of biochar from biomass pyrolysis: a new option for
straw burning ban and green agriculture of China. Science & Technology Review,
33(13), 92-101. Retrieved from https://www.cabdirect.org/cabdirect/abstract/
20153305806
George, B. (2013). Bioenergy & water in Australia. In J. F. Dellemand & P. W. Gerbens-Leenes
(Eds.), Bioenergy and Water (pp. 143-158): European Commission.
George, C., Kohler, J., & Rillig, M. C. (2016). Biochars reduce infection rates of the root-lesion
nematode Pratylenchus penetrans and associated biomass loss in carrot. Soil Biology
and Biochemistry, 95, 11-18. doi:10.1016/j.soilbio.2015.12.003
George, R. (2019). Perfect Timing, Russian Volcano Brings Life to North Pacific Ocean
Pastures. Retrieved from http://russgeorge.net/2019/06/26/perfect-timing-russian-
volcano-brings-life-to-north-pacific-ocean-pastures/
George, R., Fiekowsky, P., & Carlin, A. (Writers). (2019). Ocean Pasture Restoration. In
UNFCCC (Producer), 25th Conference of the Parties.
Georgescu, M., Lobell, D. B., & Field, C. B. (2011). Direct climate effects of perennial bioenergy
crops in the United States. Proceedings of the National Academy of Sciences, 108(11),
4307-4312. doi:10.1073/pnas.1008779108
Georgiou, A. (2019). How Waste from Soft Drink Production Could be Used to Tackle Global
Warming. Newsweek.
Gerard, D., & Wilson, E. J. (2009). Environmental bonds and the challenge of long-term carbon
sequestration. Journal of Environmental Management, 90(2), 1097-1105. doi:https://
doi.org/10.1016/j.jenvman.2008.04.005
Gerardo, M. L., et al. (2015). Harvesting of microalgae within a biorefinery approach: A review of
the developments and case studies from pilot-plants. Algal Research, 11, 248-262.
Retrieved from https://ac.els-cdn.com/S2211926415300059/1-s2.0-
S2211926415300059-main.pdf?_tid=spdf-74162d4e-
a025-4fc8-9bea-71df8cbaf892&acdnat=1519699733_fb8465b0984733a558fe317cdcec6
56c
Gerbens-Leenes, P. W., Hoekstra, A. Y., & van der Meer, T. (2009). The water footprint of energy
from biomass: A quantitative assessment and consequences of an increasing share of
bio-energy in energy supply. Ecological Economics, 68, 1052-1060. Retrieved from
https://www.utwente.nl/en/et/wem/staff/hoekstra/the_water_footprint_of_bioenergy.pdf
Gerbens-Leenes, W., Hoekstra, A. Y., & van der Meer, T. H. (2009). The water footprint of
bioenergy. Proceedings of the National Academy of Sciences, 106(25), 10219-10223.
doi:10.1073/pnas.0812619106
Gerber, L. N., Tester, J. W., Beal, C. M., Huntley, M. E., & Sills, D. L. (2016). Target Cultivation
and Financing Parameters for Sustainable Production of Fuel and Feed from
Microalgae. Environmental Science & Technology, 50(7), 3333-3341. doi:10.1021/
acs.est.5b05381
Gerdemann, S. J., O'Connor, W. K., Dahlin, D. C., Penner, L. R., & Rush, H. (2007). Ex Situ
Aqueous Mineral Carbonation. Environmental Science & Technology, 41(7), 2587-2593.
doi:10.1021/es0619253
Gergova, K., Petrov, N., & Eser, S. (1994). Adsorption properties and microstructure of activated
carbons produced from agricultural by-products by steam pyrolysis. Carbon, 32(4),
693-702. doi:http://dx.doi.org/10.1016/0008-6223(94)90091-4
Gerlach, A., & Schmidt, H.-P. (2015). The use of biochar in cattle farming. the Biochar Journal.
Retrieved from http://www.biochar-journal.org/en/ct/9
Gerlach, H., & Schmidt, H. P. (2012). Biochar in poultry farming. Ithaka Journal, 262–264.
Retrieved from http://www.ithaka-journal.net/druckversionen/e032012-bc-poultry.pdf
German, L., Schoneveld, G. C., & Pachecho, P. (2011). Local Social and Environmental Impacts
of Biofuels: Global Comparative Assessment and Implications for Governance. Ecology
and Society, 16(4), Article 29. Retrieved from http://www.ecologyandsociety.org/issues/
article.php/4516
German, L., Schoneveld, G. C., & Pacheco, P. (2011). The Social and Environmental Impacts of
Biofuel Feedstock Cultivation: Evidence from Multi-Site Research in the Forest Frontier.
Ecology and Society, 16(3), Article 24. doi:10.5751/ES-04309-160324
German, L. A. (2003). Historical contingencies in the coevolution of environment and livelihood:
Contributions to the debate on amazonian black earth. Geoderma, 111(3-4), 307-331.
German, L. A., Schoneveld, G. C., & Gumbo, D. (2011). The Local Social and Environmental
Impacts of Smallholder-Based Biofuel Investments in Zambia. Ecology and Society,
16(4), Article 12. doi:10.5751/ES-04280-160412
Germano, M. G., et al., & i. (2012). Functional diversity of bacterial genes associated with
aromatic hydrocarbon degradation in anthropogenic dark earth of Amazonia. Pesquisa
Agropecuária Brasileira, 47(5), 654-664. Retrieved from http://www.scielo.br/scielo.php?
pid=s0100-204x2012000500004&script=sci_arttext
Gernon, T. M., Hincks, T. K., Merdith, A. S., Rohling, E. J., Palmer, M. R., Foster, G. L., . . .
Müller, R. D. (2021). Global chemical weathering dominated by continental arcs since
the mid-Palaeozoic. Nature Geoscience. doi:10.1038/s41561-021-00806-0
Gerrard, M. (2020). Direct air capture: An emerging necessity to fight climate change. Retrieved
from https://www.americanbar.org/groups/environment_energy_resources/publications/
trends/2019-2020/march-april-2020/direct-air-capture/
Gerssen-Gondelach, S. J., Wicke, B., & Faaij, A. P. C. (2017). GHG emissions and other
environmental impacts of indirect land use change mitigation. GCB Bioenergy, 9(4),
725-742. doi:10.1111/gcbb.12394
Gertner, J. (2019). Reverse Engineering the Climate Crisis Is Not Only Possible—It's
Necessary. Audobon. Retrieved from https://www.audubon.org/magazine/fall-2019/
reverse-engineering-climate-crisis-not-only
Gertner, J. (2019, February 12). The Tiny Swiss Company That Thinks It Can Help Stop Climate
Change. New York Times. Retrieved from https://www.nytimes.com/2019/02/12/
magazine/climeworks-business-climate-change.html?
fallback=0&recId=1H6W5aNXxMYum1aCFxekNVymA62&locked=0&geoContinent=NA&
geoRegion=CA&recAlloc=top_conversion&geoCountry=US&blockId=most-
popular&imp_id=276412354&action=click&module=Most+Popular&pgtype=Homepage
Gertner, J. (2021). The Dream of Carbon Air Capture Edges Toward Reality. Retrieved from
https://e360.yale.edu/features/the-dream-of-co2-air-capture-edges-toward-reality
Gevaerd, A., de Oliveira, P. R., Mangrich, A. S., Bergamini, M. F., & Marcolino-Junior, L. H.
(2016). Evaluation of antimony microparticles supported on biochar for application in the
voltammetric determination of paraquat. Materials Science and Engineering: C, 62, 123 -
129. doi:10.1016/j.msec.2016.01.020
Gevers, J., et al. . (2011). Biodiversity and the mitigation of climate change through bioenergy:
impacts of increased maize cultivation on farmland wildlife. GCB Bioenergy, 3(6),
472-482. doi:10.1111/j.1757-1707.2011.01104.x
Ghacham, A. B., Pasquier, L.-c., Cecchi, E., Blais, J.-f., & Mercier, G. (2016). CO2 sequestration
by mineral carbonation of steel slags under ambient temperature: parameters influence,
and optimization. Environmental Science and Pollution Research International, 23(17),
17635-17646. doi:http://dx.doi.org/10.1007/s11356-016-6926-4
Ghadirian, E., Abbasian, J., & Arastoopour, H. (2019). CFD simulation of gas and particle flow
and a carbon capture process using a circulating fluidized bed (CFB) reacting loop.
Powder Technology, 344, 27-35. doi:10.1016/j.powtec.2018.11.102
Ghaffar, A., Ghosh, S., Li, F., Dong, X., Zhang, D., Wu, M., . . . Pan, B. (2015). Effect of biochar
aging on surface characteristics and adsorption behavior of dialkyl phthalates.
Environmental Pollution, 206, 502 - 509. doi:10.1016/j.envpol.2015.08.001
Ghaffar, A., & Younis, M. N. (2014). Adsorption of organic chemicals on graphene coated
biochars and its environmental implicationsAbstract. Green Processing and Synthesis,
3(6). doi:10.1515/gps-2014-0071
Ghani, W. A. W. A. K., et al. (2013). Biochar production from waste rubber-wood-sawdust and its
potential use in C sequestration: Chemical and physical characterization. Industrial
Crops and Products, 44, 18–24.
Ghani, W. A. W. A. K., & da Silva, G. (2014). Saw dust-derived Biochar: Characterization and
CO2 Adsorption/desorption Study. Journal of Applied Sciences, 14(13), 1450-1454.
doi:10.3923/jas.2014.1450.1454
Ghani, W. A. W. A. K., Mohd, A., da Silva, G., Bachmann, R. T., Taufiq-Yap, Y. H., Rashid, U., &
Al-Muhtaseb, A. a. H. (2013). Biochar production from waste rubber-wood-sawdust and
its potential use in C sequestration: Chemical and physical characterization. Industrial
Crops and Products, 44, 18-24. doi:https://doi.org/10.1016/j.indcrop.2012.10.017
Ghasemi, Y., Rasoul-Amini, S., Naseri, A. T., Montazeri-Najafabady, N., Mobasher, M. A.,
Dabbagh, F. J. A. B., & Microbiology. (2012). Microalgae biofuel potentials (Review).
48(2), 126-144. doi:10.1134/s0003683812020068
Gheewala, S. H., Damen, B., & Shi, X. (2013). Biofuels: economic, environmental and social
benefits and costs for developing countries in Asia. Wiley Interdisciplinary Reviews:
Climate Change, 4(6), 497-511. doi:10.1002/wcc.241
Ghezel-Ayagh, H., Jolly, S., Patel, D., & Steen, W. (2017). Electrochemical Membrane
Technology for Carbon Dioxide Capture from Flue Gas. Energy Procedia, 108, 2-9.
doi:https://doi.org/10.1016/j.egypro.2016.12.183
Ghezelchi, M. H., Garcia-Perez, M., & Wu, H. (2015). Bioslurry as a Fuel. 7: Spray
Characteristics of Bio-Oil and Bioslurry via Impact and Twin-Fluid Atomizers. Energy &
Fuels, 29(12), 8058 - 8065. doi:10.1021/acs.energyfuels.5b02089
Ghezzeehei, T. A., Sarkhot, D. V., & Berhe, A. A. (2014). Biochar can be used to recapture
essential nutrients from dairy wastewater and improve soil quality. Solid Earth, 5,
953-962. Retrieved from http://www.solid-earth.net/5/953/2014/se-5-953-2014.pdf
Ghislain. Thierry, e. a. (2014). Characterization of biomass and biochar by LDI-FTICRMS. Paper
presented at the 62ND ASMS Conference on Mass spectrometry and allied topics.
https://hal.archives-ouvertes.fr/hal-01090823/
Ghoneim, A. M., & Ebid, A. I. (2014). Impact of rice-straw biochar on some selected soil
properties and rice (Oryza sativa L.) grain yield. International Journal of Agronomy and
Agricultural Research, 3(4), 14-22. Retrieved from http://
serv1.vipsmtp.com.md-75.webhostbox.net/innspub.net/wp-content/uploads/2014/05/
IJAAR-V3No4-p14-22.pdf
Ghorbani, A., Rahimpour, H. R., Ghasemi, Y., Zoughi, S., & Rahimpour, M. R. (2014). A Review
of Carbon Capture and Sequestration in Iran: Microalgal Biofixation Potential in Iran.
Renewable and Sustainable Energy Reviews, 35, 73-100. doi:https://doi.org/10.1016/
j.rser.2014.03.013
Ghorbel, L., Rouissi, T., Brar, S. K., López-González, D., Ramirez, A. A., & Godbout, S. (2015).
Value-added performance of processed cardboard and farm breeding compost by
pyrolysis. Waste Management, 38, 164-173. doi:10.1016/j.wasman.2015.01.009
Ghosh, A., Khanra, S., Mondal, M., Halder, G., Tiwari, O. N., Saini, S., . . . Gayen, K. (2016).
Progress toward isolation of strains and genetically engineered strains of microalgae for
production of biofuel and other value added chemicals: A review. Energy Conversion and
Management, 113, 104-118. doi:https://doi.org/10.1016/j.enconman.2016.01.050
Ghosh, S., Fern Ow, L., & B., W. (2014). Influence of biochar and compost on soil properties
and tree growth in a tropical urban environment. International Journal of Environmental
Science and Technology, 12(4), 1303-1310. Retrieved from https://link.springer.com/
article/10.1007/s13762-014-0508-0
Ghoshal, S., & Zeman, F. (2010). Carbon dioxide (CO2) capture and storage technology in the
cement and concrete industry A2 - Maroto-Valer, M. Mercedes. In Developments and
Innovation in Carbon Dioxide (CO2) Capture and Storage Technology (Vol. 1, pp.
469-491): Woodhead Publishing.
(2018). Carbon Farming [Retrieved from https://www.podshipearth.com/carbon-farming
Giammar, D. E., Bruant, R. G., & Peters, C. A. (2005). Forsterite dissolution and magnesite
precipitation at conditions relevant for deep saline aquifer storage and sequestration of
carbon dioxide. Chemical Geology, 217(3), 257-276. doi:https://doi.org/10.1016/
j.chemgeo.2004.12.013
Giannoukos, K., Rigby, S. P., Rochelle, C. A., Milodowski, A. E., & Hall, M. R. (2021).
Carbonation rate and microstructural alterations of class G cement under geological
storage conditions. Applied Geochemistry, 131, 105007. doi:https://doi.org/10.1016/
j.apgeochem.2021.105007
Gianopoulos, C. G., Chua, Z., Zhurov, V. V., Seipp, C. A., Wang, X., Custelcean, R., &
Pinkerton, A. A. (2019). Direct air capture of CO2 - topological analysis of the
experimental electron density (QTAIM) of the highly insoluble carbonate salt of a 2,6-
pyridine-bis(iminoguanidine), (PyBIGH2)(CO3)(H2O)4. IUCrJ, 6(1), 56-65.
doi:doi:10.1107/S2052252518014616
Gibbins, J. (2020). Chapter 17 CCS – From an Oil Crisis to a Climate Crisis Response. In
Carbon Capture and Storage (pp. 559-562): The Royal Society of Chemistry.
Gibbs, H., K., et al. . (2008). Carbon payback times for crop-based biofuel expansion in the
tropics: the effects of changing yield and technology. Environmental Research Letters,
3(3), 1-10. Retrieved from http://stacks.iop.org/1748-9326/3/i=3/a=034001
Gibson, E. (2019). The new left-right divide on climate. Newsroom. Retrieved from https://
www.newsroom.co.nz/2019/11/22/913382/the-new-left-right-divide-on-climate#
Gielen, D. (2003). CO2 removal in the iron and steel industry. Energy Conversion and
Management, 44(7), 1027-1037. Retrieved from https://www.researchgate.net/
publication/222782603_CO2_removal_in_the_iron_and_steel_industry
Gilbert, A., & Sovacoll, B. K. (2015). Emissions accounting for biomass energy with CCS.
Nature Climate Change, 5, 495-496. Retrieved from http://www.nature.com/nclimate/
journal/v5/n6/full/nclimate2633.html
Giles, J. (2019). Why IKEA and others are going 'climate positive'. GreenBiz. Retrieved from
https://www.greenbiz.com/article/why-ikea-and-others-are-going-climate-positive
Giles, J. (2020). Can companies rely on regenerative agriculture's carbon removal impact?
GreenBiz. Retrieved from https://www.greenbiz.com/article/can-companies-rely-
regenerative-agricultures-carbon-removal-impact
Giles, J. (2020). Trend: Carbon markets get real on removal. Green Biz. Retrieved from https://
www.greenbiz.com/article/trend-carbon-markets-get-real-removal
Giles, J. (2021). Digging into the complex, confusing and contentious world of soil carbon
offsets. GreenBiz. Retrieved from https://www.greenbiz.com/article/digging-complex-
confusing-and-contentious-world-soil-carbon-offsets
Gilfillan, S. M. V., Lollar, B. S., Holland, G., Blagburn, D., Stevens, S., Schoell, M., . . .
Ballentine, C. J. (2009). Solubility trapping in formation water as dominant CO2 sink in
natural gas fields. Nature, 458, 614. doi:10.1038/nature07852
https://www.nature.com/articles/nature07852#supplementary-information
Gillman, G. P. (1980). The Effect of Crushed Basalt Scoria on the Cation Exchange Properties
of a Highly Weathered Soil. Soil Science Society of America Journal, 44(3), 465-468.
doi:10.2136/sssaj1980.03615995004400030005x
Gillman, S. (2018). Recharging soils with carbon could make farms more productive. HORIZON:
The EU Research and Innovation Magazine. Retrieved from https://horizon-
magazine.eu/article/recharging-soils-carbon-could-make-farms-more-productive_en.html
Gimhyeoksu, Gimgwonrae, Yiyeongyu, Og-yongsig, Won-il, K., & Gimgyehun. (2015).
Immobilization of Lead by Biochar Bead in Agricultural Soil.
(Korea Society of Soil Science and
Fertilizer soil of the Republic of Korea enacted Day celebrations and Conference Papers
chorokjip), 189-190. Retrieved from http://www.dbpia.co.kr/Journal/ArticleDetail/3673619
Ginzky, H. (2018). Marine Geo-Engineering. In M. Salomon & T. Markus (Eds.), Handbook on
Marine Environment Protection : Science, Impacts and Sustainable Management (pp.
991-1011). Cham: Springer International Publishing.
Ginzky, H., & Frost, R. (2014). Marine Geo-Engineering: Legally Binding Regulation under the
London Protocol. Carbon & Climate Law Review, 8(2), 82-96. Retrieved from http://
www.jstor.org/stable/24323921
Giordano, L., Roizard, D., & Favre, E. (2018). Life cycle assessment of post-combustion CO2
capture: A comparison between membrane separation and chemical absorption
processes. International Journal of Greenhouse Gas Control, 68, 146-163. doi:https://
doi.org/10.1016/j.ijggc.2017.11.008
Giordano, M., Beardall, J., & Raven, J. A. (2005). CO2 CONCENTRATING MECHANISMS IN
ALGAE: Mechanisms, Environmental Modulation, and Evolution. 56(1), 99-131.
doi:10.1146/annurev.arplant.56.032604.144052
Girardin, C. A. J. (2021). Nature-based solutions can help cool the planet — if we act now.
Nature, 191-194. Retrieved from https://www.nature.com/articles/d41586-021-01241-2
Girija Veni, V., Srinivasarao, C., Sammi Reddy, K., Sharma, K. L., & Rai, A. (2020). Chapter 26 -
Soil health and climate change. In M. N. V. Prasad & M. Pietrzykowski (Eds.), Climate
Change and Soil Interactions (pp. 751-767): Elsevier.
Girling, W. (2020). Drax and Econic: next-generation carbon capture. Chief Sustainability
Officer. Retrieved from https://www.csomagazine.com/sustainability/drax-and-econic-
next-generation-carbon-capture
Gislason, S. R., Broecker, W. S., Gunnlaugsson, E., Snæbjörnsdóttir, S., Mesfin, K. G.,
Alfredsson, H. A., . . . Oelkers, E. H. (2014). Rapid solubility and mineral storage of CO2
in basalt. Energy Procedia, 63, 4561-4574. doi:https://doi.org/10.1016/
j.egypro.2014.11.489
Gislason, S. R., & Oelkers, E. H. (2014). Carbon Storage in Basalt. Science, 344(6182),
373-374. doi:10.1126/science.1250828
Gislason, S. R., Wolff-Boenisch, D., Stefansson, A., Oelkers, E. H., Gunnlaugsson, E.,
Sigurdardottir, H., . . . Fridriksson, T. (2010). Mineral sequestration of carbon dioxide in
basalt: A pre-injection overview of the CarbFix project. International Journal of
Greenhouse Gas Control, 4(3), 537-545. doi:http://dx.doi.org/10.1016/j.ijggc.2009.11.013
Gitau, B. (2015). Suck it up: Carbon capture technologies may be able to remedy climate
change. Christian Science Monitor. Retrieved from http://www.csmonitor.com/Science/
2015/0715/Suck-it-up-Carbon-capture-technologies-may-be-able-to-remedy-climate-
change
Githinji, L. (2013). Effect of biochar application rate on soil physical and hydraulic properties of a
sandy loam. Archives of Agronomy and Soil Science, 60(4), 457-470. Retrieved from
http://www.tandfonline.com/doi/pdf/10.1080/03650340.2013.821698
Gitz, V., Hourcade, J.-C., & Ciasis, P. (2006). The Timing of Biological Carbon Sequestration
and Carbon Abatement in the Energy Sector Under Optimal Strategies Against Climate
Risks. The Energy Journal, 27(3), 113-133. Retrieved from http://www.jstor.org/stable/
23296993?cid=labsreccite&seq=1#page_scan_tab_contents
Giuntoli, J., Agostini, A., Caserini, S., Lugato, E., Baxter, D., & Marelli, L. (2016). Climate change
impacts of power generation from residual biomass. Biomass and Bioenergy, 89,
146-158. doi:https://doi.org/10.1016/j.biombioe.2016.02.024
Gładysz, P., & Ziębik, A. (2016). Environmental analysis of bio-CCS in an integrated oxy-fuel
combustion power plant with CO2 transport and storage. Biomass and Bioenergy, 85,
109-118. doi:https://doi.org/10.1016/j.biombioe.2015.12.008
Glaser, B., et al. (1998). Black carbon in soils: The use of benzenecarboxylic acids as specific
markers. Organic Geochemistry, 29(4), 811 -819. Retrieved from http://
www.sciencedirect.com/science/article/pii/S0146638098001946
Glaser, B., et al. (1999). Der Beitrag von pyrogenem Kohlenstoff zur organischen Substanz der
Indianerschwarzerden (Terra Preta) Amazoniens. Mitteilungen der Deutschen
Bodenkundlichen Gesellschaft, 91(1), 335-338.
Glaser, B., et al. (2000). Black carbon in density fractions of anthropogenic soils of the brazilian
amazon region. Organic Geochemistry, 31(7-8), 669-678.
Glaser, B. (2007). Prehistorically modified soils of central amazonia: A model for sustainable
agriculture in the twenty-first century. Philosophical Transactions of the Royal Society B-
Biological Sciences, 362(1478), 187-196.
Glaser, B., et al. (2014). Biochar organic fertilizers from natural resources as substitute for
mineral fertilizers. Agronomy for Sustainable Development, 35(2), 667-678. doi:10.1007/
s13593-014-0251-4
Glaser, B. (2014). Soil Biogeochemistry.
Glaser, B. (2015). Biochar as soil amendment – Facts and myths. In Terra Preta Sanitation 1.
Glaser, B., Haumaier, L., Guggenberge, G. r., & Zech, W. (1999). Black carbon in terra preta
and oxisols of the brazilian amazon as estimated by benzenecarboxylic acids as specific
markers. Abstracts of Papers of the American Chemical Society, 217.
Glaser, B., Haumaier, L., Guggenberger, G., & Zech, W. (2001). The terra preta phenomenon: A
model for sustainable agriculture in the humid tropics. Naturwissenschaften, 88(1),
37-41. Retrieved from https://link.springer.com/article/10.1007/s001140000193
Glaser, B., Lehmann, J., & Zech, W. (2002). Ameliorating Physical and Chemical Properties of
Highly Weathered Soils in the Tropics with Charcoal - a Review. Biology and Fertility of
Soils, 35(4), 219-230. Retrieved from https://link.springer.com/article/10.1007/
s00374-002-0466-4
Glaser, B., Parr, M., Braun, C., & Kopolo, G. (2009). Biochar is carbon negative. Nature
Geoscience, 2(1), 2. Retrieved from http://dx.doi.org/10.1038/ngeo395
Glaser, R., Castello-Blindt, P. O., & Yin, J. (2013). Biomimetic Approaches to Reversible CO2
Capture from Air. N-Methylcarbaminic Acid Formation in Rubisco-Inspired Models A2 -
Suib, Steven L. In New and Future Developments in Catalysis (pp. 501-534).
Amsterdam: Elsevier.
Gleizer, S., Bar-On, Y. M., Ben-Nissan, R., & Milo, R. (2020). Engineering Microbes to Produce
Fuel, Commodities, and Food from CO2. Cell Reports Physical Science, 100223.
doi:https://doi.org/10.1016/j.xcrp.2020.100223
Glen, B. (2018). Grassland traps carbon but measurement tricky. Retrieved from https://
www.producer.com/2018/07/grassland-traps-carbon-but-measurement-tricky/
Glibert, P. M., Azanza, R., Burford, M., Furuya, K., Abal, E., Al-Azri, A., . . . Zhu, M. (2008).
Ocean urea fertilization for carbon credits poses high ecological risks. Marine Pollution
Bulletin, 56(6), 1049-1056. doi:http://dx.doi.org/10.1016/j.marpolbul.2008.03.010
Glicksman, M., & Hemond, O. (2020). Taking carbon farming out to sea. Medium. Retrieved
from https://medium.com/@carbon180/taking-carbon-farming-out-to-sea-60a7f7626fa5
Glicksman, M., & Kosar, U. (2021). We can’t just plant our way out of the climate crisis. (June
4). Retrieved from https://carbon180.medium.com/we-cant-just-plant-our-way-out-of-the-
climate-crisis-4383bc1fe9d2
GlobeNewswire. (2019). FuelCell Energy Announces New Carbon Capture Project with Drax
Power Station. Yahoo Finance. Retrieved from https://finance.yahoo.com/news/fuelcell-
energy-announces-carbon-capture-120000326.html
Głodowska, M., Husk, B., Schwinghamer, T., & Smith, D. (2016). Biochar is a growth-promoting
alternative to peat moss for the inoculation of corn with a pseudomonad. Agronomy for
Sustainable Development, 36(1), 1-10. doi:10.1007/s13593-016-0356-z
Glover, M. (2009). Taking Biochar to Market: Some Essential Concepts for Commercial
Success. In J. Lehmann & S. Joseph (Eds.), Biochar for Environmental Management:
Science and Technology (pp. 375-392). London, UK: Earthscan.
Glowacka, K. (2011). A review of the genetic study of the energy crop Miscanthus. Biomass &
Bioenergy, 35(7), 2445-2454. Retrieved from https://www.researchgate.net/publication/
293225913_A_review_of_the_genetic_study_of_the_energy_crop_Miscanthus
Gnanadesikan, A., & Marinov, I. (2008). Export is not enough: nutrient cycling and carbon
sequestration. Marine Ecology Progress Series, 364, 289-294. Retrieved from http://
www.int-res.com/abstracts/meps/v364/p289-294/
Gnanadesikan, A., Sarmiento, J. L., & Slater, R. D. (2003). Effects of patchy ocean fertilization
on atmospheric carbon dioxide and biological production. Global Biogeochemical
Cycles, 17(2), 1-17. Retrieved from http://onlinelibrary.wiley.com/doi/
10.1029/2002GB001940/epdf
Gnanadesikan, A., Sarmiento, J. L., & Slater, R. D. (2003). Efficiency and Effects of Carbon
Sequestration Through Ocean Fertilization: Results from a Model Study. In J. Gale & Y.
Kaya (Eds.), Greenhouse Gas Control Technologies - 6th International Conference (pp.
855-859). Oxford: Pergamon.
Gnansounou, E. (2010). Production and use of lignocellulosic bioethanol in Europe: Current
situation and perspectives. Bioresource Technology, 101(13), 4842-4850. doi:http://
dx.doi.org/10.1016/j.biortech.2010.02.002
Gnansounou, E., Dauriat, A., Villegas, J., & Panichelli, L. (2009). Life cycle assessment of
biofuels: Energy and greenhouse gas balances. Bioresource Technology, 100(21),
4919-4930. doi:https://doi.org/10.1016/j.biortech.2009.05.067
Gnansounou, E., Pachón, E. R., Sinsin, B., Teka, O., Togbé, E., & Mahamane, A. (2020). Using
agricultural residues for sustainable transportation biofuels in 2050: Case of West Africa.
Bioresource Technology, 305, 123080. doi:https://doi.org/10.1016/j.biortech.2020.123080
Go, A. W., Conag, A. T., Igdon, R. M. B., Toledo, A. S., & Malila, J. S. (2019). Potentials of
agricultural and agro-industrial crop residues for the displacement of fossil fuels: A
Philippine context. Energy Strategy Reviews, 23, 100-113. doi:https://doi.org/10.1016/
j.esr.2018.12.010
Godde, C. M., de Boer, I. J. M., Ermgassen, E. z., Herrero, M., van Middelaar, C. E., Muller,
A., . . . Garnett, T. (2020). Soil carbon sequestration in grazing systems: managing
expectations. Climatic Change, 161(3), 385-391. doi:10.1007/s10584-020-02673-x
Godec, M., Carpenter, S., & Coddington, K. (2017). Evaluation of Technology and Policy Issues
Associated with the Storage of Carbon Dioxide via Enhanced Oil Recovery in
Determining the Potential for Carbon Negative Oil. Energy Procedia, 114, 6563-6578.
doi:https://doi.org/10.1016/j.egypro.2017.03.1795
Godec, M., Koperna, G., & Gale, J. (2014). CO2-ECBM: A Review of its Status and Global
Potential. Energy Procedia, 63, 5858-5869. doi:https://doi.org/10.1016/
j.egypro.2014.11.619
Godec, M. L., Riestenberg, D., & Cyphers, S. (2017). Potential Issues and Costs Associated
with Verifying CO2 Storage During and After CO2-EOR. Energy Procedia, 114,
7399-7414. doi:https://doi.org/10.1016/j.egypro.2017.03.1870
Godfrey, R., Thomas, S., & Gaynor, K. (2014). Biochar and Soil Mites: Behavioural Responses
Vary with Dosage and Feedstock. University of Toronto, Retrieved from http://
www.cgcs.utoronto.ca/Assets/CGCS+Digital+Assets/Robert+Godfrey.pdf
Godlewska, P., Schmidt, H. P., Ok, Y. S., & Oleszczuk, P. (2017). Biochar for composting
improvement and contaminants reduction. A review. Bioresource Technology, 246,
193-202. doi:https://doi.org/10.1016/j.biortech.2017.07.095
Goel, M. (2017). CO2 Capture and Utilization for the Energy Industry: Outlook for Capability
Development to Address Climate Change in India. In M. Goel & M. Sudhakar (Eds.),
Carbon Utilization: Applications for the Energy Industry (pp. 3-33). Singapore: Springer
Singapore.
Goeppert, A., Czaun, M., May, R. B., Prakash, G. K. S., Olah, G. A., & Narayanan, S. R. (2011).
Carbon Dioxide Capture from the Air Using a Polyamine Based Regenerable Solid
Adsorbent. Journal of the American Chemical Society, 133(50), 20164-20167.
doi:10.1021/ja2100005
Goeppert, A., Czaun, M., Prakash, G. K. S., & Olah, G. A. (2012). Air as the renewable carbon
source of the future: an overview of CO
2
capture from the atmosphere. Energy &
Environmental Science, 5, 7833-7853. Retrieved from http://pubs.rsc.org/en/content/
articlelanding/2012/ee/c2ee21586a#!divAbstract
Goeppert, A., Czaun, M., Prakash, S., & Olah, G. A. (2012). Air as the renewable carbon source
of the future: An overview of CO2 capture from the atmosphere. Energy Environ. Sci., 5,
7833.
Goeppert, A., Olah, G. A., & Surya Prakash, G. K. (2018). Chapter 3.26 - Toward a Sustainable
Carbon Cycle: The Methanol Economy. In Green Chemistry (pp. 919-962): Elsevier.
Goeppert, A., Zhang, H., Czaun, M., May, R. B., Prakash, G. K. S., Olah, G. A., & Narayanan, S.
R. (2014). Easily Regenerable Solid Adsorbents Based on Polyamines for Carbon
Dioxide Capture from the Air. ChemSusChem, 7(5), 1386-1397. doi:10.1002/
cssc.201301114
Goering, L. (2017). Can carbon-sucking technologies hold back climate change? Thomson
Reuters Foundation News. Retrieved from http://news.trust.org/item/
20171117105345-0i2yp
Goering, L. (2017). Carbon-sucking technology needed by 2030s, scientists warn. Thomson
Reuters Foundation News. Retrieved from http://news.trust.org/item/20171010175429-
zazqr/
Goering, L. (2020). Analysis: Africa shrugs off net-zero emissions push without finance to follow.
Reuters. Retrieved from https://mobile.reuters.com/article/amp/idUSKBN27Z1EU
Goff, F., et al. (1997). Preliminary Investigations on the Carbon Dioxide Sequestering Potentail
of Ultramafic Rocks. Retrieved from https://www.osti.gov/servlets/purl/563233
Goglio, P., Williams, A. G., Balta-Ozkan, N., Harris, N. R. P., Williamson, P., Huisingh, D., . . .
Tavoni, M. (2019). Advances and challenges of life cycle assessment (LCA) of
greenhouse gas removal technologies to fight climate changes. Journal of Cleaner
Production, 118896. doi:https://doi.org/10.1016/j.jclepro.2019.118896
Gogoi, A., et al. (2012). Biochar: impact on climate change and soil health. Madras Agricultural
Journal, 99(7/9), 411-419. Retrieved from https://www.cabdirect.org/cabdirect/abstract/
20123323313
Gohndrone, T. R. (2015). Reaction kinetics and mechanism of the absorption of CO 2 in amine
functionalized ionic liquids. (Ph.D.). University of Notre Damne, Retrieved from https://
search.proquest.com/docview/1746943020?accountid=14496 (3732169)
Gokila, B., & Baskar, K. (2015). Characterization of Prospopis Juliflora.L Biochar and its
Influence of Soil Fertility on Maize in Alfisols. International Journal of Plant, Animal and
Environmental Sciences, 5, 123-127. Retrieved from http://www.ijpaes.com/admin/php/
uploads/761_pdf.pdf
Gokila, B., & Baskar, K. (2015). Influence of Biochar as a Soil Amendment on Yield and Quality
of Maize in Alfiosl of Thoothukudi District of Tamilnadu, India. International Journal of
Plant, Animal and Environmental Sciences, 5(1), 152-155. Retrieved from http://
www.ijpaes.com/admin/php/uploads/766_pdf.pdf
Goldberg, D., Aston, L., Bonneville, A., Demirkanli, I., Evans, C., Fisher, A., . . . White, S. (2018).
Geological storage of CO2 in sub-seafloor basalt: the CarbonSAFE pre-feasibility study
offshore Washington State and British Columbia. Energy Procedia, 146, 158-165.
doi:https://doi.org/10.1016/j.egypro.2018.07.020
Goldberg, D. S., Kent, D. V., & Olsen, P. E. (2010). Potential on-shore and off-shore reservoirs
for CO<sub>2</sub> sequestration in Central Atlantic magmatic province basalts.
Proceedings of the National Academy of Sciences, 107(4), 1327-1332. doi:10.1073/
pnas.0913721107
Goldberg, D. S., Lackner, K. S., Han, P., Slagle, A. L., & Wang, T. (2013). Co-Location of Air
Capture, Subseafloor CO2 Sequestration, and Energy Production on the Kerguelen
Plateau. Environmental Science & Technology, 47(13), 7521-7529. doi:10.1021/
es401531y
Goldberg, D. S., Takahashi, T., & Slagle, A. L. (2008). Carbon dioxide sequestration in deep-sea
basalt. Proceedings of the National Academy of Sciences, 105(29), 9920-9925.
doi:10.1073/pnas.0804397105
Goldberg, J. S. (2015).
Goldberg, S. (2017). Latest Carbon Capture Projects Look Encouraging. Bloomberg View.
Retrieved from https://www.bloomberg.com/view/articles/2017-08-08/latest-carbon-
capture-projects-look-encouraging
Goldemberg, J. (2008). The Brazilian biofuels industry. Biotechnology for Biofuels, 1(1), 6.
doi:10.1186/1754-6834-1-6
Goldemberg, J., & Teixeira Coelho, S. (2013). Bioenergy: how much? Environmental Research
Letters, 8(1-3), 1-4. Retrieved from http://iopscience.iop.org/article/
10.1088/1748-9326/8/3/031005/pdf
Goldthorpe, S. (2017). Potential for Very Deep Ocean Storage of CO2 Without Ocean
Acidification: A Discussion Paper. Energy Procedia, 114, 5417-5429. doi:https://doi.org/
10.1016/j.egypro.2017.03.1686
Goldy, R., Andres, C., & Wendzel, V. (2015). Second Year Results Using Biochar as a Soil
Amendment in a High Tunnel, Polybag Growth System. Retrieved from http://
docs.lib.purdue.edu/cgi/viewcontent.cgi?article=1064&context=fvtrials#page=42
Goll, D. S., Ciais, P., Amann, T., Buermann, W., Chang, J., Eker, S., . . . Vicca, S. (2021).
Potential CO2 removal from enhanced weathering by ecosystem responses to powdered
rock. Nature Geoscience. doi:10.1038/s41561-021-00798-x
Gollakota, S., & McDonald, S. (2012). CO2 capture from ethanol production and storage into the
Mt Simon Sandstone. Greenhouse Gases: Science and Technology, 2(5), 346-351.
doi:10.1002/ghg.1305
Gollakota, S., & McDonald, S. (2014). Commercial-scale CCS Project in Decatur, Illinois –
Construction Status and Operational Plans for Demonstration. Energy Procedia, 63,
5986-5993. doi:https://doi.org/10.1016/j.egypro.2014.11.633
Golomb, D., & Pennell, S. (2010). 11 - Ocean sequestration of carbon dioxide (CO2). In M. M.
Maroto-Valer (Ed.), Developments and Innovation in Carbon Dioxide (CO2) Capture and
Storage Technology (Vol. 2, pp. 304-323): Woodhead Publishing.
Goloran, J. B., Phillips, I. R., Condron, L. M., & Chen, C. (2015). Shifts in leaf nitrogen to
phosphorus ratio of Lolium rigidum grown in highly alkaline bauxite-processing residue
sand with differing age of rehabilitation and amendments. Ecological Indicators, 57, 32 -
40. doi:10.1016/j.ecolind.2015.04.018
Gomez, J. D., et al. (2013). Biochar addition rate influences soil microbial abundance and
activity in temperate soils. European Journal of Soil Science, 65(1), 28-39. Retrieved
from http://onlinelibrary.wiley.com/doi/10.1111/ejss.12097/abstract
Gomez, L. D., Steele-King, C. G., & McQueen-Mason, S. J. (2008). Sustainable liquid biofuels
from biomass: the writing's on the walls. New Phytology, 178(3), 473-485. Retrieved
from https://www.ncbi.nlm.nih.gov/pubmed/18373653
Gómez Marín, N. (2014). Aplicación de las tenologías de pirólisis para valorización energética
de biomasa y producción de biochar como sumidero de carbono (Application of pyrolysis
technologies for energy recovery from biomass and production of biochar as a carbon
sink). Unibersidad de Leon, Retrieved from http://buleria.unileon.es/xmlui/handle/
10612/3996
Gómez, N., Rosas, J. G., Cara, J., Martínez, O., Alburquerque, J. A., & Sánchez, M. E. (2014).
Slow pyrolysis of relevant biomasses in the Mediterranean basin. Part 1. Effect of
temperature on process performance on a pilot scale. Journal of Cleaner Production,
120, 181-190. doi:10.1016/j.jclepro.2014.10.082
Gomez-Eyles, J. L., et al. . (2010). Effects of biochar and the earthworm Eisenia fetida on the
bioavailabilityof polycyclic aromatic hydrocarbons and potentially toxic elements.
Environmental Pollution, 159(2), 616-622. Retrieved from http://acadiau.academia.edu/
TomSizmur/Papers/1187335/
Effects_of_biochar_and_the_earthworm_Eisenia_fetida_on_the_bioavailability_of_polyc
yclic_aromatic_hydrocarbons_and_potentially_toxic_elements
Gómez-Muñoz, B., Case, S. D. C., & Jensen, L. S. (2016). Pig slurry acidification and
separation techniques affect soil N and C turnover and N2O emissions from solid, liquid
and biochar fractions. Journal of Environmental Management, 168, 236-244. doi:http://
dx.doi.org/10.1016/j.jenvman.2015.12.018
Gomiero, T., Paoletti, M. G., & Pimentel, D. (2010). Biofuels: Efficiency, Ethics, and Limits to
Human Appropriation of Ecosystem Services. Journal of Agricultural and Environmental
Ethics, 23(5), 403-434. doi:10.1007/s10806-009-9218-x
Gomollón-Bel, F. (2021). Alkali cations boost carbon dioxide reduction into feedstock chemical.
Chemistry World. Retrieved from https://www.chemistryworld.com/news/alkali-cations-
boost-carbon-dioxide-reduction-into-feedstock-chemical/4013644.article
Gondim, R. S., et al. . (2015). Biochar to Climate Change Adaptation. Inicio, 19(3), 40. Retrieved
from http://www.fagro.edu.uy/agrociencia/index.php/directorio/article/view/1102
Gong, F., et al. (2019). Enhanced Biological Fixation of CO2 Using Microorganisms. In M.
Aresta, I. Karimi, & S. Kawi (Eds.), An Economy Based on Carbon Dioxide and Water:
Potential of Large Scale Carbon Dioxide Utilization (pp. 359-378). Retrieved from https://
link.springer.com/chapter/10.1007/978-3-030-15868-2_10
Gong, P. H., Guan, C. T., Li, J., & Liu, C. (2014). Estimation and experiment of carbon
sequestration by oysters attached to the enhancement artificial reefs in Laizhou Bay,
Shandong, China. Ying Yong Sheng Tai Xue Bao, 25(10), 3032-3038. Retrieved from
https://www.ncbi.nlm.nih.gov/pubmed/25796916
Gong, W., Liu, X., Xia, S., Liang, B., & Zhang, W. (2016). Abiotic reduction of trifluralin and
pendimethalin by sulfides in black-carbon-amended coastal sediments. Journal of
Hazardous Materials, 310, 125 - 134. doi:10.1016/j.jhazmat.2016.02.022
González, M. E., Cea, M., Medina, J., González, A., Diez, M. C., Cartes, P., . . . Navia, R.
(2015). Evaluation of biodegradable polymers as encapsulating agents for the
development of a urea controlled-release fertilizer using biochar as support material.
Science of The Total Environment, 505, 446 - 453. doi:10.1016/j.scitotenv.2014.10.014
González, M. E., Cea, M., Sangaletti, N., González, A., Toro, C., Diez, M. C., . . . Navia, R.
(2013). Biochar Derived from Agricultural and Forestry Residual Biomass:
Characterization and Potential Application for Enzymes Immobilization. Journal of
Biobased Materials and Bioenergy, 7(6), 724-732. Retrieved from http://
www.ingentaconnect.com/content/asp/jbmb/2013/00000007/00000006/art00010
González, M. E., González, A., Toro, C. A., Cea, M., Sepúlveda, N., Diez, M. C., & Navia, R.
(2012). Biochar as a Renewable Matrix for the Development of Encapsulated and
Immobilized Novel Added-Value Bioproducts. Journal of Biobased Materials and
Bioenergy, 6(3), 237-248. Retrieved from https://www.researchgate.net/publication/
260383463_Biochar_as_a_Renewable_Matrix_for_the_Development_of_Encapsulated_
and_Immobilized_Novel_Added-Value_Bioproducts
González, M. F., & Ilyina, T. (2016). Impacts of artificial ocean alkalinization on the carbon cycle
and climate in Earth system simulations. Geophysical Research Letters, 43(12),
6493-6502. doi:10.1002/2016GL068576
González, M. F., Ilyina, T., Sonntag, S., & Schmidt, H. (2018). Enhanced Rates of Regional
Warming and Ocean Acidification After Termination of Large-Scale Ocean Alkalinization.
Geophysical Research Letters, 45(14), 7120-7129. doi:doi:10.1029/2018GL077847
González-Díaz, A., González-Díaz, M. O., Alcaráz-Calderón, A. M., Gibbins, J., & Lucquiaud, M.
(2017). Priority projects for the implementation of CCS power generation with enhanced
oil recovery in Mexico. International Journal of Greenhouse Gas Control, 64, 119-125.
doi:https://doi.org/10.1016/j.ijggc.2017.07.006
Goodall, C. (2010). Ten Technologies to Save the Planet: D+M Greystone.
Goodell, J. (2020). Why Planting Trees Won’t Save Us. Rolling Stone. Retrieved from https://
www.rollingstone.com/politics/politics-features/tree-planting-wont-stop-climate-
crisis-1020500/
Goodwin, N. (2019). Carbon capture: a life-affirming force of action. GreenBiz. Retrieved from
https://www.greenbiz.com/article/carbon-capture-life-affirming-force-action
Gopinath, S., & Mehra, A. (2016). Carbon sequestration during steel production: Modelling the
dynamics of aqueous carbonation of steel slag. Chemical Engineering Research and
Design, 115, 173-181. doi:https://doi.org/10.1016/j.cherd.2016.09.010
Gordillo, E. D., & Belghit, A. (2011). A downdraft high temperature steam-only solar gasifier of
biomass char: A modelling study. Biomass and Bioenergy, 35(5), 2034 - 2043. Retrieved
from http://www.sciencedirect.com/science/article/
B6V22-5282PDJ-1/2/3e8f035eefae57969ec5e644b1431556
Gore, E. (2020). House Appropriations Moves Much Needed Support for Clean Energy Industry.
Retrieved from https://www.edf.org/media/house-appropriations-moves-much-needed-
support-clean-energy-industry
Gore, S., Renforth, P., & Perkins, R. (2018). The potential environmental response to increasing
ocean alkalinity for negative emissions. Mitigation and Adaptation Strategies for Global
Change. doi:10.1007/s11027-018-9830-z
Goreau, T. (2020). Rock Powder with Biorock: Synergies & Co-Benefits. Retrieved from http://
www.soilcarbonalliance.org/2020/07/13/rock-powder-with-biorock-synergies-co-benefits/
Goreau, T., Larson, R. W., & Campe, J. (2015). Geotherapy: Innovative Methods of Soil Fertility
Restoration, Carbon Sequestration, and Reversing CO2 Increase.
Goreau, T. J. (2015). Global Biogeochemical Restoration to Stabilize CO2 at Safe Levels in
Time to Avoid Severe Climate Change Impacts to Earth’s Life Support Systems:
Implications for the United Nations Framework Convention on Climate Change. In T.
Goreau, R. Larson, & J. Campe (Eds.), Geotherapy: Innovative Methods of Soil Fertility
Restoration, Carbon Sequestration, and Reversing CO2 Increase (pp. 5-58).
Gorsen, M. (2020). INSIGHT: Carbon Capture Tax Credits—A New Tool in the Climate Change
Arsenal. Retrieved from https://news.bloomberglaw.com/environment-and-energy/
insight-carbon-capture-tax-credits-a-new-tool-in-the-climate-change-arsenal
Gosnell, H., et al. (2020). Climate change mitigation as a co-benefit of regenerative ranching:
insights from Australia and the United States. Interface Focus, 10(5), 20200027.
doi:doi:10.1098/rsfs.2020.0027
Goswami, A. (2020). Why geoengineering is still a dangerous, techno-utopian dream. Down To
Earth. Retrieved from https://www.downtoearth.org.in/blog/climate-change/why-
geoengineering-is-still-a-dangerous-techno-utopian-dream-74828
Gouda, N., et al. (2016). Production and characterization of bio oil and bio char from flax seed
residue obtained from supercritical fluid extraction industry. Journal of the Energy
Institute, 90(2), 265-275. doi:10.1016/j.joei.2016.01.003
Gough, C. (2008). State of the art in carbon dioxide capture and storage in the UK: An experts’
review. International Journal of Greenhouse Gas Control, 2(1), 155-168. doi:https://
doi.org/10.1016/S1750-5836(07)00073-4
Gough, C., & Boucher, P. (2013). Ethical attitudes to underground CO2 storage: Points of
convergence and potential faultlines. International Journal of Greenhouse Gas Control,
13, 156-167. doi:https://doi.org/10.1016/j.ijggc.2012.12.005
Gough, C., Garcia-Freites, S., Jones, C., Mander, S., Moore, B., Pereira, C., . . . Welfle, A.
(2018). Challenges to the use of BECCS as a keystone technology in pursuit of 1.5C.
Global Sustainability, 1, e5. doi:10.1017/sus.2018.3
Gough, C., & Mander, S. (2012). Are We Nearly There Yet? A Review of Progress against CCS
Roadmaps in the UK. Energy & Environment, 23, 367-374. Retrieved from http://
journals.sagepub.com/doi/pdf/10.1260/0958-305X.23.2-3.367
Gough, C., O׳Keefe, L., & Mander, S. (2014). Public perceptions of CO2 transportation in
pipelines. Energy Policy, 70, 106-114. doi:https://doi.org/10.1016/j.enpol.2014.03.039
Gough, C., & Shackley, S. (2006). Towards a Multi-Criteria Methodology for Assessment of
Geological Carbon Storage Options. Climatic Change, 74(1), 141-174. doi:10.1007/
s10584-006-0425-4
Gough, C., & Upham, P. (2010). Biomass energy with carbon capture and storage (BECCS): a
review. Retrieved from http://www.tyndall.ac.uk/sites/default/files/twp147.pdf
Gough, C., & Upham, P. (2011). Biomass energy with carbon capture and storage (BECCS or
Bio-CCS). Greenhouse Gases: Science and Technology, 1(4), 324-334. Retrieved from
http://onlinelibrary.wiley.com/doi/10.1002/ghg.34/abstract
Gough, C., & Vaccari, F. P. (2015). Synthesising existing knowledge on the feasibility of BECCS.
Retrieved from http://avoid-net-uk.cc.ic.ac.uk/wp-content/uploads/delightful-downloads/
2015/07/Synthesising-existing-knowledge-on-the-feasibility-of-BECCS-
AVOID-2_WPD1a_v1.pdf
Gouvêa Taketani, R., et al. . (2013). Bacterial community composition of anthropogenic biochar
and Amazonian anthrosols assessed by 16S rRNA gene 454 pyrosequencing. Antonie
van Leeuwenhoek, 104(2), 233-242. Retrieved from https://link.springer.com/article/
10.1007/s10482-013-9942-0
Gov.UK. (2021). Role of biomass in achieving net zero: call for evidence. Retrieved from https://
www.gov.uk/government/consultations/role-of-biomass-in-achieving-net-zero-call-for-
evidence
Graber, E. R. (2009, May 2009). Biochar for 21st century challenges: Carbon sink, energy
source and soil conditioner. Paper presented at the Dahlia Gredinger International
Symposium, Haifa, Israel.
Graber, E. R., Frenkel, O., Jaiswal, A. K., & Elad, Y. (2014). How may biochar influence severity
of diseases caused by soilborne pathogens? Carbon Management, 5(2), 169 - 183.
doi:10.1080/17583004.2014.913360
Graber, E. R., & Hadas, E. (2009). Potential Energy Generation and Carbon Savings from
Waste Biomass Pyrolysis in Israel. Annals of Environmental Science, 3, 207-216.
Retrieved from http://openjournals.neu.edu/aes/journal/article/view/v3art6
Graber, E. R., Meller-Harel, Y., Kolton, M., Cytryn, E., Silber, A., Rav David, D., . . . Elad, Y.
(2010). Biochar impact on development and productivity of pepper and tomato grown in
fertigated soilless media. Plant and Soil, 337(1), 481-496. Retrieved from http://
www.springerlink.com/content/45g624l441843335/fulltext.pdf
Graber, E. R., Tsechansky, L., Gerst, Z., & Lew, B. (2011). High surface area biochar negatively
impacts herbicide efficacy. Plant and Soil, 353(1), 95-106. doi:10.1007/
s11104-011-1012-7
Graber, E. R., Tsechansky, L., & Khanukov, J. (2011). Sorption, Volatilization, and Efficacy of the
Fumigant 1,3-Dichloropropene in a Biochar-Amended Soil. Soil Sci. Soc. Am. J, 75(4),
1365-1373. doi:10.2136/sssaj2010.0435
Graber, E. R., Tsechansky, L., Mayzlish-Gati, E., Shema, R., & Koltai, H. (2015). A humic
substances product extracted from biochar reduces Arabidopsis root hair density and
length under P-sufficient and P-starvation conditions. Plant and Soil, 395(1), 21-30.
doi:10.1007/s11104-015-2524-3
Graf, A. (2019). Carbon Capture: Part of the Climate Problem or Solution? The Globe Post.
Retrieved from https://theglobepost.com/2019/08/14/carbon-capture-climate/
Graham, J. D. (2019). Carbon capture may go down in defeat as wind power takes hold. Digital
Journal.
Grainger, A., Iverson, L. R., Marland, G. H., & Prasad, A. (2019). Comment on “The global tree
restoration potential”. 366(6463), eaay8334. doi:10.1126/science.aay8334 %J Science
Granatstein, D., et al. (2009). Use of Biochar from the Pyrolysis of Waste Organic Material as a
Soil Amendment. Retrieved from Wenatchee: http://www.ecy.wa.gov/pubs/0907062.pdf
Granda, C. B., Zhu, L., & Holtzapple, M. T. (2007). Sustainable liquid biofuels and their
environmental impact. Environmental Progress, 26(3), 233-250. doi:10.1002/ep.10209
Grant, B., Smith, W. N., Desjardins, R., Lemke, R., & Li, C. (2004). Estimated N2O and CO2
Emissions as Influenced by Agricultural Practices in Canada. Climatic Change, 65(3),
315-332. doi:10.1023/b:Clim.0000038226.60317.35
Grant, N., Hawkes, A., Mittal, S., & Gambhir, A. (2021). Confronting mitigation deterrence in low-
carbon scenarios. Environmental Research Letters, 16(6), 064099.
doi:10.1088/1748-9326/ac0749
Grassi, G., Cescatti, A., Matthews, R., Duveiller, G., Camia, A., Federici, S., . . . Vizzarri, M.
(2019). On the realistic contribution of European forests to reach climate objectives.
Carbon Balance and Management, 14(1), 8. doi:10.1186/s13021-019-0123-y
Grassi, G., House, J., Dentener, F., Federici, S., den!Elzen, M., & Penman, J. (2017). The key
role of forests in meeting climate targets requires science for credible mitigation. Nature
Climate Change, 7, 220. doi:10.1038/nclimate3227
https://www.nature.com/articles/nclimate3227#supplementary-information
Graves, C., Ebbesen, S. D., Mogensen, M., & Lackner, K. S. (2011). Sustainable hydrocarbon
fuels by recycling CO2 and H2O with renewable or nuclear energy. Renewable and
Sustainable Energy Reviews, 15(1), 1-23. doi:http://doi.org/10.1016/j.rser.2010.07.014
Graves, D. (2013). A Comparison of Methods to Apply Biochar into Temperate Soils. In L.
Natalia & R. Francois (Eds.), Biochar and Soil Biota (pp. 202-260).
Gray, H. B. (2009). Powering the planet with solar fuel. Nat. Chem., 1, 7.
Gray, L. A., Bisonó León, A. G., Rojas, F. E., Veroneau, S. S., & Slocum, A. H. (2021).
Caribbean-Wide, Negative Emissions Solution to Sargassum spp. Low-Cost Collection
Device and Sustainable Disposal Method. Phycology, 1(1), 49-75. Retrieved from https://
www.mdpi.com/2673-9410/1/1/4
Green Plains, I. (2021). Green Plains Announces Additional Locations for World’s Largest
Carbon Capture and Sequestration Project. Yahoo! Finance.
Greene, C. H., et al. (2016). Marine microalgae: Climate, energy, and food security from the
sea. Oceanopgraphy, 29(4), 10-15.
Greene, C. H., Huntley, M. E., Archibald, I., Gerber, L. N., Sills, D. L., Granados, J., . . . Walsh,
M. J. (2017). Geoengineering, marine microalgae, and climate stabilization in the 21st
century. Earths Future, 5(3), 278-284. doi:10.1002/2016ef000486
Gregory, S. J., Anderson, C. W. N., Camps Arbestain, M., & McManus, M. T. (2014). Response
of plant and soil microbes to biochar amendment of an arsenic-contaminated soil.
Agriculture, Ecosystems & Environment, 191, 133-141. doi:http://dx.doi.org/10.1016/
j.agee.2014.03.035
Gregory, S. J., Anderson, C. W. N., Camps-Arbestain, M., Biggs, P. J., Ganley, A. R. D.,
O’Sullivan, J. M., & McManus, M. T. (2015). Biochar in Co-Contaminated Soil
Manipulates Arsenic Solubility and Microbiological Community Structure, and Promotes
Organochlorine Degradation. Plos One, 10(4), e0125393. doi:10.1371/
journal.pone.0125393.s005
Greig, C., & Uden, S. (2021). The value of CCUS in transitions to net-zero emissions. The
Electricity Journal, 34(7), 107004. doi:https://doi.org/10.1016/j.tej.2021.107004
Greiner, T., et al. (2013). Seagrass restoration enhances "blue carbon" sequestration in coastal
waters. Plos One, 14(8), e72469. Retrieved from http://journals.plos.org/plosone/article?
id=10.1371/journal.pone.0072469
Gresham, R. L. (2010). Geologic Carbon Dioxide Sequestration and Subsurface Property
Rights: A Legal and Economic Analysis. (Ph.D. Dissertation/Thesis). Carnegie Mellon
University, Retrieved from https://search.proquest.com/docview/845642195?
accountid=14496
Greydanus, S. (2011). Cadmium Adsorption of Industrially Feasible Biochars.
Grierson, S., Strezov, V., Ellem, G., Mcgregor, R., & Herbertson, J. (2009). Thermal
characterisation of microalgae under slow pyrolysis conditions. Journal of Analytical and
Applied Pyrolysis, 85(1-2), 118-123.
Griffin, G. J., et al. (2015). Conversion of bagasse to char-water fuel by pyrolysis. In Energy and
Sustainability VI.
Griffioen, J. (2017). Enhanced weathering of olivine in seawater: The efficiency as revealed by
thermodynamic scenario analysis. Science of The Total Environment, 575, 536-544.
doi:http://dx.doi.org/10.1016/j.scitotenv.2016.09.008
Griffith, D. (2015). Characterization of Two Biochars Derived from Horse Muck and their Ability
to Reduce Pathogen Transport in Soil. University of Kentucky, Retrieved from http://
uknowledge.uky.edu/bae_etds/33/
Grignard, B., Gennen, S., Jérôme, C., Kleij, A. W., & Detrembleur, C. (2019). Advances in the
use of CO2 as a renewable feedstock for the synthesis of polymers. Chemical Society
Reviews, 48(16), 4466-4514. doi:10.1039/C9CS00047J
Grinberg, P., Sturgeon, R. E., Diehl, L. d. O., Bizzi, C. A., & Flores, E. M. M. (2014). Comparison
of sample digestion techniques for the determination of trace and residual catalyst metal
content in single-wall carbon nanotubes by inductively coupled plasma mass
spectrometry. Spectrochimica Acta Part B: Atomic Spectroscopy. doi:10.1016/
j.sab.2014.09.009
Griscom, B. (2021). OPINION: The most promising – and proven – carbon capture technology is
nature. Retrieved from https://news.trust.org/item/20210917123229-wm4fc
Griscom, B. W., Adams, J., Ellis, P. W., Houghton, R. A., Lomax, G., Miteva, D. A., . . . Fargione,
J. (2017). Natural climate solutions. Proceedings of the National Academy of Sciences,
114(44), 11645-11650. doi:10.1073/pnas.1710465114
Grisé, M., et al. (2021). Climate Control: International Legal Mechanisms for Managing the
Geopolitical Risks of Geoengineering. Retrieved from https://www.rand.org/pubs/
perspectives/PEA1133-1.html
Grönkvist, S., Möllersten, K., & Pingoud, K. (2006). Equal Opportunity for Biomass in
Greenhouse Gas Accounting of CO2 Capture and Storage: A Step Towards More Cost-
Effective Climate Change Mitigation Regimes. Mitigation and Adaptation Strategies for
Global Change, 11(5), 1083-1096. doi:10.1007/s11027-006-9034-9
Gronnow, M. J., et al. (2012). Torrefaction/biochar production by microwave and conventional
slow pyrolysis – comparison of energy properties. GCB Bioenergy, 5(2), 144-152.
Retrieved from http://onlinelibrary.wiley.com/doi/10.1111/gcbb.12021/abstract
Gronwald, M., Don, A., Tiemeyer, B., & Helfrich, M. (2015). Effects of fresh and aged biochars
from pyrolysis and hydrothermal carbonization on nutrient sorption in agricultural soils.
SOIL Discussions, 2(1), 29 - 65. doi:10.5194/soild-2-29-2015-supplement
Groot, H. (2016). Biochar 101: An Introduction to an Ancient Product Offering Modern
Opportunities. Retrieved from http://www.dovetailinc.org/report_pdfs/2016/
dovetailbiochar0316.pdf
Grossman, J. M., O'Neill, B. E., Tsai, S. M., Liang, B. Q., Neves, E., Lehmann, J., & Thies, J. E.
(2010). Amazonian Anthrosols Support Similar Microbial Communities that Differ
Distinctly from Those Extant in Adjacent, Unmodified Soils of the Same Mineralogy.
Microbial Ecology, 60(1), 192-205. Retrieved from https://www.ncbi.nlm.nih.gov/pubmed/
20574826
Group, C. (2019). CO2 Solutions Successfully Completes Commissioning of it First Commercial
Carbon Capture Unit. Yahoo! Finance, (April 29). Retrieved from https://
finance.yahoo.com/news/co2-solutions-successfully-completes-
commissioning-120000089.html
Group, C. C. A. (2021). The Final Warning Bell: The Most Important Assessment of Humanity's
Retrieved from https://www.ccag.earth/s/CCAG-The-Final-Warning-Bell-jayp.pdf
Group, D. (2018). Drax: Bioenergy carbon capture, storage pilot now underway. Biomass
Magazine. Retrieved from http://biomassmagazine.com/articles/15780/drax-bioenergy-
carbon-capture-storage-pilot-now-underway
Group, E., Biofuelwatch, & Stiftung, H. B. (2017). The Big Bad Fix. Retrieved from https://
www.boell.de/sites/default/files/bigbadfix.pdf?dimension1=division_iup
Group, T. T. C. (2010). Roadmap for Terrestrial Carbon Science Research Needs for Carbon
Management in Agriculture, Forestry and Other Land Uses. Retrieved from http://
www.terrestrialcarbon.org/site/DefaultSite/filesystem/documents/
TCG_Roadmap%20for%20Terrestrial%20Carbon%20Science_100408.pdf
Grover, H. (2021). Legislators told of possible low-emission cement production at Escalante
Power Plant. NM Political Report. Retrieved from https://nmpoliticalreport.com/
2021/07/23/legislators-told-of-possible-low-emission-cement-production-at-escalante-
power-plant/
Grubler, A., et al. (2018). A low energy demand scenario for meeting the 1.5°C target and
sustainable development goals without negative emission technologies. Nature Energy,
3, 521-527. Retrieved from https://www.nature.com/articles/s41560-018-0172-6
Grundy, A. (2020). Drax's Will Gardiner on ending coal generation and the potential for providing
inertia. Retrieved from https://www.current-news.co.uk/blogs/current-chats-draxs-will-
gardiner-on-ending-coal-generation-and-the-potential-for-providing-inertia
Grunwald, D., Kaiser, M., & Ludwig, B. (2016). Effect of biochar and organic fertilizers on C
mineralization and macro-aggregate dynamics under different incubation temperatures.
Soil and Tillage Research, 164, 11-17. doi:10.1016/j.still.2016.01.002
Gruver, M. (2020). Wyoming lauds US carbon capture study; utility skeptical. ABC News.
Retrieved from https://abcnews.go.com/Technology/wireStory/wyoming-lauds-us-carbon-
capture-study-utility-skeptical-72806148
Gu, H., & Bergman, R. (2015). Life-cycle GHG emissions of electricity from syngas produced by
pyrolyzing woody biomass. Paper presented at the Society of Wood Science and
Technology 58th International Convention, Jackson Lake Lodge, Grand Teton National
Park, Wyoming, USA. http://www.fpl.fs.fed.us/documnts/pdf2015/fpl_2015_gu001.pdf
Gu, H., & Bergman, R. (2016). Life-cycle assessment of a distributed-scale thermochemical
bioenergy conversion system. Wood and Fiber Science, 48(2), 1-13. Retrieved from
http://www.swst.org/publications/wfs/preprints/48(2)/WFS2415.pdf
Gu, J., et al. (2016). Effects of biochar on the transformation and earthworm bioaccumulation of
organic pollutants in soil. Chemosphere, 145, 431 - 437. doi:10.1016/
j.chemosphere.2015.11.106
Gu, J., Zhou, J., Ma, H., Ma, M., & Xing, M. (2015). Characteristics of camellia shell pyrolysis
products and optimization of preparation parameters of activated carbon. Transactions of
the Chinese Society of Agricultural Engineering, 31(21), 233-239. Retrieved from http://
www.ingentaconnect.com/content/tcsae/tcsae/2015/00000031/00000021/art00031
Gu, X., Wang, Y., Lai, C., Qiu, J., Li, S., Hou, Y., . . . Zhang, S. (2014). Microporous bamboo
biochar for lithium-sulfur batteries. Nano Research. doi:10.1007/s12274-014-0601-1
Guadalupe, E. (2019). Engineered cyanobacteria turn carbon dioxide into petrol substitute.
Chemistry World. Retrieved from https://www.chemistryworld.com/news/engineered-
cyanobacteria-turn-carbon-dioxide-into-petrol-substitute/3010847.article
Guan, C., Pan, Y., Ang, E. P. L., Hu, J., Yao, C., Huang, M.-H., . . . Huang, K.-W. (2018).
Conversion of CO2 from air into formate using amines and phosphorus-nitrogen PN3P-
Ru(ii) pincer complexes. Green Chemistry. doi:10.1039/C8GC02186D
Guan, X., et al. (2014). Studies on modified conditions of biochar and the mechanism for
fluoride removal. Desalination and Water Treatment, 55(2), 440-447.
doi:10.1080/19443994.2014.916230
Guedim, Z. (2017). Net Power Natural gas Carbon Capture Demo is Almost Ready. EdgyLabs.
Retrieved from https://edgylabs.com/netpower-natural-gas-carbon-capture-demo-is-
almost-ready/
Guenet, B., Gabrielle, B., Chenu, C., Arrouays, D., Balesdent, J., Bernoux, M., . . . Zhou, F.
(2021). Can N2O emissions offset the benefits from soil organic carbon storage? Global
Change Biology, 27(2), 237-256. doi:https://doi.org/10.1111/gcb.15342
Güereña, D., et al. (2012). Nitrogen dynamics following field application of biochar in a
temperate North American maize-based production system. Plant and Soil, 365(1),
239-254. doi:10.1007/s11104-012-1383-4
Güereña, D. T., Kimetu, J., Riha, S., Neufeldt, H., & Lehmann, J. (2016). Maize productivity
dynamics in response to mineral nutrient additions and legacy organic soil inputs of
contrasting quality. Field Crops Research, 188, 113 - 120. doi:10.1016/j.fcr.2015.12.017
Güereña, D. T., Lehmann, J., Thies, J. E., Enders, A., Karanja, N., & Neufeldt, H. (2015).
Partitioning the contributions of biochar properties to enhanced biological nitrogen
fixation in common bean (Phaseolus vulgaris). Biology and Fertility of Soils, 51(4),
479-491. doi:10.1007/s00374-014-0990-z
Guggenberger, G., et al. (2008). Storage and mobility of black carbon in permafrost soils of the
forest tundra ecotone in northern siberia. Global Change Biology, 14(6), 1367-1381.
Retrieved from http://onlinelibrary.wiley.com/doi/10.1111/j.1365-2486.2008.01568.x/
abstract
Guimarães, G. G. F., Paiva, D. M., Cantarutti, R. B., Mattielloa, E. M., & Reis, E. L. (2015).
Volatilization of Ammonia Originating from Urea Treated with Oxidized Charcoal. J. Braz.
Chem. Soc., 1-8. Retrieved from http://jbcs.sbq.org.br/imagebank/pdf/150147AR.pdf
Guinto, M. M. (2015). Pili (Canarium ovatum ) Shells Biochar as Home-Site Water Purification
System For Water Contaminated with Insecticide (Malathion). Retrieved from http://
www.biochar-international.org/sites/default/files/Full_report_Pili.pdf
Gul, S. (2014). Sustaining soil carbon in bioenergy cropping systems of northern temperate
regions. CAB Reviews: Perspectives in Agriculture, Veterinary Science, Nutrition and
Natural Resources, 9(026), 1-23. doi:10.1079/pavsnnr20149026
Gul, S., Whalen, J. K., Thomas, B. W., Sachdeva, V., & Deng, H. (2015). Physico-chemical
properties and microbial responses in biochar-amended soils: Mechanisms and future
directions. Agriculture, Ecosystems & Environment, 206, 46 - 59. doi:10.1016/
j.agee.2015.03.015
Gulyás, M., Fuchs, M., Kocsis, I., & Füleky, G. (2014). Effect of the soil treated with biochar on
the rye-grass in laboratory experimentAbstract. Acta Universitatis Sapientiae, Agriculture
and Environment, 6(1). doi:10.2478/ausae-2014-0009
Gulyás, M., Fuchs, M., Rétháti, G., Holes, A., Varga, Z., Kocsis, I., & Füleky, G. (2015). Effect of
solid pyrolysis products on selected soil properties in a laboratory experiment. In.
Gunasekara, W. A. K. M., & Ganehenege, M. Y. U. (2015). Utilization of Treated Sugarcane
Bagasse for Heavy Metal Trapping. Paper presented at the Proceedings Peradeniya
University International Research Sessions.
Gundale, M. J., & DeLuca, T. H. (2006). Temperature and source material influence ecological
attributes of ponderosa pine and douglas-fir charcoal. Forest Ecology and Management,
231(1-3), 86-93. Retrieved from http://www.sciencedirect.com/science/article/pii/
S0378112706003033
Gundale, M. J., & DeLuca, T. H. (2007). Charcoal effects on soil solution chemistry and growth
of koeleria macrantha in the ponderosa pine/Douglas-fir ecosystem. Biology and Fertility
of Soils, 43(3), 303-311. Retrieved from https://www.frames.gov/catalog/187
Gundale, M. J., Nilsson, M.-C., Pluchon, N., & Wardle, D. A. (2015). The effect of biochar
management on soil and plant community properties in a boreal forest Running Title:
Biochar impacts in a boreal forest. GCB Bioenergy, 8(4), 777-789. doi:10.1111/
gcbb.12274
Gundersen, C. B., Andersen, T., Vogt, R. D., & Allison, S. D. (2018). Growth response of
environmental bacteria under exposure to nitramines from CO2-capture. International
Journal of Greenhouse Gas Control, 79, 248-251. doi:https://doi.org/10.1016/
j.ijggc.2018.11.003
Gunes, A., Inal, A., Sahin, O., Taskin, M. B., Atakol, O., & Yilmaz, N. (2015). Variations in
mineral element concentrations of poultry manure biochar obtained at different pyrolysis
temperatures, and their effects on crop growth and mineral nutrition. Soil Use and
Management, n/a - n/a. doi:10.1111/sum.12205
Gunes, A., Inal, A., Taskin, M. B., Sahin, O., Kaya, E. C., & Atakol, A. (2014). Effect of
phosphorus-enriched biochar and poultry manure on growth and mineral composition of
lettuce (Lactuca sativa L. cv.) grown in alkaline soil. Soil Use and Management.
doi:10.1111/sum.12114
Gunnarsson, I., Aradóttir, E. S., Oelkers, E. H., Clark, D. E., Arnarson, M. Þ., Sigfússon, B., . . .
Gíslason, S. R. (2018). The rapid and cost-effective capture and subsurface mineral
storage of carbon and sulfur at the CarbFix2 site. International Journal of Greenhouse
Gas Control, 79, 117-126. doi:https://doi.org/10.1016/j.ijggc.2018.08.014
Gunter, W. D. e. a. (2004). The role of hydrogeological and geochemical trapping in sedimentary
basins for secure geological storage of carbon dioxide. Geological Society, London,
Special Publications, 233(1), 129. Retrieved from http://dx.doi.org/10.1144/
GSL.SP.2004.233.01.09
Gunther, M. (2012). Rethinking Carbon Dioxide: From a Pollutant to an Asset. (February 23).
Retrieved from http://e360.yale.edu/features/
geoengineering_carbon_dioxide_removal_technology_from_pollutant_to_asset
Guntzer, F., Keller, C., & Meunier, J.-D. (2012). Benefits of plant silicon for crops: a review.
Agronomy for Sustainable Development, 32(1), 201-213. doi:10.1007/
s13593-011-0039-8
Guo, F., & Fang, Z. (2014). Shape-controlled Synthesis of Activated Bio-chars by Surfactant-
templated Ionothermal Carbonization in Acidic Ionic Liquid and Activation with Carbon
Dioxide. BioResources, 9(2), 3369-3383. Retrieved from http://ojs.cnr.ncsu.edu/
index.php/BioRes/article/view/
BioRes_09_2_3369_Guo_Fang_Biochars_Carbonization_carbon_dioxide/2750
Guo, J., & Chen, B. (2014). New Insights on the Molecular Mechanism for the Recalcitrance of
Biochars: Interactive Effects of Carbon and Silicon Components. Environmental Science
& Technology, 48(16), 9103–9112. doi:10.1021/es405647e
Guo, M., et al. . (2015). SSSA Special PublicationAgricultural and Environmental Applications of
Biochar: Advances and BarriersIntroduction to Biochar as an Agricultural and
Environmental Amendment: Soil Science Society of America, Inc.
Guo, M. (2015). SSSA Special PublicationAgricultural and Environmental Applications of
Biochar: Advances and BarriersPyrogenic Carbon in Terra Preta Soils: Soil Science
Society of America, Inc.
Guo, M., Song, W., & Buhain, J. (2015). Bioenergy and biofuels: History, status, and
perspective. Renewable and Sustainable Energy Reviews, 42, 712-725. doi:https://
doi.org/10.1016/j.rser.2014.10.013
Guo, S., et al. (2015). ⽣物炭对⽔中Pb(II)Zn(II)的吸附特征 (Adsorption of Pb(II),Zn(II) from
aqueous solution by biochars). Chinese Journal of Environmental Engineering, 9(7),
3215-3222. Retrieved from http://www.cjee.ac.cn/teepc_cn/ch/reader/
view_abstract.aspx?file_no=20150723
Guo, W. J., et al. (2013). Adsorption of Cd2+ on biochar from aqueous solution. European
PubMed Central, 39(4), 3716-3721. Retrieved from http://europepmc.org/abstract/med/
24289029
Guo, X., et al. . (2014). Ameliorating effects of biochar application on degraded vegetable soil.
Journal of Southern Agriculture, 45(1), 67-71. Retrieved from https://www.cabdirect.org/
cabdirect/abstract/20143395502
Guo, Y., Ashworth, P., Sun, Y., Yang, B., Yang, J., & Chen, J. (2019). The influence of narrative
versus statistical evidence on public perception towards CCS in China: Survey results
from local residents in Shandong and Henan provinces. International Journal of
Greenhouse Gas Control, 84, 54-61. doi:https://doi.org/10.1016/j.ijggc.2019.02.021
Guo, Y., Tang, H., Li, G., & Xie, D. (2013). Effects of Cow Dung Biochar Amendment on
Adsorption and Leaching of Nutrient from an Acid Yellow Soil Irrigated with Biogas
Slurry. Water, Air, & Soil Pollution, 225(1), 1820. doi:10.1007/s11270-013-1820-x
Guo, Y.-l., Wang, D.-d., Zheng, J.-Y., Zhao, S.-W., & Zhang, X.-C. (2015). Effect of Biochar on
Soil Greenhouse Gas Emissions in Semi-arid Region. Huan jing ke xue= Huanjing
kexue / [bian ji, Zhongguo ke xue yuan huan jing ke xue wei yuan hui "Huan jing ke xue"
bian ji wei yuan hui.], 36(9), 3393-3400. Retrieved from http://europepmc.org/abstract/
med/26717703
Guo, Y. S. (2015). Poinsettia and Easter Lily Growth and Development Responses to Root
Substrate Containing Biochar. Texas A & M University, Retrieved from http://
oaktrust.tamu.edu/handle/1969.1/153944?show=full
Guocheng, L. (2014). ⽣物炭对⽔体和⼟壤环境中重⾦属铅的固持(Biochar for water and soil
environment of retaining Pb). 中国海洋⼤学 ( China Ocean University), Retrieved from
http://cdmd.cnki.com.cn/Article/CDMD-10423-1014203973.htm
Gupta, A., & Paul, A. (2019). Carbon capture and sequestration potential in India: A
comprehensive review. Energy Procedia, 160, 848-855. doi:https://doi.org/10.1016/
j.egypro.2019.02.148
Gupta, D. (2021). Net zero emissions by 2050—a new approach needed. Financial Express
(India). Retrieved from https://www.financialexpress.com/opinion/net-zero-emissions-
by-2050-a-new-approach-needed/2265621/
Gupta, D. K. (2020). Role of Biochar in Carbon Sequestration and Greenhouse Gas Mitigation.
In J. Singh, et al. (Ed.), Biochar Applications in Agriculture and Environment
Management (pp. 141-166).
Gupta, R. K., Dubey, M., Kharel, P., Zhengrong, G., & Fan, Q. H. (2015). Biochar activated by
oxygen plasma for supercapacitors. Journal of Power Sources, 274, 1300 - 1305.
doi:10.1016/j.jpowsour.2014.10.169
Gupta, S., Kashani, A., Mahmood, A. H., & Han, T. (2021). Carbon sequestration in cementitious
composites using biochar and fly ash – Effect on mechanical and durability properties.
Construction and Building Materials, 291, 123363. doi:https://doi.org/10.1016/
j.conbuildmat.2021.123363
Gupta, S., Kua, H. W., & Low, C. Y. (2018). Use of biochar as carbon sequestering additive in
cement mortar. Cement and Concrete Composites, 87, 110-129. doi:https://doi.org/
10.1016/j.cemconcomp.2017.12.009
Gupta, V., Mobley, P., Tanthana, J., Cody, L., Barbee, D., Lee, J., . . . Lail, M. (2021). Aerosol
emissions from water-lean solvents for post-combustion CO2 capture. International
Journal of Greenhouse Gas Control, 106, 103284. doi:https://doi.org/10.1016/
j.ijggc.2021.103284
Gurevich Messina, L. I., Bonelli, P. R., & Cukierman, A. L. (2015). Copyrolysis of peanut shells
and cassava starch mixtures: Effect of the components proportion. Journal of Analytical
and Applied Pyrolysis, 113, 508-517. doi:10.1016/j.jaap.2015.03.017
Gurtler, J. B., et al. (2013). Inactivation of E. coli O157:H7 in Cultivable Soil by Fast and Slow
Pyrolysis-Generated Biochar. Foodborne Pathogens and Disease, 11(3), 215-223.
Retrieved from https://www.liebertpub.com/doi/abs/10.1089/fpd.2013.1631
Gurudayal, Bullock, J., Sranko, D. F., Towle, C. M., Lum, Y., Hettick, M., . . . Ager, J. (2017).
Efficient solar-driven electrochemical CO2 reduction to hydrocarbons and oxygenates.
Energy & Environmental Science. doi:10.1039/C7EE01764B
Gurwick, N. P., et al. (2012). The Scientific Basis for Biochar as a Climate Change Mitigation
Strategy: Does it Measure Up? Retrieved from http://www.ucsusa.org/assets/documents/
global_warming/Biochar-Climate-Change-Mitigation-Strategy-Does-It-Measure-Up.pdf
Gurwick, N. P., et al. . (2013). A Systematic Review of Biochar Research, with a Focus on Its
Stability in situ and Its Promise as a Climate Mitigation Strategy. Plos One, 8, 1-9.
Retrieved from http://www.plosone.org/article/
info%3Adoi%2F10.1371%2Fjournal.pone.0075932
Gusca, J., & Blumberga, D. (2011). Simplified dynamic life cycle assessment model of CO2
compression, transportation and injection phase within carbon capture and storage.
Energy Procedia, 4, 2526-2532. doi:https://doi.org/10.1016/j.egypro.2011.02.149
Güssow, K., Oschlies, A., Bickel, A., Rehdanz, K., & Rickels, W. (2010). Ocean iron fertilization:
Time to lift the research taboo. In Climate Change Geoengineering: Philosophical
Perspectives, Legal Issues, and Governance Frameworks (pp. 242-262).
Güssow, K., Proelss, A., Oschlies, A., Rehdanz, K., & Rickels, W. (2010). Ocean iron
fertilization: Why further research is needed. Marine Policy, 34(5), 911-918. doi:http://
dx.doi.org/10.1016/j.marpol.2010.01.015
Gustafsson, K. (2018). Spearheading negative emissions in Stockholm’s multi-energy system.
In M. Fridahl (Ed.), Bioenergy with carbon capture and storage: From global potentials to
domestic realities (pp. 68-87).
Gustafsson, K., Sadegh-Vaziri, R., Grönkvist, S., Levihn, F., & Sundberg, C. (2021). BECCS
with combined heat and power: Assessing the energy penalty. International Journal of
Greenhouse Gas Control, 108, 103248. doi:https://doi.org/10.1016/j.ijggc.2020.103248
Gustafsson, M. (2013). Pyrolysis for heat production - Biochar the primary byproduct. (Master
Thesis). University of Gävle, Retrieved from http://www.diva-portal.org/smash/record.jsf?
pid=diva2:655188
Gustafsson, O., Bucheli, T. D., Kukulska, Z., Andersson, M., Largeau, C., & Rouzaud, J. N.
(2001). Evaluation of a protocol for the quantification of black carbon in sediments.
Global Biogeochemical Cycles, 15(4), 881-890.
Gustin, G. (2017). Death by 1,000 Cuts: Why the Forest Carbon Sink Is Disappearing. Inside
Climate News, (September 28). Retrieved from https://insideclimatenews.org/news/
28092017/tropical-forest-logging-fires-carbon-sink-climate-change-study
Gustin, G. (2021). Politicians Are Considering Paying Farmers to Store Carbon. But Some
Environmental and Agriculture Groups Say It’s Greenwashing. Inside Climate News.
Retrieved from https://insideclimatenews.org/news/16042021/politicians-are-considering-
paying-farmers-to-store-carbon-but-some-environmental-and-agriculture-groups-say-its-
greenwashing/
Gustin, G. (2021). Trees Fell Faster in the Years Since Companies and Governments Promised
to Stop Cutting Them Down. Inside Climate News. Retrieved from https://
insideclimatenews.org/news/19052021/deforestation-climate-change-forest-trends-
companies-governments/?
utm_source=InsideClimate+News&utm_campaign=47014ccb88-
&utm_medium=email&utm_term=0_29c928ffb5-47014ccb88-326466933
Gutiérrez-Castorena, E. V., Gutiérrez-Castorena, M. d. C., & Ortiz-Solorio, C. A. (2015). Carbon
capture and pedogenetic processes by change of moisture regime and conventional
tillage in Aridisols. Soil and Tillage Research, 150, 114-123. doi:https://doi.org/10.1016/
j.still.2015.02.001
Gutknecht, V., Snæbjörnsdóttir, S. Ó., Sigfússon, B., Aradóttir, E. S., & Charles, L. (2018).
Creating a carbon dioxide removal solution by combining rapid mineralization of CO2
with direct air capture. Energy Procedia, 146, 129-134. doi:https://doi.org/10.1016/
j.egypro.2018.07.017
Gützloe, A., Thumm, U., & Lewandowski, I. (2014). Influence of climate parameters and
management of permanent grassland on biogas yield and GHG emission substitution
potential. Biomass and Bioenergy, 64, 175-189. doi:https://doi.org/10.1016/
j.biombioe.2014.03.024
Guzman, M. S., Rengasamy, K., Binkley, M. M., Jones, C., Ranaivoarisoa, T. O., Singh, R., . . .
Bose, A. (2019). Phototrophic extracellular electron uptake is linked to carbon dioxide
fixation in the bacterium Rhodopseudomonas palustris. Nature Communications, 10(1),
1355. doi:10.1038/s41467-019-09377-6
Gwenzi, W., Chaukura, N., Mukome, F. N. D., Machado, S., & Nyamasoka, B. (2015). Biochar
production and applications in sub-Saharan Africa: Opportunities, constraints, risks and
uncertainties. Journal of Environmental Management, 150, 250-261. doi:10.1016/
j.jenvman.2014.11.027
Gwenzi, W., Musarurwa, T., Nyamugafata, P., Chaukura, N., Chaparadza, A., & Mbera, S.
(2014). Adsorption of Zn2+ and Ni2+ in a binary aqueous solution by biosorbents derived
from sawdust and water hyacinth (Eichhornia crassipes). Water Science & Technology,
70(8), 1419. doi:10.2166/wst.2014.391
Gwenzi, W., Muzava, M., Mapanda, F., & Tauro, T. P. (2015). Comparative short-term effects of
sewage sludge and its biochar on soil properties, maize growth and uptake of nutrients
on a tropical clay soil in Zimbabwe. In.
Gysi, A. P., et al. (2012). Mineralogical aspects of CO2 sequestration during hydrothermal basalt
alteration — An experimental study at 75 to 250°C and elevated pCO2. Chemical
Geology, 306-307, 146-159. Retrieved from https://www.researchgate.net/publication/
236952193_Mineralogical_aspects_of_CO2_sequestration_during_hydrothermal_basalt
_alteration_-_An_experimental_study_at_75_to_250C_and_elevated_pCO2
Gysi, A. P., & Stefansson, A. (2008). Numerical modelling of CO2-water-basalt interaction.
Mineralogical Magazine, 72(1), 55-59. Retrieved from https://www.researchgate.net/
profile/Alexander_Gysi/publication/263119633_Numerical_modelling_of_CO2-water-
basalt_interaction/links/54adae130cf24aca1c6f6aaa.pdf
Gysi, A. P., & Stefánsson, A. (2011). CO2–water–basalt interaction. Numerical simulation of low
temperature CO2 sequestration into basalts. Geochimica Et Cosmochimica Acta, 75(17),
4728-4751. doi:https://doi.org/10.1016/j.gca.2011.05.037
Gysi, A. P., & Stefánsson, A. (2012). CO2-water–basalt interaction. Low temperature
experiments and implications for CO2 sequestration into basalts. Geochimica Et
Cosmochimica Acta, 81, 129-152. doi:https://doi.org/10.1016/j.gca.2011.12.012
Gysi, A. P., & Stefánsson, A. (2012). Mineralogical aspects of CO2 sequestration during
hydrothermal basalt alteration — An experimental study at 75 to 250°C and elevated
pCO2. Chemical Geology, 306-307, 146-159. doi:https://doi.org/10.1016/
j.chemgeo.2012.03.006
Haas, T. J., Nimlos, M. R., & Donohoe, B. S. (2009). Real-Time and Post-reaction Microscopic
Structural Analysis of Biomass Undergoing Pyrolysis. Energy Fuels, 23(7), 3810-3817.
Retrieved from http://pubs.acs.org/doi/abs/10.1021/ef900201b
Haberl, H. (2015). Competition for land: A sociometabolic perspective. Ecological Economics,
119, 424-431. doi:https://doi.org/10.1016/j.ecolecon.2014.10.002
Haberl, H. (2016). The Growing Role of Biomass for Future Resource Supply—Prospects and
Pitfalls. In J. Dewulf, S. De Meester, & R. A. F. Alvarenga (Eds.), Sustainability
Assessment of RenewablesBased Products (pp. 1-18).
Haberl, H., Beringer, T., Bhattacharya, S. C., Erb, K.-H., & Hoogwijk, M. (2010). The global
technical potential of bio-energy in 2050 considering sustainability constraints. Current
Opinion in Environmental Sustainability, 2(5–6), 394-403. doi:http://dx.doi.org/10.1016/
j.cosust.2010.10.007
Haberl, H., Erb, K.-H., Krausmann, F., Bondeau, A., Lauk, C., Müller, C., . . . Steinberger, J. K.
(2011). Global bioenergy potentials from agricultural land in 2050: Sensitivity to climate
change, diets and yields. Biomass and Bioenergy, 35(12), 4753-4769. doi:http://
dx.doi.org/10.1016/j.biombioe.2011.04.035
Haberl, H., Sprinz, D., Bonazountas, M., Cocco, P., Desaubies, Y., Henze, M., . . . Searchinger,
T. (2012). Correcting a fundamental error in greenhouse gas accounting related to
bioenergy. Energy Policy, 45(Supplement C), 18-23. doi:https://doi.org/10.1016/
j.enpol.2012.02.051
Haberland, G. T., & Lombardi, K. C. (2013). Organic Matter and Carbon in a Cambisoil After
Incorporation of Biochar for Eucalyptus benthamii. Functions of Natural Organic Matter
in Changing Environment, 1017-1020. Retrieved from http://download.springer.com/
static/pdf/196/chp%253A10.1007%252F978-94-007-5634-2_188.pdf?
originUrl=http%3A%2F%2Flink.springer.com%2Fchapter%2F10.1007%2F978-94-007-5
634-2_188&token2=exp=1487291283~acl=%2Fstatic%2Fpdf%2F196%2Fchp%25253A
10.1007%25252F978-94-007-5634-2_188.pdf%3ForiginUrl%3Dhttp%253A%252F%252
Flink.springer.com%252Fchapter%252F10.1007%252F978-94-007-5634-2_188*~hmac
=ce8d6e4b6d9f66e589c55f4b50fea056120768da79977fd939c072233d1573e4
Hacatoglu, K., James McLellan, P., & Layzell, D. B. (2011). Feasibility study of a Great Lakes
bioenergy system. Bioresource Technology, 102(2), 1087-1094. doi:10.1016/
j.biortech.2010.08.063
Hadfield, M. G. (2011). Expected and observed conditions during the SAGE iron addition
experiment in Subantarctic waters. Deep Sea Research Part II: Topical Studies in
Oceanography, 58(6), 764-775. doi:https://doi.org/10.1016/j.dsr2.2010.10.016
Hadi, A., et al. (2014). DESAIN INSTALASI PIROLISIS LIMBAH PERTANIAN DALAM RANGKA
MINIMALISASI EMISI GAS RUMAH KACA DARI LAHAN BASAH (DESIGN
INSTALLATION PYROLYSIS OF AGRICULTURAL WASTE MINIMIZATION IN ORDER
TO GREENHOUSE GAS EMISSIONS FROM WETLAND). Paper presented at the
Prosiding Seminar Nasional Sains Dan Teknologi Fakultas Teknik (Proceedings of the
National Seminar on Science and Technology, Faculty of Engineering).
Hadi, A., et al. (2015). Wetlands Wastes Management Can Minimize CH4 and N2O in
Indonesia. Journal of Wetlands Environmental Management, 3(1), 35-40. Retrieved from
http://ijwem.unlam.ac.id/index.php/ijwem/article/view/45
Hadi Mosleh, M., Sedighi, M., Babaei, M., & Turner, M. (2019). 16 - Geological sequestration of
carbon dioxide. In T. M. Letcher (Ed.), Managing Global Warming (pp. 487-500):
Academic Press.
Hadjittofi, L., Charalambous, S., & Pashalidis, I. (2016). Removal of trivalent samarium from
aqueous solutions by activated biochar derived from cactus fibres. Journal of Rare
Earths, 34(1), 99 - 104. doi:10.1016/s1002-0721(14)60584-6
Hadjittofi, L., & Pashalidis, I. (2014). Uranium sorption from aqueous solutions by activated
biochar fibres investigated by FTIR spectroscopy and batch experiments. Journal of
Radioanalytical and Nuclear Chemistry. doi:10.1007/s10967-014-3868-5
Hadjittofi, L., & Pashalidis, I. (2015). Thorium removal from acidic aqueous solutions by
activated biochar derived from cactus fibres. In.
Hadjittofi, L., Prodromou, M., & Pashalidis, I. (2014). Activated Biochar Derived from Cactus
Fibres – Preparation, Characterization and Application on Cu(II) Removal from Aqueous
Solutions. Bioresource Technology, 159, 460-464. Retrieved from http://
www.sciencedirect.com/science/article/pii/S0960852414003782
Ha-Duong, M. (2015). Unmanaged solid and liquid wastes from rice husk gasification. HAL-
IMAGES, la collection des images scientifiques de l'ENPC (HAL-IMAGES, the collection
of scientific images ENPC). Retrieved from https://hal.inria.fr/HAL-IMAGE/
medihal-01101170v1
Ha-Duong, M., Nadaï, A., & Campos, A. S. (2009). A survey on the public perception of CCS in
France. International Journal of Greenhouse Gas Control, 3(5), 633-640. doi:https://
doi.org/10.1016/j.ijggc.2009.05.003
Haefele, S. M., et al. . (2011). Effects and fate of biochar from rice residues in rice-based
systems. Field Crops Research, 121(3), 430-440. doi:Field Crops Research
Hagemann, N., Joseph, S., Schmidt, H.-P., Kammann, C. I., Harter, J., Borch, T., . . . Kappler, A.
(2017). Organic coating on biochar explains its nutrient retention and stimulation of soil
fertility. Nature Communications, 8(1), 1089. doi:10.1038/s41467-017-01123-0
Hagner, M., Hallman, S., Jauhiainen, L., Kemppainen, R., Rämö, S., Tiilikkala, K., & Setälä, H.
(2015). Birch (Betula spp.) wood biochar is a potential soil amendment to reduce
glyphosate leaching in agricultural soils. Journal of Environmental Management, 164, 46
- 52. doi:10.1016/j.jenvman.2015.08.039
Hahn, A., Szarka, N., & Thrän, D. (2020). German Energy and Decarbonization Scenarios:
“Blind Spots” With Respect to Biomass-Based Carbon Removal Options. Frontiers in
Energy Research, 8(130). doi:10.3389/fenrg.2020.00130
Hahn, A., Szarka, N., & Thrän, D. (2020). German Energy and Decarbonization Scenarios:
“Blind Spots” With Respect to Biomass-Based Carbon Removal Options. Frontiers in
Energy Research, 8(130). doi:10.3389/fenrg.2020.00130
Haider, G., Koyro, H.-W., Azam, F., Steffens, D., Müller, C., & Kammann, C. (2014). Biochar but
not humic acid product amendment affected maize yields via improving plant-soil
moisture relations. Plant and Soil. doi:10.1007/s11104-014-2294-3
Haider, M. B., Jha, D., Balathanigaimani, M. S., & Kumar, R. (2018). Modelling and simulation of
CO2 removal from shale gas using deep eutectic solvents. Journal of Environmental
Chemical Engineering. doi:https://doi.org/10.1016/j.jece.2018.10.061
Haije, W., & Geerlings, H. (2011). Efficient production of solar fuel using large scale production
technologies. Environ. Sci. Technol., 45, 8609.
Haiken Sclarsic, S. M. (2021). A Bioengineering Roadmap for Negative Emissions
Technologies. (M.Sc.). MIT, Retrieved from https://www.media.mit.edu/posts/a-
bioengineering-roadmap-for-negative-emissions-technologies-master-s-thesis/
Haikola, S., Anshelm, J., & Hansson, A. (2021). Limits to climate action - Narratives of bioenergy
with carbon capture and storage. Political Geography, 88, 102416. doi:https://doi.org/
10.1016/j.polgeo.2021.102416
Haikola, S., Hansson, A., & Anshelm, J. (2019). From polarization to reluctant acceptance–
bioenergy with carbon capture and storage (BECCS) and the post-normalization of the
climate debate. Journal of Integrative Environmental Sciences, 16(1), 1-25.
doi:10.1080/1943815X.2019.1579740
Haikola, S., Hansson, A., & Fridahl, M. (2018). Views of BECCS Among Modelers and
Policymakers. In M. Fridahl (Ed.), Bioenergy with carbon capture and storage: From
global potentials to domestic realities (pp. 17-29).
Haikola, S., Hansson, A., & Fridahl, M. (2019). Map-makers and navigators of politicised terrain:
Expert understandings of epistemological uncertainty in integrated assessment
modelling of bioenergy with carbon capture and storage. Futures, 114, 102472.
doi:https://doi.org/10.1016/j.futures.2019.102472
Hailey, L. E., & Percival, G. C. (2015). The Influence of long term flooding on tree biology and
approaches to flood stress alleviation and management. Arboricultural Journal, 37(3),
135 - 149. doi:10.1080/03071375.2015.1075333
Hair, C. (2021). Direct Air Capture of CO2 Is Suddenly a Carbon Offset Option. Scientific
American. Retrieved from https://www.scientificamerican.com/article/direct-air-capture-
of-co2-is-suddenly-a-carbon-offset-option/
Hakala, K., Kontturi, M., & Pahkala, K. (2009). Field biomass as global energy source.
Agricultural and Food Science, 18(3-4), 347-365. Retrieved from https://journal.fi/afs/
article/view/5950/5148
Halder, G., Khan, A. A., & Dhawane, S. (2015). Fluoride sorption onto a steam activated biochar
derived from Cocos nucifera shell. CLEAN - Soil, Air, Water, n/a - n/a. doi:10.1002/
clen.201400649
Halder, P., et al. (2015). Stakeholders’ Perceptions of Bioenergy—Global Coverage and Policy
Implications. In B. S. Reddy & S. Ulgiati (Eds.), Energy Security and Development (pp.
377-391): Springer.
Hale, B., & Dilling, L. (2011). Geoengineering, Ocean Fertilization, and the Problem of
Permissible Pollution. Science, Technology, & Human Values, 36(2), 190-212. Retrieved
from http://journals.sagepub.com/doi/pdf/10.1177/0162243910366150
Hale, L., & Crowley, D. (2014). DNA Extraction from Biochar Amended Soils. Paper presented at
the ASA, CSSA, SSSA 2014 Annual Meeting. https://dl.sciencesocieties.org/publications/
meetings/download/pdf/2014am/86318
Hale, L., & Crowley, D. (2015). DNA extraction methodology for biochar-amended sand and
clay. Biology and Fertility of Soils. doi:10.1007/s00374-015-1020-5
Hale, L., Luth, M., & Crowley, D. (2015). Biochar characteristics relate to its utility as an
alternative soil inoculum carrier to peat and vermiculite. Soil Biology and Biochemistry,
81, 228 - 235. doi:10.1016/j.soilbio.2014.11.023
Hale, L., Luth, M., Kenney, R., & Crowley, D. (2014). Evaluation of pinewood biochar as a carrier
of bacterial strain Enterobacter cloacae UW5 for soil inoculation. Applied Soil Ecology,
84, 192 - 199. doi:10.1016/j.apsoil.2014.08.001
Hale, M. S., Rivkin, R. B., Matthews, P., Agawin, N. S. R., & Li, W. K. W. (2006). Microbial
response to a mesoscale iron enrichment in the NE subarctic Pacific: Heterotrophic
bacterial processes. Deep Sea Research Part II: Topical Studies in Oceanography,
53(20–22), 2231-2247. doi:http://dx.doi.org/10.1016/j.dsr2.2006.05.039
Hale, S. E., et al. (2011). The effects of chemical, biological and physical aging as well as soil
addition on the sorption of pyrene to activated carbon and biochar. Environmental
Science and Technology, 45(24), 10445–10453. doi:10.1021/es202970x
Hale, S. E., et al. (2015). Sorption of the monoterpenes α-pinene and limonene to
carbonaceous geosorbents including biochar. Chemosphere, 119, 881 - 888.
doi:10.1016/j.chemosphere.2014.08.052
Hale, S. E., et al. (2016). A synthesis of parameters related to the binding of neutral organic
compounds to charcoal. Chemosphere, 144, 65 - 74. doi:10.1016/
j.chemosphere.2015.08.047
Hale, S. E., Lehmann, J., Rutherford, D., Zimmerman, A. R., Bachmann, R. T., Shitumbanuma,
V., . . . Cornelissen, G. (2012). Quantifying the Total and Bioavailable Polycyclic Aromatic
Hydrocarbons and Dioxins in Biochars. Environ. Sci. Technol., 46, 2830-2838. Retrieved
from http://pubs.acs.org/doi/abs/10.1021/es203984k
Halim, R., Gladman, B., Danquah, M. K., & Webley, P. A. (2011). Oil extraction from microalgae
for biodiesel production. Bioresource Technology, 102(1), 178-185. doi:https://doi.org/
10.1016/j.biortech.2010.06.136
Hall, D. J. M., & Bell, R. W. (2015). Biochar and Compost Increase Crop Yields but the Effect is
Short Term on Sandplain Soils of Western Australia. Pedosphere, 25(5), 720 - 728.
doi:10.1016/s1002-0160(15)30053-9
Hall, D. O. (1997). Biomass Energy in Industrialised Countries—A View of the Future. Forest
Ecology and Management, 91(1), 17-45. Retrieved from https://www.researchgate.net/
publication/223282193_Biomass_Energy_in_Industrialised_Countries-
A_View_of_the_Future
Hall, D. O., & House, J. I. (1995). Biomass: a modem and environmentally acceptable fuel.
Solar Energy Materials and Solar Cells, 38(1), 521-542. doi:http://dx.doi.org/
10.1016/0927-0248(94)00242-8
Hall, J., Matos, S., Severino, L., & Beltrão, N. (2009). Brazilian biofuels and social exclusion:
established and concentrated ethanol versus emerging and dispersed biodiesel. Journal
of Cleaner Production, 17, S77-S85. doi:http://dx.doi.org/10.1016/j.jclepro.2009.01.003
Hall, J. A., & Safi, K. (2001). The impact of in situ Fe fertilisation on the microbial food web in the
Southern Ocean. Deep Sea Research Part II: Topical Studies in Oceanography, 48(11–
12), 2591-2613. doi:http://dx.doi.org/10.1016/S0967-0645(01)00010-8
Hall, J. M., Van Holt, T., Daniels, A. E., Balthazar, V., & Lambin, E. F. (2012). Trade-offs between
tree cover, carbon storage and floristic biodiversity in reforesting landscapes. Landscape
Ecology, 27(8), 1135-1147. doi:10.1007/s10980-012-9755-y
Hall, K. E., Calderon, M. J., Spokas, K. A., Cox, L., Koskinen, W. C., Novak, J., & Cantrell, K.
(2014). Phenolic Acid Sorption to Biochars from Mixtures of Feedstock Materials. Water,
Air, & Soil Pollution, 225(7). doi:10.1007/s11270-014-2031-9
Hall, K. E., Calderón, M. J., Spokas, K. A., Cox, L., Koskinen, W. C., Novak, J., & Cantrell, K.
(2015). Effect of biochar on the fate and behavior of allelochemicals in soil. Paper
presented at the 13th IUPAC International Congress of Pesticide Chemistry Crop,
Environment, and Public Health Protection: Technologies for a Changing World 2014.
http://digital.csic.es/handle/10261/117147?
mode=full&submit_simple=Show+full+item+record
Hall, K. E., Ray, C., Ki, S. J., Spokas, K. A., & Koskinen, W. C. (2015). Pesticide sorption and
leaching potential on three Hawaiian soils. Journal of Environmental Management.
doi:10.1016/j.jenvman.2015.04.046
Hall, P. J., Wilson, J. A. G., & Rennie, A. (2014). CO2-derived fuels for energy in carbon dioxide
utilisation. In P. Styring, E. A. Quadrelli, & K. Armonstrong (Eds.), Closing the Carbon
Cycle (pp. 33-44).
Hallgren, W., Schlosser, C. A., Monier, E., Kicklighter, D., Sokolov, A., & Melillo, J. (2013).
Climate impacts of a large-scale biofuels expansion. Geophysical Research Letters,
40(8), 1624-1630. doi:10.1002/grl.50352
Hallin, I. L., Douglas, P., Doerr, S. H., & Bryant, R. (2015). The effect of addition of a wettable
biochar on soil water repellency. European Journal of Soil Science, 66(6), 1063 - 1073.
doi:10.1111/ejss.12300
Hallowell, J. R., & Hallowell, B. (2015).
Halmann, M., & Steinfeld, A. (2009). Hydrogen production and CO2 fixation by flue-gas
treatment using methane tri-reforming or coke/coal gasification combined with lime
carbonation. International Journal of Hydrogen Energy, 34(19), 8061-8066. doi:https://
doi.org/10.1016/j.ijhydene.2009.08.031
Halouani, K. (2015). Biomass-Energy from Carbonization to Fuel Cell. Paper presented at the
Mediterranean Agricultural Wastes: Environmentally Sustainable Resource for an
Innovative
Renewable Energy Technology (E. www.researchgate.net/profile/Kamel_Halouani/publication/
270278839_Biomass-Energy_from_carbonization_to_fuel_cell/links/
54a5b0af0cf257a63608d6f0.pdf
Halwachs, M., Kampichler, G., Kern, S., & Hofbauer, H. (2010). Valorisation of Low Grade
Biomass by Using Low Temperature Pyrolysis. Paper presented at the 18th European
Biomass Conference and Exhibition.
Hamaguchi, M., Saari, J., & Vakkilainen, E. (2013). Biochar and Bio-oil as Additional Revenue
Streams in South American Kraft Pulp Mills. Bioresources.com, 8(3), 3399-3414.
Retrieved from http://ojs.cnr.ncsu.edu/index.php/BioRes/article/viewFile/3737/2143
Hamer, U., Marschner, B., Brodowski, S., & Amelung, W. (2004). Interactive priming of black
carbon and glucose mineralisation. Organic Geochemistry, 35(7), 823-830. Retrieved
from http://www.sciencedirect.com/science/article/pii/S014663800400052X
Hamid, S. B. A., Chowdhury, Z. Z., & Zain, S. M. (2014). Base Catalytic Approach: A Promising
Technique for the Activation of Biochar for Equilibrium Sorption Studies of Copper, Cu(II)
Ions in Single Solute System. Materials, 7, 2815-2832.
Hamilton, L. (2011). Latest research on the magic pudding of biochar. Australian Forest Grower,
34, 40-41. Retrieved from http://search.informit.com.au/
documentSummary;dn=594312546675433;res=IELHSS
Hamilton, S. K., Kurzman, A. L., Arango, C., Jin, L., & Robertson, G. P. (2007). Evidence for
carbon sequestration by agricultural liming. Global Biogeochemical Cycles, 21(2), n/a-n/
a. doi:10.1029/2006GB002738
Hamilton, S. K., Kurzman, A. L., Arango, C., Jin, L., & Robertson, G. P. (2007). Evidence for
carbon sequestration by agricultural liming. Global Biogeochemical Cycles, 21(2).
doi:https://doi.org/10.1029/2006GB002738
Hammad, H. M., Fasihuddin Nauman, H. M., Abbas, F., Ahmad, A., Bakhat, H. F., Saeed, S., . . .
Cerdà, A. (2020). Carbon sequestration potential and soil characteristics of various land
use systems in arid region. Journal of Environmental Management, 110254. doi:https://
doi.org/10.1016/j.jenvman.2020.110254
Hammar, T., Stendahl, J., Sundberg, C., Holmström, H., & Hansson, P.-A. (2019). Climate
impact and energy efficiency of woody bioenergy systems from a landscape perspective.
Biomass and Bioenergy, 120, 189-199. doi:https://doi.org/10.1016/
j.biombioe.2018.11.026
Hammed, T. B., & Sridhar, M. K. C. (2014). A closed drum carboniser for converting ligno-
cellulosic residues to biochar pellets: A Nigerian study. In.
Hammer, D., Keller, C., McLaughlin, M. J., & Hamon, R. E. (2006). Fixation of metals in soil
constituents and potential remobilization by hyperaccumulating and non-
hyperaccumulating plants: Results from an isotopic dilution study. Environmental
Pollution, 143, 407-415.
Hammer, E. C., Balogh-Brunstad, Z., Jakobsen, I., Olsson, P. A., Stipp, S. L. S., & Rillig, M. C.
(2014). A mycorrhizal fungus grows on biochar and captures phosphorus from its
surfaces. Soil Biology and Biochemistry, 77, 252 - 260. doi:10.1016/j.soilbio.2014.06.012
Hammer, E. C., Forstreuter, M., Rillig, M. C., & Kohler, J. (2015). Biochar increases arbuscular
mycorrhizal plant growth enhancement and ameliorates salinity stress. Applied Soil
Ecology, 96, 114 - 121. doi:10.1016/j.apsoil.2015.07.014
Hammes, K., & M.W.I., S. (2009). Changes of Biochar in Soil. In Biochar for Environmental
Management: Science and Technology (pp. 169-182). London, UK: Earthscan.
Hammes, K., Smernik, R. J., Skjemstad, J. O., & Schmidt, M. W. I. (2008). Characterisation and
evaluation of reference materials for black carbon analysis using elemental composition,
colour, BET surface area and C-13 NMR spectroscopy. Applied Geochemistry, 23(8),
2113-2122.
Hammes, K., Torn, M. S., Lapenas, A. G., & Schmidt, M. W. I. (2008). Centennial black carbon
turnover observed in a russian steppe soil. Biogeosciences, 5(5), 1339-1350.
Hammon, J., & Shackley, S. (2010). Towards a public communication and engagement strategy
for carbon dioxide capture and storage projects in Scotland. Retrieved from https://
www.era.lib.ed.ac.uk/bitstream/handle/1842/16476/wp-2010-08.pdf?
sequence=1&isAllowed=y
Hammond, J., et al. (2013). Biochar field testing in the UK: outcomes and implications for use.
Carbon Management, 4(2), 159-170. Retrieved from http://www.tandfonline.com/doi/abs/
10.4155/cmt.13.3
Hammond, J., et al. (2016). The legality of biochar use: Regulatory requirements and risk
assessment. In Biochar in European Soils and Agriculture: Science and Practice.
Hammond, J., Shackley, S., Sohi, S., & Brownsort, P. (2011). Prospective life cycle carbon
abatement for pyrolysis biochar systems in the UK. Energy Policy, 39(5), 2646-2655.
doi:http://dx.doi.org/10.1016/j.enpol.2011.02.033
Hampel, M. (2020). Alberta group models CO2 injection system off the coast of Canada.
Hamza, U. D., Nasri, N. S., Amin, N. S., Mohammed, J., & Zain, H. M. (2015). Characteristics of
oil palm shell biochar and activated carbon prepared at different carbonization times.
Desalination and Water Treatment, 1 - 8. doi:10.1080/19443994.2015.1042068
Hamzah, Z., et al. (2013). Characterization of physicochemical properties of biochar from
different agricultural residues. Advances in Environmental Biology, 7(12), 3752-3757.
Hamze, e. a. (2014). How Does Biochar Affect the Pore Size Distribution, S-Index and
Saturated Hydraulic Conductivity of a Sandy Soil? Iowa State University, Retrieved from
https://scisoc.confex.com/scisoc/2014am/webprogram/Handout/Paper88882/
conference_poster_4.pdf
Han, A. (2021). Rep. Matsui and husband donate to support climate research. Retrieved from
https://giving.ucdavis.edu/impacts-giving/rep-matsui-and-husband-donate-support-
climate-research?
utm_source=Aggie%20Connections&utm_medium=email&utm_campaign=expect%20gr
eater
Han, G. M., Meng, J., Zhang, W. M., & Chen, W. F. (2013). Effect of Biochar on Microorganisms
Quantity and Soil Physicochemical Property in Rhizosphere of Spinach (Spinacia
oleracea L.). Applied Mechanics and Materials, 295-298, 210-219. Retrieved from
https://www.scientific.net/AMM.295-298.210
Han, L., Xue, S., Zhao, S., Yan, J., Qian, L., & Chen, M. (2015). Biochar Supported Nanoscale
Iron Particles for the Efficient Removal of Methyl Orange Dye in Aqueous Solutions. Plos
One, 10(7), e0132067. doi:10.1371/journal.pone.0132067.s001
Han, X., et al. (2015). Removal of Methylene Blue from Aqueous Solution using Porous Biochar
Obtained by KOH Activation of Peanut Shell Biochar. BioResources, 10(2), 2836-2849.
Retrieved from http://ojs.cnr.ncsu.edu/index.php/BioRes/article/view/
BioRes_10_2_2836_Han_Methylene_Blue_Removal_Biochar/3450
Han, X., et al. . (2016). Mitigating methane emission from paddy soil with rice-straw biochar
amendment under projected climate change. Scientific Reports, 6. doi:10.1038/
srep24731
Han, Y., Cao, J., An, Z., Chow, J. C., Watson, J. G., & Jin, Z. (2007). Evaluation of the thermal/
optical reflectance method for quantification of elemental carbon in sediments.
Chemosphere, 69(4), 526-533.
Han, Y., Cao, X., Ouyang, X., Sohi, S. P., & Chen, J. (2016). Adsorption kinetics of magnetic
biochar derived from peanut hull on removal of Cr (VI) from aqueous solution: Effects of
production conditions and particle size. Chemosphere, 145, 336 - 341. doi:10.1016/
j.chemosphere.2015.11.050
Han, Z., Sani, B., Akkanen, J., Abel, S., Nybom, I., Karapanagioti, H. K., & Werner, D. (2015). A
critical evaluation of magnetic activated carbon’s potential for the remediation of
sediment impacted by polycyclic aromatic hydrocarbons. Journal of Hazardous
Materials, 286, 41 - 47. doi:10.1016/j.jhazmat.2014.12.030
Han, Z., Sani, B., Mrozik, W., Obst, M., Beckingham, B., Karapanagioti, H. K., & Werner, D.
(2015). Magnetite impregnation effects on the sorbent properties of activated carbons
and biochars. Water Research, 70, 394 - 403. doi:10.1016/j.watres.2014.12.016
Hanak, D. P., Anthony, E. J., & Manovic, V. (2015). A review of developments in pilot-plant
testing and modelling of calcium looping process for CO2 capture from power generation
systems. Energy & Environmental Science, 8(8), 2199-2249. doi:10.1039/C5EE01228G
Hanak, D. P., Biliyok, C., Anthony, E. J., & Manovic, V. (2015). Modelling and comparison of
calcium looping and chemical solvent scrubbing retrofits for CO2 capture from coal-fired
power plant. International Journal of Greenhouse Gas Control, 42(Supplement C),
226-236. doi:https://doi.org/10.1016/j.ijggc.2015.08.003
Hanak, D. P., Jenkins, B. G., Kruger, T., & Manovic, V. (2017). High-efficiency negative-carbon
emission power generation from integrated solid-oxide fuel cell and calciner. Applied
Energy, 205, 1189-1201. doi:https://doi.org/10.1016/j.apenergy.2017.08.090
Hanak, D. P., & Manovic, V. (2017). Calcium looping combustion for high-efficiency low-
emission power generation. Journal of Cleaner Production, 161(Supplement C),
245-255. doi:https://doi.org/10.1016/j.jclepro.2017.05.080
Hanak, D. P., & Manovic, V. (2018). Combined heat and power generation with lime production
for direct air capture. Energy Conversion and Management, 160, 455-466. doi:https://
doi.org/10.1016/j.enconman.2018.01.037
Hanaoka, T., & Okumura, Y. (2014). Effect of metal content on CO2 gasification behavior of K-
and Fe-loaded bio-chars. Journal of Thermal Science and Technology, 9(2), 1-12.
doi:10.1299/jtst.2014jtst0006
Hanasaki, N., Fujimori, S., Yamamoto, T., Yoshikawa, S., Masaki, Y., Hijioka, Y., . . . Kanae, S.
(2013). A global water scarcity assessment under Shared Socio-economic Pathways
&ndash; Part 2: Water availability and scarcity. Hydrology and Earth Systems Sciences,
17(7), 2393-2413. doi:10.5194/hess-17-2393-2013
Handå, A., McClimans, T. A., Reitan, K. I., Knutsen, Ø., Tangen, K., & Olsen, Y. (2014). Artificial
upwelling to stimulate growth of non-toxic algae in a habitat for mussel farming.
Aquaculture Research, 45(11), 1798-1809. doi:https://doi.org/10.1111/are.12127
Handler, R. M., Shonnard, D. R., Kalnes, T. N., & Lupton, F. S. (2014). Life cycle assessment of
algal biofuels: Influence of feedstock cultivation systems and conversion platforms. Algal
Research, 4, 105-115. doi:https://doi.org/10.1016/j.algal.2013.12.001
Handy, R. (2017). Back in Texas, Perry touts technology to keep fossil fuels, climate viable.
Houston Chronicle. Retrieved from http://www.houstonchronicle.com/business/article/
Back-in-Texas-Perry-touts-technology-to-keep-11072397.php
Hanes, S. (2020). Investors say agroforestry isn’t just climate friendly — it’s also profitable.
Mongabay. Retrieved from https://news.mongabay.com/2020/07/investors-find-
agroforestry-isnt-just-climate-friendly-it-can-also-be-profitable/
Hangs, R. D., Ahmed, H. P., & Schoenau, J. J. (2015). Influence of Willow Biochar Amendment
on Soil Nitrogen Availability and Greenhouse Gas Production in Two Fertilized
Temperate Prairie Soils. BioEnergy Research. doi:10.1007/s12155-015-9671-5
Hangx, S. J. T., & Spiers, C. J. (2009). Coastal spreading of olivine to control atmospheric CO2
concentrations: A critical analysis of viability. International Journal of Greenhouse Gas
Control, 3(6), 757-767. doi:http://dx.doi.org/10.1016/j.ijggc.2009.07.001
Hanley, S. (2020). Argonne National Lab Breakthrough Turns Carbon Dioxide Into Ethanol.
Clean Technica. Retrieved from https://cleantechnica.com/2020/08/08/argonne-national-
lab-breakthrough-turns-carbon-dioxide-into-ethanol/
Hanna, R., Abdulla, A., Xu, Y., & Victor, D. G. (2021). Emergency deployment of direct air
capture as a response to the climate crisis. Nature Communications, 12(1), 368.
doi:10.1038/s41467-020-20437-0
Hannah, V. C., Sofie, S., Lark, R. M., & Sacha, J. M. (2021). To till or not to till in a temperate
ecosystem? Implications for climate change mitigation. Environmental Research Letters.
Retrieved from http://iopscience.iop.org/article/10.1088/1748-9326/abe74e
Hannon, E., Boyd, P. W., Silvoso, M., & Lancelot, C. (2001). Modeling the bloom evolution and
carbon flows during SOIREE: Implications for future in situ iron-enrichments in the
Southern Ocean. Deep Sea Research Part II: Topical Studies in Oceanography, 48(11–
12), 2745-2773. doi:http://dx.doi.org/10.1016/S0967-0645(01)00016-9
Hannula, I. (2015). Co-production of synthetic fuels and district heat from biomass residues,
carbon dioxide and electricity: Performance and cost analysis. Biomass and Bioenergy,
74, 26-46. doi:http://dx.doi.org/10.1016/j.biombioe.2015.01.006
Hänsel, M. C., Drupp, M. A., Johansson, D. J. A., Nesje, F., Azar, C., Freeman, M. C., . . .
Sterner, T. (2020). Climate economics support for the UN climate targets. Nature Climate
Change, 10(8), 781-789. doi:10.1038/s41558-020-0833-x
Hansen, A. C., & Berlina, A. (2018). Bioenergy Development in Sweden—Frameworks for
Success. In W. Leal Filho, D. M. Pociovălișteanu, P. R. Borges de Brito, & I. Borges de
Lima (Eds.), Towards a Sustainable Bioeconomy: Principles, Challenges and
Perspectives (pp. 457-481). Cham: Springer International Publishing.
Hansen, J., et al. (2016). Young People's Burden: Requirement of Negative CO
2
Emissions.
Retrieved from https://arxiv.org/ftp/arxiv/papers/1609/1609.05878.pdf
Hansen, J. (2017). Young people's burden: requirement of negative CO2 emissions. Earth
Systems Dynamics, 8, 577-616. Retrieved from https://www.earth-syst-dynam.net/
8/577/2017/
Hansen, J. (2018). Rock Dust in Farming: A Potential Strategy to Help Close the Climate Gap.
Retrieved from http://www.columbia.edu/~jeh1/mailings/
2018/20180219_RockDustInFarming_NewsRelease.pdf
Hansen, V., et al. (2014). Gasification biochar as a valuable by-product for carbon sequestration
and soil amendment. Biomass and Bioenergy, 72, 300-308. doi:10.1016/
j.biombioe.2014.10.013
Hansen, V. (2014). Gasification biochar as soil amendment for carbon sequestration and soil
quality. Paper presented at the DTU Sustain Conference. http://forskningsbasen.deff.dk/
Share.external?sp=S30645b87-0a80-48ba-85c4-42d97de646f4&sp=Sdtu
Hansen, V., Hauggaard-Nielsen, H., Petersen, C. T., & Müller-Stöver, D. S. (2015). Straw
gasification biochar increases plant available water capacity and plant growth in coarse
sandy soil. Paper presented at the Joint International Biochar Symposium 2015. http://
www.forskningsdatabasen.dk/en/catalog/2291868842
Hansen, V., Müller-Stöver, D., Munkholm, L. J., Peltre, C., Hauggaard-Nielsen, H., & Jensen, L.
S. (2016). The effect of straw and wood gasification biochar on carbon sequestration,
selected soil fertility indicators and functional groups in soil: An incubation study.
Geoderma, 269, 99 - 107. doi:10.1016/j.geoderma.2016.01.033
Hansen, V., Müller-Stöver, D. S., Petersen, C. T., Hauggaard-Nielsen, H., Ahrenfeldt, J., &
Jensen, L. S. (2016). Session 61: Biokuls relevans i dansk sammenhæng (Session 61:
Biokuls relevance in the Danish context). Paper presented at the Plantekongres. http://
www.forskningsdatabasen.dk/en/catalog/2291868840
Hansing, A. A. (2018). European and Swedish Point Sources of Biogenic Carbon Dioxide. In M.
Fridahl (Ed.), Bioenergy with carbon capture and storage: From global potentials to
domestic realities (pp. 31-43).
Hanssen, S. V., Daioglou, V., Steinmann, Z. J. N., Frank, S., Popp, A., Brunelle, T., . . . Van
Vuuren, D. P. (2019). Biomass residues as twenty-first century bioenergy feedstock—a
comparison of eight integrated assessment models. Climatic Change. doi:10.1007/
s10584-019-02539-x
Hansson, A. (2012). Colonizing the future: the case of CCS. In N. Markusson, S. Shackley,
& B. Evar (Eds.), The Social Dynamics of Carbon Capture and Storage (pp. 74-90).
Retrieved from https://books.google.com/books?
id=_jZypdxp7DIC&dq=The+Social+Dynamics+of+Carbon+Capture+and+Storage&lr=
Hansson, A., & Bryngelsson, M. (2009). Expert opinions on carbon dioxide capture and storage
—A framing of uncertainties and possibilities. Energy Policy, 37(6), 2273-2282.
doi:https://doi.org/10.1016/j.enpol.2009.02.018
Hansson, A., Fridahl, M., Haikola, S., Yanda, P., Pauline, N., Mabhuye, E. J. E., Development, &
Sustainability. (2019). Preconditions for bioenergy with carbon capture and storage
(BECCS) in sub-Saharan Africa: the case of Tanzania. Environment, Development and
Sustainability, 22, 6851–6875. doi:10.1007/s10668-019-00517-y
Hansson, A., Haikola, S., Fridahl, M., Yanda, P., Mabhuye, E., & Pauline, N. (2020). Biochar as
multi-purpose sustainable technology: experiences from projects in Tanzania.
Environment, Development and Sustainability. doi:10.1007/s10668-020-00809-8
Hanusch, J. M., Kerschgens, I. P., Huber, F., Neuburger, M., & Gademann, K. (2019).
Pyrrolizidines for direct air capture and CO2 conversion. Chemical Communications,
55(7), 949-952. doi:10.1039/C8CC08574A
Haque, A., Tang, C. K., Islam, S., Ranjith, P. G., & Bui, H. H. (2014). Biochar Sequestration in
Lime-Slag Treated Synthetic Soils: A Green Approach to Ground Improvement. Journal
of Materials in Civil Engineering, 06014024. doi:10.1061/(asce)mt.1943-5533.0001113
Haque, F., Santos, R. M., & Chiang, Y. W. (2020). CO2 sequestration by wollastonite-amended
agricultural soils – An Ontario field study. International Journal of Greenhouse Gas
Control, 97, 103017. doi:https://doi.org/10.1016/j.ijggc.2020.103017
Haque, F., Santos, R. M., Dutta, A., Thimmanagari, M., & Chiang, Y. W. (2019). Co-Benefits of
Wollastonite Weathering in Agriculture: CO(2) Sequestration and Promoted Plant
Growth. ACS omega, 4(1), 1425-1433. doi:10.1021/acsomega.8b02477
Haque, T. (2021). Blue Carbon Can Help Climate Change "Code Red". Retrieved from https://
www.nrdc.org/experts/carolina-herrera/blue-carbon-can-help-climate-change-code-red
Hara, Y., Obata, H., Doi, T., Hongo, Y., Gamo, T., Takeda, S., & Tsuda, A. (2009). Rare earth
elements in seawater during an iron-induced phytoplankton bloom of the western
subarctic Pacific (SEEDS-II). Deep Sea Research Part II: Topical Studies in
Oceanography, 56(26), 2839-2851. doi:http://dx.doi.org/10.1016/j.dsr2.2009.06.009
Hardie, M., et al. . (2013). Does biochar influence soil physical properties and soil water
availability? Plant and Soil, 376(1), 347-361. Retrieved from http://link.springer.com/
article/10.1007/s11104-013-1980-x
Hardie, M., et al. (2014). Effect of biochar application on soil water availability and hydraulic
conductivity. Paper presented at the Conference: Soil Science Australia National Soil
Science Conference. http://www.soilscience2014.com.au/proceedings/Hardie.pdf
Hardie, M. A., Oliver, G., Clothier, B. E., Bound, S. A., Green, S. A., & Close, D. C. (2015). Effect
of Biochar on Nutrient Leaching in a Young Apple Orchard. Journal of Environment
Quality, 44(4), 1273. doi:10.2134/jeq2015.02.0068
Hardin, B. (2020). Compulsory Licensing of Climate Engineering Patents: How Embracing
Technology- and Research-Sharing Strategies Brings Us One Step Closer to Solving
Climate Change. Arkansas Law Review, 73(3), 612-629. Retrieved from https://
scholarworks.uark.edu/alr/vol73/iss3/4/
Hardman-Mountford, N. J., Polimene, L., Hirata, T., Brewin, R. J. W., & Aiken, J. (2013). Impacts
of light shading and nutrient enrichment geo-engineering approaches on the productivity
of a stratified, oligotrophic ocean ecosystem. Journal of The Royal Society Interface,
10(89). doi:10.1098/rsif.2013.0701
Hardy, K., Knight, J. D., & Farrell, R. (2015). Examining biochar as a carrier for Rhizobium Spp.
on pea crop. In.
Hariharan, S., Leopold, C., Werner, M. R., & Mazzotti, M. (2017). A Two-step CO2 Mineralization
Process. Energy Procedia, 114, 5404-5408. doi:https://doi.org/10.1016/
j.egypro.2017.03.1684
Harikishore Kumar Reddy, D., & Lee, S.-M. (2014). Magnetic biochar composite: Facile
synthesis, characterization and application for heavy metal removal. Colloids and
Surfaces A: Physicochemical and Engineering Aspects, 454, 96-103. Retrieved from
http://www.sciencedirect.com/science/article/pii/S0927775714003549
Haring, V., et al. (2015). Management of land use systems for enhanced food security: conflicts,
controversies and resolutions. Paper presented at the Tropentag.
Harish, B. S., Janaki Ramaiah, M., & Babu Uppuluri, K. (2015). Bioengineering strategies on
catalysis for the effective production of renewable and sustainable energy. Renewable
and Sustainable Energy Reviews, 51, 533 - 547. doi:10.1016/j.rser.2015.06.030
Harper, A. B., Powell, T., Cox, P. M., House, J., Huntingford, C., Lenton, T. M., . . . Shu, S.
(2018). Land-use emissions play a critical role in land-based mitigation for Paris climate
targets. Nature Communications, 9(1), 2938. doi:10.1038/s41467-018-05340-z
Harrabin, R. (2017). Sci-fi forest tracks carbon impact. BBC News. Retrieved from http://
www.bbc.com/news/science-environment-39472425
Harris, M. (2017). The entrepreneurs turning carbon dioxide into fuels. The Guardian. Retrieved
from https://www.theguardian.com/sustainable-business/2017/sep/14/entrepreneurs-
turn-carbon-dioxide-into-fuels-artificial-photosynthesis
Harris, R. (2020). 'Unlocking new tech': $1.9 billion for low-emission energy projects. The
Sydney Morning Herald.
Harris, Z. M., Milner, S., & Taylor, G. (2018). Chapter 5 - Biogenic Carbon—Capture and
Sequestration. In P. Thornley & P. Adams (Eds.), Greenhouse Gas Balances of
Bioenergy Systems (pp. 55-76): Academic Press.
Harrison, A. L., Tutolo, B. M., & DePaolo, D. J. (2019). The Role of Reactive Transport Modeling
in Geologic Carbon Storage. Elements, 15(2), 93-98. doi:10.2138/gselements.15.2.93
Harrison, B., & Falcone, G. (2014). Carbon capture and sequestration versus carbon capture
utilisation and storage for enhanced oil recovery. Acta Geotechnica, 9(1), 29-38.
doi:http://dx.doi.org/10.1007/s11440-013-0235-6
Harrison, D. P. (2013). A method for estimating the cost to sequester carbon dioxide by
delivering iron to the ocean. International Journal of Global Warming, 5(3), 231-254.
Harrison, D. P. (2017). Global negative emissions capacity of ocean macronutrient fertilization.
Environmental Research Letters, 12(3), 1-11. Retrieved from http://stacks.iop.org/
1748-9326/12/i=3/a=035001
Harrison, P. J. (2006). SERIES (subarctic ecosystem response to iron enrichment study): A
Canadian–Japanese contribution to our understanding of the iron–ocean–climate
connection. Deep Sea Research Part II: Topical Studies in Oceanography, 53(20),
2006-2011. doi:https://doi.org/10.1016/j.dsr2.2006.08.001
Harsanti, E. S. e. a. (2016). Evaluation of the effects of activated carbon on POP insecticide
residues in mustard in Central Java, Indonesia. In Biochar for future food security:
learning from experiences and identifying research priorities.
Harsono, S. S., et al. (2011). Life Cycle Analysis of Biochar from Palm Oil empty Fruit Bunches.
Paper presented at the Tropentag 2011, October 5 - 7, "Development on the margin",
Bonn, Germany.
Harsono, S. S., et al. (2013). Energy balances, greenhouse gas emissions and economics of
biochar production from palm oil empty fruit bunches. Resources, Conservation and
Recycling, 77, 108–115.
Hartatik, W., Wibowo, H., & Purwani, J. (2015). Biochar and Tithoganic Application for Improving
Soybean (Glycine max L.) Productivity on Typic Kanhapludults in Lampung Timur
(translated from Indonesian language). Jurnal Tanah dan Iklim (Journal of Soil and
Climate), 39(1), 51-62. Retrieved from http://balittanah.litbang.pertanian.go.id/ind/
dokumentasi/lainnya/wiwik%20vol39.pdf
Harter, J., et al. (2013). Linking N2O emissions from biochar-amended soil to the structure and
function of the N-cycling microbial community. The ISME Journal, 8, 660-674. Retrieved
from http://www.nature.com/ismej/journal/v8/n3/full/ismej2013160a.html
Harter, J., Weigold, P., El-Hadidi, M., Huson, D. H., Kappler, A., & Behrens, S. (2016). Soil
biochar amendment shapes the composition of N2O-reducing microbial communities.
Science of The Total Environment, 562, 379-390. doi:http://dx.doi.org/10.1016/
j.scitotenv.2016.03.220
Hartley, W., Dickinson, N. M., Riby, P., & Lepp, N. W. (2009). Arsenic mobility in brownfield soils
amended with green waste compost or biochar and planted with Miscanthus.
Environmental Pollution, 157, 2654-2662.
Hartmann, J. (2009). Bicarbonate-fluxes and CO2-consumption by chemical weathering on the
Japanese Archipelago — Application of a multi-lithological model framework. Chemical
Geology, 265(3), 237-271. doi:https://doi.org/10.1016/j.chemgeo.2009.03.024
Hartmann, J., et al. (2013). Enhancing Chemical Weathering as a Geoengineering Strategy to
Reduce Atmospheric Carbon Dioxide, Supply Nutrients, and Mitigate Ocean
Acidification. Reviews of Geophysics, 51(2), 113-149. Retrieved from http://
onlinelibrary.wiley.com/doi/10.1002/rog.20004/pdf
Hartmann, J., Jansen, N., Dürr, H. H., Kempe, S., & Köhler, P. (2009). Global CO2-consumption
by chemical weathering: What is the contribution of highly active weathering regions?
Global and Planetary Change, 69(4), 185-194. doi:http://dx.doi.org/10.1016/
j.gloplacha.2009.07.007
Hartmann, J., & Kempe, S. (2008). What is the maximum potential for CO2 sequestration by
“stimulated” weathering on the global scale? Naturwissenschaften, 95(12), 1159-1164.
doi:10.1007/s00114-008-0434-4
Harvey, C. (2017). How Dirt Can Clean the Air. Scientific American. Retrieved from https://
www.scientificamerican.com/article/how-dirt-can-clean-the-air/
Harvey, C. (2017). How Much CO
2
Will the World Need to Remove from the Air? Scientific
American, (November 30). Retrieved from https://www.scientificamerican.com/article/
how-much-co2-will-the-world-need-to-remove-from-the-air/
Harvey, C. (2018). Cement Producers Are Developing a Plan to Reduce CO2 Emissions.
Scientific American. Retrieved from https://www.scientificamerican.com/article/cement-
producers-are-developing-a-plan-to-reduce-co2-emissions/
Harvey, C. (2018). Tree Farms Will Not Save Us from Global Warming. Scientific American.
Retrieved from https://www.scientificamerican.com/article/tree-farms-will-not-save-us-
from-global-warming/
Harvey, F. (2009, March 2). Black is the New Green. The Financial Times. Retrieved from http://
www.ft.com/cms/s/2/67843ec0-020b-11de-8199-000077b07658.html
Harvey, F. (2021). Planting Trees To Fight Climate Change Is Great. Then Again, So Is Eating.
Mother Jones. Retrieved from https://www.motherjones.com/environment/2021/08/
oxfam-study-planting-trees-carbon-offsets-climate-change-food-insecurity/
Harvey, L. D. D. (2008). Mitigating the atmospheric CO
2
increase and ocean acidification by
adding limestone powder to upwelling regions. Journal of Geophysical Research:
Oceans, 113(C4). doi:10.1029/2007JC004373
Harvey, M., & Pilgrim, S. (2011). The new competition for land: Food, energy, and climate
change. Food Policy, 36(Supplement 1), S40-S51. doi:http://dx.doi.org/10.1016/
j.foodpol.2010.11.009
Harvey, M. J., Law, C. S., Smith, M. J., & Ziolkowski, L. (2004). The SOLAS air–sea gas
exchange experiment (SAGE) 2004. Deep Sea Research Part II Topical Studies in
Oceanography, 58(6), 753-763. Retrieved from https://www.researchgate.net/publication/
222122729_The_SOLAS_air-sea_gas_exchange_experiment_SAGE_2004
Harvey, O. R., et al. (2011). Metal Interactions at the Biochar-Water Interface: Energetics and
Structure-Sorption Relationships Elucidated by Flow Adsorption Microcalorimetry.
Environmental Science and Technology, 45(13), 5550-5556. Retrieved from http://
pubs.acs.org/doi/abs/10.1021/es104401h
Hasegawa, T., Sands, R. D., Brunelle, T., Cui, Y., Frank, S., Fujimori, S., & Popp, A. (2020).
Food security under high bioenergy demand toward long-term climate goals. Climatic
Change. doi:10.1007/s10584-020-02838-8
Hashimoto, S., Toda, S., Suzuki, K., Kato, S., Narita, Y., Kurihara, M. K., . . . Uematsu, M.
(2009). Production and air–sea flux of halomethanes in the western subarctic Pacific in
relation to phytoplankton pigment concentrations during the iron fertilization experiment
(SEEDS II). Deep Sea Research Part II: Topical Studies in Oceanography, 56(26),
2928-2935. doi:http://dx.doi.org/10.1016/j.dsr2.2009.07.003
Hasib, S. B. (2015). Influence of Biochar, Vermicompost and Wheat Straw on Phosphate
Sorption in Bajoa and Sara Soil Series. Khulna University, Retrieved from http://
www.researchgate.net/profile/Md_Sadiqul_Amin/publication/
271531283_INFLUENCE_OF_BIOCHAR_VERMICOMPOST_AND_WHEAT_STRAW_
ON_PHOSPHATE_SORPTION_IN_BAJOA_AND_SARA_SOIL_SERIES/links/
54cc4a060cf298d6565a5e6b.pdf
Haskell, G. (2017). On saving forests, the world's largest carbon sinks. Retrieved from https://
www.greenbiz.com/article/saving-forests-worlds-largest-carbon-sinks
Hass, A., & Gonzalez, J. M. (2014). Fertilizers: Components, Uses in Agriculture and
Environmental Impacts, Chapter 4 : Biochar.
Hassan, A., & Kaewsichan, L. (2016). Removal of Pb(II) from Aqueous Solutions Using Mixtures
of Bamboo Biochar and Calcium Sulphate, and Hydroxyapatite and Calcium Sulphate.
In.
Hassby, O. (2014). Biokol för rening av kväve och fosfor ur dagvatten i Segeåns
avrinningsområde (Biochar for removal of nitrogen and phosphorus from stormwater
catchment Segeåns). Lund University, Retrieved from http://lup.lub.lu.se/luur/download?
func=downloadFile&recordOId=4467062&fileOId=4467068
Hassler, C. S., Schoemann, V., Nichols, C. M., Butler, E. C. V., & Boyd, P. W. (2011).
Saccharides enhance iron bioavailability to Southern Ocean phytoplankton. Proceedings
of the National Academy of Sciences, 108(3), 1076-1081. doi:10.1073/pnas.1010963108
Hastings, A., et al. (2013). Biofuel Crops and Greenhouse Gases. In B. P. Singh (Ed.), Biofuel
Crop Sustainability (pp. 383-395).
Hastings, A., & Smith, P. (2020). Achieving Net Zero Emissions Requires the Knowledge and
Skills of the Oil and Gas Industry. Frontiers in Climate, 2(22). doi:10.3389/
fclim.2020.601778
Haszeldine, R. S. (2016). Can CCS and NET enable the continued use of fossil carbon fuels
after CoP21? Oxford Review of Economic Policy, 32(2), 304-322. doi:10.1093/oxrep/
grw013
Haszeldine, R. S. (2020). Chapter 18 Getting CO2 Storage Right – Arithmetically and Politically.
In Carbon Capture and Storage (pp. 563-567): The Royal Society of Chemistry.
Haszeldine, R. S., Flude, S., Johnson, G., & Scott, V. (2018). Negative emissions technologies
and carbon capture and storage to achieve the Paris Agreement commitments.
Philosophical Transactions of the Royal Society A: Mathematical,
Physical and Engineering Sciences, 376(2119). doi:10.1098/rsta.2016.0447
Hauck, J., et al. . (2016). Iron fertilisation and century-scale effects of open ocean dissolution of
olivine in a simulated CO 2 removal experiment. Environmental Research Letters, 11(2),
024007. Retrieved from http://stacks.iop.org/1748-9326/11/i=2/a=024007
Haug, T. A., Kleiv, R. A., & Munz, I. A. (2010). Investigating dissolution of mechanically activated
olivine for carbonation purposes. Applied Geochemistry, 25(10), 1547-1563. doi:https://
doi.org/10.1016/j.apgeochem.2010.08.005
Haugan, P. M. (2003). On the Production and Use of Scientific Knowledge About Ocean
Sequestration A2 - Gale, J. In Y. Kaya (Ed.), Greenhouse Gas Control Technologies - 6th
International Conference (pp. 719-724). Oxford: Pergamon.
Haugen, H. A., Aagaard, P., Thyberg, B., Kjärstad, J., Langlet, D., Melaaen, M. C., . . . Bjørnsen,
D. (2011). CCS in the Skagerrak/Kattegat area. Energy Procedia, 4, 2324-2331.
doi:https://doi.org/10.1016/j.egypro.2011.02.123
Haus, J., Lindmüller, L., Dymala, T., Jarolin, K., Feng, Y., Hartge, E.-U., . . . Werther, J. (2020).
Increasing the efficiency of chemical looping combustion of biomass by a dual-stage fuel
reactor design to reduce carbon capture costs. Mitigation and Adaptation Strategies for
Global Change, 25(6), 969-986. doi:10.1007/s11027-020-09917-2
Hausfather, Z. (2018). Analysis: How ‘natural climate solutions’ can reduce the need for BECCS.
CarbonBrief. Retrieved from https://www.carbonbrief.org/analysis-how-natural-climate-
solutions-can-reduce-the-need-for-beccs
Hausfather, Z. (2020). UNEP: Net-zero pledges provide an ‘opening’ to close growing emissions
‘gap’. Carbon Brief. Retrieved from https://www.carbonbrief.org/unep-net-zero-pledges-
provide-an-opening-to-close-growing-emissions-gap
Havercroft, I. (2019). Lessons and Perceptions: Adopting a Commercial Approach to CCS
Liability. Retrieved from https://www.globalccsinstitute.com/resources/publications-
reports-research/adopting-a-commercial-approach-to-ccs-liability/
Havlik, P., Schneider, U. A., Schmid, E., Bottcher, H., Fritz, S., Skalsky, R., . . . Obersteiner, M.
(2011). Global land-use implications of first and second generation biofuel targets.
Energy Policy, 39(10), 5690-5702. doi:10.1016/j.enpol.2010.03.030
Hawes, C. (2019). New CO capture technology is not the magic bullet against climate change.
The Conversation, (April 17). Retrieved from https://theconversation.com/new-co-
capture-technology-is-not-the-magic-bullet-against-climate-change-115413
Hawthorne, I., Johnson, M. S., Jassal, R. S., Black, T. A., Grant, N. J., & Smukler, S. M. (2017).
Application of biochar and nitrogen influences fluxes of CO2, CH4 and N2O in a forest
soil. Journal of Environmental Management, 192(Supplement C), 203-214. doi:https://
doi.org/10.1016/j.jenvman.2016.12.066
Hay, G. (2021). Breakdown: Net zero goals demand zero tolerance. Reuters. Retrieved from
https://www.reuters.com/article/us-climate-change-companies-breakingview/breakdown-
net-zero-goals-demand-zero-tolerance-idUSKBN2CR1JH
Haya, B. (2019). RB’s U.S. Forest Projects offset protocol underestimates leakage –Preliminary
results. Retrieved from https://gspp.berkeley.edu/assets/uploads/research/pdf/
Policy_Brief-US_Forest_Projects-Leakage-Haya_1.pdf
Haya, B., Cullenward, D., Strong, A. L., Grubert, E., Heilmayr, R., Sivas, D. A., & Wara, M.
(2020). Managing uncertainty in carbon offsets: insights from California’s standardized
approach. Climate Policy, 1-15. doi:10.1080/14693062.2020.1781035
Hayashi, K. (2016). The role of biochar and prospects for its use in rice production in Southeast
Asia. In Biochar for future food security: learning from experiences and identifying
research priorities.
Hayes, B. H. (2014). Mechanical and cultural practices to reduce skinning in sweetpotato.
Mississippi State University, Retrieved from http://gradworks.umi.com/
15/54/1554943.html
Hayes, M. H. B. (2006). Biochar and biofuels for a brighter future. Nature, 443(7108), 144-144.
Hayes, M. H. B. (2013). Relationships Between Biochar and Soil Humic Substances. In
Functions of Natural Organic Matter in Changing Environment (pp. 959-963).
Haykiri-Acma, H., Yaman, S., & Kucukbayrak, S. (2015). Does carbonization avoid segregation
of biomass and lignite during co-firing? Thermal analysis study. Fuel Processing
Technology. doi:10.1016/j.fuproc.2015.03.017
Hazarika, S. (2014). Replacing slash-and-burn with slash-and-char can improve the quality of
Jhum field soils. Paper presented at the National Seminar on Shifting Cultivation (Jhum)
in the 21st Century: Fitness and Improvement. www.researchgate.net/profile/
Samarendra_Hazarika/publication/270162740_Replacing_slash-and-burn_with_slash-
and-char_can_improve_the_quality_of_Jhum_field_soils/links/
54a21c260cf257a636037c18.pdf
Hazendonk, P., Bryson Brown, M., Byrne, J., Harrison, T., Mueller, R., Peacock, K., . . .
McNaughton, R. (2014). Regional Renewable Energy Cooperatives. American
Geophysical Union, San Francisco. Retrieved from https://
researchspace.auckland.ac.nz/handle/2292/25020
He, G., Wang, K., Zhong, Q., Zhang, G., van den Bosch, C. K., & Wang, J. (2021). Agroforestry
reclamations decreased the CO2 budget of a coastal wetland in the Yangtze estuary.
Agricultural and Forest Meteorology, 296, 108212. doi:https://doi.org/10.1016/
j.agrformet.2020.108212
He, H., Qian, T.-T., Liu, W.-J., Jiang, H., & Yu, H.-Q. (2014). Biological and chemical phosphorus
solubilization from pyrolytical biochar in aqueous solution. Chemosphere. Retrieved from
http://www.sciencedirect.com/science/article/pii/S0045653514006730
He, L., Fan, S., Müller, K., Hu, G., Huang, H., Zhang, X., . . . Wang, H. (2015). Biochar reduces
the bioavailability of di-(2-ethylhexyl) phthalate in soil. Chemosphere, 142, 24-27.
doi:10.1016/j.chemosphere.2015.05.064
He, L., Liu, Y., Zhao, J., Bi, Y., Zhao, X., Wang, S., & Xing, G. (2015). Comparison of straw-
biochar-mediated changes in nitrification and ammonia oxidizers in agricultural oxisols
and cambosols. Biology and Fertility of Soils. doi:10.1007/s00374-015-1059-3
He, Q., Xi, J., Wang, W., Meng, L., Yan, S., & Zhang, Y. (2017). CO2 absorption using biogas
slurry: Recovery of absorption performance through CO2 vacuum regeneration.
International Journal of Greenhouse Gas Control, 58, 103-113. doi:http://dx.doi.org/
10.1016/j.ijggc.2017.01.010
He, T., Liu, D., Yuan, J., Luo, J., Lindsey, S., Bolan, N., & Ding, W. (2018). Effects of application
of inhibitors and biochar to fertilizer on gaseous nitrogen emissions from an intensively
managed wheat field. Science of The Total Environment, 628-629, 121-130. doi:https://
doi.org/10.1016/j.scitotenv.2018.02.048
He, Y., Trumbore, S. E., Torn, M. S., Harden, J. W., Vaughn, L. J. S., Allison, S. D., &
Randerson, J. T. (2016). Radiocarbon constraints imply reduced carbon uptake by soils
during the 21st century. 353(6306), 1419-1424. doi:10.1126/science.aad4273 %J
Science
He, Z., Wang, S., Mahoutian, M., & Shao, Y. (2020). Flue gas carbonation of cement-based
building products. Journal of CO2 Utilization, 37, 309-319. doi:https://doi.org/10.1016/
j.jcou.2020.01.001
Headlee, W. L., Brewer, C. E., & Hall, R. B. (2013). Biochar as a Substitute for Vermiculite in
Potting Mix for Hybrid Poplar. BioEnergy Research, 7(1), 120-131. Retrieved from
https://link.springer.com/article/10.1007/s12155-013-9355-y
Healey, P., Scholes, R., Lefale, P., & Yanda, P. (2021). Governing Net Zero Carbon Removals to
Avoid Entrenching Inequities. Frontiers in Climate, 3(38). doi:10.3389/fclim.2021.672357
Heaton, E. A., Dohleman, F. G., & Long, S. P. (2008). Meeting US biofuel goals with less land:
the potential of Miscanthus. Global Change Biology, 14(9), 2000-2014. doi:10.1111/
j.1365-2486.2008.01662.x
Heck, D. W. (2015). Supressividade a Fusarium oxysporum f. sp. cubense por produtos
orgânicos (Suppressiveness to Fusarium oxysporum f. sp. cubense for organic
products). Retrieved from http://repositorio.unesp.br/handle/11449/132112
Heck, V. (2016). Collateral transgression of planetary boundaries due to climate engineering by
terrestrial carbon dioxide removal. Earth System Dynamics, 7, 783-796. Retrieved from
https://www.earth-syst-dynam.net/7/783/2016/esd-7-783-2016.pdf
Heck, V., Gerten, D., Lucht, W., & Boysen, L. R. (2016). Is extensive terrestrial carbon dioxide
removal a ‘green’ form of geoengineering? A global modelling study. Global and
Planetary Change, 137, 123-130. doi:http://dx.doi.org/10.1016/j.gloplacha.2015.12.008
Heck, V., Gerten, D., Lucht, W., & Popp, A. (2018). Biomass-based negative emissions difficult
to reconcile with planetary boundaries. Nature Climate Change. doi:10.1038/
s41558-017-0064-y
Hedin, R. S., & Hedin, B. C. (2015). Increasing Oceanic Carbon Fixation Through Fe
Fertilization: Opportunity for Mine Water? Mine Water and the Environment, 34(1),
105-111. doi:10.1007/s10230-014-0305-5
Heffernan, O. (2017). Geoengineering fears make scrutiny of ocean seeding test vital. New
Scientist. Retrieved from https://www.newscientist.com/article/2133372-geoengineering-
fears-make-scrutiny-of-ocean-seeding-test-vital/
Heffron, R. J., et al. (2018). Three layers of energy law for examining CO2 transport for carbon-
capture and storage. Journal of World Energy Law & Business, 11(2), 93-120.
Heggenstaller, A. H., Anex, R. P., Liebman, M., Sundberg, D. N., & Gibson, L. R. (2008).
Productivity and Nutrient Dynamics in Bioenergy Double-Cropping Systems All rights
reserved. No part of this periodical may be reproduced or transmitted in any form or by
any means, electronic or mechanical, including photocopying, recording, or any
information storage and retrieval system, without permission in writing from the
publisher. Agronomy Journal, 100(6), 1740-1748. doi:10.2134/agronj2008.0087
Heggenstaller, A. H., Liebman, M., & Anex, R. P. (2009). Growth Analysis of Biomass Production
in Sole-Crop and Double-Crop Corn Systems All rights reserved. No part of this
periodical may be reproduced or transmitted in any form or by any means, electronic or
mechanical, including photocopying, recording, or any information storage and retrieval
system, without permission in writing from the publisher. Permission for printing and for
reprinting the material contained herein has been obtained by the publisher. Crop
Science, 49(6), 2215-2224. doi:10.2135/cropsci2008.12.0709
Heggenstaller, A. H., Moore, K. J., Liebman, M., & Anex, R. P. (2009). Nitrogen Influences
Biomass and Nutrient Partitioning by Perennial, Warm-Season Grasses All rights
reserved. No part of this periodical may be reproduced or transmitted in any form or by
any means, electronic or mechanical, including photocopying, recording, or any
information storage and retrieval system, without permission in writing from the
publisher. Agronomy Journal, 101(6), 1363-1371. doi:10.2134/agronj2008.0225x
Hei, L., Wang, H., Wu, Q. T., & Yu, W. P. (2015). Safe Utilization of Municipal Sewage Sludge in
Agriculture and Forestry. Applied Mechanics and Materials, 768, 542 - 552. doi:10.4028/
www.scientific.net/AMM.768.542
Heidel, K. R. (2017).
Heidenreich, S., & Foscolo, P. U. (2015). New concepts in biomass gasification. Progress in
Energy and Combustion Science, 46, 72-95. doi:http://dx.doi.org/10.1016/
j.pecs.2014.06.002
Heilmayr, R., Echeverría, C., & Lambin, E. F. (2020). Impacts of Chilean forest subsidies on
forest cover, carbon and biodiversity. Nature Sustainability, 3(9), 701-709. doi:10.1038/
s41893-020-0547-0
Heirloom. (2021). Announcing Heirloom. Retrieved from https://medium.com/@heirloomcarbon/
announcing-heirloom-275d16a06df6
Heiskanen, J., Tammeorg, P., & Dumroese, R. K. (2013). Growth of Norway spruce seedlings
after transplanting into silty soil amended with biochar: a bioassay in a growth chamber.
Journal of Forest Science, 59, 125–129. Retrieved from http://
www.agriculturejournals.cz/publicFiles/87793.pdf
Heitkötter, J., & Marschner, B. (2015). Interactive effects of biochar ageing in soils related to
feedstock, pyrolysis temperature, and historic charcoal production. Geoderma, 245-246,
56 - 64. doi:10.1016/j.geoderma.2015.01.012
Hejazi, M. I., Voisin, N., Liu, L., Bramer, L. M., Fortin, D. C., Hathaway, J. E., . . . Zhou, Y.
(2015). 21st century United States emissions mitigation could increase water stress
more than the climate change it is mitigating. Proceedings of the National Academy of
Sciences, 112(34), 10635-10640. doi:10.1073/pnas.1421675112
Helander, H. (2014). Emissions and Energy Use Efficiency of Household Biochar Production
during Cooking in Kenya. Uppsala University, Retrieved from http://www.diva-portal.org/
smash/record.jsf?pid=diva2:722263
Heldebrant, D. J., & Kothandaraman, J. (2020). Chapter 3 Solvent-based Absorption. In Carbon
Capture and Storage (pp. 36-68): The Royal Society of Chemistry.
Heller, M. C., Keoleian, G. A., & Volk, T. A. (2003). Life cycle assessment of a willow bioenergy
cropping system. Biomass & Bioenergy, 25, 147-165. Retrieved from http://
citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.459.6944&rep=rep1&type=pdf
Hemes, K. S., Chamberlain, S. D., Eichelmann, E., Knox, S. H., & Baldocchi, D. D. (2018). A
Biogeochemical Compromise: The High Methane Cost of Sequestering Carbon in
Restored Wetlands. Geophysical Research Letters, 45(12), 6081-6091.
doi:doi:10.1029/2018GL077747
Hemings, E. B., et al. (2011). Kinetic Analysis of Biochar Formation During Biomass Pyrolysis.
Paper presented at the XXXIV Meeting of the Italian Section of the Combustion Institute.
http://www.combustion-institute.it/proceedings/XXXIV-ASICI/papers/34proci2011.III6.pdf
Hemwong, S., & Cadisch, G. (2014). Effects of Biochar Amendment on Soil Fertility and
Lowland Rice Yield in Nakhon Phanom Province Northeast Thailand. Journal Phanom
University, 45-48. Retrieved from http://www.mcc.cmu.ac.th/Seminar/pdf/
p255508005.pdf
Henderson, G., Rickaby, R., & Bouman, H. (2008). Decreasing Atmospheric CO
2
by Increasing
Ocean Alkalinity [Press release]. Retrieved from https://www.earth.ox.ac.uk/~gideonh/
reports/Cquestrate_report.pdf
Henderson, H. (2020). IGI Scientists Make E. coli That Can Take Carbon Dioxide From the Air
And Use It [Press release]. Retrieved from https://innovativegenomics.org/news/dave-
savage-engineering-carbon-sequestration/
Hendriks, C. A., & Blok, K. (1995). Underground storage of carbon dioxide. Energy Conversion
and Management, 36(6), 539-542. doi:https://doi.org/10.1016/0196-8904(95)00062-I
Henjes, J., Assmy, P., Klaas, C., & Smetacek, V. (2007). Response of the larger
protozooplankton to an iron-induced phytoplankton bloom in the Polar Frontal Zone of
the Southern Ocean (EisenEx). Deep Sea Research Part I: Oceanographic Research
Papers, 54(5), 774-791. doi:https://doi.org/10.1016/j.dsr.2007.02.005
Hennacy, J. H., & Jonikas, M. C. (2020). Prospects for Engineering Biophysical CO2
Concentrating Mechanisms into Land Plants to Enhance Yields. Annual Review of Plant
Biology, 71(1), 461-485. doi:10.1146/annurev-arplant-081519-040100
Henrion, L., et al. (2021). Bendable concrete and other CO2-infused cement mixes could
dramatically cut global emissions The Conversation. Retrieved from https://
theconversation.com/bendable-concrete-and-other-co2-infused-cement-mixes-could-
dramatically-cut-global-emissions-152544?
utm_medium=email&utm_campaign=Science%20weekly%20Feb%2017%202021&utm_
content=Science%20weekly%20Feb%2017%202021+CID_c32aecfb1669bd26c2cce2a2
e964b501&utm_source=campaign_monitor_us&utm_term=full%20extent%20of%20carb
on%20emissions%20from%20different%20curing%20methods
Henry, D. (2017). Senators push bill to fund carbon capture projects. The Hill. Retrieved from
http://thehill.com/policy/energy-environment/327487-senators-push-bill-to-fund-carbon-
capture-projects
Henry, R. C., et al. (2018). Food supply and bioenergy production within the global cropland
planetary boundary. Plos One, 13(3), 1-17. Retrieved from https://journals.plos.org/
plosone/article?id=10.1371/journal.pone.0194695
Hepburn, C., Adlen, E., Beddington, J., Carter, E. A., Fuss, S., Mac Dowell, N., . . . Williams, C.
K. (2019). The technological and economic prospects for CO2 utilization and removal.
Nature, 575(7781), 87-97. doi:10.1038/s41586-019-1681-6
Hepple, R. P., & Benson, S. M. (2005). Geologic storage of carbon dioxide as a climate change
mitigation strategy: performance requirements and the implications of surface seepage.
Environmental Geology, 47(4), 576-585. doi:10.1007/s00254-004-1181-2
Herath, H. M. S. K., et al. . (2014). Experimental evidence for sequestering C with biochar by
avoidance of CO2 emissions from original feedstock and protection of native soil organic
matter. Global Change Biology Bioenergy, 7(3), 512-526. Retrieved from http://
onlinelibrary.wiley.com/doi/10.1111/gcbb.12183/abstract
Herath, H. M. S. K., et al. . (2014). Fate of biochar in chemically- and physically-defined soil
organic carbon pools. Organic Geochemistry, 73, 35-46. doi:10.1016/
j.orggeochem.2014.05.001
Herath, H. M. S. K., Camps-Arbestain, M., & Hedley, M. (2013). Effect of biochar on soil physical
properties in two contrasting soils: An Alfisol and an Andisol. Geoderma, 209–210, 188–
197. Retrieved from http://www.sciencedirect.com/science/article/pii/
S0016706113002164
Herath, I., et al. . (2014). The addition of biochar to serpentine soils reduces metals release and
phytotoxicity to tomato plants. Paper presented at the Conference Paper June 1014.
http://www.researchgate.net/profile/Indika_Herath4/publication/
277313807_The_addition_of_biochar_to_serpentine_soils_reduces_metals_release_an
d_phytotoxicity_to_tomato_plants/links/5567761408aec2268300fd5f.pdf
Herath, I., et al. . (2015). Bioenergy-derived waste biochar for reducing mobility, bioavailability,
and phytotoxicity of chromium in anthropized tannery soil. Journal of Soils and
Sediments, 17(3), 731-740. doi:10.1007/s11368-015-1332-y
Herath, I., et al. (2015). Rice Husk Derived Engineered Biochar for Glyphosate Removal in
Aqueous Media. Journal of Environmental Indicators, 9, 41. Retrieved from http://
scholar.uwindsor.ca/cgi/viewcontent.cgi?article=1024&context=icei2015
Herath, I., et al. . (2016). Mechanistic modeling of glyphosate interaction with rice husk derived
engineered biochar. Microporous and Mesoporous Materials, 225, 280 - 288.
doi:10.1016/j.micromeso.2016.01.017
Herath, I., Kumarathilaka, P., Navaratne, A., Rajakaruna, N., & Vithanage, M. (2014).
Immobilization and phytotoxicity reduction of heavy metals in serpentine soil using
biochar. Journal of Soils and Sediments, 15(1), 126-138. doi:10.1007/
s11368-014-0967-4
Herath, I., Mayakaduwa, S. S., & Vithanage, M. (2015). Potential of Different Biochars for
Glyphosate Removal in Water; Implications for Water Safety. Paper presented at the 6th
International Conference on Structural Engineering and Construction Management 2015.
http://www.civil.mrt.ac.lk/conference/ICSECM_2015/book_3/Extract/SECM-15-095.pdf
Herath, I., & Vithanage, M. (2014). Biochar Derived from a Bioenergy Production Industry for
Immobilization and Phytotoxicity Reduction of Cr in Tannery Waste Polluted Soils. Paper
presented at the 2nd CLEAR. http://www.researchgate.net/profile/Indika_Herath4/
publication/
277322334_Biochar_Derived_from_a_Bioenergy_Production_Industry_for_Immobilizatio
n_and_Phytotoxicity_Reduction_of_Cr_in_Tannery_Waste_Polluted_Soils/links/
55677c9308aefcb861d38a1d.pdf
Herath, I., Wickremasinghe, S., Rajakaruna, N., Navaratne, A., & Vithanage, M. (2015). Effects
of Biochar the Imobilization and Phytotoxicity Reduction of Heavy Metals in Serpentine
Soil. University of Peradeniya , Sri Lanka, Retrieved from http://www.dlib.pdn.ac.lk/
archive/handle/1/4585
Herbert, L., Hosek, I., & Kripalani, R. (2012). THE CHARACTERIZATION AND COMPARISON
OF BIOCHAR PRODUCED FROM A DECENTRALIZED REACTOR USING FORCED
AIR AND NATURAL DRAFT PYROLYSIS. California Polytechnic State University, San
Luis Obispo.
Hergoualc’h, K., Blanchart, E., Skiba, U., Hénault, C., & Harmand, J.-M. (2012). Changes in
carbon stock and greenhouse gas balance in a coffee (Coffea arabica) monoculture
versus an agroforestry system with Inga densiflora, in Costa Rica. Agriculture,
Ecosystems & Environment, 148, 102-110. doi:https://doi.org/10.1016/
j.agee.2011.11.018
Hernández-Morcillo, M., Burgess, P., Mirck, J., Pantera, A., & Plieninger, T. (2018). Scanning
agroforestry-based solutions for climate change mitigation and adaptation in Europe.
Environmental Science & Policy, 80, 44-52. doi:https://doi.org/10.1016/
j.envsci.2017.11.013
Hernandez-Soriano, M. C., Kerré, B., Goos, P., Hardy, B., Dufey, J., & Smolders, E. (2015).
Long-term effect of biochar on the stabilization of recent carbon: soils with historical
inputs of charcoal. GCB Bioenergy, n/a - n/a. doi:10.1111/gcbb.12250
Hertel, T. W., Golub, A. A., Jones, A. D., O'Hare, M., Plevin, R. J., & Kammen, D. M. (2010).
Effects of US Maize Ethanol on Global Land Use and Greenhouse Gas Emissions:
Estimating Market-mediated Responses. BioScience, 60(3), 223-231. doi:10.1525/
bio.2010.60.3.8
Hertwich, E. G., Aaberg, M., Singh, B., & Strømman, A. H. (2008). Life-cycle Assessment of
Carbon Dioxide Capture for Enhanced Oil Recovery. Chinese Journal of Chemical
Engineering, 16(3), 343-353. doi:https://doi.org/10.1016/S1004-9541(08)60085-3
Herzog, H. (1999). Understanding Sequestration as a Means of Carbon Management. Retrieved
from https://sequestration.mit.edu/pdf/understand_sequestration.pdf
Herzog, H. (2001). What Future for Carbon Capture and Sequestration. Environmental Science
and Policy, 35(7), 148-153. Retrieved from https://sequestration.mit.edu/pdf/
EST_web_article.pdf
Herzog, H. (2003). Assessing the Feasibility of Capturing CO2 from the Air.
Herzog, H. (2009). Carbon Dioxide Capture and Storage. In D. Helm & C. Hepburn (Eds.), The
Economics and Politics of Climate Change (pp. 263-283).
Herzog, H. (2015). Pumping CO2 underground can help fight climate change. Why is it stuck in
second gear? The Conversation. Retrieved from https://theconversation.com/pumping-
co2-underground-can-help-fight-climate-change-why-is-it-stuck-in-second-gear-37572
Herzog, H. (2016). Lessons Learned from CCS Demonstration and Large Pilot Projects.
Retrieved from https://sequestration.mit.edu/bibliography/CCS%20Demos.pdf
Herzog, H., Caldeira, K., & Reilly, J. (2003). An Issue of Permanence: Assessing the
Effectiveness of Temporary Carbon Storage. Climatic Change, 59(3), 293-310.
doi:10.1023/A:1024801618900
Herzog, H., Drake, E., & Adams, E. (1997). CO Capture, Reuse, and Storage Technologies 2 for
Mitigating Global Climate Change. Retrieved from
Herzog, H., & Eide, J. (2013). Rethinking CCS-Moving forward in times of uncertainty. Mining
Report, 1, 44-50. Retrieved from http://onlinelibrary.wiley.com/doi/10.1002/
mire.201300040/abstract
Herzog, H., Eliasson, B., & Kaarstad, O. (2000). Capturing Greenhouse Gases. Scientific
American, 282(2), 72-79.
Herzog, H. J. (2001). Peer Reviewed: What Future for Carbon Capture and Sequestration?
Environmental Science & Technology, 35(7), 148A-153A. doi:10.1021/es012307j
Herzog, H. J. (2011). Scaling up carbon dioxide capture and storage: From megatons to
gigatons. Energy Economics, 33(4), 597-604. doi:https://doi.org/10.1016/
j.eneco.2010.11.004
Herzog, H. J. (2015). CCS at a Crossroads. Retrieved from https://sequestration.mit.edu/
bibliography/ccs-crossroads.pdf
Herzog, H. J., & Golomb, D. (2004). Carbon Capture and Storage from Fossil Fuel Use. In C. J.
Cleveland (Ed.), Encyclopedia of Energy (pp. 277-287). Retrieved from https://
sequestration.mit.edu/pdf/enclyclopedia_of_energy_article.pdf
Hess, J. R., Wright, C. T., & Kenney, K. L. (2007). Cellulosic biomass feedstocks and logistics
for ethanol production. Biofuels, Bioproducts and Biorefining, 1(3), 181-190.
doi:doi:10.1002/bbb.26
Hester, T. (2017). Direct Air Capture Governance and Environmental Intervention Principles.
Retrieved from http://www.law.northwestern.edu/research-faculty/searlecenter/events/
roundtable/documents/Hester_NW_NET_Presentation_0511917.pdf
Hester, T. (2017). Remaking the World to Save It: Applying U.S. Environmental Laws to Climate
Engineering Projects. Ecology Law Quarterly, 38(4), 1-53. Retrieved from https://
scholarship.law.berkeley.edu/cgi/viewcontent.cgi?referer=https://www.google.com/
&httpsredir=1&article=1982&context=elq
Hester, T. (2018). Legal Pathways to Negative Emissions Technologies and Direct Air Capture of
Greenhouse Gases. Environmental Law Reporter, 48, 10413-10432. Retrieved from
https://www.law.uh.edu/faculty/thester/
Legal%20Pathways%20to%20Broad%20Use%20of%20NETs%20and%20DAC%20by%
20Hester.pdf
Hester, T. (2018). The paradox of regulating negative emissions technologies under US
environmental laws. Global Sustainability, 1, 1-7. Retrieved from https://
www.cambridge.org/core/services/aop-cambridge-core/content/view/
6DD090D1CA8831B899E3A46955E5EB1A/S2059479818000017a.pdf/
paradox_of_regulating_negative_emissions_technologies_under_us_environmental_law
s.pdf
Hester, T., & Gerrard, M. B. (2018). Going Negative: The Next Horizon in Climate Engineering
Law. Natural Resource and Environment, 32(4), 3-7. Retrieved from https://
search.proquest.com/docview/2039214127?pq-origsite=gscholar
Hestrin, R., Torres-Rojas, D., Dynes, J. J., Hook, J. M., Regier, T. Z., Gillespie, A. W., . . .
Lehmann, J. (2019). Fire-derived organic matter retains ammonia through covalent bond
formation. Nature Communications, 10(1), 664. doi:10.1038/s41467-019-08401-z
Hetland, J., Yowargana, P., Leduc, S., & Kraxner, F. (2016). Carbon-negative emissions:
Systemic impacts of biomass conversion: A case study on CO2 capture and storage
options. International Journal of Greenhouse Gas Control, 49, 330-342. doi:http://
dx.doi.org/10.1016/j.ijggc.2016.03.017
Heuberger, C. F., & Mac Dowell, N. (2020). Chapter 12 CCS in Electricity Systems. In Carbon
Capture and Storage (pp. 392-425): The Royal Society of Chemistry.
Heyne, S., & Harvey, S. (2013). Assessment of the energy and economic performance of
second generation biofuel production processes using energy market scenarios. Applied
Energy, 101, 203-212. doi:http://dx.doi.org/10.1016/j.apenergy.2012.03.034
Heyward, C. (2013). Situating and Abandoning Geoengineering: A Typology of Five Responses
to Dangerous Climate Change. PS: Political Science &amp; Politics, 46(1), 23-27.
doi:10.1017/S1049096512001436
Heyward, C. (2019). 21 - Normative issues of geoengineering technologies. In T. M. Letcher
(Ed.), Managing Global Warming (pp. 639-657): Academic Press.
Hezir, J. S., et al. (2019). Carbon Removal: Comparing Historical Federal Research Investments
with the National Academies’ Recommended Future Funding Levels. Retrieved from
https://t.co/3ie1rFz8oE
Hiar, C. (2021). Direct Air Capture of CO2 Is Suddenly a Carbon Offset Option. Scientific
American. Retrieved from https://www.scientificamerican.com/article/direct-air-capture-
of-co2-is-suddenly-a-carbon-offset-option/
Hickel, J. (2017). Regenerative Agriculture: Our Best Shot At Cooling The Planet?
Countercurrents.org. Retrieved from https://www.countercurrents.org/2017/01/10/
regenerative-agriculture-our-best-shot-at-cooling-the-planet/
Hicks Pries, C. E., Castanha, C., Porras, R., & Torn, M. S. (2017). The whole-soil carbon flux in
response to warming. Science, 355(6332), 1420-1423. doi:10.1126/science.aal1319
Hidayat, A., Rochmadi, Wijaya, K., & Budiman, A. (2015). AIP Conference ProceedingsReaction
kinetics of free fatty acids esterification in palm fatty acid distillate using coconut shell
biochar sulfonated catalyst. Paper presented at the INTERNATIONAL CONFERENCE
OF CHEMICAL AND MATERIAL ENGINEERING (ICCME) 2015: Green Technology for
Sustainable Chemical Products and Processes, Semarang, Indonesia. http://
scitation.aip.org/content/aip/proceeding/aipcp/10.1063/1.4938341
Hidayat, A., Rochmadi, Wijaya, K., & Budiman, A. (2016). Removal of free fatty acid in Palm
Fatty Acid Distillate using sulfonated carbon catalyst derived from biomass wastefor
biodiesel production. Paper presented at the IOP Conference Series: Materials Science
and Engineering. http://iopscience.iop.org/article/10.1088/1757-899X/105/1/012026/
meta
Hidayat, A., Rochmadi, Wijaya, K., Nurdiawati, A., Kurniawan, W., Hinode, H., . . . Budiman, A.
(2015). Esterification of Palm Fatty Acid Distillate with High Amount of Free Fatty Acids
Using Coconut Shell Char Based Catalyst. Energy Procedia, 75, 969 - 974. doi:10.1016/
j.egypro.2015.07.301
Hidayat, B. (2015). Remediasi Tanah Tercemar Logam Berat Dengan Menggunakan Biochar
(Soil Remediation Contaminated with Heavy Metals Biochar). Pertanian Tropik (Tropical
Agriculture), 2(1), 31-41. Retrieved from http://202.0.107.5/index.php/tropik/article/view/
10101
Hiew, W. J., & Ghosh, U. K. (2015). Application of biochar produced from palm shells for the
separation of crystal violet from aqueous solution by adsorption. Paper presented at the
Asia Pacific Confederation of Chemical Engineering Congress. http://
search.informit.com.au/documentSummary;dn=715081667926011;res=IELENG
Higgins, J. L., Kudo, I., Nishioka, J., Tsuda, A., & Wilhelm, S. W. (2009). The response of the
virus community to the SEEDS II mesoscale iron fertilization. Deep Sea Research Part
II: Topical Studies in Oceanography, 56(26), 2788-2795. doi:https://doi.org/10.1016/
j.dsr2.2009.06.005
Higman, C. (2010). Gasification processes and synthesis gas treatment technologies for carbon
dioxide (CO2) capture A2 - Maroto-Valer, M. Mercedes. In Developments and Innovation
in Carbon Dioxide (CO2) Capture and Storage Technology (Vol. 1, pp. 243-279):
Woodhead Publishing.
Hijikata, N., Yamauchi, N., Ishiguro, M., Ushijima, K., & Funamizu, N. (2015). Suitability of
biochar as a matrix for improving the performance of composting toilets. Waste
Management & Research, 33(4), 313-321. doi:10.1177/0734242x15572179
Hilaire, J., Minx, J. C., Callaghan, M. W., Edmonds, J., Luderer, G., Nemet, G. F., . . . del Mar
Zamora, M. (2019). Negative emissions and international climate goals—learning from
and about mitigation scenarios. Climatic Change. doi:10.1007/s10584-019-02516-4
Hilber, I., Blum, F., Leifeld, J., Schmidt, H.-P., & Bucheli, T. D. (2012). Quantitative determination
of PAHs in biochar a prerequisite to assure its quality and safe application. Journal of
Agricultural and Food Chemistry, 60(12), 3042-3305. doi:10.1021/jf205278v
Hilber, I., Bucheli, T. D., Wyss, G. S., & Schulin, R., J. (2009). Assessing the Phytoavailability of
Dieldrin Residues in Charcoal-Amended Soil Using Tenax Extraction. Journal of
Agricultural and Food Chemistry, 57(10), 4293-4298. Retrieved from http://pubs.acs.org/
doi/abs/10.1021/jf900224e
Hilbers, T. J., Wang, Z., Pecha, B., Westerhof, R. J. M., Kersten, S. R. A., Pelaez-Samaniego,
M. R., & Garcia-Perez, M. (2015). Cellulose-Lignin interactions during slow and fast
pyrolysis. Journal of Analytical and Applied Pyrolysis, 114, 197-207. doi:10.1016/
j.jaap.2015.05.020
Hill, A., Di, H., Cameron, K., & Podolyan, A. (2014). Comparison of dicyandiamide and biochar
for reducing nitrate leaching under winter forage grazing in Canterbury, New Zealand.
New Zealand Journal of Agricultural Research, 1 - 10.
doi:10.1080/00288233.2014.983614
Hill, J., Nelson, E., Tilman, D., Polasky, S., & Tiffany, D. (2006). Environmental, economic, and
energetic costs and benefits of biodiesel and ethanol biofuels. Proceedings of the
National Academy of Sciences, 103(30), 11206-11210. doi:10.1073/pnas.0604600103
Hill, J. S. (2019). UK’s National Grid says net zero carbon “achievable” by 2050. Renew
Economy(July 16). Retrieved from https://reneweconomy.com.au/uks-national-grid-says-
net-zero-carbon-achievable-by-2050/
Hill, R., Bellgrove, A., Macreadie, P. I., Petrou, K., Beardall, J., Steven, A., & Ralph, P. J. (2015).
Can macroalgae contribute to blue carbon? An Australian perspective. Limnology and
Oceanography, 60(5), 1689-1706. doi:10.1002/lno.10128
Hiller, D. A., & Brummer, G. W. (1997). Electron microprobe studies on soil samples with varying
heavy metal contamination. Zeitschrift Fur Pflanzenernahrung Und Bodenkunde, 160,
47-55.
Hiller, E., Fargasova, A., Zemanova, L., & Bartal, M. (2007). Influence of wheat ash on the
MCPA immobilization in agricultural soils. Bulletin of Environmental Contamination and
Toxicology, 79, 478-481.
Hiller, J. (2021). Exxon floats $100 bln carbon storage project requiring public, private financing.
Reuters. Retrieved from https://www.reuters.com/business/sustainable-business/exxon-
proposes-massive-carbon-capture-storage-project-houston-2021-04-19/
Hills, C. D., Tripathi, N., & Carey, P. J. (2021). Managed pathways for CO2 mineralisation:
analogy with nature and potential contribution to CCUS-led reduction targets. Faraday
Discussions, 230(0), 152-171. doi:10.1039/D0FD00142B
Hills, T. P., Sceats, M. G., & Fennell, P. S. (2020). Chapter 10 Applications of CCS in the
Cement Industry. In Carbon Capture and Storage (pp. 315-352): The Royal Society of
Chemistry.
Hilscher, A., Heister, K., Siewert, C., & Knicker, K. (2009). Mineralization and structural changes
during the initial phases of microbial degradation of pyrogenic plant residues in soil.
Organic Geochemistry, 40.
Hilscher, A., & Knicker, H. (2011). Degradation of grass-derived pyrogenic organic material,
transport of the residues within a soil column and distribution in soil organic matter
fractions during a 28!month microcosm experiment. Organic Geochemistry, 241, 79-87.
Retrieved from http://www.sciencedirect.com/science/article/B6V7P-518TY9X-1/2/
f0fdec1f68220503e8a3fc4d636055c7
Hilz, J., Helbig, M., Haaf, M., Daikeler, A., Ströhle, J., & Epple, B. (2017). Long-term pilot testing
of the carbonate looping process in 1MWth scale. Fuel, 210, 892-899. doi:https://doi.org/
10.1016/j.fuel.2017.08.105
Himken, M., Lammel, J., Neukirchen, D., Czypionka-Krause, U., & Olfs, H.-W. (1997).
Cultivation of Miscanthus under West European conditions: Seasonal changes in dry
matter production, nutrient uptake and remobilization. Plant and Soil, 189(1), 117-126.
doi:10.1023/a:1004244614537
Hina, K. (2013). Application of Biochar Technologies to Wastewater Treatment. (PhD in Soil
Science). Massey University, Retrieved from http://muir.massey.ac.nz/bitstream/handle/
10179/4288/02_whole.pdf?sequence=1
Hina, K., Bishop, P., Camps Arbestain, M., Calvelo-Pereira, R., Macia-Agullo, J. A., Hindmarsh,
J., . . . Hedley, M. J. (2010). Producing biochars with enhanced surface activity through
alkaline pretreatment of feedstocks. Australian Journal of Soil Research, 48(7), 606-617.
Retrieved from http://www.publish.csiro.au/sr/sr10015
Hina, K., Hedley, M., Camps-Arbestain, M., & Hanly, J. (2013). Comparison of pine bark, biochar
and zeolite as sorbents for NH4+-N removal from water†. CLEAN Soil Air Water, 43(1),
86-91. Retrieved from http://onlinelibrary.wiley.com/doi/10.1002/clen.201300682/abstract
Hirano, A., Ueda, R., Hirayama, S., & Ogushi, Y. (1997). CO2 fixation and ethanol production
with microalgal photosynthesis and intracellular anaerobic fermentation. Energy, 22(2),
137-142. doi:https://doi.org/10.1016/S0360-5442(96)00123-5
Hirons, M. (2021). Governing natural climate solutions: prospects and pitfalls. Current Opinion in
Environmental Sustainability, 52, 36-44. doi:https://doi.org/10.1016/j.cosust.2021.06.012
Hiscock, W. T., & Millero, F. J. (2005). Nutrient and carbon parameters during the Southern
Ocean iron experiment (SOFeX). Deep Sea Research Part I: Oceanographic Research
Papers, 52(11), 2086-2108. doi:https://doi.org/10.1016/j.dsr.2005.06.010
Hise, A. M., Characklis, G. W., Kern, J., Gerlach, R., Viamajala, S., Gardner, R. D., &
Vadlamani, A. (2016). Evaluating the relative impacts of operational and financial factors
on the competitiveness of an algal biofuel production facility. Bioresource Technology,
220, 271-281. doi:https://doi.org/10.1016/j.biortech.2016.08.050
Hmid, A., Al Chami, Z., Sillen, W., De Vocht, A., & Vangronsveld, J. (2014). Olive mill waste
biochar: a promising soil amendment for metal immobilization in contaminated soils.
Environmental Science and Pollution Research, 22(2), 1444-1456. doi:10.1007/
s11356-014-3467-6
Hmid, A., Mondelli, D., Fiore, S., Fanizzi, F. P., Al Chami, Z., & Dumontet, S. (2014). Production
and characterization of biochar from three-phase olive mill waste through slow pyrolysis.
Biomass and Bioenergy, 71, 330 - 339. doi:10.1016/j.biombioe.2014.09.024
Hnottavange-Telleen, K., Chabora, E., Finley, R. J., Greenberg, S. E., & Marsteller, S. (2011).
Risk management in a large-scale CO2 geosequestration pilot project, Illinois, USA.
Energy Procedia, 4, 4044-4051. doi:https://doi.org/10.1016/j.egypro.2011.02.346
Ho, S.-H., Ye, X., Hasunuma, T., Chang, J.-S., & Kondo, A. (2014). Perspectives on engineering
strategies for improving biofuel production from microalgae — A critical review.
Biotechnology Advances, 32(8), 1448-1459. doi:https://doi.org/10.1016/
j.biotechadv.2014.09.002
Ho, Y.-C., & Show, K.-Y. (2015). A Perspective in Renewable Energy Production from Biomass
Pyrolysis - Challenges and Prospects. Current Organic Chemistry, 19(5), 423-436.
Retrieved from http://www.ingentaconnect.com/content/ben/coc/
2015/00000019/00000005/art00006
Hochman, G., et al. (2012). Biofuel and Food-Commodity Prices. Agriculture, 2, 272-281.
Retrieved from http://www.mdpi.com/2077-0472/2/3/272/pdf
Hockaday, W. C., Grannas, A. M., Kim, S., & Hatcher, P. G. (2007). The transformation and
mobility of charcoal in a fire-impacted watershed. Geochimica Et Cosmochimica Acta,
71(14), 3432-3445. Retrieved from http://www.sciencedirect.com/science/article/pii/
S0016703707001950
Hodgson, R. (2018). Backers warn Europe needs CCS to meet Paris goals. ENDS Europe.
Retrieved from https://www.endseurope.com/article/53440/backers-warn-europe-needs-
ccs-to-meet-paris-goals
Hodgson, R. (2021). Tree-tracking start-ups surge as climate pledges take root. Financial
Times. Retrieved from https://www.ft.com/content/cba58ffa-9fef-45f5-
a99c-7497cd07edf7
Hodor-Lee, A. (2021). Four environmental experts weigh in on the peril and promise of a
'geoengineered' Earth. Retrieved from https://www.documentjournal.com/2021/02/in-a-
warming-world-an-engineered-climate-edges-towards-reality/
Hoefnagels, R., Smeets, E., & Faaij, A. (2010). Greenhouse gas footprints of different biofuel
production systems. Renewable and Sustainable Energy Reviews, 14(7), 1661-1694.
doi:https://doi.org/10.1016/j.rser.2010.02.014
Hoffman, J., Pate, R. C., Drennen, T., & Quinn, J. C. (2017). Techno-economic assessment of
open microalgae production systems. Algal Research, 23, 51-57. doi:https://doi.org/
10.1016/j.algal.2017.01.005
Hoffman, T. C. (2015). Pyrolysis for Estrogens Removal from Wastewater Solids. Marquette
University, Retrieved from http://epublications.marquette.edu/theses_open/294/
Hoffmann, L. J., Peeken, I., Lochte, K., Assmy, P., & Veldhuis, M. (2006). Different reactions of
Southern Ocean phytoplankton size classes to iron fertilization. Limnology and
Oceanography, 51(3), 1217-1229. doi:10.4319/lo.2006.51.3.1217
Hoffner, E. (2019). $85 million initiative to scale up agroforestry in Africa announced. Mongabay.
Retrieved from https://news.mongabay.com/2019/10/85-million-initiative-to-scale-up-
agroforestry-in-africa-announced/
Hofmann, M., Mathesius, S., Kriegler, E., Vuuren, D. P. v., & Schellnhuber, H. J. (2019). Strong
time dependence of ocean acidification mitigation by atmospheric carbon dioxide
removal. Nature Communications, 10(1), 5592. doi:10.1038/s41467-019-13586-4
Hoge, F. E., Wayne Wright, C., Swift, R. N., Yungel, J. K., Berry, R. E., & Mitchell, R. (1998).
Fluorescence signatures of an iron-enriched phytoplankton community in the eastern
equatorial Pacific Ocean. Deep Sea Research Part II: Topical Studies in Oceanography,
45(6), 1073-1082. doi:https://doi.org/10.1016/S0967-0645(98)00020-4
Hoglund, R. (2020). Removing Carbon Now: How can companies and individuals fund negative
emissions technologies in a safe and effective way to help solve the climate crisis?
Retrieved from https://oxfamilibrary.openrepository.com/handle/10546/621034
Höhl, M., Ahimbisibwe, V., Stanturf, J. A., Elsasser, P., Kleine, M., & Bolte, A. (2020). Forest
Landscape Restoration—What Generates Failure and Success? Forests, 11(9), 938.
Retrieved from https://www.mdpi.com/1999-4907/11/9/938
Hohlwegler, P. (2019). Moral Conflicts of several “Green” terrestrial Negative Emission
Technologies regarding the Human Right to Adequate Food – A Review. Adv. Geosci.,
49, 37-45. doi:10.5194/adgeo-49-37-2019
Holden, E. (2019). 2020 candidate John Delaney pitches vastly unusual climate change plan.
The Guardian. Retrieved from https://www.theguardian.com/us-news/2019/may/23/2020-
candidate-john-delaney-pitches-vastly-unusual-climate-change-plan
Holder, M. (2017). CCS: Inside Norway's world-leading carbon capture testing facility. Retrieved
from https://www.businessgreen.com/bg/feature/3015702/ccs-inside-norways-world-
leading-carbon-capture-testing-facility
Holder, M. (2018). Offset reset? Climeworks secures 'historic' first contracts for CO2-sucking
system. Business Green. Retrieved from https://www.businessgreen.com/bg/news-
analysis/3026886/climeworks-secures-historic-first-contracts-for-co2-sucking-system
Holder, M. (2020). MPs table fresh legislation to 'close gaps' in UK Climate Change Act.
Business Green. Retrieved from https://www.businessgreen.com/news/4019582/mps-
table-fresh-legislation-close-gaps-uk-climate-change-act
Holl, K. D., & Brancalion, P. H. S. (2020). Tree planting is not a simple solution. Science,
368(6491), 580-581. doi:10.1126/science.aba8232
Hollan, J., & Miléř, T. (2015). Climate and Flows of Substances – How the Earth's climate
system works, why and how the climate is changing. In.
Höller, S., & Viebahn, P. (2016). Facing the uncertainty of CO2 storage capacity in China by
developing different storage scenarios. Energy Policy, 89(Supplement C), 64-73.
doi:https://doi.org/10.1016/j.enpol.2015.10.043
Hollow, M. C. (2021). Can an Army of Mechanical Trees Save the Planet? Leaf Score. Retrieved
from https://www.leafscore.com/blog/can-an-army-of-mechanical-trees-save-the-planet/
Holloway, S. (2009). Storage capacity and containment issues for carbon dioxide capture and
geological storage on the UK continental shelf. Proceedings of the Institution of
Mechanical Engineers, Part A: Journal of Power and Energy, 223(3), 239-248.
doi:10.1243/09576509jpe650
Holm, T. R., Machesky, M. L., & Scott, J. W. (2014). Sorption of Polycyclic Aromatic
Hydrocarbons (PAHs) to Biochar and Estimates of PAH Bioavailability. Retrieved from
https://www.ideals.illinois.edu/handle/2142/72653
Holmes, G., & Corless, A. (2014). Direct Air Capture of CO2 - an Overview of Carbon
Engineering's Technology and Pilot Plant Development. Paper presented at the 47th
American Geophysical Union Fall Meeting, San Francisco, CA. https://agu.confex.com/
agu/fm14/meetingapp.cgi#ModuleSessionsByDay/0
Holmes, G., & Keith, D. W. (2012). An air-liquid contactor for large-scale capture of CO
2
from
air. Philosophical Transactions of the Royal Society A: Mathematical, Physical and
Engineering Sciences, 370(1974), 4380-4403. doi:10.1098/rsta.2012.0137
Holmes, G., Nold, K., Walsh, T., Heidel, K., Henderson, M. A., Ritchie, J., . . . Keith, D. W.
(2013). Outdoor Prototype Results for Direct Atmospheric Capture of Carbon Dioxide.
Energy Procedia, 37, 6079-6095. doi:http://dx.doi.org/10.1016/j.egypro.2013.06.537
Holmgren, K. M., Berntsson, T., & Lönnqvist, T. (2018). Profitability and Greenhouse Gas
Emissions of Gasification-based Biofuel Production - analysis of sector specific policy
instruments and comparison to conventional biomass conversion technologies. Energy.
doi:https://doi.org/10.1016/j.energy.2018.09.105
Holmgren, S., D’Amato, D., & Giurca, A. (2020). Bioeconomy imaginaries: A review of forest-
related social science literature. Ambio, 49(12), 1860-1877. doi:10.1007/
s13280-020-01398-6
Holthus, P. (2017). Oceans overlooked as source of climate change solutions. Eco-Business.
Retrieved from http://www.eco-business.com/opinion/oceans-overlooked-as-source-of-
climate-change-solutions/
Holtsmark, B. (2012). Harvesting in boreal forests and the biofuel carbon debt. Climatic Change,
112(2), 415-428. doi:10.1007/s10584-011-0222-6
Holtsmark, B. (2013). The outcome is in the assumptions: analyzing the effects on atmospheric
CO2 levels of increased use of bioenergy from forest biomass. GCB Bioenergy, 5(4),
467-473. doi:doi:10.1111/gcbb.12015
Holtsmark, B. (2015). A comparison of the global warming effects of wood fuels and fossil fuels
taking albedo into account. GCB Bioenergy, 7(5), 984-997. Retrieved from http://
onlinelibrary.wiley.com/doi/10.1111/gcbb.12200/abstract
Holtsmark, B. (2015). Quantifying the global warming potential of CO2 emissions from wood
fuels. GCB Bioenergy, 7(2), 195-206. doi:10.1111/gcbb.12110
Holz, C. (2018). Modelling 1.5°C-Compliant Mitigation Scenarios Without Carbon Dioxide
Removal. Retrieved from https://www.boell.de/sites/default/files/
radical_realism_for_climate_justice_volume_44_8.pdf?dimension1=ds_radicalrealism
Holz, C., et al. (2018). Ratcheting ambition to limit warming to 1.5°C–trade-offs between
emission reductions and carbon dioxide removal. Environmental Research Letters,
13(8), 1-12. Retrieved from http://iopscience.iop.org/10.1088/1748-9326/aac0c1
Homagain, K., Shahi, C., Luckai, N., & Sharma, M. (2014). Biochar-based bioenergy and its
environmental impact in Northwestern Ontario Canada: A review. Journal of Forestry
Research, 25(4), 737-748. doi:10.1007/s11676-014-0522-6
Homagain, K., Shahi, C., Luckai, N., & Sharma, M. (2015). Life cycle environmental impact
assessment of biochar-based bioenergy production and utilization in Northwestern
Ontario, Canada. Journal of Forestry Research, 26(4), 799-809. doi:10.1007/
s11676-015-0132-y
Homagain, K., Shahi, C., Luckai, N., & Sharma, M. (2016). Life cycle cost and economic
assessment of biochar-based bioenergy production and biochar land application in
Northwestern Ontario, Canada. Forest Ecosystems, 3(1), 21. doi:10.1186/
s40663-016-0081-8
Hone, D. (2017). Blog. Retrieved from https://blogs.shell.com/2017/02/16/carbon-storage-or-
use/
Honegger, M. (2018). Carbon dioxide removal-the need to marry financial incentives with
sustainable development.
Honegger, M., et al. (2018). Carbon Removal and Solar Geoengineering: Potential implications
for delivery of the Sustainable Development Goals. Retrieved from https://www.c2g2.net/
wp-content/uploads/C2G2-Geoeng-SDGs_20180521.pdf
Honegger, M., Burns, W., & Morrow, D. R. (2021). Is carbon dioxide removal ‘mitigation of
climate change’? Review of European, Comparative & International Environmental Law,
n/a(n/a). doi:https://doi.org/10.1111/reel.12401
Honegger, M., Michaelowa, A., & Poralla, M. (2020). Net-Zero Emissions: the role of Carbon
Dioxide Removal in the Paris Agreement. Retrieved from http://negative-emissions.info/
2020/09/28/net-zero-paris-agreement/
Honegger, M., Michaelowa, A., & Roy, J. (2020). Potential implications of carbon dioxide
removal for the sustainable development goals. Climate Policy, 1-21.
doi:10.1080/14693062.2020.1843388
Honegger, M., Poralla, M., Michaelowa, A., & Ahonen, H.-M. (2021). Who Is Paying for Carbon
Dioxide Removal? Designing Policy Instruments for Mobilizing Negative Emissions
Technologies. Frontiers in Climate, 3(50). doi:10.3389/fclim.2021.672996
Honegger, M., & Reiner, D. (2017). The political economy of negative emissions technologies:
consequences for international policy design. Climate Policy, 18, 306-321. doi:http://
www.tandfonline.com/action/showCitFormats?doi=10.1080/14693062.2017.1413322
Honegger, M., & Reiner, D. (2018). Global Policy Instruments to Mobilize Carbon Dioxide
Removal. Retrieved from https://www.perspectives.cc/fileadmin/Publications/
Global_Policy_Instruments_to_Mobilize_Carbon_Dioxide_Removal.pdf
Hong, B., Simoni, L. D., Bennett, J. E., Brennecke, J. F., & Stadtherr, M. A. (2016).
Simultaneous Process and Material Design for Aprotic N-Heterocyclic Anion Ionic
Liquids in Postcombustion CO2 Capture. Ind. Eng. Chem. Res., 55, 8432-8449.
Retrieved from https://pubs.acs.org/doi/10.1021/acs.iecr.6b01919
Hong, S., Yin, G., Piao, S., Dybzinski, R., Cong, N., Li, X., . . . Chen, A. (2020). Divergent
responses of soil organic carbon to afforestation. Nature Sustainability, 3(9), 694-700.
doi:10.1038/s41893-020-0557-y
Hong, W. Z., et al. (2015). Effects of pyrolysis conditions on the properties of biochar and its
adsorption to N and P from aqueous solution. Environmental Science, 35(9), 2805-2512.
Retrieved from http://www.actasc.cn/hjkxxb/ch/reader/view_abstract.aspx?
file_no=20141030006
Hongbin, C., et al. . (2015). Carbonization temperature optimization experiment of pilot-scale
continuous biomass carbonization equipment with internal heating. Transactions of the
Chinese Society of Agricultural Engineering, 31(16), 235-240. Retrieved from http://
web.b.ebscohost.com/abstract?
direct=true&profile=ehost&scope=site&authtype=crawler&jrnl=10026819&AN=10905244
3&h=5j2pLNjQAauK3MWSxFoc0sVepkalS8GP67yUbB0UJ3%2f%2fHhu9xerKg%2fIT7b
duufDxsrMmlFaL87d8d3he6ZRSPQ%3d%3d&crl=c&resultNs=AdminWebAuth&resultLo
c
Hood, M. (2020). 'Net zero' climate targets? Read the fine print. Phys.org. Retrieved from
https://phys.org/news/2020-12-net-climate-fine.html
Hoogwijk, M., Faaij, A., de Vries, B., & Turkenburg, W. (2009). Exploration of regional and global
cost–supply curves of biomass energy from short-rotation crops at abandoned cropland
and rest land under four IPCC SRES land-use scenarios. Biomass and Bioenergy, 33(1),
26-43. doi:https://doi.org/10.1016/j.biombioe.2008.04.005
Hoogwijk, M., Faaij, A., Eickhout, B., de Vries, B., & Turkenburg, W. (2005). Potential of biomass
energy out to 2100, for four IPCC SRES land-use scenarios. Biomass and Bioenergy,
29(4), 225-257. doi:http://dx.doi.org/10.1016/j.biombioe.2005.05.002
Hoogwijk, M., Faaij, A., van den Broek, R., Berndes, G., Gielen, D., & Turkenburg, W. (2003).
Exploration of the ranges of the global potential of biomass for energy. Biomass and
Bioenergy, 25(2), 119-133. doi:http://dx.doi.org/10.1016/S0961-9534(02)00191-5
Hooi, K. K., et al. (2009). Laboratory - Scale Pyrolysis of Oil Palm Pressed Fruit Fibres. Journal
of Oil Palm Research, 21, 577-587. Retrieved from http://jopr.mpob.gov.my/
Hopkins, A. (2017). Biofuel breakthroughs bring 'negative emissions' a step closer. The
Conversation. Retrieved from https://phys.org/news/2017-08-biofuel-breakthroughs-
negative-emissions-closer.html
Horák, J. (2015). Testing Biochar As a Possible Way To Ameliorate Slightly Acidic Soil At The
Research Field Located In The Danubian LowlandAbstract. Acta Horticulturae et
Regiotectuare, 18(1), 20-24. doi:10.1515/ahr-2015-0005
Horák, J., & Igaz, D. (2015). Impact of Biochar Amendment on Soil PH of Orthic Luvisol at the
Research Site Located in Western Slovakia. Journal of International Scientific
Publications, 9, 66-73. Retrieved from http://www.scientific-publications.net/get/
1000011/1432800959622187.pdf
Hori, M. (2011). Nuclear carbonization and gasification of biomass for effective removal of
atmospheric CO2. Progress in Nuclear Energy, 53(7), 1022-1026. doi:https://doi.org/
10.1016/j.pnucene.2011.04.027
Hori, M., et al. (2018). Blue Carbon: Characteristics of the Ocean’s Sequestration and Storage
Ability of Carbon Dioxide. In T. Kuwae & M. Hori (Eds.), Blue Carbon in Shallow Coastal
Ecosystems: Carbon Dynamics, Policy, and Implementation (pp. 1-31).
Horn, S. (2017). Biochar 101: Climate Savior or False Hope? Desmog. Retrieved from https://
www.desmogblog.com/biochar-101-climate-savior-or-false-hope
Horn, S. (2017). Biochar Lobby's Protocol Receives Blistering Peer Review, Casts Doubts on
Serving as Climate Solution. Desmog Blog. Retrieved from https://
www.desmogblog.com/biochar-lobby-protocol-peer-review-climate-solution
Horn, S. (2017). Biochar: A Geoengineering 'Shock Doctrine'. Desmog Blog. Retrieved from
https://www.desmogblog.com/biochar-geoengineering-shock-doctrine
Horn, S. (2017). Cool Planet: The Biochar Big Leagues and 'Shoddy Science'. Retrieved from
https://www.desmogblog.com/cool-planet-biochar-shoddy-science
Horn, S. (2017). How the Biochar Lobby Pushed for Offsets, Tar Sands, and Fracking
Reclamation Using Unsettled Science. Retrieved from https://www.desmogblog.com/
biochar-lobby-offsets-tar-sands-fracking-reclamation-unsettled-science
Horn, S. (2017). Is Deploying Biochar as a Climate Geoengineering Tool Scientifically
Premature? Desmog Blog. Retrieved from https://www.desmogblog.com/biochar-
climate-geoengineering-scientifically-premature
Hornigold, T. (2017). What It Would Take to Suck CO2 Back Out of the Atmosphere. Singularity
Hub. Retrieved from https://singularityhub.com/2017/10/19/why-we-need-negative-
emissions-tech-but-its-no-silver-bullet/#sm.0000deohc7nxjcplvua229cubqqla
Horschig, T., Welfle, A., Billig, E., & Thrän, D. (2019). From Paris agreement to business cases
for upgraded biogas: Analysis of potential market uptake for biomethane plants in
Germany using biogenic carbon capture and utilization technologies. Biomass and
Bioenergy, 120, 313-323. doi:https://doi.org/10.1016/j.biombioe.2018.11.022
(2020, August 6). The Climate Fix Podcast: Industrial Carbon Removal with Elba Horta from
Puro.earth [Retrieved from https://puro.earth/articles/the-climate-fix-podcast-industrial-
carbon-removal-with-elba--529?
utm_source=newsletter&utm_medium=email&utm_campaign=newsletter-26&utm_conte
nt=20200820-
Horton, J., et al. (2016). Implications of the Paris Agreement for Carbon Dioxide Removal and
Solar Geoengineering. Retrieved from https://www.belfercenter.org/publication/
implications-paris-agreement-carbon-dioxide-removal-and-solar-geoengineering
Horton, P., Long, S. P., Smith, P., Banwart, S. A., & Beerling, D. J. (2021). Technologies to
deliver food and climate security through agriculture. Nature Plants, 7(3), 250-255.
doi:10.1038/s41477-021-00877-2
Hoshi, T. (2001). Growth Promotion of Tea Trees by Putting Bamboo Charcoal in Soil. Paper
presented at the 2001 International Conference on O-Cha Culture and Science, Tokai
University, Shizuoka, Japan. http://www.fb.u-tokai.ac.jp/WWW/hoshi/cha/
Hossain, M. K., et al. . (2011). Influence of pyrolysis temperature on production and nutrient
properties of wastewater sludge biochar. Journal of Environmental Management, 92(1),
223-228. doi:10.1016/j.jenvman.2010.09.008
Hossain, M. K., et al. . (2015). Wastewater sludge and sludge biochar addition to soils for
biomass production from Hyparrhenia hirta. Ecological Engineering, 82, 345 - 348.
doi:10.1016/j.ecoleng.2015.05.014
Hossain, M. K., Strezov, V., & Nelson, P. F. (2015). Comparative assessment of the effect of
wastewater sludge biochar on growth, yield and metal bioaccumulation of cherry tomato.
Pedosphere, 25(5), 680-685. Retrieved from http://pedosphere.issas.ac.cn/trqen/ch/
reader/view_abstract.aspx?file_no=20150505
Hossain, M. K., Strezov, V., Yin Chan, K., & Nelson, P. F. (2010). Agronomic properties of
wastewater sludge biochar and bioavailability of metals in production of cherry tomato
(Lycopersicon esculentum). Chemosphere, 78(9), 1167-1171. doi:http://dx.doi.org/
10.1016/j.chemosphere.2010.01.009
Hottle, R. D. (2013). Quantifying the impact of biochar on plant productivity and changes to soil
physical and chemical properties on a maize soybean rotation in the U.S. (Doctor of
Philosophy). Ohio State University, Retrieved from https://etd.ohiolink.edu/
ap:10:0::NO:10:P10_ACCESSION_NUM:osu1374064522
Hou, C., Wu, Y., Wang, T., Wang, X., & Gao, X. (2019). Preparation of Quaternized Bamboo
Cellulose and Its Implication in Direct Air Capture of CO2. Energy & Fuels, 33(3),
1745-1752. doi:10.1021/acs.energyfuels.8b02821
Hou, C. L., Wu, Y. S., Jiao, Y. Z., Huang, J., Wang, T., Fang, M. X., & Zhou, H. (2017).
Integrated direct air capture and CO2 utilization of gas fertilizer based on moisture swing
adsorption. Journal of Zhejiang University-Science A, 18(10), 819-830. doi:10.1631/
jzus.A1700351
Hou, J., Suo, Q., Liang, H., Han, X., & Liu, C. (2015). Effects of carbonization conditions on
biochar yield from!Artemisia ordosica. Journal of Northwest A & F University - Natural
Science Edition, 2015(01), 169-174. Retrieved from http://en.cnki.com.cn/Article_en/
CJFDTotal-XBNY201501026.htm
Hou, R., Li, T., Fu, Q., Liu, D., Li, M., Zhou, Z., . . . Yan, J. (2020). Effects of biochar and straw
on greenhouse gas emission and its response mechanism in seasonally frozen farmland
ecosystems. CATENA, 194, 104735. doi:https://doi.org/10.1016/j.catena.2020.104735
Hou, X., Meng, L., Li, L., Pan, G., & Li, B. (2015). Biochar amendment to soils impairs
developmental and reproductive performances of a major rice pest Nilaparvata lugens
(Homopera: Delphacidae). Journal of Applied Entomology, 139(10), 727-733.
doi:10.1111/jen.12218
Hou, Y.-h., Wang, L., Fu, X.-h., & Le, Y.-q. (2015). Response of Straw and Straw Biochar
Returning to Soil Carbon Budget and Its Mechanism. Huan jing ke xue= Huanjing
kexue / [bian ji, Zhongguo ke xue yuan huan jing ke xue wei yuan hui "Huan jing ke xue"
bian ji wei yuan hui.], 36(7), 2655-2661. Retrieved from http://europepmc.org/abstract/
med/26489338
Houben, D. (2013). Heavy metal mobility in contaminated soils as affected by plants,
amendments and biochar: Implications for phytostabilization. (Doctor in Science). Earth
and Life Institute, Retrieved from http://scholar.google.com/scholar_url?hl=en&q=http://
dial.academielouvain.be/vital/access/services/Download/boreal:123342/
PDF_01&sa=X&scisig=AAGBfm2q5XEyza46TxQMyUh39svpLriyig&oi=scholaralrt
Houben, D., et al. . (2014). Phosphorus availability in an acidic Belgian Luvisol amended with
biochar. In.
Houben, D., Evrard, L., & Sonnet, P. (2013). Mobility, bioavailability and pH-dependent leaching
of cadmium, zinc and lead in a contaminated soil amended with biochar. Chemosphere,
92(11), 1450-1457. Retrieved from http://www.sciencedirect.com/science/article/pii/
S0045653513004852
Houben, D., & Sonnet, P. (2015). Impact of biochar and root-induced changes on metal
dynamics in the rhizosphere of Agrostis capillaris and Lupinus albus. Chemosphere,
139, 644-651. doi:10.1016/j.chemosphere.2014.12.036
Houben, D., Sonnet, P., & Cornelis, J.-T. (2013). Biochar from Miscanthus: a potential silicon
fertilizer. Plant and Soil, 374(1), 871-882. Retrieved from https://link.springer.com/article/
10.1007/s11104-013-1885-8
Houghton, R. A. (2013). The emissions of carbon from deforestation and degradation in the
tropics: past trends and future potential. Carbon Management, 4(5), 539-546.
doi:10.4155/cmt.13.41
Houghton, R. A., Byers, B., & Nassikas, A. A. (2015). A role for tropical forests in stabilizing
atmospheric CO2. Nature Climate Change, 5, 1022. doi:10.1038/nclimate2869
Houghton, R. A., & Nassikas, A. A. (2018). Negative emissions from stopping deforestation and
forest degradation, globally. Global Change Biology, 24(1), 350-359. doi:doi:10.1111/
gcb.13876
Houlton, B. (2020). An effective climate change solution may lie in rocks beneath our feet. The
Conversation. Retrieved from https://theconversation.com/an-effective-climate-change-
solution-may-lie-in-rocks-beneath-our-feet-142462
Houlton, B. (2021). Biden must pay farmers to store more carbon. The Hill. Retrieved from
https://thehill.com/opinion/energy-environment/553615-biden-must-pay-farmers-to-store-
more-carbon
Houlton, B. J., & Boudinot, G. (2021). Rock dust could put a drain on atmospheric carbon — will
this technology work? The Hill. Retrieved from https://thehill.com/opinion/energy-
environment/573084-rock-dust-could-put-a-drain-on-atmospheric-carbon-will-this
House, J. I., et al. (2002). Maximum impacts of future reforestation or deforestation on
atmospheric CO2. 8(11), 1047-1052. doi:10.1046/j.1365-2486.2002.00536.x
House, K. Z., Baclic, A. C., Ranjan, M., Van Nierop, E. A., Wilcox, J., & Herzog, H. J. (2011).
Economic and energetic analysis of capturing CO2 from ambient air. Proc. Natl. Acad.
Sci. U.S.A., 108, 20428.
House, K. Z., Baclig, A. C., Ranjan, M., van Nierop, E. A., Wilcox, J., & Herzog, H. J. (2011).
Economic and energetic analysis of capturing CO
2
from ambient air. Proceedings of the
National Academy of Sciences, 108(51), 20428-20433. doi:10.1073/pnas.1012253108
House, K. Z., House, C. H., Schrag, D. P., & Aziz, M. J. (2007). Electrochemical Acceleration of
Chemical Weathering as an Energetically Feasible Approach to Mitigating Anthropogenic
Climate Change. Environmental Science & Technology, 41(24), 8464-8470. doi:10.1021/
es0701816
House, K. Z., House, C. H., Schrag, D. P., & Aziz, M. J. (2009). Electrochemical acceleration of
chemical weathering for carbon capture and sequestration. Energy Procedia, 1(1),
4953-4960. doi:https://doi.org/10.1016/j.egypro.2009.02.327
House, K. Z., Schrag, D. P., Harvey, C. F., & Lackner, K. S. (2006). Permanent carbon dioxide
storage in deep-sea sediments. Proceedings of the National Academy of Sciences,
103(33), 12291-12295. doi:10.1073/pnas.0605318103
Housley, C., Kachenko, A. G., & Singh, B. (2015). Effects of Eucalyptus saligna biochar-
amended media on the growth of Acmena smithii, Viola var. hybrida, and Viola ×
wittrockiana. The Journal of Horticultural Science and Biotechnology, 90(2), 187-194.
doi:10.1080/14620316.2015.11513171
Howell, S. (2020). Study questions benefits of spending on carbon capture. Chemistry World.
Retrieved from https://www.chemistryworld.com/news/study-questions-benefits-of-
spending-on-carbon-capture/4010987.article
Howlett, D. S., Mosquera-Losada, M. R., Nair, P. K. R., Nair, V. D., & Rigueiro-Rodríguez, A.
(2011). Soil Carbon Storage in Silvopastoral Systems and a Treeless Pasture in
Northwestern Spain. Journal of Environmental Quality, 40(3), 825-832. doi:https://
doi.org/10.2134/jeq2010.0145
Hrvoje, K., et al. (2011). Biochar addition to the soil limits initial development of red clover
(Trifolium pratense L.). Paper presented at the Proceedings of 47th Croatian and 7th
International Symposium on Agriculture, Opatija. Croatia.
Hu, B., Zhang, Y., Li, Y., Teng, Y., & Yue, W. (2020). Can bioenergy carbon capture and storage
aggravate global water crisis? Science of The Total Environment, 714, 136856.
doi:https://doi.org/10.1016/j.scitotenv.2020.136856
Hu, G., Li, Y., Ye, C., Liu, L., & Chen, X. (2018). Engineering Microorganisms for Enhanced CO2
Sequestration. Trends in Biotechnology. doi:https://doi.org/10.1016/j.tibtech.2018.10.008
Hu, H., Jiang, B., Zhang, J., & Chen, X. (2015). Adsorption of perrhenate ion by bio-char
produced from Acidosasa edulis shoot shell in aqueous solution. RSC Adv., 5(127),
104769-104778. doi:10.1039/c5ra20235c
Hu, H., Wu, Y., & E, Y. (2016). Mechanism Research on Beta-d-Glucoside Pyrolysis by Py-GC/
MS. National Academy Science Letters, 39(2), 71 - 75. doi:10.1007/s40009-016-0427-3
Hu, J., et al. . (2014). Biochar and Glomus caledonium Influence Cd Accumulation of Upland
Kangkong (Ipomoea aquatica Forsk.) Intercropped with Alfred Stonecrop (Sedum alfredii
Hance). Scientific Reports, 4, 1-7. Retrieved from https://www.ncbi.nlm.nih.gov/pmc/
articles/PMC3985079/pdf/srep04671.pdf
Hu, L., Cao, L., & Zhang, R. (2013). Bacterial and fungal taxon changes in soil microbial
community composition induced by short-term biochar amendment in red oxidized loam
soil. World Journal of Microbiology and Biotechnology, 30(3), 1085-1092. Retrieved from
https://www.ncbi.nlm.nih.gov/pubmed/24136343
Hu, L.-c., Chen, L.-n., Yin, Y., Huang, Z.-q., & Dai, J.-y. (2015). Preliminary Study on the
Structural Characteristics of Residue from Rice Straw Burning in Field. In.
Hu, Q., Shao, J., Yang, H., Yao, D., Wang, X., & Chen, H. (2015). Effects of binders on the
properties of bio-char pellets. Applied Energy, 157, 508-516. doi:10.1016/
j.apenergy.2015.05.019
Hu, Q., Yang, H., Yao, D., Zhu, D., Wang, X., Shao, J., & Chen, H. (2016). The densification of
bio-char: Effect of pyrolysis temperature on the qualities of pellets. Bioresource
Technology, 200, 521 - 527. doi:10.1016/j.biortech.2015.10.077
Hu, T., Xu, T.-F., Tian, H.-L., Zhou, B., & Yang, Y.-Z. (2021). A study of CO2 injection well
selection in the naturally fractured undulating formation in the Jurong Oilfield, China.
International Journal of Greenhouse Gas Control, 109, 103377. doi:https://doi.org/
10.1016/j.ijggc.2021.103377
Hu, W. (2014). ⽣物炭对湿地⼟壤吸附五氯酚和磷的影响研究 (Influence of PCP and phosphorus
naringin biochar wetland soil adsorption). In.
Hu, X., Ding, Z., Zimmerman, A. R., Wang, S., & Gao, B. (2015). Batch and column sorption of
arsenic onto iron-impregnated biochar synthesized through hydrolysis. Water Research,
68, 206 - 216. doi:10.1016/j.watres.2014.10.009
Hu, Y., & Ahn, H. (2017). Techno-economic Analysis of a Natural Gas Combined Cycle Power
Plant Integrated with a Ca-looping Process for Post-combustion Capture. Energy
Procedia, 105, 4555-4560. doi:https://doi.org/10.1016/j.egypro.2017.03.978
Hu, Y., Schäfer, G., Duplay, J., & Kuhn, N. J. (2018). Bioenergy crop induced changes in soil
properties: A case study on Miscanthus fields in the Upper Rhine Region. Plos One,
13(7), e0200901. doi:10.1371/journal.pone.0200901
Hu, Y.-f., Li, R.-l., & Yang, Y.-y. (2015). Effects of biochar on CO2 and N2O emissions and
microbial properties of tea garden soils. Yingyong Shengtai Xuebao, 26(7), 1954-1960.
Retrieved from http://web.b.ebscohost.com/abstract?
direct=true&profile=ehost&scope=site&authtype=crawler&jrnl=10019332&AN=10868870
2&h=bR%2fFs9NPRFiOqUJy96Cq%2fe2Y%2ffXm5%2b0TY7y%2b2w3edF8t49hfA1tTO
lPvrSg1ZTyhp%2b4mIwhUhXb2nq%2fD3HuHMA%3d%3d&crl=c&resultNs=AdminWebA
uth&r
Hu, Y.-L., Wu, F.-P., Zeng, D.-H., & Chang, S. X. (2014). Wheat straw and its biochar had
contrasting effects on soil C and N cycling two growing seasons after addition to a Black
Chernozemic soil planted to barley. Biology and Fertility of Soils, 50(8), 1291-1299.
doi:10.1007/s00374-014-0943-6
Hua, L., Lu, Z., Ma, H., & Jin, S. (2014). Effect of biochar on carbon dioxide release, organic
carbon accumulation, and aggregation of soil. Environmental Progress & Sustainable
Energy, 33(3), 941-946. doi:10.1002/ep.11867
Hua, L., Wu, W., Liu, Y., McBride, M. B., & Chen, Y. (2009). Reduction of nitrogen loss and cu
and zn mobility during sludge composting with bamboo charcoal amendment.
Environmental Science and Pollution Research, 16(1), 1-9. Retrieved from https://
link.springer.com/article/10.1007/s11356-008-0041-0
Hua, Z., et al. (2013). Effect of biochar on carbon dioxide release, organic carbon accumulation,
and aggregation of soil. Environmental Progress & Sustainable Energy, 33(3), 941-946.
Retrieved from http://onlinelibrary.wiley.com/doi/10.1002/ep.11867/full
Huang, B., et al. . (2015).
Huang, D., Liu, L., Zeng, G., Xu, P., Huang, C., Deng, L., . . . Wan, J. (2017). The effects of rice
straw biochar on indigenous microbial community and enzymes activity in heavy metal-
contaminated sediment. Chemosphere, 174, 545-553. doi:http://doi.org/10.1016/
j.chemosphere.2017.01.130
Huang, H., Guo, R., Wang, T., Hu, X., Garcia, S., Fang, M., . . . Maroto-Valer, M. M. (2019).
Carbonation curing for wollastonite-Portland cementitious materials: CO2 sequestration
potential and feasibility assessment. Journal of Cleaner Production, 211, 830-841.
doi:https://doi.org/10.1016/j.jclepro.2018.11.215
Huang, H., Wang, Y.-X., Tang, J.-C., Tang, J.-C., & Zhu, W.-Y. (2014). [Properties of maize stalk
biochar produced under different pyrolysis temperatures and its sorption capability to
naphthalene]. Huan jing ke xue= Huanjing kexue / [bian ji, Zhongguo ke xue yuan huan
jing ke xue wei yuan hui "Huan jing ke xue" bian ji wei yuan hui.], 35(5), 1884-1890.
Retrieved from http://europepmc.org/abstract/med/25055682
Huang, M., et al. (2013). Quantifying the effect of biochar amendment on soil quality and crop
productivity in Chinese rice paddies. Field Crops Research, 154, 172-177. Retrieved
from http://www.sciencedirect.com/science/article/pii/S0378429013002803
Huang, M., et al. . (2014). Fertilizer nitrogen uptake by rice increased by biochar application.
Biology and Fertility of Soils, 50(6), 997-1000. Retrieved from https://link.springer.com/
article/10.1007/s00374-014-0908-9
Huang, T., Zhou, X., Yang, H., Liao, G., & Zeng, F. (2017). CO2 flooding strategy to enhance
heavy oil recovery. Petroleum, 3(1), 68-78. doi:https://doi.org/10.1016/
j.petlm.2016.11.005
Huang, W. H., & Chen, B. L. (2010). Interaction mechanisms of organic contaminants with
burned straw ash charcoal. Journal of Environmental Sciences-China, 22, 1586-1594.
Huang, W.-k., Ji, H.-l., Gheysen, G., Debode, J., & Kyndt, T. (2015). Biochar-amended potting
medium reduces the susceptibility of rice to root-knot nematode infections. BMC Plant
Biology, 15(126), 1-15. doi:10.1186/s12870-015-0654-7
Huang, X., Terrer, C., Dijkstra, F. A., Hungate, B. A., Zhang, W., & van Groenigen, K. J. (2020).
New soil carbon sequestration with nitrogen enrichment: a meta-analysis. Plant and Soil,
454(1), 299-310. doi:10.1007/s11104-020-04617-x
Huang, X.-d., & Xue, D. (2014). Effects of bamboo biochar addition on temperature rising,
dehydration and nitrogen loss during pig manure composting. Yingyong Shengtai
Xuebao, 25. Retrieved from http://web.a.ebscohost.com/abstract?
direct=true&profile=ehost&scope=site&authtype=crawler&jrnl=10019332&AN=95692213
&h=JrgPNfDA%2bUbG%2fmGP%2bhcC%2bOAEsbFEMPwKaPdfzbB08uuQsALy%2fQ
v%2b9FHMvfQn3SIHISiiXXH1RbA7T%2fW2w43Y9w%3d%3d&crl=c
Huang, Y., Anderson, M., Lyons, G. A., McRoberts, W. C., Wang, Y., McIlveen-Wright, D. R., . . .
Hewitt, N. J. (2014). Techno-economic Analysis of BioChar Production and Energy
Generation from Poultry Litter Waste. Energy Procedia, 61, 714-717. doi:10.1016/
j.egypro.2014.11.949
Huang, Y., Anderson, M., McIlveen-Wright, D., Lyons, G. A., McRoberts, W. C., Wang, Y. D., . . .
Hewitt, N. J. (2015). Biochar and renewable energy generation from poultry litter waste:
A technical and economic analysis based on computational simulations. Applied Energy,
160, 656-663. doi:10.1016/j.apenergy.2015.01.029
Huang, Y., Wei, L., Crandall, Z., Julson, J., & Gu, Z. (2015). Combining Mo–Cu/HZSM-5 with a
two-stage catalytic pyrolysis system for pine sawdust thermal conversion. Fuel, 150, 656
- 663. doi:10.1016/j.fuel.2015.02.071
Huang, Y.-F., et al. (2015). Microwave pyrolysis of rice straw to produce biochar as an adsorbent
for CO2 capture. Energy, 84, 75-82. doi:10.1016/j.energy.2015.02.026
Huang, Y.-F., Chiueh, P.-T., Syu, F.-S., & Lo, S.-L. (2012). Life cycle assessment of biochar
cofiring with coal. Bioresource Technology, 131, 166-171. Retrieved from http://
www.sciencedirect.com/science/article/pii/S0960852412019815
Huang, Z., Jiang, D., Lu, L., & Ren, Z. J. (2016). Ambient CO2 capture and storage in
bioelectrochemically mediated wastewater treatment. Bioresource Technology, 215,
380-385. doi:https://doi.org/10.1016/j.biortech.2016.03.084
Hubau, W., Lewis, S. L., Phillips, O. L., Affum-Baffoe, K., Beeckman, H., Cuní-Sanchez, A., . . .
Zemagho, L. (2020). Asynchronous carbon sink saturation in African and Amazonian
tropical forests. Nature, 579(7797), 80-87. doi:10.1038/s41586-020-2035-0
Huber, T., Misra, M., & MOHANTY, A. K. (2015). Biochar and its Size Effects on Polyamide 6/
Biochar Composites. American Society for Composites. Retrieved from http://www.dpi-
proceedings.com/index.php/ASC30/article/view/1490
Huber, T., Misra, M., & Mohanty, A. K. (2015). The effect of particle size on the rheological
properties of polyamide 6/biochar composites. Paper presented at the PROCEEDINGS
OF PPS-30: The 30th International Conference of the Polymer Processing Society –
Conference Papers, Cleveland, Ohio, USA. http://scitation.aip.org/content/aip/
proceeding/aipcp/10.1063/1.4918500
Huck, J. M., Lin, L.-C., Berger, A. H., Shahrak, M. N., Martin, R. L., Bhown, A. S., . . . Smit, B.
(2014). Evaluating different classes of porous materials for carbon capture. Energy &
Environmental Science, 7(12), 4132-4146. doi:10.1039/C4EE02636E
Hudiburg, T. W., et al. (2016). Impacts of a 32-billion-gallon bioenergy landscape on land and
fossil fuel use in the US. Nature Energy, 1, 1-7. Retrieved from http://
www.life.illinois.edu/delucia/2014%20Publications/nenergy20155.pdf
Hudiburg, T. W., Davis, S. C., Parton, W., & Delucia, E. H. (2015). Bioenergy crop greenhouse
gas mitigation potential under a range of management practices. GCB Bioenergy, 7(2),
366-374. doi:10.1111/gcbb.12152
Hudiburg, T. W., Law, B. E., Wirth, C., & Luyssaert, S. (2011). Regional carbon dioxide
implications of forest bioenergy production. Nature Climate Change, 1(8), 419-423.
doi:http://www.nature.com/nclimate/journal/v1/n8/abs/nclimate1264.html#supplementary-
information
Huesemann, M. H. (2008). Ocean fertilization and other climate change mitigation strategies: an
overview. Marine Ecology Progress Series, 364, 243-250. Retrieved from http://www.int-
res.com/abstracts/meps/v364/p243-250/
Huff, M. D., Kumar, S., & Lee, J. W. (2014). Comparative analysis of pinewood, peanut shell,
and bamboo biomass derived biochars produced via hydrothermal conversion and
pyrolysis. Journal of Environmental Management, 146, 303-308. doi:10.1016/
j.jenvman.2014.07.016
Huff, M. D., & Lee, J. W. (2016). Biochar-surface oxygenation with hydrogen peroxide. Journal
of Environmental Management, 165, 17 - 21. doi:10.1016/j.jenvman.2015.08.046
Huffman, J. (2018). H.R.5627 - Farmers CARE Act/Farmers Conserving Agricultural Resources
through EQIP Ac. Retrieved from https://www.congress.gov/bill/115th-congress/house-
bill/5627/text?
q=%7B%22search%22%3A%5B%22carbon+sequestration%22%5D%7D&r=3
Huggins, T., etc. . (2014). Biochar as a Sustainable Electrode Material for Electricity Production
in Microbial Fuel Cells. Bioresource Technology, 157, 114-119. Retrieved from http://
www.sciencedirect.com/science/article/pii/S0960852414000832
Huggins, T., Latorre, A., Biffinger, J., & Ren, Z. (2016). Biochar Based Microbial Fuel Cell for
Enhanced Wastewater Treatment and Nutrient Recovery. Sustainability, 8(2), 169.
doi:10.3390/su8020169
Huggins, T. M., Haeger, A., Biffinger, J. C., & Ren, Z. J. (2016). Granular biochar compared with
activated carbon for wastewater treatment and resource recovery. Water Research, 94,
225 - 232. doi:10.1016/j.watres.2016.02.059
Huggins, T. M., Pietron, J. J., Wang, H., Ren, Z. J., & Biffinger, J. C. (2015). Graphitic biochar as
a cathode electrocatalyst support for microbial fuel cells. Bioresource Technology, 195,
147 - 153. doi:10.1016/j.biortech.2015.06.012
Hughes, A. D., Black, K. D., Campbell, I., Davidson, K., Kelly, M. S., & Stanley, M. S. (2012).
Does seaweed offer a solution for bioenergy with biological carbon capture and storage?
Greenhouse Gases: Science and Technology, 2(6), 402-407. doi:10.1002/ghg.1319
Hughes, E., & Benemann, J. R. (1997). Biological fossil CO2 mitigation. Energy Conversion and
Management, 38, S467-S473. doi:https://doi.org/10.1016/S0196-8904(96)00312-3
Hughes, G. (2017). The Bottomless Pit: The Economics of Carbon Capture and Storage (GWPF
Report 25). Retrieved from https://www.thegwpf.org/content/uploads/2017/07/CCS-
Hughes2017.pdf
Hughes, J. K., Lloyd, A. J., Huntingford, C., Finch, J. W., & Harding, R. J. (2010). The impact of
extensive planting of Miscanthus as an energy crop on future CO2 atmospheric
concentrations. GCB Bioenergy, 2(2), 79-88. doi:10.1111/j.1757-1707.2010.01042.x
Hughes, S. R., López-Núñez, J. C., Jones, M. A., Moser, B. R., Cox, E. J., Lindquist, M., . . .
Brunner, L. (2014). Sustainable conversion of coffee and other crop wastes to biofuels
and bioproducts using coupled biochemical and thermochemical processes in a multi-
stage biorefinery concept. Applied Microbiology and Biotechnology, 98(20), 8413 - 8431.
doi:10.1007/s00253-014-5991-1
Hui, J.-z., et al. (2014). Effects of Biochar on Soil Nutrients and Nitrogen Leaching in
Anthropogenic-Alluvial Soil. Chinese Journal of Agrometeorology, 35(2), S14-S15.
doi:10.3969/j.issn.1000-6362.2014.02.006
Huijgan, W. J. J., et al. (2006). Energy Consumption and Net CO2 Sequestration of Aqueous
Mineral Carbonation. Industrial Engineering and Chemistry Research, 45(26), 184-194.
Retrieved from https://pubs.acs.org/doi/abs/10.1021/ie060636k
Huijgen, W. J. J., & Comans, R. N. J. (2005). Mineral CO
2
Sequestration by Carbonation of
Industrial Residues: LIterature Review and Selection of Residue. Retrieved from https://
www.osti.gov/etdeweb/biblio/20767394
Huijgen, W. J. J., & Comans, R. N. J. (2005). Mineral CO2 Sequestration by Steel Slag
Carbonation. Environmental Science & Technology, 39(24), 9676-9682. doi:10.1021/
es050795f
Huijgen, W. J. J., Comans, R. N. J., & Witkamp, G.-J. (2007). Cost evaluation of CO2
sequestration by aqueous mineral carbonation. Energy Conversion and Management,
48(7), 1923-1935. doi:https://doi.org/10.1016/j.enconman.2007.01.035
Huijgen, W. J. J., Witkamp, G.-J., & Comans, R. N. J. (2006). Mechanisms of aqueous
wollastonite carbonation as a possible CO2 sequestration process. Chemical
Engineering Science, 61(13), 4242-4251. doi:https://doi.org/10.1016/j.ces.2006.01.048
Huisingh, D., Zhang, Z., Moore, J. C., Qiao, Q., & Li, Q. (2015). Recent advances in carbon
emissions reduction: policies, technologies, monitoring, assessment and modeling.
Journal of Cleaner Production, 103, 1-12. doi:http://dx.doi.org/10.1016/
j.jclepro.2015.04.098
Hulatt, C. J., & Thomas, D. N. (2011). Productivity, carbon dioxide uptake and net energy return
of microalgal bubble column photobioreactors. Bioresource Technology, 102(10),
5775-5787. doi:https://doi.org/10.1016/j.biortech.2011.02.025
Hume, D. (2018). Ocean Storage of CO2. The Maritime Executive, (July 29). Retrieved from
https://www.maritime-executive.com/features/ocean-storage-of-co2
Humpenöder, F., et al. (2014). Investigating afforestation and bioenergy CCS as climate change
mitigation strategies. Environmental Research Letters, 9, 1-13. Retrieved from http://
iopscience.iop.org/article/10.1088/1748-9326/9/6/064029/pdf
Humphrey, V., Zscheischler, J., Ciais, P., Gudmundsson, L., Sitch, S., & Seneviratne, S. I.
(2018). Sensitivity of atmospheric CO2 growth rate to observed changes in terrestrial
water storage. Nature, 560(7720), 628-631. doi:10.1038/s41586-018-0424-4
Hung, Z.-S. (2014). Life-cycle Assessment of Mechanical Heat Treatment Process for the
Municipal Solid Waste. In.
Hunsberger, C., Bolwig, S., Corbera, E., & Creutzig, F. (2014). Livelihood impacts of biofuel crop
production: Implications for governance. Geoforum, 54, 248-260. doi:https://doi.org/
10.1016/j.geoforum.2013.09.022
Hunt, A. J., Sin, E. H. K., Marriott, R., & Clark, J. H. (2010). Generation, Capture, and Utilization
of Industrial Carbon Dioxide. ChemSusChem, 3(3), 306-322. doi:https://doi.org/10.1002/
cssc.200900169
Hunt, J., et al. (2010). The Basics of Biochar : A Natural Soil Amendment. Retrieved from http://
www.ctahr.hawaii.edu/oc/freepubs/pdf/SCM-30.pdf
Huntley, M. E., Johnson, Z. I., Brown, S. L., Sills, D. L., Gerber, L., Archibald, I., . . . Greene, C.
H. (2015). Demonstrated large-scale production of marine microalgae for fuels and feed.
Algal Research, 10, 249-265. doi:https://doi.org/10.1016/j.algal.2015.04.016
Huntley, M. E., & Redalje, D. G. (2007). CO2 Mitigation and Renewable Oil from Photosynthetic
Microbes: A New Appraisal. Mitigation and Adaptation Strategies for Global Change,
12(4), 573-608. doi:10.1007/s11027-006-7304-1
Huntley, M. E. Z., et al. (2015). Demonstrated large-scale prodcution of marine microalgae for
fuels and feed. Algal Research, 10, 249-265. Retrieved from https://
www.researchgate.net/publication/275972624_Demonstrated_large-
scale_production_of_marine_microalgae_for_fuels_and_feed
Hunziker, M. (1995). The spontaneous reafforestation in abandoned agricultural lands:
perception and aesthetic assessment by locals and tourists. Landscape and Urban
Planning, 31(1), 399-410. doi:https://doi.org/10.1016/0169-2046(95)93251-J
Hunziker, R. (2021). Direct Air Capture and Big Oil. Dissident Voice. Retrieved from https://
dissidentvoice.org/2021/03/direct-air-capture-and-big-oil/
HuoLiang, K., et al. . (2011). Cosorption of phenanthrene and mercury(II) from aqueous solution
by soybean stalk-based biochar. Journal of Agricultural and Food Chemistry, 59,
12116-12123. Retrieved from http://pubs.acs.org/doi/abs/10.1021/jf202924a
Husebye, J., Brunsvold, A. L., Roussanaly, S., & Zhang, X. (2012). Techno Economic Evaluation
of Amine based CO2 Capture: Impact of CO2 Concentration and Steam Supply. Energy
Procedia, 23, 381-390. doi:https://doi.org/10.1016/j.egypro.2012.06.053
Husna, N., & Imanudin, M. S. (2015). Penilaian Status Kesehatan Tanah Daerah Rawa Pasang
Surut dan Upaya Pemulihan Studi Kasus Delta Telang II (Soil Health Assessment of
Tidal Swamps and Recovery Efforts, Case Study Delta Telang II). Paper presented at
the Prosiding Seminar Nasional Lahan Suboptimal (Proceedings of the National Seminar
on Land Suboptimal) 2015.
Hussain, D., Dzombak, D. A., Jaramillo, P., & Lowry, G. V. (2013). Comparative lifecycle
inventory (LCI) of greenhouse gas (GHG) emissions of enhanced oil recovery (EOR)
methods using different CO2 sources. International Journal of Greenhouse Gas Control,
16, 129-144. doi:https://doi.org/10.1016/j.ijggc.2013.03.006
Hussain, F., Shah, S. Z., Zhou, W., & Iqbal, M. (2017). Microalgae screening under CO2 stress:
Growth and micro-nutrients removal efficiency. Journal of Photochemistry and
Photobiology B: Biology, 170, 91-98. doi:https://doi.org/10.1016/j.jphotobiol.2017.03.021
Hussain, K., et a. (2010). Economically Effective Potential of Algae for Biofuel Production. World
Applied Sciences Journal, 9(11), 1313-1323. Retrieved from http://www.idosi.org/wasj/
wasj9(11)/15.pdf
Hussain, M., Farooq, M., Nawaz, A., Al-Sadi, A. M., Solaiman, Z. M., Alghamdi, S. S., . . .
Siddique, K. H. M. (2016). Biochar for crop production: potential benefits and risks.
Journal of Soils and Sediments, 17(3), 685-716. doi:10.1007/s11368-016-1360-2
Hussin, F., & Aroua, M. K. (2019). Recent Trends in the Development of Adsorption
Technologies for Carbon Dioxide Capture: A Brief Literature and Patent Reviews
(2014-2018). Journal of Cleaner Production, 119707. doi:https://doi.org/10.1016/
j.jclepro.2019.119707
Hutt, R. (2019). Scientists in Iceland are turning carbon dioxide into rock. World Economic
Forum.
Hwang, H., Oh, S., Choi, I.-G., & Choi, J. W. (2014). Catalytic effects of magnesium on the
characteristics of fast pyrolysis products – Bio-oil, bio-char, and non-condensed pyrolytic
gas fractions. Journal of Analytical and Applied Pyrolysis, 113, 27-34. doi:10.1016/
j.jaap.2014.09.028
HX, C., ZL, D., W, G., & QZ, Z. (2011). Effects of biochar amendment on cropland soil bulk
density, cation exchange capacity, and particulate organic matter content in the North
China Plain. Ying Yong Sheng Tai Xue Bao, 22(11), 2930-2934. Retrieved from https://
www.ncbi.nlm.nih.gov/pubmed/22303671
Hyland, C., & Sarmah, A. K. (2014). Chapter 25 - Advances and Innovations in Biochar
Production and Utilization for Improving Environmental Quality. In Bioenergy Research:
Advances and Applications (pp. 435-446). Amsterdam: Elsevier.
Hylander, L. D., Günther, F., & Hansson, K. (2010). Climate saving soils with biochar. Paper
presented at the NJF seminar 430, Climate Change and Agricultural Production in the
Baltic Sea Region, Uppsala universitet Teknisk-naturvetenskapliga vetenskapsområdet,
Sweden.
Hyseni, S. (2017). Carbon Capture and Storage as a Method to Mitigate Climate Change.
Inquiries, 9(2).
Ianson, D., Volker, C., Denman, K. L., Kunze, E., & Steiner, N. (2012). The effect of vertical and
horizontal dilution on fertilized patch experiments. Global Biogeochemical Cycles, 26(3),
1944-9224. doi:10.1029/2010gb004008
Ibarrola, R., Shackley, S., & Hammond, J. (2011). Pyrolysis biochar systems for recovering
biodegradable materials: A life cycle carbon assessment. Waste Management, 32(5),
859-868. doi:10.1016/j.wasman.2011.10.005
Ibrahim, F. G., Torre, R. M., Moya, B. L., & de Godos Crespo, I. (2020). Chapter 18 - Carbon
dioxide capture from carbon dioxide–rich gases by microalgae. In G. Soreanu & É.
Dumont (Eds.), From Biofiltration to Promising Options in Gaseous Fluxes Biotreatment
(pp. 373-396): Elsevier.
Ibrahim, M., et al. (2019). Carbon Mineralization by Reaction with Steel-Making Waste: A
Review. Processes, 7(2), 1-21. Retrieved from https://www.mdpi.com/2227-9717/7/2/115
ICavoski, I., et al. (2015). Alternative solutions for soil fertility management to overcome the
challenges of the Mediterranean organic agriculture: Tomato plant case study. Soil, Land
Care & Environmental Research, 54(2), 1-9. Retrieved from http://www.publish.csiro.au/
view/journals/dsp_journals_pip_abstract_scholar1.cfm?nid=84&pip=SR15067
Ichriani, G. I., et al. . (2016). Utilization of oil palm empty bunches waste as biochar-microbes for
improving availability of soil nutrients. Journal of Degraded and Mining Lands
Management, 3(2), 517-520. Retrieved from http://jdmlm.ub.ac.id/index.php/jdmlm/
article/view/163
Idrees, M., Rangari, V., & Jeelani, S. (2018). Sustainable packaging waste-derived activated
carbon for carbon dioxide capture. Journal of CO2 Utilization, 26, 380-387. doi:https://
doi.org/10.1016/j.jcou.2018.05.016
Idris, J., et al. (2015). Improved yield and higher heating value of biochar from oil palm biomass
at low retention time under self-sustained carbonization. Journal of Cleaner Production,
104, 475-479. doi:10.1016/j.jclepro.2015.05.023
Idris, J., et al. (2015). Production of Biochar with High Mineral Content from Oil Biomass. The
Malaysian Journal of Analytical Sciences, 18(3), 700-704. Retrieved from http://
www.ukm.my/mjas/v18_n3/Juferi_18_3_26.pdf
Idris, J., Shirai, Y., Andou, Y., Mohd Ali, A. A., Othman, M. R., Ibrahim, I., . . . Hassan, M. A.
(2016). Successful scaling-up of self-sustained pyrolysis of oil palm biomass under pool-
type reactor. Waste Management & Research, 34(2), 176 - 180.
doi:10.1177/0734242x15616472
Idris, J. B. (2015). Study on Biochar Production from Empty Fruit Bunch Biomass Under Self-
Sustained Carbonization for the Development of Yamasen Carbonization Oven. Kyushu
Institute of Technology, Retrieved from https://ds.lib.kyutech.ac.jp/dspace/bitstream/
10228/5384/1/sei_kou_236.pdf
Idrus, S., et al. (2015). Effect of Diameter at Breast Height of Leucaena Leucocepha on Bio
Char Production in Tube Furnace Pyrolysis. Jurnal Teknologi, 76(11), 43-47.
doi:10.11113/jt.v76.5908
Igalavithana, A. D., et al. (2015). The Effects of Biochar Amendment on Soil Fertility. In M. Guo,
et al. (Ed.), Agricultural and Environmental Applications of Biochar: Advances and
Barriers (pp. 123-144): Soil Science Society of America, Inc.
Igalavithana, A. D., Mandal, S., Niazi, N. K., Vithanage, M., Parikh, S. J., Mukome, F. N. D., . . .
Ok, Y. S. (2017). Advances and future directions of biochar characterization methods
and applications. Critical Reviews in Environmental Science and Technology, 47(23),
2275-2330. doi:10.1080/10643389.2017.1421844
Igaz. (2015). The Impact of Biochar on the Soil Water Characteristics. Paper presented at the In
15th International Multidisciplinary Scientific GeoConference SGEM. http://
www.citeulike.org/group/18367/article/13927962
Ignaciuk, A., Vöhringer, F., Ruijs, A., & van Ierland, E. C. (2006). Competition between biomass
and food production in the presence of energy policies: a partial equilibrium analysis.
Energy Policy, 34(10), 1127-1138. doi:http://dx.doi.org/10.1016/j.enpol.2004.09.010
Iizuka, A., Fujii, M., Yamasaki, A., & Yanagisawa, Y. (2004). Development of a New CO2
Sequestration Process Utilizing the Carbonation of Waste Cement. Industrial &
Engineering Chemistry Research, 43(24), 7880-7887. doi:10.1021/ie0496176
Illingworth, J., Williams, P. T., & Rand, B. (2013). Characterisation of biochar porosity from
pyrolysis of biomass flax fibre. Journal of the Energy Institute, 86(2), 63-70. Retrieved
from http://eprints.whiterose.ac.uk/77991/
Ilyina, T., Wolf-Gladrow, D., Munhoven, G., & Heinze, C. (2013). Assessing the potential of
calcium-based artificial ocean alkalinization to mitigate rising atmospheric CO2 and
ocean acidification. Geophysical Research Letters, 40(22), 5909-5914.
doi:10.1002/2013GL057981
Im, J.-K., Boateng, L. K., Flora, J. R. V., Her, N., Zoh, K.-D., Son, A., & Yoon, Y. (2013).
Enhanced ultrasonic degradation of acetaminophen and naproxen in the presence of
powdered activated carbon and biochar adsorbents. Separation and Purification
Technology, 123, 96-105. Retrieved from http://www.sciencedirect.com/science/article/
pii/S1383586613007211
Imanishi, T., & Sakawa, M. (2003). Cultivation of pleurotus ostreatus using charcoal. Japanese
Society of Mushroom Science and Technology, 21(6), 616-625. Retrieved from https://
www.ncbi.nlm.nih.gov/pmc/articles/PMC4250492/
Imbus, S. W., Orr, F. M., Kuuskraa, V. A., Kheshgi, H., Bennaceur, K., Gupta, N., . . . Benson, S.
M. (2006). Critical Issues in CO2 Capture and Storage: Findings of the SPE Advanced
Technology Workshop (ATW) on Carbon Sequestration. https://www.onepetro.org/
conference-paper/SPE-102968-MS
Imhof, P. T., Chiu, P. C., & Guo, Q. (2015). Enhancing Nitrogen Removal in Stormwater
Treatment Facilities for Transportation. In.
Imparato, V., et al. (2015). Green use of black gasification biochar: microbial community
diversity and function in a Danish study loam soil amended with straw gasification
biochar - a field study. Paper presented at the International Biochar Symposium. http://
pure.au.dk/portal/files/90407725/Poster_biochar_130515.pdf
Imran, & Khan, A. A. (2015). Biochar application and shoot cutting duration (days) influenced
growth, yield and yield contributing parameters of Brassica napus L. Journal of Biology,
Agriculture and Healthcare, 5(5), 1-6. Retrieved from http://www.iiste.org/Journals/
index.php/JBAH/article/view/20620/21554
Imran, & Khan, A. A. (2015). Phenological charateristics of Brassica napus L. as influenced by
biochar application and shoot cutting duration (days). Civil and Environmental Research,
7(3), 104-107. Retrieved from http://www.cabdirect.org/abstracts/20153381738.html
Inal, A., Gunes, A., Sahin, O., Taskin, M. B., & Kaya, E. C. (2015). Impacts of biochar and
processed poultry manure, applied to a calcareous soil, on the growth of bean and
maize. Soil Use and Management, 31(1), 106-113. doi:10.1111/sum.12162
Inamori, Y. (1988). Experimental methods of environmental microbiology (Vol. 178). Tokyo:
Kodansha.
Indrawan, N., Thapa, S., Bhoi, P. R., Huhnke, R. L., & Kumar, A. (2018). Electricity power
generation from Co-gasification of municipal solid wastes and biomass: Generation and
emission performance. Energy. doi:https://doi.org/10.1016/j.energy.2018.07.169
Industrial, C. (2020). A New Negative Emissions Method and Our First Customer. Retrieved
from https://charmindustrial.com/blog/2020/5/17/a-new-negative-emissions-method-and-
our-first-customer
Industry, E. B. (2020). Biochar-based carbon sinks to mitigate climate change. Retrieved from
http://www.biochar-industry.com/why/
Ingall, E. D., Diaz, J. M., Longo, A. F., Oakes, M., Finney, L., Vogt, S., . . . Brandes, J. A. (2013).
Role of biogenic silica in the removal of iron from the Antarctic seas. Nature
Communications, 4, 1981. doi:10.1038/ncomms2981
http://www.nature.com/articles/ncomms2981#supplementary-information
Ingerson, A. (2011). Carbon storage potential of harvested wood: summary and policy
implications. Mitigation and Adaptation Strategies for Global Change, 16(3), 307-323.
Retrieved from http://link.springer.com/article/10.1007%2Fs11027-010-9267-5
Inglis, J. L., MacLean, B. J., Pryce, M. T., & Vos, J. G. (2012). Electrocatalytic pathways towards
sustainable fuel production from water and CO2. Coord. Chem. Rev., 256, 2571.
Ingold, M., et al. (2011). Influence of Biochar and Tannin Amendments to Goat Manure on
Gaseous C and N Emissions. Paper presented at the Tropentag 2011, October 5 - 7,
"Development on the margin", Bonn, Germany.
Initiative, C. C. G. (2019). Evidence Brief: Governing Nature-Based Solutions to Carbon Dioxide
Removal. Retrieved from https://www.c2g2.net/project/policy-brief-governing-nature-
based-solutions-to-carbon-dioxide-removal/
Initiative, C. C. G. (2019). Governing Emerging Marine Climate Techniques. Retrieved from
https://www.c2g2.net/wp-content/uploads/c2g_policybrief_marine.pdf
Initiative, C. C. G. (2019). Governing Large-scale Carbon Dioxide Removal. Retrieved from
https://www.c2g2.net/wp-content/uploads/C2G2_CDR-Brief-hyperlink.pdf
Initiative, C. C. G. (2019). Governing Marine Carbon Dioxide Removal. Retrieved from https://
www.c2g2.net/wp-content/uploads/c2g_policybrief_marine-CDR.pdf
Initiative, C. C. G. (2019). Governing Marine Carbon Dioxide Removal and Solar Radiation
Modification. Retrieved from https://www.c2g2.net/wp-content/uploads/
c2g_evidencebrief_marine.pdf
Initiative, C. D. (2020). An Interview with Professor Jelle Bijma about enhanced weathering.
Retrieved from https://www.carbon-drawdown.de/blog/2020-11-15-negative-emissions-
only-nature-based-solutions-can-master-the-job
Initiative, C. D. (2020). Let's do something with enhanced weathering. Retrieved from https://
www.carbon-drawdown.de/blog/2020-9-14-lets-do-something-with-enhanced-weathering
Initiative, C. D. (2021). Introducing “Project Carbdown”: Our first “enhanced weathering” field
trial aims to remove CO from the atmosphere. Retrieved from https://www.carbon-
drawdown.de/blog/2021-01-14-introducing-project-carbdown
Initiative, E. F. (2018). Advancing Large Scale Carbon Management: Expansion of the 45Q Tax
Credit. Retrieved from https://static1.squarespace.com/static/
58ec123cb3db2bd94e057628/t/
5b0604f30e2e7287abb8f3c1/1527121150675/45Q_EFI_5.23.18.pdf
Initiative, E. F. (2019). Clearing the Air: A Federal RD&D Initiative and Management Plan for
Carbon Dioxide Removal Technologies. Retrieved from https://www.dropbox.com/s/
2y36ngfrcbpv37f/EFI%20Clearing%20the%20Air%20Full%20Report.pdf?dl=0
Initiative, O. a. G. C. (2018). OGCI Climate Investments announces progression of the UK’s first
commercial full-chain Carbon Capture, Utilization and Storage Project. Retrieved from
https://oilandgasclimateinitiative.com/climate-investments-announces-progression-of-
the-uks-first-commercial-full-chain-carbon-capture-utilization-and-storage-project/
Initiative, V. C. M. I. (2021). Major global initiative to bring rigour and transparency to net zero
and carbon neutral claims. Retrieved from https://vcmintegrity.org/major-global-initiative-
to-bring-rigour-and-transparency-to-net-zero-and-carbon-neutral-claims/
Inoue, T. (2018). Carbon Sequestration in Mangroves. In T. Kuwae & M. Hori (Eds.), Blue
Carbon in Shallow Coastal Ecosystems: Carbon Dynamics, Policy, and Implementation
(pp. 73-99).
Institute, E. F. (2020). Uncharted Waters: Exploring the Options for Carbon Dioxide Removal in
Coastal and Ocean Environments. Retrieved from https://energyfuturesinitiative.org/s/
Uncharted-Waters-Final-121020.pdf
Institute, G. C. (2015). Transporting CO2. Retrieved from https://www.globalccsinstitute.com/
resources/publications-reports-research/transporting-co2/
Institute, G. C., & Brinckerhoff, P. (2011). Accelerating the Uptake of CCS: Industrial Use of
Captured Carbon Dioxide. Retrieved from https://www.globalccsinstitute.com/sites/
www.globalccsinstitute.com/files/publications/14026/accelerating-uptake-ccs-industrial-
use-captured-carbon-dioxide.pdf
Institute, I. G. C. (2012). Tracking Progress in Carbon Capture and Storage: International
Energy Agency/Global CCS Institute Report to the Third CLEAN Energy Ministerial
2012. Retrieved from https://www.iea.org/publications/freepublications/publication/
IEAandGlobalCCSInstituteTrackingProgressinCarbonCaptureandStoragereporttoCEM3F
INAL.PDF
Credit for carbon oxide sequestration, (2019).
Institute, R. (2014). Dig Deeper: Regenerative Organic Agriculture and Climate Change.
Retrieved from http://rodaleinstitute.org/regenerative-organic-agriculture-and-climate-
change/
Institute, T. C. (2014). Modelling Bio-sequestration to Reduce Greenhouse Gas Emissions
(SH43584). Retrieved from http://www.climateinstitute.org.au/verve/_resources/
ModellingBiosequestrationToReduceGHGEmissions_JacobsSKM_April2014.pdf
Institute, T. C. (2014). Moving Below Zero: Understanding Bioenergy with Carbon Capture &
Storage. Retrieved from http://hub.globalccsinstitute.com/sites/default/files/publications/
147943/moving-below-zero-understanding-bioenergy-carbon-capture-storage.pdf
International, B. (2020). Sweden's first bioenergy carbon capture and storage pilot inaugurated.
Retrieved from https://bioenergyinternational.com/heat-power/swedens-first-bioenergy-
carbon-capture-and-storage-pilot-inaugurated
International, F. o. t. E. (2021). Chasing Carbon Unicorns: The deception of carbon markets and
“net zero” Retrieved from https://www.foei.org/resources/publications/chasing-carbon-
unicorns-carbon-markets-net-zero-report
Inthapanya, S., & Preston, T. (2013). Biochar marginally increases biogas production but
decreases methane content of the gas in continuous-flow biodigesters charged with
cattle manure. Livestock Research for Rural Development, 25(11). Retrieved from http://
www.lrrd.org/lrrd25/11/sang25189.htm
Inthapanya, S., Preston, T. R., & Leng, R. A. (2012). Biochar increases biogas production in a
batch digester charged with cattle manure. Livestock Research for Rural Development,
24. Retrieved from http://lrrd.cipav.org.co/lrrd24/12/sang24212.htm
Inyang, M., et al. (2013). Synthesis, characterization, and dye sorption ability of carbon
nanotube-biochar nanocomposites.
Inyang, M., et al. (2014). Sorption and cosorption of lead and sulfapyridine on carbon nanotube-
modified biochars. Environmental Science and Pollution Research, 22(3), 1868-1876.
doi:10.1007/s11356-014-2740-z
Inyang, M., & Dickenson, E. (2015). The potential role of biochar in the removal of organic and
microbial contaminants from potable and reuse water: A review. Chemosphere, 134, 232
- 240. doi:10.1016/j.chemosphere.2015.03.072
Inyang, M., Gao, B., Pullammanappallil, P., Ding, W. C., & Zimmerman, A. R. (2010). Biochar
from anaerobically digested sugarcane bagasse. Bioresource Technology, 101(22),
8868-8872. Retrieved from http://www.sciencedirect.com/science/article/pii/
S0960852410010692
Inyang, M. I., Gao, B., Yao, Y., Xue, Y., Zimmerman, A., Mosa, A., . . . Cao, X. (2015). A Review
of Biochar as a Low-Cost Adsorbent for Aqueous Heavy Metal Removal. Critical
Reviews in Environmental Science and Technology, 46(4), 406-433.
doi:10.1080/10643389.2015.1096880
Ioelovich, M. (2015). Bioenergetics - Current State and Perspectives. Science and Life of Israel.
Retrieved from http://www.researchgate.net/profile/M_Ioelovich/publication/
282730678_Bioenergetics_-Current_State_and_Perspectives/links/
561a287e08ae044edbb1a8bb.pdf
Ioelovich, M. (2015). Recent Findings and the Energetic Potential of Plant Biomass as a
Renewable Source of Biofuels – A Review. BioResources, 10(1), 1879-1914. Retrieved
from http://ojs.cnr.ncsu.edu/index.php/BioRes/article/view/
BioRes_10_1_Ioelovich_Review_Plant_Biomass_Renewable_Source_Biofuels/3356
IPAC CO2 Research, I. (2011). Public Awareness and Acceptance of Carbon Capture and
Storage in Canada. Retrieved from http://cmcghg.com/wp-content/uploads/2015/03/
CMC-IPAC-National-Survey-on-attitudes-toward-CCS.pdf
IPCC. (2019). IPCC Special Report on Climate Change, Desertification, Land Degradation,
Sustainable Land Management, Food Security, and Greenhouse gas fluxes in Terrestrial
Ecosystems. Retrieved from https://www.ipcc.ch/srccl-report-download-page/
Ippolito, J., Spokas, K., Novak, J., Lentz, R. D., Stromberger, M., Ducey, T., & Johnson, M.
(2015). USDA Biochar Research: Land Application Advances to Reap Its Multifunctional
Abilities. American Geophysical Union, Fall Meeting. Retrieved from http://
adsabs.harvard.edu/abs/2014AGUFM.B54A..03I
Ippolito, J. A., et al. (2012). Macroscopic and Molecular Investigations of Copper Sorption by a
Steam-Activated Biochar. Journal of Environmental Quality, 41(4), 1150-1156.
doi:10.2134/jeq2011.0113
Ippolito, J. A., et al. (2012). Switchgrass Biochar Affects Two Aridisols. Journal of Environmental
Quality, 41, 1123- 1130. doi:10.2134/jeq2011.0100
Ippolito, J. A., et al. (2015). Biochar elemental composition and factors influencing nutrient
retention. In Biochar for Environmental Management: Science and Technology and
Implementation.
Ippolito, J. A., et al. (2015). Hardwood biochar and manure co-application to a calcareous soil.
Chemosphere, 142, 84-91. doi:10.1016/j.chemosphere.2015.05.039
Ippolito, J. A., Ducey, T. F., Cantrell, K. B., Novak, J. M., & Lentz, R. D. (2015). Designer, acidic
biochar influences calcareous soil characteristics. Chemosphere, 142, 184-191.
doi:10.1016/j.chemosphere.2015.05.092
Ippolito, J. A., et al., Grob, J., & Donnelly. (2015). Anatomy of a field trial: Wood-based biochar
and compost influences a Pacific Northwest soil. Biochar Journal. Retrieved from http://
eprints.nwisrl.ars.usda.gov/1595/
Ippolito, J. A., Laird, D. A., & Busscher, W. J. (2012). Environmental Benefits of Biochar. Journal
of Environmental Quality Special Section, 41, 967-972. Retrieved from https://
www.crops.org/publications/jeq/view/biochar/q12-0151.pdf
Iqbal, H., Garcia-Perez, M., & Flury, M. (2015). Effect of biochar on leaching of organic carbon,
nitrogen, and phosphorus from compost in bioretention systems. Science of The Total
Environment, 521-522, 37 - 45. doi:10.1016/j.scitotenv.2015.03.060
Iranmanesh, S., et al. . (2014). Adsorption of naphthenic acids on high surface area activated
carbons. Journal of Environmental Science and Health, Part A: Toxic/Hazardous
Substances and Environmental, 49(8), 913-922. doi:10.1080/10934529.2014.894790
Irfan, U. (2017). Will Carbon Capture and Storage Ever Work? Scientific American. Retrieved
from https://www.scientificamerican.com/article/will-carbon-capture-and-storage-ever-
work/
Irfan, U. (2017). World must pull CO2 from the sky to meet Paris goals. ClimateWire, (March
24). Retrieved from http://www.eenews.net/climatewire/2017/03/24/stories/1060052028
Irfan, U. (2018). Sucking CO2 out of the atmosphere, explained. Vox. Retrieved from https://
www.vox.com/energy-and-environment/2018/10/24/18001538/climate-change-co2-
removal-negative-emissions-cdr-carbon-dioxide
Iriarte-Velasco, U., Sierra, I., Cepeda, E. A., Bravo, R., & Ayastuy, J. L. (2015). Methylene blue
adsorption by chemically activated waste pork bones. Coloration Technology, 131(4),
322 - 332. doi:10.1111/cote.12160
Irshad, M. (2015). Reducing Heavy Metals Extractions from Contaminated Soils using Organic
and Inorganic Amendments - A Review. Polish Journal of Environmental Studies, 24(3),
1423-1426. doi:10.15244/pjoes/26970
Irving, A. D., Connell, S. D., & Russell, B. D. (2011). Restoring Coastal Plants to Improve Global
Carbon Storage: Reaping What We Sow. Plos One, 6(3), e18311. doi:10.1371/
journal.pone.0018311
Isaac, D. T., et al. (2014). Utilizing Biochar to Mitigate Nitrate Leaching and Increase Crop Yield
in South Central WA. Paper presented at the AAAS 2015 Annual Meeting Innovations,
Information, and Imaging.
Isabela, B., Pei-Hao, L., Neil, S., Joana Portugal, P., Ajay, G., & Peter, S. (2019). A deep dive
into the modelling assumptions for biomass with carbon capture and storage (BECCS): A
transparency exercise. Environmental Research Letters. Retrieved from http://
iopscience.iop.org/10.1088/1748-9326/ab5c3e
Ishak, C. F., & Abdullah, R. (2014). In-situ immobilization of selected heavy metals in soil using
agricultural wastes and industrial by-products. Paper presented at the Proc. Of MACRO-
FTTC Joint Int. Seminar on Management and Remediation Technologies of Rural Soils
Contaminated by Heavy Metals and Radioactive Materials.
Ishii, T., & Kadoya, K. (1994). Effects of charcoal as a soil conditioner on citrus growth and
vesicular-arbuscular mycorrhizal development. Journal of the Japanese Society for
Horticultural Science, 63, 529-535.
Ishimoto, Y., et al. (2017). Putting Costs of Direct Air Capture in Context. Retrieved from http://
ceassessment.org/wp-content/uploads/2017/06/WPS-DAC.pdf
Islam, T., et al. (2011). Maize Yield and Associated Soil Quality Changes in Cassava + Maize
intercropping System After 3 Years of Biochar Application. J. Agric. Food. Tech., 1,
112-115. Retrieved from http://www.textroad.com/pdf/JAFT/J.%20Agric.%20Food.
%20Tech.,%201(7)%20112-115,%202011.pdf
Islami, T., et al. . (2011). Biochar for sustaining productivity of cassava based cropping systems
in the degraded lands of East Java, Indonesia. Journal of Tropical Agriculture, 49, 40-46.
Retrieved from http://jtropag.in/index.php/ojs/article/viewFile/1035/286
Islami, T., Guritno, B., & Utomo, W. H. (2012). Farm Yard Manure Biochar for Sustainable
Cassava Production in the Degraded Lands of East Java, Indonesia. http://
karyailmiah.fp.ub.ac.id/fp/wp-content/uploads/2012/10/Cassava-Biochar-China-
workshop1.doc
Islami, T., Kurniawan, S., & Utomo, W. H. (2013). Yield stability of cassava (Manihot esculenta
Crantz) planted in intercropping system after 3 years of biochar application. American-
Eurasian Journal of Sustainable Agriculture, 7, 349-355.
Ismadji, S., Tong, D. S., Soetaredjo, F. E., Ayucitra, A., Yu, W. H., & Zhou, C. H. (2016).
Bentonite hydrochar composite for removal of ammonium from Koi fish tank. Applied
Clay Science, 119, 146 - 154. doi:10.1016/j.clay.2015.08.022
Ismail, I. S., Singh, G., Smith, P., Kim, S., Yang, J.-H., Joseph, S., . . . Vinu, A. (2020). Oxygen
functionalized porous Activated biocarbons with high surface Area derived from grape
marc for enhanced capture of CO2 at elevated-pressure. Carbon. doi:https://doi.org/
10.1016/j.carbon.2020.01.008
Ismail, N., et al. (2015). Microwave Plasma Gasification of Oil Palm Biochar. In.
Ismail, N., & Ani, F. N. (2014). Syngas Production from Microwave Gasification of Oil Palm
Biochars. Retrieved from http://akademiabaru.com/wvcarmea/docu/173.pdf
Israel, A., Gavrieli, J., Glazer, A., & Friedlander, M. (2005). Utilization of flue gas from a power
plant for tank cultivation of the red seaweed Gracilaria cornea. Aquaculture, 249(1),
311-316. doi:https://doi.org/10.1016/j.aquaculture.2005.04.058
Israelsson, P. H., Chow, A. C., & Eric Adams, E. (2009). An updated assessment of the acute
impacts of ocean carbon sequestration by direct injection. Energy Procedia, 1(1),
4929-4936. doi:http://dx.doi.org/10.1016/j.egypro.2009.02.324
Isson, T. T., & Planavsky, N. J. (2018). Reverse weathering as a long-term stabilizer of marine
pH and planetary climate. Nature, 560(7719), 471-475. doi:10.1038/s41586-018-0408-4
Itaoka, K., et al. (2012). Understanding How Individuals Perceive Carbon Dioxide. IMplications
for Acceptance of Carbon Dioxide Capture and Storage. Retrieved from http://
www.ieaghg.org/docs/General_Docs/3rd_SRN/
DowdSaito_Perceptions_of_CO2SECURED.pdf
Itchon, G. S., Miso, A. U., & Gensch, R. (2012). The Effectivity of the Terra Preta Sanitation
(TPS) Process in the Elimination of Parasite Eggs in Fecal Matter: A Field Trial of Terra
Preta Sanitation in Mindanao, Philippines. Paper presented at the 4th International Dry
Toilet Conference. http://www.drytoilet.org/dt2012/full_papers/5/Gina_S_Itchon.pdf
Ito, Y., et al. (2009). Estimations of quantities of carbon storage by seaweed and seagrass beds.
Japan Fisheries Engineering, 46, 135-146.
IUCN. (2020). IUCN Global Standard for NbS. Retrieved from https://www.iucn.org/theme/
nature-based-solutions/resources/iucn-global-standard-nbs
IUCN. (2020). Land degradation and climate change. Issues Brief. Retrieved from https://
www.iucn.org/resources/issues-briefs/land-degradation-and-climate-change
Iulianelli, A., & Ghasemzadeh, K. (2022). Chapter 16 - Enhanced carbon dioxide capture by
membrane contactors in presence of nanofluids. In M. R. Rahimpour, M. A. Makarem, M.
R. Kiani, & M. A. Sedghamiz (Eds.), Nanofluids and Mass Transfer (pp. 399-411):
Elsevier.
Iwamoto, Y., Narita, Y., Tsuda, A., & Uematsu, M. (2009). Single particle analysis of oceanic
suspended matter during the SEEDS II iron fertilization experiment. Marine Chemistry,
113(3), 212-218. doi:https://doi.org/10.1016/j.marchem.2009.02.002
Iwuozo, S. A. (2015). Incidence of greenhouse gas emissions from soils under different corn
management practices. TENNESSEE STATE UNIVERSITY, Retrieved from http://
gradworks.umi.com/15/85/1585626.html
Iyer, G., Clarke, L., Edmonds, J., Fawcett, A., Fuhrman, J., McJeon, H., & Waldhoff, S. (2021).
The Role of Carbon Dioxide Removal in Net-zero Emissions Pledges. Energy and
Climate Change, 100043. doi:https://doi.org/10.1016/j.egycc.2021.100043
Izaret, J. M., et al. (2020). We Need True Net Zero, and It Needs Early Adopter. Retrieved from
https://www.bcg.com/publications/2020/mitigating-climate-change
Izikowitz, D. (2021). Carbon Purchase Agreements, Dactories, and Supply-Chain Innovation:
What Will It Take to Scale-Up Modular Direct Air Capture Technology to a Gigatonne
Scale. Frontiers in Climate, 3(24). doi:10.3389/fclim.2021.636657
Jaafar, N. M., Clode, P. L., & Abbott, L. K. (2014). Microscopy Observations of Habitable Space
in Biochar for Colonization by Fungal Hyphae From Soil. Journal of Integrative
Agriculture, 13(3), 483–490. Retrieved from http://www.sciencedirect.com/science/
article/pii/S2095311913607030
Jaafar, N. M., Clode, P. L., & Abbott, L. K. (2015). Biochar-Soil Interactions in Four Agricultural
Soils. Pedosphere, 25(5), 729 - 736. doi:10.1016/s1002-0160(15)30054-0
Jaafar, N. M., Clode, P. L., & Abbott, L. K. (2015). Soil Microbial Responses to Biochars Varying
in Particle Size, Surface and Pore Properties. Pedosphere, 25(5), 770-780. doi:10.1016/
s1002-0160(15)30058-8
Jablonowski, N. D., et al., & l. (2012). Biochar-mediated 14C-atrazine mineralization in atrazine-
adapted soils from Belgium and Brazil. Journal of Agricultural and Food Chemistry,
61(3), 512-516. Retrieved from http://pubs.acs.org/doi/abs/10.1021/jf303957a
Jackson, R., & Lashof, D. (2020). We all must work together to make direct air carbon capture
affordable, accessible [Opinion]. Houston Chronicle. Retrieved from https://
www.houstonchronicle.com/opinion/outlook/article/We-all-must-work-together-to-make-
direct-air-15017895.php
Jackson, R. B., Jobbágy, E. G., Avissar, R., Roy, S. B., Barrett, D. J., Cook, C. W., . . . Murray,
B. C. (2005). Trading Water for Carbon with Biological Carbon Sequestration. Science,
310(5756), 1944-1947. doi:10.1126/science.1119282
Jackson, R. B., Solomon, E. I., Canadell, J. G., Cargnello, M., & Field, C. B. (2019). Methane
removal and atmospheric restoration. Nature Sustainability. doi:10.1038/
s41893-019-0299-x
Jacob-Lopes, E., et al. . (2008). Biomass production and carbon dioxide fixation by
Aphanothece microscopica N??geli in a bubble column photobioreactor. Biochemical
Engineering Journal, 40(1), 27-34. Retrieved from http://cepac.cheme.cmu.edu/
pasi2008/slides/franco/library/readings/biomass.pdf
Jacob-Lopes, E., Scoparo, C. H. G., Lacerda, L. M. C. F., & Franco, T. T. (2009). Effect of light
cycles (night/day) on CO2 fixation and biomass production by microalgae in
photobioreactors. Chemical Engineering and Processing: Process Intensification, 48(1),
306-310. doi:https://doi.org/10.1016/j.cep.2008.04.007
Jacobs, A., Rauber, R., & Ludwig, B. (2009). Impact of reduced tillage on carbon and nitrogen
storage of two Haplic Luvisols after 40 years. Soil and Tillage Research, 102(1),
158-164. doi:https://doi.org/10.1016/j.still.2008.08.012
Jacobs, L. M. (2020). Carbon Removal Advocates Face Opportunity and Challenge: Public
Support, If Not Understanding. Morning Consult. Retrieved from https://
morningconsult.com/2020/12/03/carbon-removal-public-support-polling/
Jacobs, W. B., & Craig, M. (2017). Legal Pathways to Widespread Carbon Capture and
Sequestration. Environmental Law Reporter, 47, 1022-1047.
Jacobsen, R. (2017). Debunking 3 Soil Carbon Myths. Retrieved from http://
www.centerforcarbonremoval.org/blog-posts/?author=58a5e067d2b857364786f073
Jacobson, M. Z. (2001). Strong radiative heating due to the mixing state of black carbon in
atmospheric aerosols. Nature, 409(6821), 695-697. Retrieved from http://
www.nature.com/nature/journal/v409/n6821/abs/409695a0.html
Jacobson, M. Z. (2019). The Health and Climate Impacts of Carbon Capture and Direct Air
Capture. Energy & Environmental Science. doi:10.1039/C9EE02709B
Jacobson, R. (2019). The case for investing in direct air capture just got clearer. GreenBiz.
Retrieved from https://www.greenbiz.com/article/case-investing-direct-air-capture-just-
got-clearer
Jacobson, R., Deich, N., & Wong, J. (2018). Federal policy update: carbon removal pathways
supported in 2018 Farm Bill. Retrieved from http://www.centerforcarbonremoval.org/
blog-posts/2018/7/6/federal-policy-update-carbon-removal-pathways-supported-in-2018-
senate-farm-bill
Jacobson, R., & Lucas, M. (2018). Carbontech: A trillion dollar opportunity. Medium. Retrieved
from https://medium.com/@carbon180/carbontech-a-trillion-dollar-
opportunity-154a9c62cf1c
Jacobson, R., & Sanchez, D. L. (2019). Opportunities for Carbon Dioxide Removal Within the
United States Department of Agriculture. 1(2). doi:10.3389/fclim.2019.00002
Jacquet, S. H. M., Savoye, N., Dehairs, F., Strass, V. H., & Cardinal, D. (2008). Mesopelagic
carbon remineralization during the European Iron Fertilization Experiment. Global
Biogeochemical Cycles, 22(1). doi:doi:10.1029/2006GB002902
Jacquot, J. (2008). Can a Kind of Ancient Charcoal Put the Brakes on Global Warming? In.
Jacquot, J. E. (2008). Giving Geo-Engineering Another Go: Dumping Limestone into the Oceans
to Fight Acidification. Treehugger. Retrieved from https://www.treehugger.com/clean-
technology/giving-geo-engineering-another-go-dumping-limestone-into-the-oceans-to-
fight-acidification.html
Jaffé, R., Ding, Y., Niggemann, J., Vähätalo, A. V., Stubbins, A., Spencer, R. G. M., . . . Dittmar,
T. (2013). Global Charcoal Mobilization from Soils via Dissolution and Riverine Transport
to the Oceans. Science, 340(6130), 345-347. doi:10.1126/science.1231476
Jaffé, R., et al., & Y, L. (2013). Global Charcoal Mobilization from Soils via Dissolution and
Riverine Transport to the Oceans. Science, 340, 345-347.
Jahangiri, H. R., & Zhang, D. (2012). Ensemble based co-optimization of carbon dioxide
sequestration and enhanced oil recovery. International Journal of Greenhouse Gas
Control, 8, 22-33. doi:https://doi.org/10.1016/j.ijggc.2012.01.013
Jain, N., Bhatia, A., & Prasad, R. (2015). Biomass burning and options for its management.
Indian Farming, 64(1). Retrieved from http://epubs.icar.org.in/ejournal/index.php/
IndFarm/article/view/49722
Jain, S., et al. . (2015). Reduction in bioavailability of Pb in Bacopa monnieri by Biochar
amendments. In.
Jain, S., et al. (2016). Impact of biochar amendment on enzymatic resilience properties of mine
spoils. Science of The Total Environment, 544, 410 - 421. doi:10.1016/
j.scitotenv.2015.11.011
Jain, S., Baruah, B. P., & Khare, P. (2014). Kinetic leaching of high sulphur mine rejects
amended with biochar: Buffering implication. Ecological Engineering, 71, 703 - 709.
doi:10.1016/j.ecoleng.2014.08.003
Jaiswal, A. K., et al. (2013). Rhizoctonia solani suppression and plant growth promotion in
cucumber as affected by biochar pyrolysis temperature, feedstock and concentration.
Soil Biology and Biochemistry, 69, 110-118. Retrieved from http://
www.sciencedirect.com/science/article/pii/S0038071713003957
Jaiswal, A. K., Frenkel, O., Elad, Y., LEW, B., & Graber, E. R. (2014). Non-monotonic influence
of biochar dose on bean seedling growth and susceptibility to Rhizoctonia solani: the
“Shifted Rmax-Effect”. Plant and Soil. doi:10.1007/s11104-014-2331-2
Jaju, M. M., Nader, F. H., Roure, F., & Matenco, L. (2016). Optimal aquifers and reservoirs for
CCS and EOR in the Kingdom of Saudi Arabia: an overview. Arabian Journal of
Geosciences, 9(12), 604. doi:10.1007/s12517-016-2600-x
James, G., Sabatini, D. A., Chiou, C. T., Rutherford, D., Scott, A. C., & Karapanagioti, H. K.
(2005). Evaluating phenanthrene sorption on various wood chars. Water Research,
39(4), 549-558.
James, H. (2008). Target Atmospheric CO2: Where Should Humanity Aim? The Open
Atmospheric Science Journal, 2. Retrieved from http://www.bentham-open.org/pages/
content.php?TOASCJ/2008/00000002/00000001/217TOASCJ.SGM
James, M. S. (2015). Effects of Biochar-Based Seed Coatings on Seed Germination and
Seedling Vigor of California Brome (Bromus carinatus L.) and Blue Wildrye (Elymus
glaucus L.). Oregon State University, Retrieved from http://ir.library.oregonstate.edu/
xmlui/handle/1957/56618?show=full
James, R. A., et al. (2016). Characterization of biochar from rice hulls and wood chips produced
in a top-lit updraft biomass gasifier. Paper presented at the ASABE Annual International
Meeting. https://ncsu.pure.elsevier.com/en/publications/characterization-of-biochar-from-
rice-hulls-and-wood-chips-produc
Jamieson, T., Sager, E., & Guéguen, C. (2013). Characterization of biochar-derived dissolved
organic matter using UV–visible absorption and excitation–emission fluorescence
spectroscopies. Chemosphere, 103, 197-204.
Jana, K., & De, S. (2014). Biomass integrated gasification combined cogeneration with or
without CO2 capture - A comparative thermodynamic study. Renewable Energy, 72,
243-252. doi:10.1016/j.renene.2014.07.027
Jandl, R., Lindner, M., Vesterdal, L., Bauwens, B., Baritz, R., Hagedorn, F., . . . Byrne, K. A.
(2007). How strongly can forest management influence soil carbon sequestration?
Geoderma, 137(3–4), 253-268. doi:http://dx.doi.org/10.1016/j.geoderma.2006.09.003
Janik, L. J., Skjemstad, J. O., Shepherd, K. D., & Spouncer, L. R. (2007). The prediction of soil
carbon fractions using mid-infrared-partial least square analysis. Australian Journal of
Soil Research, 45(2), 73-81.
Janin, A., & Harrington, J. (2015). Performances of lab-scale anaerobic bioreactors at low
temperature using Yukon native microorganisms. Paper presented at the Proceedings of
Mine Water Solutions in Extreme Environments.
Janković, B. (2015). Devolatilization kinetics of swine manure solid pyrolysis using
deconvolution procedure. Determination of the bio-oil/liquid yields and char gasification.
Fuel Processing Technology, 138, 1 - 13. doi:10.1016/j.fuproc.2015.04.027
Jankowska, E., Sahu, A. K., & Oleskowicz-Popiel, P. (2017). Biogas from microalgae: Review on
microalgae's cultivation, harvesting and pretreatment for anaerobic digestion.
Renewable and Sustainable Energy Reviews, 75, 692-709. doi:https://doi.org/10.1016/
j.rser.2016.11.045
Jankowski, T. (2021). How to improve your carbon removal idea. In Carbon Removal Updates
#122.
Jankowski, T. (2021). NASDAQ for Carbon Removal. In Carbon Removal Updates #121.
Jansson, C., Wullschleger, S. D., Kalluri, U. C., & Tuskan, G. A. (2010). Phytosequestration:
Carbon Biosequestration by Plants and the Prospects of Genetic Engineering.
BioScience, 60(9), 685-696. doi:10.1525/bio.2010.60.9.6
Jantz, P., Goetz, S., & Laporte, N. (2014). Carbon stock corridors to mitigate climate change
and promote biodiversity in the tropics. Nature Clim. Change, 4(2), 138-142.
doi:10.1038/nclimate2105
http://www.nature.com/nclimate/journal/v4/n2/abs/nclimate2105.html#supplementary-
information
Janus, A., Pelfrêne, A., Heymans, S., Deboffe, C., Douay, F., & Waterlot, C. (2015). Elaboration,
characteristics and advantages of biochars for the management of contaminated soils
with a specific overview on Miscanthus biochars. Journal of Environmental Management,
162, 275 - 289. doi:10.1016/j.jenvman.2015.07.056
Japan CCS Co., L. (Producer). (2020). Japan-Asian CCUS Forum. Retrieved from https://
www.youtube.com/watch?v=DVtImtnWWRg&feature=youtu.be
Jaradat, A. A. (2013). Sustainable Production of Grain Crops for Biofuels. In B. P. Singh (Ed.),
Biofuel Crop Sustainability (pp. 31-52).
Jaramillo, M. G.-., Cox, L., Knicker, H. E., Cornejo, J., Spokas, K. A., & Hermosín, M. (2014).
Characterization and Selection of Biochar for an Efficient Retention of Tricyclazole in a
Flooded Alluvial Paddy Soil. Journal of Hazardous Materials. doi:10.1016/
j.jhazmat.2014.10.052
Jaramillo, P., Griffin, W. M., & McCoy, S. T. (2009). Life Cycle Inventory of CO2 in an Enhanced
Oil Recovery System. Environmental Science & Technology, 43(21), 8027-8032.
doi:10.1021/es902006h
Jarvis, J. M., Page-Dumroese, D. S., Anderson, N. M., Corilo, Y., & Rodgers, R. P. (2014).
Characterization of Fast Pyrolysis Products Generated from Several Western USA
Woody Species. Energy & Fuels, 28(10), 6438 - 6446. doi:10.1021/ef501714j
Jarvis, S. M., & Samsatli, S. (2018). Technologies and infrastructures underpinning future CO2
value chains: A comprehensive review and comparative analysis. Renewable and
Sustainable Energy Reviews, 85, 46-68. doi:https://doi.org/10.1016/j.rser.2018.01.007
Jassal, R. S., Johnson, M. S., Molodovskaya, M., Black, T. A., Jollymore, A., & Sveinson, K.
(2015). Nitrogen enrichment potential of biochar in relation to pyrolysis temperature and
feedstock quality. Journal of Environmental Management, 152, 140 - 144. doi:10.1016/
j.jenvman.2015.01.021
Jastrow, J. D., Amonette, J. E., & Bailey, V. L. (2007). Mechanisms controlling soil carbon
turnover and their potential application for enhancing carbon sequestration. Climatic
Change, 80(1), 5-23. doi:10.1007/s10584-006-9178-3
Jatav, H. S. (2017). Role of Biochar: In agriculture sector its implication and perspective.
International Journal of Chemical Studies, 5(2). Retrieved from https://
www.academia.edu/31927461/
Role_of_Biochar_In_agriculture_sector_its_implication_and_perspective?
email_work_card=abstract-read-more
Javed, M., Zahoor, M., Mazari, S. A., Qureshi, S. S., Sabzoi, N., Jatoi, A. S., & Mubarak, N. M.
(2021). An overview of effect of process parameters for removal of CO2 using biomass-
derived adsorbents. Biomass Conversion and Biorefinery. doi:10.1007/
s13399-021-01548-0
Javedan, H. (2017). Regulation for Underground Storage of CO2 Passed by U.S. States.
Retrieved from https://www.google.com/url?
sa=t&rct=j&q=&esrc=s&source=web&cd=&ved=2ahUKEwj1ysCGov7uAhUYX80KHYyV
BAUQFjABegQIAxAD&url=https%3A%2F%2Fsequestration.mit.edu%2Fpdf%2FUS_Stat
e_Regulations_Underground_CO2_Storage.pdf&usg=AOvVaw3exqIJ9B4U73uBQlMyiB
qD
Jay, C. N., Fitzgerald, J. D., Hipps, N. A., & Atkinson, C. J. (2015). Why short-term biochar
application has no yield benefits: evidence from three field-grown crops. Soil Use and
Management, n/a - n/a. doi:10.1111/sum.12181
Jay, D. (2020). Seven Reasons to Question Carbon Capture. Geoengineering Monitor.
Retrieved from http://www.geoengineeringmonitor.org/2020/03/carbon-capture-is-the-
fossil-fuel-giants-plan-to-keep-extracting/
Jayawardhana, Y., Kumarathilaka, P., L.Weerasundara, Mowjood, M., Herath, G., Kawamoto,
K., . . . Vithanage, M. (2015). Detection of benzene in landfill leachate from Gohagoda
dumpsite and its removal using municipal solid waste derived biochar. Paper presented
at the 6th International Conference on Structural Engineering and Construction
Management 2015. http://www.civil.mrt.ac.lk/conference/ICSECM_2015/book_3/Extract/
SECM-15-096.pdf
Jean-Baptiste, P., & Ducroux, R. (2003). Potentiel des méthodes de séparation et stockage du
CO2 dans la lutte contre l'effet de serre. Comptes Rendus Geoscience, 335(6), 611-625.
doi:https://doi.org/10.1016/S1631-0713(03)00086-5
Jedrum, S., et al. (2014). Soil Amendments Effect on Yield and Quality of Jasmine Rice Grown
on Typic Natraqualfs, Northeast Thailand. International Journal of Soil Science, 9(2),
37-54. Retrieved from http://web.a.ebscohost.com/abstract?
direct=true&profile=ehost&scope=site&authtype=crawler&jrnl=18164978&AN=95651084
&h=INXITGn%2by8ioMwAEJMtaXQ09H%2fC%2bGEi63Zq0pZrWjpP8786Rhf3B3OjZQu
om8dYyZ7oAu%2fbAWk4RH39Y6lVZRA%3d%3d&crl=c
Jefferson-Brown, N. (2020). Drax power station hosts free virtual tours. The Press (York, UK).
Retrieved from https://www.yorkpress.co.uk/news/18457428.drax-power-station-hosts-
free-virtual-tours/
Jeffery, L., et al. (2020). Options for supporting Carbon Dioxide Removal. Retrieved from https://
newclimate.org/2020/07/28/options-for-supporting-carbon-dioxide-removal-discussion-
paper/
Jeffery, S., et al. (2011). A quantitative review of the effects of biochar application to soils on
crop productivity using meta-analysis. Agriculture, Ecosystems & Environment, 144(1),
175-187. doi:10.1016/j.agee.2011.08.015
Jeffery, S., et al. (2013). A comment on ‘Biochar and its effects on plant productivity and nutrient
cycling: a meta-analysis': on the importance of accurate reporting in supporting a fast-
moving research field with policy implications. GCB Bioenergy, 6(3), 176-179. Retrieved
from http://onlinelibrary.wiley.com/doi/10.1111/gcbb.12076/abstract
Jeffery, S., et al. (2013). The way forward in biochar research: targeting trade-offs between the
potential wins. Global Change Biology, 7(1), 1-13. Retrieved from The way forward in
biochar research: targeting trade-offs between the potential wins
Jeffery, S., et. al. (2015). Biochar application does not improve the soil hydrological function of a
sandy soil. Geoderma, 251-252, 47 - 54. doi:10.1016/j.geoderma.2015.03.022
Jegajeevagan, K., Mabilde, L., Gebremikael, M. T., Ameloot, N., De Neve, S., Leinweber, P., &
Sleutel, S. (2016). Artisanal and controlled pyrolysis-based biochars differ in biochemical
composition, thermal recalcitrance, and biodegradability in soil. Biomass and Bioenergy,
84, 1 - 11. doi:10.1016/j.biombioe.2015.10.025
Jegannathan, K. R., Chan, E.-S., & Ravindra, P. (2009). Harnessing biofuels: A global
Renaissance in energy production? Renewable & Sustainable Energy Reviews, 13,
2163 - 2168.
Jemtland, T. (2019). Positive test results from the carbon capture and storage pilot in Oslo.
Retrieved from https://www.fortum.com/about-us/blog-podcast/forthedoers-blog/positive-
test-results-carbon-capture-and-storage-pilot-oslo
Jenkins, B. M., et al. (1997). Combustion of residual biosolids from a high solids anaerobic
digestion/aerobic composting process. Biomass and Bioenergy, 12(5), 367-381.
Retrieved from http://www.sciencedirect.com/science/article/pii/S096195349700086X
Jenkins, L. M. (2020). Carbon Removal Advocates Face Opportunity and Challenge: Public
Support, if Not Understanding. Morning Consult. Retrieved from https://
morningconsult.com/2020/12/03/carbon-removal-public-support-polling/
Jenkins, M. (2018). Cutting forests contributes to climate change. But restoring nature—in all
kinds of landscapes—is a powerful tool in the race to stop climate change. The Nature
Conservacy. Retrieved from https://www.nature.org/en-us/explore/magazine/magazine-
articles/carbon-capture/
Jenkins, M., Souvanhnachit, M., Rattanavong, S., Maokhamphiou, B., Sotoukee, T., Pavelic,
P., . . . Downs, T. (2015). Enhancing productivity and livelihoods among smallholder
irrigators through biochar and fertilizer amendments. Paper presented at the
International Water Management Institute.
Jeong, C. Y., Dodla, S. K., & Wang, J. J. (2015). Fundamental and molecular composition
characteristics of biochars produced from sugarcane and rice crop residues and by-
products. Chemosphere, 142, 4-13. doi:10.1016/j.chemosphere.2015.05.084
Jeong, D., Jie, W., Adelodun, A. A., Kim, S., & Jo, Y. (2019). Electrospun melamine-blended
activated carbon nanofibers for enhanced control of indoor CO2. Journal of Applied
Polymer Science, 136(28), 1-8. doi:10.1002/app.47747
Jeong, M. L., Gillis, J. M., & Hwang, J. Y. (2003). Carbon Dioxide Mitigation by Microalgal
Photosynthesis. Bulletin of the Korean Chemical Society, 24(12), 1763-1766. Retrieved
from http://inis.iaea.org/search/search.aspx?orig_q=RN:46117829
Jeong-Potter, C., & Farrauto, R. (2021). Feasibility Study of Combining Direct Air Capture of
CO2 and Methanation at Isothermal Conditions with Dual Function Materials. Applied
Catalysis B: Environmental, 282, 119416. doi:https://doi.org/10.1016/
j.apcatb.2020.119416
Jessen, K., Kovscek, A. R., & Orr, F. M. (2005). Increasing CO2 storage in oil recovery. Energy
Conversion and Management, 46(2), 293-311. doi:https://doi.org/10.1016/
j.enconman.2004.02.019
Jessica, S., Nico, B., Florian, H., David, K., Alexander, P., & Elmar, K. (2021). Carbon dioxide
removal technologies are not born equal. Environmental Research Letters. Retrieved
from http://iopscience.iop.org/article/10.1088/1748-9326/ac0a11
Jha, P., et al. (2010). Biochar in agriculture – prospects and related implications. Current
Science, 99(9), 1218-1225. Retrieved from http://www.ias.ac.in/currsci/
10nov2010/1218.pdf
Ji, G., & Zhao, M. (2017). Membrane Separation Technology in Carbon Capture. In Y. Yun (Ed.),
Recent Advances in Carbon Capture and Storage (pp. Ch. 03). Rijeka: InTech.
Ji, L., Yu, H., Wang, X., Grigore, M., French, D., Gözükara, Y. M., . . . Zeng, M. (2017). CO2
sequestration by direct mineralisation using fly ash from Chinese Shenfu coal. Fuel
Processing Technology, 156, 429-437. doi:https://doi.org/10.1016/j.fuproc.2016.10.004
Jia, J., et al. (2012). Effects of biochar application on vegetable production and emissions of
N2O and CH4. Soil Science and Plant Nutrition, 58(4), 503-509.
doi:10.1080/00380768.2012.686436
Jia, J., et al. (2013). Effects of biochar application on vegetable production and emissions of
N_2O and CH_4 (Environment). Soil Science and Plant Nutrition, 58(4), 503-509.
Retrieved from https://www.tandfonline.com/doi/abs/10.1080/00380768.2012.686436
Jia, M., et al. (2013). Effects of pH and metal ions on oxytetracycline sorption to maize-straw-
derived biochar. Bioresource Technology, 136, 87-93. Retrieved from https://
www.ncbi.nlm.nih.gov/pubmed/23567668
Jia, X., Yuan, W., & Ju, X. (2015). Short Report: Effects of Biochar Addition on Manure
Composting and Associated N2O Emissions. Journal of Sustainable Bioenergy Systems,
05(02), 56 - 61. doi:10.4236/jsbs.2015.52005
Jianfu, X., et al. . (2015). Review on management-induced nitrous oxide emissions from paddy
ecosystems. Transactions of the Chinese Society of Agricultural Engineering, 31(11),
1-9. Retrieved from http://web.a.ebscohost.com/abstract?
direct=true&profile=ehost&scope=site&authtype=crawler&jrnl=10026819&AN=10323648
4&h=El8dy1164g%2ftoFxZ%2fMJ66k3yE6VliJqMeq%2bMVjPFV7ui9CVfT2YmG1fSmYB
5ZutruXa4WI295ubbJnr%2fKGO4Hg%3d%3d&crl=c&resultNs=AdminWebAuth&resultL
Jiang, H., & Lee, C.-T. A. (2019). On the role of chemical weathering of continental arcs in long-
term climate regulation: A case study of the Peninsular Ranges batholith, California
(USA). Earth and Planetary Science Letters, 525, 115733. doi:https://doi.org/10.1016/
j.epsl.2019.115733
Jiang, J., et al. . (2012). Immobilization of Cu(II), Pb(II) and Cd(II) by the Addition of Rice Straw
Derived Biochar to a Simulated Polluted Ultisol. Journal of Hazardous Materials,
229-230, 145-150.
Jiang, J., et al. (2013). Highly ordered macroporous woody biochar with ultra-high carbon
content as supercapacitor electrodes. Electrochimica Acta, 113, 481-489. Retrieved from
http://www.sciencedirect.com/science/article/pii/S0013468613018859
Jiang, J., et al. . (2015). Rice Straw-Derived Biochar Properties and Functions as Cu(II) and
Cyromazine Sorbents as Influenced by Pyrolysis Temperature. Pedosphere, 25(5), 781 -
789. doi:10.1016/s1002-0160(15)30059-x
Jiang, J., Yuan, M., Xu, R., & Bish, D. L. (2015). Mobilization of phosphate in variable-charge
soils amended with biochars derived from crop straws. Soil and Tillage Research, 146,
139 - 147. doi:10.1016/j.still.2014.10.009
Jiang, K., & Ashworth, P. (2021). The development of Carbon Capture Utilization and Storage
(CCUS) research in China: A bibliometric perspective. Renewable and Sustainable
Energy Reviews, 138, 110521. doi:https://doi.org/10.1016/j.rser.2020.110521
Jiang, M., Medlyn, B. E., Drake, J. E., Duursma, R. A., Anderson, I. C., Barton, C. V. M., . . .
Ellsworth, D. S. (2020). The fate of carbon in a mature forest under carbon dioxide
enrichment. Nature, 580(7802), 227-231. doi:10.1038/s41586-020-2128-9
Jiang, R., Gao, M., Mao, X., & Wang, D. (2019). Advancements and potentials of molten salt
CO2 capture and electrochemical transformation (MSCC-ET) process. Current Opinion
in Electrochemistry, 17, 38-46. doi:https://doi.org/10.1016/j.coelec.2019.04.011
Jiang, S., Huang, L., Nguyen, T. A. H., Ok, Y. S., Rudolph, V., Yang, H., & Zhang, D. (2015).
Copper and zinc adsorption by softwood and hardwood biochars under elevated
sulphate-induced salinity and acidic pH conditions. Chemosphere, 142, 64-71.
doi:10.1016/j.chemosphere.2015.06.079
Jiang, T. Y., et al. (2013). Effects of different temperatures biochar on adsorption of Pb(II) on
variable charge soils. Huan Jing Ke Xue, 34(4), 1598-1604. Retrieved from https://
www.ncbi.nlm.nih.gov/pubmed/23798148
Jiang, T.-Y., Jiang, J., Xu, R.-K., & Li, Z. (2012). Adsorption of Pb(II) on variable charge soils
amended with rice-straw derived biochar. Chemosphere, 89(3), 249-256. Retrieved from
https://www.ncbi.nlm.nih.gov/pubmed/22591849
Jiang, X., Denef, K., Stewart, C. E., & Cotrufo, M. F. (2015). Controls and dynamics of biochar
decomposition and soil microbial abundance, composition, and carbon use efficiency
during long-term biochar-amended soil incubations. Biology and Fertility of Soils, 52(1),
1-14. doi:10.1007/s00374-015-1047-7
Jiang, Y. F., Sun, H., Yves, U. J., Li, H., & Hu, X. F. (2015). Impact of biochar produced from
post-harvest residue on the adsorption behavior of diesel oil on loess soil. Environmental
Geochemistry and Health, 38(1), 243-253. doi:10.1007/s10653-015-9712-1
Jiang, Y.-F., Hu, X.-F., & Yves, U. (2014). Effectiveness and mechanisms of naphthalene
adsorption by biochar pyrolyzed from wheat straw. Paper presented at the The 2014
Congress on Advances in Civil, Environmental, and Materials Research. http://www.i-
asem.org/publication_conf/acem14/4.EST/M5D.4.ES302_491F.pdf
Jiang, Z., et al. (2010). Turning carbon dioxide into fuel. Philosophical Transactions of the Royal
Society A: Mathematical, Physical and Engineering Sciences, 368(1923), 3343-3364.
doi:doi:10.1098/rsta.2010.0119
Jiang, Z., Yang, S., Pang, Q., Xu, Y., Chen, X., Sun, X., . . . Yu, W. (2021). Biochar improved soil
health and mitigated greenhouse gas emission from controlled irrigation paddy field:
Insights into microbial diversity. Journal of Cleaner Production, 318, 128595. doi:https://
doi.org/10.1016/j.jclepro.2021.128595
Jiang, Z. X., H., Z., Li, F. M., & Wang, Z. Y. (2013). Research progress on biochar carbon
sequestration technology. Huan Jing Ke Xue, 34, 3327-3333.
Jiangm Jin Ping, e. a. (2013). Characteristics of Straw Biochar and its Influence on the Forms of
Arsenic in Heavy Metal Polluted Soil. Applied Mechanics and Materials, 409 - 410,
133-138.
JiangZhou, L., et al. (2015). Effects of biochar addition on nutrient leaching loss of typical
tobacco-planting soils in Yunnan Province, China. Journal of Agricultural Resources and
Environment, 32(1), 48-53. Retrieved from http://www.cabdirect.org/abstracts/
20153202412.html
Jiao, F. (2021). Carbon dioxide removal can help solve the climate crisis and boost our economy
The Philadelphia Inquirer. Retrieved from https://www.inquirer.com/opinion/commentary/
carbon-capture-dioxide-environment-20210617.html
Jiao, N. (2021). Developing Ocean Negative Carbon Emission Technology to Support National
Carbon Neutralization. Bulletin of Chinese Academy of Sciences (Chinese Version)
36(2), 179-187. Retrieved from https://bulletinofcas.researchcommons.org/journal/vol36/
iss2/8/
Jiao, N., Herndl, G. J., Hansell, D. A., Benner, R., Kattner, G., Wilhelm, S. W., . . . Azam, F.
(2010). Microbial production of recalcitrant dissolved organic matter: long-term carbon
storage in the global ocean. Nature Reviews Microbiology, 8(8), 593-599. Retrieved from
http://dx.doi.org/10.1038/nrmicro2386
Jickells, T. D., An, Z. S., Andersen, K. K., Baker, A. R., Bergametti, G., Brooks, N., . . . Torres, R.
(2005). Global Iron Connections Between Desert Dust, Ocean Biogeochemistry, and
Climate. Science, 308(5718), 67-71. doi:10.1126/science.1105959 %J Science
Jien, S.-H., et al. (2015). Stabilization of Organic Matter by Biochar Application in Compost-
amended Soils with Contrasting pH Values and Textures. Sustainability, 7(10),
13317-13333. doi:10.3390/su71013317
Jien, S.-H., & Wang, C.-S. (2013). Effects of biochar on soil properties and erosion potential in a
highly weathered soil? CATENA, 110, 225–233. Retrieved from http://
www.sciencedirect.com/science/article/pii/S0341816213001604
Jimenez-Cordero, D., Heras, F., Alonso-Morales, N., Gilarranz, M. A., & Rodriguez, J. J. (2015).
Ozone as oxidation agent in cyclic activation of biochar. Fuel Processing Technology,
139, 42-48. doi:10.1016/j.fuproc.2015.08.016
Jin, D., Hoagland, P., & Buesseler, K. O. (2020). The value of scientific research on the ocean's
biological carbon pump. Science of The Total Environment, 141357. doi:https://doi.org/
10.1016/j.scitotenv.2020.141357
Jin, D. F., Xu, Y. Y., Zhang, M., Jung, Y. S., & Ok, Y. S. (2016). Comparative evaluation for the
sorption capacity of four carbonaceous sorbents to phenol. Chemical Speciation &
Bioavailability, 28(1-4), 18 - 25. doi:10.1080/09542299.2015.1136570
Jin, E. (2014). Life cycle assessment of two catalysts used in the biofuel syngas cleaning
process and analysis of variability in gasification. OKLAHOMA STATE UNIVERSITY,
Retrieved from http://gradworks.umi.com/15/67/1567339.html
Jin, H. (2010). Characterization Of Microbial Life Colonizing Biochar And Biochar-Amended
Soils. Retrieved from http://ecommons.library.cornell.edu/handle/1813/17077
Jin, H., et al. (2014). Distillers dried grains with soluble (DDGS) bio-char based activated carbon
for Supercapacitors with organic electrolyte tetraethylammonium tetrafluoroborate.
Journal of Environmental Chemical Engineering, 2(3), 1404-1409. doi:10.1016/
j.jece.2014.05.019
Jin, H., et al. . (2014). A high-performance carbon derived from corn stover via microwave and
slow pyrolysis for supercapacitors. Journal of Analytical and Applied Pyrolysis, 110,
18-23. doi:10.1016/j.jaap.2014.07.010
Jin, H., Capareda, S., Chang, Z., Gao, J., Xu, Y., & Zhang, J. (2014). Biochar pyrolytically
produced from municipal solid wastes for aqueous As(V) removal: adsorption property
and its improvement with KOH activation. Bioresource Technology. doi:10.1016/
j.biortech.2014.06.103
Jin, H., Hanif, M. U., Capareda, S., Chang, Z., Huang, H., & Ai, Y. (2016). Copper(II) removal
potential from aqueous solution by pyrolysis biochar derived from anaerobically digested
algae-dairy-manure and effect of KOH activation. Journal of Environmental Chemical
Engineering, 4(1), 365 - 372. doi:10.1016/j.jece.2015.11.022
Jin, J., Kang, M., Sun, K., Pan, Z., Wu, F., & Xing, B. (2016). Properties of biochar-amended
soils and their sorption of imidacloprid, isoproturon, and atrazine. Science of The Total
Environment, 550, 504 - 513. doi:10.1016/j.scitotenv.2016.01.117
Jin, W., Singh, K., & Zondlo, J. (2015). Co-processing of pyrolysis vapors with bio-chars for ex-
situ upgrading. Renewable Energy, 83, 638 - 645. doi:10.1016/j.renene.2015.04.067
Jin, X., & Gruber, N. (2003). Offsetting the radiative benefit of ocean iron fertilization by
enhancing N2O emissions. Geophysical Research Letters, 30(24).
doi:10.1029/2003gl018458
Jin, X., Gruber, N., Frenzel, H., Doney, S. C., & McWilliams, J. C. (2008). The impact on
atmospheric CO2 of iron fertilization induced changes in the ocean's biological pump.
Biogeosciences, 5(2), 385-406. doi:10.5194/bg-5-385-2008
Jin, Y., Liang, X., He, M., Liu, Y., Tian, G., & Shi, J. (2015). Manure biochar influence upon soil
properties, phosphorus distribution and phosphatase activities: A microcosm incubation
study. Chemosphere, 142, 128-135. doi:10.1016/j.chemosphere.2015.07.015
Jindo, K., et al. (2012). Biochar influences the microbial community structure during manure
composting with agricultural wastes. Science of The Total Environment.
Jindo, K., et al. . (2016). Influence of biochar addition on the humic substances of composting
manures. Waste Management, 49, 545-552. doi:10.1016/j.wasman.2016.01.007
Jindo, K., Mizumoto, H., Sawada, Y., Sanchez-Monedero, M. A., & Sonoki, T. (2014). Physical
and chemical characterizations of biochars derived from different agricultural residues.
Biogeosciences Discussions, 11(8), 11727 - 11746. doi:10.5194/bgd-11-11727-2014
Jindo, K., Suto, K., Matsumoto, K., García, C., Sonoki, T., & Sanchez-Monedero, M. A. (2012).
Chemical and biochemical characterisation of biochar-blended composts prepared from
poultry manure. Bioresource Technology, 110, 396-404. doi:https://doi.org/10.1016/
j.biortech.2012.01.120
Jing, X.-R., et al. (2014). Enhanced adsorption performance of tetracycline in aqueous solutions
by methanol-modified biochar. Chemical Engineering Journal, 248, 168-174. Retrieved
from http://www.sciencedirect.com/science/article/pii/S1385894714002800
Jinnah, S., Morrow, D., & Nicholson, S. (2021). Splitting Climate Engineering Governance: How
Problem Structure Shapes Institutional Design. Global Policy, 12(S1), 8-19. doi:https://
doi.org/10.1111/1758-5899.12900
Jiwan, M., et al. (2015). Traditional Natural Farming System in the Production of Bario Rice
(Adan Rice) by Lun Bwang Community in the Highland of Borneo Sarawak, East
Malaysia and Potential for Using Biochar, Paddy Straw and Buffalo Dung Bokashi. Paper
presented at the Proceeding - Kuala Lumpur International Agriculture, Forestry and
Plantation. http://kliafp.com/wp-content/uploads/2015/09/
KLIAFP2015_AG_37_ch3589qmFu.pdf
Jo, H. Y., Kim, J. H., Lee, Y. J., Lee, M., & Choh, S.-J. (2012). Evaluation of factors affecting
mineral carbonation of CO2 using coal fly ash in aqueous solutions under ambient
conditions. Chemical Engineering Journal, 183, 77-87. doi:https://doi.org/10.1016/
j.cej.2011.12.023
Jo, S. B., Lee, S. C., Chae, H. J., Cho, M. S., Lee, J. B., Baek, J.-I., & Kim, J. C. (2016).
Regenerable potassium-based alumina sorbents prepared by CO2 thermal treatment for
post-combustion carbon dioxide capture. Korean Journal of Chemical Engineering,
33(11), 3207-3215. doi:10.1007/s11814-016-0162-y
Jobin, M., & Siegrist, M. (2020). Support for the Deployment of Climate Engineering: A
Comparison of Ten Different Technologies. Risk Analysis, 40(5), 1058-1078. doi:https://
doi.org/10.1111/risa.13462
Johannessen, S., C. , & Robie, W. M. (2016). Geoengineering with seagrasses: is credit due
where credit is given? Environmental Research Letters, 11(11), 113001. Retrieved from
http://stacks.iop.org/1748-9326/11/i=11/a=113001
Johansson, C. L., et al. (2015). The complexity of biosorption treatments for oxyanions in a
multi-element mine effluent. Journal of Environmental Management, 151, 386 - 392.
doi:10.1016/j.jenvman.2014.11.031
Johansson, C. L., PAUL, N. A., Nys, R. d., & Roberts, D. A. (2016). Simultaneous biosorption of
selenium, arsenic and molybdenum with modified algal-based biochars. Journal of
Environmental Management, 165, 117 - 123. doi:10.1016/j.jenvman.2015.09.021
Johansson, D. J. A., & Azar, C. (2007). A scenario based analysis of land competition between
food and bioenergy production in the US. Climatic Change, 82(3), 267-291. doi:10.1007/
s10584-006-9208-1
John, R. P., Anisha, G. S., Nampoothiri, K. M., & Pandey, A. (2011). Micro and macroalgal
biomass: A renewable source for bioethanol. Bioresource Technology, 102(1), 186-193.
doi:https://doi.org/10.1016/j.biortech.2010.06.139
Johnsen, K. H., Wear, D., Oren, R., Teskey, R. O., Sanchez, F., Will, R., . . . Dougherty, P. M.
(2001). Meeting Global Policy Commitments: Carbon Sequestration and Southern Pine
Forests. Journal of Forestry, 99(4), 14-21. doi:10.1093/jof/99.4.14
Johnson, D. (2015). A Greener Revolution and a No-Regrets Carbon Capture Mechanism for
New Mexico. In: New Mexico State University, Institute for Sustainable Agricultural
Research.
Johnson, G. R. (2010). Effects of biochar-amended soil on the water quality of greenroof runoff.
Johnson, K. S., Chavez, F. P., & Friederich, G. E. (1999). Continental-shelf sediment as a
primary source of iron for coastal phytoplankton. Nature, 398(6729), 697-700. Retrieved
from http://dx.doi.org/10.1038/19511
Johnson, K. S., Coale, K. H., Elrod, V. A., & Tindale, N. W. (1994). Iron photochemistry in
seawater from the equatorial Pacific. Marine Chemistry, 46(4), 319-334. doi:https://
doi.org/10.1016/0304-4203(94)90029-9
Johnson, K. S., & Karl, D. M. (2002). Is Ocean Fertilization Credible and Creditable? Science,
296(5567), 467-468. doi:10.1126/science.296.5567.467b
Johnson, L. (2021). U of A scientist co-leads expert U.S. panel on removing carbon from
atmosphere. Edmonton Journal. Retrieved from https://edmontonjournal.com/news/local-
news/u-of-a-scientist-co-leads-expert-u-s-panel-on-removing-carbon-from-atmosphere
Johnson, M. S., et al. (2006). Organic Carbon Fluxes within and Streamwater Exports from
Headwater Catchments in the Southern Amazon. Hydrological Processes, 20(12),
2599-2614. Retrieved from http://onlinelibrary.wiley.com/doi/10.1002/hyp.6218/abstract
Johnson, M. S., et al. (2007). Storm Pulses of Dissolved CO2 in a Forested Headwater
Amazonian Stream Explored Using Hydrograph Separation. Water Resources Research,
43(11), 1-8. Retrieved from http://onlinelibrary.wiley.com/doi/10.1029/2007WR006359/
epdf
Johnson, M. S., et al. (2017). Biochar influences on soil CO
2
and CH
4
fluxes in response to
wetting and drying cycles for a forest soil. Scientific Reports, 7(1), 6780. Retrieved from
https://www.ncbi.nlm.nih.gov/pubmed/28755008
Johnson, M. S., Lehmann, J., & Couto, E. G. (2008). A Simple, Direct Method to Measure
Dissolved CO2 Using Soda Lime. Oecologia Brasileira, 12, 85-91.
Johnson, N. (2019). Can we stop stupid politics from ruining carbon farming? Grist. Retrieved
from https://grist.org/article/can-we-stop-stupid-politics-from-ruining-carbon-farming/
Johnson, N. (2020). So-called ‘negative emissions’ might actually work, at least in California.
Grist. Retrieved from https://grist.org/climate/so-called-negative-emissions-might-
actually-work-at-least-in-california/
Johnson, N., Parker, N., & Ogden, J. (2014). How negative can biofuels with CCS take us and
at what cost? Refining the economic potential of biofuel production with CCS using
spatially-explicit modeling. Energy Procedia, 63, 6770-6791. doi:http://dx.doi.org/
10.1016/j.egypro.2014.11.712
Johnson, N., Parker, N., & Ogden, J. (2014). How negative can biofuels with CCS take us and
at what cost? Refining the economic potential of biofuel production with CCS using
spatially-explicit modeling. In T. Dixon, H. Herzog, & S. Twinning (Eds.), 12th
International Conference on Greenhouse Gas Control Technologies, Ghgt-12 (Vol. 63,
pp. 6770-6791). Amsterdam: Elsevier Science Bv.
Johnson, N. C., Thomas, B., Maher, K., Rosenbauer, R. J., Bird, D., & Brown, G. E. (2014).
Olivine dissolution and carbonation under conditions relevant for in situ carbon storage.
Chemical Geology, 373, 93-105. doi:https://doi.org/10.1016/j.chemgeo.2014.02.026
Johnson, S. K. (2017). The Big Geoengineering Question: Where to Store All That Carbon.
Medium. Retrieved from https://medium.com/@SJvatn/
Johnsson, F., Reiner, D., Itaoka, K., & Herzog, H. (2009). Stakeholder attitudes on carbon
capture and storage — An international comparison. Energy Procedia, 1(1), 4819-4826.
doi:http://dx.doi.org/10.1016/j.egypro.2009.02.309
Johnston, G. (2021). World’s first large-scale direct air capture and storage plant begins
construction in Iceland. World Architecture News. Retrieved from https://
www.worldarchitecturenews.com/article/1705341/worlds-first-large-scale-direct-air-
capture-storage-plant-begins-construction-iceland
Johnston, I. (2017). Carbon dioxide must be removed from the atmosphere to avoid extreme
climate change, say scientists. The Independent. Retrieved from http://
www.independent.co.uk/news/science/carbon-dioxide-remove-atmosphere-climate-
change-greenhouse-gas-scientists-jim-hansen-a7847426.html
Johnston, M., et al. (2009). Resetting global expectations from agricultural biofuels.
Environmental Research Letters, 4(1), 014004. Retrieved from http://stacks.iop.org/
1748-9326/4/i=1/a=014004
Johny, N., Murali, T. R., Mathew, P. S. M., Raj, A. A., & Sukesh, O. P. (2019). Experiment on
carbon dioxide removal from flue gas. Materials Today: Proceedings, 11, 1094-1101.
doi:https://doi.org/10.1016/j.matpr.2018.12.044
Jones, A., & Haywood, J. M. (2017). Sea-spray geoengineering in the HadGEM2-ES earth-
system model: radiative impact and climate response. Atmospheric Chemistry and
Physics, 12, 10887-10898. Retrieved from https://www.atmos-chem-phys.net/
12/10887/2012/acp-12-10887-2012.pdf
Jones, A. C., & Sherlock, M. F. (2021). The Tax Credit for Carbon Sequestration (Section 45Q).
In Focus. Retrieved from https://fas.org/sgp/crs/misc/IF11455.pdf
Jones, B. E. H., Haynes, R. J., & Phillips, I. R. (2010). Effect of amendment of bauxite
processing sand with organic materials on its chemical, physical and microbial
properties. Journal of Environmental Management, 91, 2281-2288.
Jones, C. D., Ciais, P., Davis, S. J., Friedlingstein, P., Gasser, T., Peters, G. P., . . . Wiltshire, A.
(2016). Simulating the Earth system response to negative emissions. Environmental
Research Letters, 11(9), 11. doi:10.1088/1748-9326/11/9/095012
Jones, C. D., Frölicher, T. L., Koven, C., MacDougall, A. H., Matthews, H. D., Zickfeld, K., . . .
Burger, F. A. (2019). The Zero Emissions Commitment Model Intercomparison Project
(ZECMIP) contribution to C4MIP: quantifying committed climate changes following zero
carbon emissions. Geosci. Model Dev., 12(10), 4375-4385. doi:10.5194/
gmd-12-4375-2019
Jones, C. S., & Mayfield, S. P. (2012). Algae biofuels: versatility for the future of bioenergy.
Current Opinion in Biotechnology, 23(3), 346-351. doi:https://doi.org/10.1016/
j.copbio.2011.10.013
Jones, C. W. (2011). CO
2
Capture from Dilute Gases as a Component of Modern Global
Carbon Management. Annual Review of Chemical and Biomolecular Engineering, 2(1),
31-52. Retrieved from http://www.annualreviews.org/doi/pdf/10.1146/annurev-
chembioeng-061010-114252
Jones, D. L., Edwards-Jones, G., & Murphy, D. V. (2011). Biochar mediated alterations in
herbicide breakdown and leaching in soil. Soil Biology and Biochemistry, 45, 804-813.
doi:10.1016/j.soilbio.2010.12.015
Jones, D. L., Murphy, D. V., Khalid, M., & Ahmad, W. (2011). Short-term biochar-induced
increase in soil CO
2
release is both biotically and abiotically mediated. Soil Biology and
Biochemistry, 43(8), 1723-1731. doi:10.1016/j.soilbio.2011.04.018
Jones, D. L., & Quilliam, R. S. (2014). Metal contaminated biochar and wood ash negatively
affect plant growth and soil quality after land application. Journal of Hazardous Materials,
276, 362-370. doi:10.1016/j.jhazmat.2014.05.053
Jones, D. L., Rousk, J., Edwards-Jones, G., DeLuca, T. H., & Murphy, D. V. (2012). Biochar-
mediated changes in soil quality and plant growth in a three year field trial. Soil Biology
and Biochemistry, 45(Supplement C), 113-124. doi:https://doi.org/10.1016/
j.soilbio.2011.10.012
Jones, I. S. F. (2011). Contrasting micro- and macro-nutrient nourishment of the ocean. Marine
Ecology Progress Series, 425, 281-296. Retrieved from http://www.int-res.com/abstracts/
meps/v425/p281-296/
Jones, I. S. F. (2014). The cost of carbon management using ocean nourishment. International
Journal of Climate Change Strategies and Management, 6(4), 391-400. doi:doi:10.1108/
IJCCSM-11-2012-0063
Jones, I. S. F., & Otaegui, D. (1997). Photosynthetic greenhouse gas mitigation by ocean
nourishment. Energy Conversion and Management, 38, S367-S372. doi:https://doi.org/
10.1016/S0196-8904(96)00296-8
Jones, J. (2021). Calgary private equity firm JOG shifts to carbon-capture opportunities. The
Globe & Mail (Toronto). Retrieved from https://www.theglobeandmail.com/business/
commentary/article-calgary-private-equity-firm-jog-shifts-to-carbon-capture-opportunities/
Jones, K., Ramakrishnan, G., Uchimiya, M., & Orlov, A. (2015). New Applications of X-ray
Tomography in Pyrolysis of Biomass: Biochar Imaging. Energy & Fuels, 29(3),
1626-1634. doi:10.1021/ef5027604
Jones, K., Ramakrishnan, G., Uchimiya, M., Orlov, A., Castaldi, M. J., LeBlanc, J., & Hiradate,
S. (2015). Fate of Higher-Mass Elements and Surface Functional Groups during the
Pyrolysis of Waste Pecan Shell. Energy & Fuels, 29(12), 8095 - 8101. doi:10.1021/
acs.energyfuels.5b02428
Jones, N. (2008). Sucking carbon out of the air. Nature(December 17). Retrieved from http://
www.nature.com/news/2008/081217/full/news.2008.1319.html
Jones, N. (2018). Safeguarding Against Environmental Injustice: 1.5°C Scenarios, Negative
Emissions, and Unintended Consequences. Carbon & Climate Law Review, 12(1).
doi:10.21552/cclr/2018/1/6
Jones, S., Bardos, R. P., Kidd, P. S., Mench, M., de Leij, F., Hutchings, T., . . . Menger, P. (2016).
Biochar and compost amendments enhance copper immobilisation and support plant
growth in contaminated soils. Journal of Environmental Management, 171, 101 - 112.
doi:10.1016/j.jenvman.2016.01.024
Joos, F., Sarmiento, J. L., & Siegenthaler, U. (1991). Estimates of the Effect of Southern-Ocean
Iron Fertilization on Atmospheric CO2 Concentrations. Nature, 349(6312), 772-775.
doi:10.1038/349772a0
Joos, L., Huck, J. M., Van Speybroeck, V., & Smit, B. (2016). Cutting the cost of carbon capture:
a case for carbon capture and utilization. Faraday Discussions, 192, 391-414.
doi:10.1039/c6fd00031b
Jope, A. (2021). Why we're putting our climate plans to a shareholder vote. Retrieved from
https://www.unilever.com/news/news-and-features/Feature-article/2021/why-we-are-
putting-our-climate-plans-to-a-shareholder-
vote.html#:~:text=For%20Unilever%2C%20'net%20zero%20by,or%20carbon%20captur
e%20and%20storage
Jorat, M. E., Goddard, M. A., Manning, P., Lau, H. K., Ngeow, S., Sohi, S. P., & Manning, D. A.
C. (2020). Passive CO2 removal in urban soils: Evidence from brownfield sites. Science
of The Total Environment, 703, 135573. doi:https://doi.org/10.1016/
j.scitotenv.2019.135573
Jordal, K., & Preston Aragonès, M. (2021). Europe needs robust accounting for Carbon Dioxide
Removal. Retrieved from https://zeroemissionsplatform.eu/europe-needs-robust-
accounting-for-carbon-dioxide-removal/
Jordan, G., et al. , & t. (2011). Agronomic Effects of Biochar and Polyphenols as Compost
Additives to Irrigated Raphanus sativus in Oman. Paper presented at the Tropentag
2011, October 5 - 7, "Development on the margin", Bonn, Germany.
Jørgensen, U., Dalgaard, T., & Kristensen, E. S. (2005). Biomass energy in organic farming—
the potential role of short rotation coppice. Biomass and Bioenergy, 28(2), 237-248.
doi:https://doi.org/10.1016/j.biombioe.2004.08.006
Jorio, L. (2018). Is sucking CO2 from the air the answer to global warming? SWI. Retrieved from
https://www.swissinfo.ch/eng/negative-emissions-_is-sucking-co2-from-the-air-the-
answer-to-global-warming-/44547682
Jorsensen, U., Dalagaard, T., & Kristensen, E. S. (2005). Biomass energy in organic farming -
The potential role of short rotation coppice. Biommass Bioenergy, 28, 237-248.
Retrieved from https://www.researchgate.net/publication/
233721466_Biomass_energy_in_organic_farming_-
_The_potential_role_of_short_rotation_coppice
Jose, S., & Bardhan, S. J. A. S. (2012). Agroforestry for biomass production and carbon
sequestration: an overview. 86(2), 105-111. doi:10.1007/s10457-012-9573-x
Joseph, S., et al. (2009). Developing a Biochar Classification and Test Methods. In L. Johannes
& J. Stephen (Eds.), Biochar for Environmental Management: Science and Technology
(pp. 107-126). London, UK: Earthscan.
Joseph, S. (2009). Socio-economic Assessment and Implementation of Small Scale Biochar
Projects. In Biochar for Environmental Management: Science and Technology (pp.
359-374). London, UK: Earthscan.
Joseph, S., et al. (2015). Effects of Enriched Biochars Containing Magnetic Iron Nanoparticles
on Mycorrhizal Colonisation, Plant Growth, Nutrient Uptake and Soil Quality
Improvement. Pedosphere, 25(5), 749 - 760. doi:10.1016/s1002-0160(15)30056-4
Joseph, S., et al. (2015). The Electrochemical Properties of Biochars and How They Affect Soil
Redox Properties and Processes. Agronomy, 5(3), 322 - 340. doi:10.3390/
agronomy5030322
Joseph, S., et al. (2015). Feeding Biochar to Cows: An Innovative Solution for Improving Soil
Fertility and Farm Productivity. Pedosphere, 25(5), 666–679. Retrieved from http://
www.sciencedirect.com/science/article/pii/S1002016015300473
Joseph, S., Graber, E. R., Chia, C., Munroe, P., Donne, S., Thomas, T., . . . Hook, J. (2013).
Shifting paradigms: development of high-efficiency biochar fertilizers based on nano-
structures and soluble components. Carbon Management, 4(3), 323-343. Retrieved from
http://www.tandfonline.com/doi/abs/10.4155/cmt.13.23
Joseph, S., et al. , & Solaiman, Z. M. (2015). Effects of enriched biochars containing magnetic
iron nanoparticles on mycorrhizal colonisation, plant growth, nutrient uptake and soil
quality improvement. Pedosphere, 25(5), 749-760. Retrieved from http://
pedosphere.issas.ac.cn/trqen/ch/reader/view_abstract.aspx?file_no=20150513
Joseph, S. D., et al. (2007, 12/2007). Biochar for Carbon Sequestration, Reduction of
Greenhouse Gas Emissions and Enhancement of Soil Fertility; A Review of the Materials
Science. Paper presented at the Australian Combustion Symposium, Sydney, Australia.
Joseph, S. D., et al. (2010). An investigation into the reactions of biochar in soil. Australian
Journal of Soil Research, 48(7), 501-515. Retrieved from https://www.researchgate.net/
publication/202860264_An_Investigation_into_the_Reactions_of_Biochar_in_Soil
Josephs, L. (2020). United Airlines turns to CO2 removal technology to offset emissions
Retrieved from https://www.cnbc.com/amp/2020/12/10/united-airlines-turns-to-co2-
removal-technology-to-offset-emissions-.html
Joshi, E., et al. . (2013). Biochar - The Future of Agriculture. Popular Kheti, 1(1), 41-48.
Retrieved from http://www.popularkheti.com/web_documents/pk-119.pdf
Joshi, K. (2021). New report highlights limitations of CCS after stumbles at flagship project.
Retrieved from https://reneweconomy.com.au/new-report-highlights-limitations-of-ccs-
after-stumbles-at-flagship-project/
Jospe, C. (2017). Ready, set, go! Restoring the Carbon Balance is possible it just needs more
_____. Retrieved from http://carbonalist.com/2017/05/restoring-the-carbon-balance/
Jospe, C. (2017). Successful Decarbonization Requires a Radically Different Mindset. Blog
Retrieved from http://carbonalist.com/2017/05/successful-decarbonization-requires-a-
radically-different-mindset/
Jospe, C. (2017). What does sucking CO2 from the atmosphere have to do with energy? New
York Energy Week. Retrieved from http://nyenergyweek.com/what-does-sucking-co2-
from-the-atmosphere-have-to-do-with-energy/
Jospe, C. (2017). What is Direct Air Capture? (part 1). Blog Retrieved from http://
carbonalist.com/2017/05/what-is-direct-air-capture-pt1/
Jospe, C. (2019). How does Nori get Supply? Medium. Retrieved from https://medium.com/nori-
carbon-removal/how-does-nori-get-supply-ff9b566bae24
Jospe, C. (2020). Ecosystem service markets: explained with a fruit metaphor. Medium.
Retrieved from https://medium.com/nori-carbon-removal/ecosystem-service-markets-
explained-with-a-fruit-metaphor-3b3a9376db9f
Josse, J. C., & Benedek, A. (2015).
Jossi, F. (2018). An FAQ on 45Q: What federal carbon storage tax credit means for Midwest.
Energy News Network. Retrieved from https://energynews.us/2018/07/10/midwest/an-
faq-on-45q-what-federal-carbon-storage-tax-credit-means-for-midwest/
Jouiad, M., Al-Nofeli, N., Khalifa, N., Benyettou, F., & Yousef, L. F. (2014). Characteristics of
slow pyrolysis biochars produced from rhodes grass and fronds of edible date palm.
Journal of Analytical and Applied Pyrolysis, 111, 183-190. doi:10.1016/j.jaap.2014.10.024
Judd, B., Harrison, D. P., & Jones, I. S. F. (2008). Engineering Ocean Nourishment. Paper
presented at the Proceedings of the World Congress on Engineering.
Judd, L. A., et al. (2014). Changes in Root Growth and Physical Properties in Substrates
Containing Charred or Uncharred Wood Aggregates. Paper presented at the
Proceedings of the 2014 Annual Meeting of the International Plant Propagators Society.
Judd, L. A., et al. . (2015). Comparison of Charred and Uncharred Wood Aggregates in
Horticultural Substrates. Paper presented at the SNA Research Conference. http://
www.ncsu.edu/project/woodsubstrates/documents/research/comparison-charred-
uncharred.pdf
Juhola, A. J. (1975). Iodine Adsorbtion and Structure of Activated Chars. Carbon, 13(5), 437 -
432. Retrieved from http://www.sciencedirect.com/science/article/pii/0008622375900160
Julcour, C., Bourgeois, F., Bonfils, B., Benhamed, I., Guyot, F., Bodénan, F., . . . Gaucher, É. C.
(2015). Development of an attrition-leaching hybrid process for direct aqueous mineral
carbonation. Chemical Engineering Journal, 262(Supplement C), 716-726. doi:https://
doi.org/10.1016/j.cej.2014.10.031
Jun, W., et al. (2015). Effects of pyrolysis temperature and time on the speciation and
bioaccumulation of heavy metals derived from sludge. Journal of South China
Agricultural University, 36(5), 54-60. Retrieved from http://jglobal.jst.go.jp/en/public/
201602250439347743
Jun, Z., Chen, Q., & You, C.-F. (2016). Biochar effect on water evaporation and hydraulic
conductivity in sandy soil. Pedosphere, 26(2), 265-272. Retrieved from http://
pedosphere.issas.ac.cn/trqen/ch/reader/view_abstract.aspx?file_no=20160212&flag=1
Jung, C. (2015). Application of Various Adsorbents to Remove Micro-Pollutants in Aquatic
System. University of South Carolina, Retrieved from http://scholarcommons.sc.edu/etd/
2959/
Jung, C., Boateng, L. K., Flora, J. R. V., Oh, J., Braswell, M. C., Son, A., & Yoon, Y. (2015).
Competitive adsorption of selected non-steroidal anti-inflammatory drugs on activated
biochars: Experimental and molecular modeling study. Chemical Engineering Journal,
264, 1 - 9. doi:10.1016/j.cej.2014.11.076
Jung, C., Oh, J., & Yoon, Y. (2015). Removal of acetaminophen and naproxen by combined
coagulation and adsorption using biochar: influence of combined sewer overflow
components. Environmental Science and Pollution Research. doi:10.1007/
s11356-015-4191-6
Jung, C., Phal, N., Oh, J., Chu, K. H., Jang, M., & Yoon, Y. (2015). Removal of humic and tannic
acids by adsorption–coagulation combined systems with activated biochar. Journal of
Hazardous Materials, 300, 808 - 814. doi:10.1016/j.jhazmat.2015.08.025
Jung, J.-Y., Huh, C., Kang, S.-G., Seo, Y., & Chang, D. (2013). CO2 transport strategy and its
cost estimation for the offshore CCS in Korea. Applied Energy, 111, 1054-1060.
doi:https://doi.org/10.1016/j.apenergy.2013.06.055
Jung, K.-W., & Ahn, K.-H. (2016). Fabrication of porosity-enhanced MgO/biochar for removal of
phosphate from aqueous solution: Application of a novel combined electrochemical
modification method. Bioresource Technology, 200, 1029 - 1032. doi:10.1016/
j.biortech.2015.10.008
Jung, K.-W., Hwang, M.-J., Ahn, K.-H., & Ok, Y.-S. (2015). Kinetic study on phosphate removal
from aqueous solution by biochar derived from peanut shell as renewable adsorptive
media. International Journal of Environmental Science and Technology. doi:10.1007/
s13762-015-0766-5
Jung, K.-W., Hwang, M.-J., Jeong, T.-U., & Ahn, K.-H. (2015). A novel approach for preparation
of modified-biochar derived from marine macroalgae: Dual purpose electro-modification
for improvement of surface area and metal impregnation. Bioresource Technology.
doi:10.1016/j.biortech.2015.05.052
Jung, K.-W., Jeong, T.-U., Hwang, M.-J., Kim, K., & Ahn, K.-H. (2015). Phosphate adsorption
ability of biochar/Mg–Al assembled nanocomposites prepared by aluminum-electrode
based electro-assisted modification method with MgCl2 as electrolyte. Bioresource
Technology, 198, 603 - 610. doi:10.1016/j.biortech.2015.09.068
Jung, K.-W., Kim, K., Jeong, T.-U., & Ahn, K.-H. (2016). Influence of pyrolysis temperature on
characteristics and phosphate adsorption capability of biochar derived from waste-
marine macroalgae (Undaria pinnatifida roots). Bioresource Technology, 200, 1024 -
1028. doi:10.1016/j.biortech.2015.10.016
Jung, S., Park, Y.-K., & Kwon, E. E. (2019). Strategic use of biochar for CO2 capture and
sequestration. Journal of CO2 Utilization, 32, 128-139. doi:https://doi.org/10.1016/
j.jcou.2019.04.012
Jung, W., Lee, J. S., Yoon, H., Kim, T., & Kim, Y. H. (2018). Water membrane for carbon dioxide
separation. Separation and Purification Technology, 203, 268-273. doi:https://doi.org/
10.1016/j.seppur.2018.04.054
Jungbluth, N., Chudacoff, M., Dauriat, A., Dinkel, F., Doka, G., Faist Emmenegger, M., . . .
Sutter, J. (2007). Life Cycle Inventories of Bioenergy.
Jungbluth, N., & Dones, R. (2007). Sachbilanzen von Energiesystemen: Grundlagen fur den
okologischen Vergleich von Energiesystemene und den Einbezug von Energiesystemen
in Okobilanzen fur die Schweiz.
Jungbluth, N., Tuchschmid, M., & Dones, R. Sachbilanzen von Energiesystemen: Grundlagen
für den ökologischen Vergleich von Energiesystemen und den Einbezug von
Energiesystemen in Ökobilanzen für die Schweiz.
Jung-Eun, J. (2014). Implications of Current Developments in International Liability for the
Practice of Marine Geo-engineering Activities. Asian Journal of International Law, 4,
235-260. Retrieved from https://advance.lexis.com/document/?
pdmfid=1516831&crid=361076da-2b50-42a5-b638-
d8acb312fecd&pddocfullpath=%2Fshared%2Fdocument%2Fanalytical-
materials%2Furn%3AcontentItem%3A5HWK-WF40-02GX-
P0MD-00000-00&pddocid=urn%3AcontentItem%3A5HWK-WF40-02GX-
P0MD-00000-00&pdcontentcomponentid=400009&pdteaserkey=sr0&pditab=allpods&ec
omp=wp79k&earg=sr0&prid=5eb0d24b-0d26-4db8-a121-eebdad667c34
Junna, S. (2014). Effects of wheat straw biochar on carbon mineralization and guidance for
large-scale soil quality improvement in the coastal wetland. Ecological Engineering, 62,
43–47.
Jusop, S.-., Rabileh, M. A., Panhwar, Q. A., Rosnani, A. B., & Anuar, A. R. (2014). Effects of
Biochar and/or Dolomitic Limestone Application on the Properties of Ultisol Cropped to
Maize under Glasshouse Conditions. Canadian Journal of Soil Science, 95(1), 37-47.
doi:10.4141/cjss-2014-067
Kaal, J., et al. . (2012). Molecular characterization of Ulex europaeus biochar obtained from
laboratory heat treatment experiments – A pyrolysis–GC/MS study. Journal of Analytical
and Applied Pyrolysis, 95, 205-212. Retrieved from https://www.sciencedirect.com/
science/article/pii/S0165237012000290
Kaal, J., Brodowski, S., Baldock, J. A., Nierop, K. G. J., & Cortizas, A. M. (2008).
Characterisation of aged black carbon using pyrolysis-GC/MS, thermally assisted
hydrolysis and methylation (THM), direct and cross-polarisation C-13 nuclear magnetic
resonance (DP/CP NMR) and the benzenepolycarboxylic acid (BPCA) method. Organic
Geochemistry, 39, 1415-1426. Retrieved from https://www.google.com/url?
sa=t&rct=j&q=&esrc=s&source=web&cd=&ved=2ahUKEwiW_p6LlP7qAhVnJTQIHUDkA
7kQFjABegQIBRAB&url=https%3A%2F%2Fdspace.library.uu.nl%2Fbitstream%2Fhandl
e%2F1874%2F31582%2FOrganic%2520Geochemistry%252039%2520(2008)%252010.
pdf%3Bsequence%3D1&usg=AOvVaw3zSDY9xi2PCS4ELVFj5bqb
Kaal, J., Martinez-Cortizas, A., Nierop, K. G. J., & Buurman, P. (2008). A detailed pyrolysis-GC/
MS analysis of a black carbon-rich acidic colluvial soil (Atlantic ranker) from NW Spain.
Applied Geochemistry, 23(8), 2395-2405. Retrieved from https://www.sciencedirect.com/
science/article/abs/pii/S0883292708001686
Kaal, J., & Rumpel, C. (2009). Can Pyrolysis-GC/MS be used to estimate the degree of thermal
alteration of black carbon? Organic Geochemistry, 40, 1179-1187.
Kaal, J., Schneider, M. P. W., & Schmidt, M. W. I. (2012). Rapid molecular screening of black
carbon (biochar) thermosequences obtained from chestnut wood and rice straw: A
pyrolysis-GC/MS study. Biomass and Bioenergy, 45, 115-129. Retrieved from https://
www.sciencedirect.com/science/article/pii/S0961953412002292
Kabir, M., Chowdhury, A., & Rasul, M. (2015). Pyrolysis of Municipal Green Waste: A Modelling,
Simulation and Experimental Analysis. Energies, 8(8), 7522 - 7541. doi:10.3390/
en8087522
Kabir, M. J., Kabir, M. J., Ashwath, N., & Chowdhury, A. A. (2014). Optimisation of Biofuel
Production from Municipal Green Waste (MGW) Pyrolysis using ASPEN plus Simulation
Model. Paper presented at the Proceedings of 12th International Conference on
Sustainable Energy technologies. Hong Kong : Faculty of Construction and Environment
& Research Institute for Sutainable Urban Development, The Hong Kong Polytechnic
University, 2013. p.- T. http://acquire.cqu.edu.au:8080/vital/access/manager/Repository/
cqu:11088?sort=type\
Kadota, M., & Niimi, Y. (2004). Effects of charcoal with pyroligneous acid and barnyard manure
on bedding plants. Scientia Horticulturae, 101, 327-332.
Kagimbo, F. M., Weatherley, A., & Suter, H. (2012). The effectiveness of lignite coal and biochar
in reducing nitrogen (N) losses from cattle feedlot manure. Paper presented at the Third
RUFORUM Biennial Meeting 24 - 28 September 2012, Entebbe, Uganda. http://
www.ruforum.org/system/files/Kagimbo%20671.pdf
Kahn, B. (2021). Billionaires’ Favorite Climate Solution Is a Dangerous Distraction. Gizmodo.
Retrieved from https://earther.gizmodo.com/billionaires-favorite-climate-solution-is-a-
dangerous-1846288073/amp
Kainaat, W., & Rizwana, A. Q. (2015). Evaluation of Biochar as Fertilizer for the Growth of Some
Seasonal Vegetables. Journal of Bioresource Management, 2(1), 41-46. Retrieved from
http://corescholar.libraries.wright.edu/jbm/vol2/iss1/1/?
utm_source=corescholar.libraries.wright.edu%2Fjbm%2Fvol2%2Fiss1%2F1&utm_mediu
m=PDF&utm_campaign=PDFCoverPages
Kaiqi, S., Tao, W., & Jiefeng, Y. (2014). Progress in Sustainable Energy Technologies:
Generating Renewable EnergyMicrowave Enhanced Pyrolysis Of Gumwood. Cham:
Springer International Publishing.
Kaiser, J. (2000). Panel Estimates Possible Carbon 'Sinks'. Science, 288(5468), 942-943.
doi:10.1126/science.288.5468.942
Kaj-Ivar van der, W., Andries, F. H., & Detlef, P. v. V. (2021). Costs of avoiding net negative
emissions under a carbon budget. Environmental Research Letters. Retrieved from
http://iopscience.iop.org/article/10.1088/1748-9326/ac03d9
Kakizawa, M., Yamasaki, A., & Yanagisawa, Y. (2001). A new CO2 disposal process via artificial
weathering of calcium silicate accelerated by acetic acid. Energy, 26(4), 341-354.
doi:https://doi.org/10.1016/S0360-5442(01)00005-6
Kalde, A., et al. . (2015). Determining the Reactivity of Biochar-Agglomerates to Replace Fossil
Coal in Electric Arc Furnace Steelmaking. Paper presented at the 23rd European
Biomass Conference and Exhibition. http://www.researchgate.net/profile/
Thorsten_Demus/publication/
280223582_DETERMINING_THE_REACTIVITY_OF_BIOCHAR-
AGGLOMERATES_TO_REPLACE_FOSSIL_COAL_IN_ELECTRIC_ARC_FURNACE_S
TEELMAKING/links/55adfc4a08aee079921e4b1d.pdf
Kalinke, C., Mangrich, A. S., Marcolino-Junior, L. H., & Bergamini, M. F. (2015). Carbon Paste
Electrode Modified with Biochar for Sensitive Electrochemical Determination of
Paraquat. Electroanalysis, n/a - n/a. doi:10.1002/elan.201500640
Kaliyan, N., Morey, R. V., & Tiffany, D. G. (2015). Economic and environmental analysis for corn
stover and switchgrass supply logistics. Bioenergy Res, 8. doi:10.1007/
s12155-015-9609-y
Kallenbach, C. M., & Stuart Grandy, A. (2015). Land-use legacies regulate decomposition
dynamics following bioenergy crop conversion. GCB Bioenergy, 7(6), 1232-1244.
doi:10.1111/gcbb.12218
Kalnbalkite, A., Zihare, L., & Blumberga, D. (2017). Methodology for estimation of carbon
dioxide storage in bioproducts. Energy Procedia, 128, 533-538. doi:https://doi.org/
10.1016/j.egypro.2017.09.002
Kalyan, Y., Mok-Ryun, Y., Jae-Kyu, Y., & Yoon-Young, C. (2013). Adsorption of TNT and RDX
Contaminants by Ambrosia trifida L. var. trifida Derived Biochar. Research Journal of
Chemistry and Environment, 17(4), 62-71. Retrieved from http://www.chemenviron.net/
chemistry_back_issue/chem_2013_4/10.pdf
Kamali, M., Sweygers, N., Al-Salem, S., Appels, L., Aminabhavi, T. M., & Dewil, R. (2022).
Biochar for soil applications-sustainability aspects, challenges and future prospects.
Chemical Engineering Journal, 428, 131189. doi:https://doi.org/10.1016/
j.cej.2021.131189
Kamara, A. (2014). Effects of Biochar Derived from Maize Stover and Rice Straw on the Early
Growth of their Seedlings. American Journal of Agriculture and Forestry, 2(5), 232.
doi:10.11648/j.ajaf.20140205.14
Kamara, A., Kamara, A., Mansaray, M. M., & Sawyerr, P. A. (2014). Effects of biochar derived
from maize stover and rice straw on the germination of their seeds. In.
Kamara, A., Sorie Kamara, H., & Saimah Kamara, M. (2015). Effect of Rice Straw Biochar on
Soil Quality and the Early Growth and Biomass Yield of Two Rice Varieties. Agricultural
Sciences, 06(08), 798 - 806. doi:10.4236/as.2015.68077
Kambo, H. S. (2014). Steam gasification of rapeseed, wood, sewage sludge and miscanthus
biochars for the production of a hydrogen-rich syngas. University of Guelph, Retrieved
from https://dspace.lib.uoguelph.ca/xmlui/handle/10214/8304?show=full
Kambo, H. S., & Dutta, A. (2015). A comparative review of biochar and hydrochar in terms of
production, physico-chemical properties and applications. Renewable and Sustainable
Energy Reviews, 45, 359 - 378. doi:10.1016/j.rser.2015.01.050
Kameyama, K., Miyamoto, T., Iwata, Y., & Shiono, T. (2016). Effects of Biochar Produced From
Sugarcane Bagasse at Different Pyrolysis Temperatures on Water Retention of a
Calcaric Dark Red Soil. Soil Science, 181(1), 20 - 28. doi:10.1097/
ss.0000000000000123
Kameyama, K., Miyamoto, T., Iwata, Y., & Shiono, T. (2016). Influences of feedstock and
pyrolysis temperature on the nitrate adsorption of biochar. Soil Science and Plant
Nutrition, 1 - 5. doi:10.1080/00380768.2015.1136553
Kameyama, K., Miyamoto, T., & Shiono, T. (2013). Influence of biochar incorporation on TDR-
based soil water content measurements. European Journal of Soil Science.
Kameyama, K., Shinogi, Y., Miyamoto, T., & Agarie, K. (2010). Estimation of net carbon
sequestration potential with farmland application of bagasse charcoal: life cycle
inventory analysis through a pilot sugarcane bagasse carbonisation plant. Australian
Journal of Soil Research, 48, 586-592.
Kamm, J. (2004). A new class of plants for a biofuel feedstock energy crop. Applied
Biochemistry and Biotechnology, 113(1), 55-70. doi:10.1385/abab:113:1-3:055
Kammann, C., et al. (2010). Biokohle: Ein Weg zur dauerhaften Kohlenstoff-Sequestrierung?
Retrieved from http://klimawandel.hlug.de/fileadmin/dokumente/klima/inklim_a/
infoblatt_biokohle.pdf
Kammann, C., et al. (2010). C-Sequestrierungspotential und Eignung von Torfersatzstoffen,
hergestellt aus Produkten der Landschaftspflege und Biochar - Abschlussbericht.
Retrieved from http://www.kompost.ch/aktuell/xmedia/TuBS-
Abschlussbericht-31Jan2011.pdf
Kammann, C., et al. (2012). Biochar and Hydrochar Effects on Greenhouse Gas (Carbon
Dioxide, Nitrous Oxide, and Methane) Fluxes from Soils. Journal of Environmental
Quality, 41, 1052-1066. doi:10.2134/jeq2011.0132
Kammann, C., et al. , Glaser, B., & Schmidt, H.-P. (2016). Combining biochar and organic
amendments. In Biochar in European Soils and Agriculture: Science and Practice.
Kammann, C., & Graber, E. R. (2015). Biochar effects on plant ecophysiology. In J. Lehmann &
S. Joseph (Eds.), Biochar for Environmental Management: Science and Technology and
Implementation.
Kammann, C., Ippolito, J., Hagemann, N., Borchard, N., Cayuela, M. L., Estavillo, J. M., . . .
Wrage-Mönnig, N. (2017). Biochar as a tool to reduce the agricultural greenhouse-gas
burden – knowns, unknowns and future research needs. Journal of Environmental
Engineering and Landscape Management, 25(2), 114-139.
doi:10.3846/16486897.2017.1319375
Kammann, C. I., et al. (2011). Influence of biochar on drought tolerance of Chenopodium quinoa
Willd and on soil–plant relations. Plant and Soil, 345(1), 195-210. doi:10.1007/
s11104-011-0771-5
Kammann, C. I., Schmidt, H.-P., Messerschmidt, N., Linsel, S., Steffens, D., Müller, C., . . .
Joseph, S. (2015). Plant growth improvement mediated by nitrate capture in co-
composted biochar. Supplementary information to MS. Retrieved from http://
www.nature.com/srep/2015/150609/srep11080/extref/srep11080-s1.doc
Kan, T., Strezov, V., & Evans, T. J. (2016). Lignocellulosic biomass pyrolysis: A review of product
properties and effects of pyrolysis parameters. Renewable and Sustainable Energy
Reviews, 57, 1126 - 1140. doi:10.1016/j.rser.2015.12.185
Kan, Z.-R., He, C., Liu, Q.-Y., Liu, B.-Y., Virk, A. L., Qi, J.-Y., . . . Zhang, H.-L. (2020). Carbon
mineralization and its temperature sensitivity under no-till and straw returning in a wheat-
maize cropping system. Geoderma, 377, 114610. doi:https://doi.org/10.1016/
j.geoderma.2020.114610
Kan, Z.-R., Virk, A. L., He, C., Liu, Q.-Y., Qi, J.-Y., Dang, Y. P., . . . Zhang, H.-L. (2020).
Characteristics of carbon mineralization and accumulation under long-term conservation
tillage. CATENA, 193, 104636. doi:https://doi.org/10.1016/j.catena.2020.104636
Kanawade, R. B., Vaidya, P. D., Subramanian, K., Kulkarni, V. V., & Kenig, E. Y. (2016). Kinetics
of Carbon Dioxide Removal by n-Propyl- and n-Butylmonoethanolamine in Aqueous
Solutions. Energy & Fuels, 30(6), 5077-5082. doi:10.1021/acs.energyfuels.6b00527
Kandji, S. T., et al. (2006). Opportunities for linking climate change adaptation and mitigation
through agroforestry systems. In D. P. Garrity, et al. (Ed.), World Agroforestry into the
Future (pp. 113-121).
Kane, D. (2015). Carbon Sequestration Potential on Agricultural Lands: A Review of Current
Science and Available Practices. Retrieved from https://sustainableagriculture.net/
publications/
Kang, S. W., et al. (2016). Effect of Biochar Application on Rice Yield and Greenhouse Gas
Emission under Different Nutrient Conditions from Paddy Soil - See more at: http://
ascelibrary.org/doi/
10.1061/%28ASCE%29EE.1943-7870.0001083#sthash.ZRlSebgh.dpuf. Journal of
Environmental Engineering, 142(10), 1-7. Retrieved from http://ascelibrary.org/doi/
10.1061/%28ASCE%29EE.1943-7870.0001083
Kanig, M. (2015). Evaluation of statistical methods for comparison of Biokohlekomposten with
small samples using the example of the growth of crops under greenhouse conditions
(translated from German). In.
Kannan, P., et al. (2013). Biochar an alternate option for crop residues and solid waste disposal
and climate change mitigation. African Journal of Agricultural Research, 8(21),
2403-2412. Retrieved from http://www.academicjournals.org/AJAR/PDF/pdf2013/6Jun/
Kannan%20et%20al.pdf
Kansha, Y., Ishizuka, M., Mizuno, H., & Tsutsumi, A. (2017). Design of energy-saving carbon
dioxide separation process using fluidized bed. Applied Thermal Engineering, 126,
134-138. doi:https://doi.org/10.1016/j.applthermaleng.2017.07.156
Kanthle, A. K., Lenka, N. K., Lenka, S., & Tedia, K. (2016). Biochar impact on nitrate leaching as
influenced by native soil organic carbon in an Inceptisol of central India. Soil and Tillage
Research, 157, 65 - 72. doi:10.1016/j.still.2015.11.009
Kantola, I. B., et al. (2017). Potential of global croplands and bioenergy crops for climate change
mitigation through deployment for enhanced weathering. Biology Letters, 13(4), 1-7.
Retrieved from http://rsbl.royalsocietypublishing.org/content/13/4/20160714
Kappler, A., Wuestner, M. L., Ruecker, A., Harter, J., Halama, M., & Behrens, S. (2014). Biochar
as an Electron Shuttle between Bacteria and Fe(III) Minerals. Environmental Science &
Technology Letters, 1(8), 339 - 344. doi:10.1021/ez5002209
Karagoez, S. (2009). Energy Production from the Pyrolysis of Waste Biomasses. International
Journal of Energy Research, 33(6), 576-581.
Karagöz, S., et al. . (2003). Low-Temperature Hydrothermal Treatment of Biomass: Effect of
Reaction Parameters on Products and Boiling Point Distributions. Energy Fuels, 18(1),
234–241. Retrieved from http://pubs.acs.org/doi/abs/10.1021/ef030133g
Karakoyun, N., et al. . (2011). Hydrogel–Biochar composites for effective organic contaminant
removal from aqueous media. Desalination, 280(1-3), 319-325. doi:10.1016/
j.desal.2011.07.014
Karami, N., et al. (2011). Efficiency of green waste compost and biochar soil amendments for
reducing lead and copper mobility and uptake to ryegrass. Journal of Hazardous
Materials, 191(1-3), 41-48. doi:10.1016/j.jhazmat.2011.04.025
Karaosmanolu, F., Işııgür-Ergüdenler, A., & Sever, A. (2000). Biochar from the Straw-Stalk of
Rapeseed Plant. Energy Fuels, 14(2), 336–339. Retrieved from http://pubs.acs.org/doi/
full/10.1021/ef9901138
Karayannis, V., Charalampides, G., & Lakioti, E. (2014). Socio-economic Aspects of CCS
Technologies. Procedia Economics and Finance, 14, 295-302. doi:http://dx.doi.org/
10.1016/S2212-5671(14)00716-3
Karer, J., Wawra, A., Zehetner, F., Dunst, G., Wagner, M., Pavel, P.-B., . . . Soja, G. (2015).
Effects of Biochars and Compost Mixtures and Inorganic Additives on Immobilisation of
Heavy Metals in Contaminated Soils. Water, Air, & Soil Pollution, 226(10), 1-12.
doi:10.1007/s11270-015-2584-2
Kargar, M., Clark, O. G., Hendershot, W. H., Jutras, P., & Prasher, S. O. (2015). Immobilization
of Trace Metals in Contaminated Urban Soil Amended with Compost and Biochar. Water,
Air, & Soil Pollution, 226(6), 1-12. doi:10.1007/s11270-015-2450-2
Karhu, K., Mattila, T., Bergström, I., & Regina, K. (2011). Biochar addition to agricultural soil
increased CH4 uptake and water holding capacity – Results from a short-term pilot field
study. Agriculture, Ecosystems & Environment, 140(1), 309-313. doi:https://doi.org/
10.1016/j.agee.2010.12.005
Karim, A., Kumar, M., Mohapatra, S., Panda, C., & Singh, A. (2015). Banana Peduncle Biochar:
Characteristics and Adsorption of Hexavalent Chromium from Aqueous Solution.
International Research Journal of Pure and Applied Chemistry, 7(1), 1 - 10. doi:10.9734/
irjpac/2015/16163
Karim, A. A., Kumar, M., Mohapatra, S., Panda, C. R., & Singh, A. (2015). Effect of rice husk
biochar on selected soil properties in tropical Alfisols. International Research Journal of
Pure & Applied Chemistry, 54(3), A-I. doi:10.9734/irjpac/2015/16163
Karimaie, H., Nazarian, B., Aurdal, T., Nøkleby, P. H., & Hansen, O. (2017). Simulation Study of
CO2 EOR and Storage Potential in a North Sea Reservoir. Energy Procedia, 114,
7018-7032. doi:https://doi.org/10.1016/j.egypro.2017.03.1843
Kärki, J., Tsupari, E., & Arasto, A. (2013). CCS Feasibility Improvement in Industrial and
Municipal Applications by Heat Utilisation. Energy Procedia, 37, 2611-2621. doi:https://
doi.org/10.1016/j.egypro.2013.06.145
Kärki, J., Tsupari, E., Thomasson, T., Arasto, A., Pikkarainen, T., Tähtinen, M., . . . Korpinen, T.
(2017). Achieving Negative Emissions with the Most Promising Business Case for Bio-
CCS in Power and CHP Production. Energy Procedia, 114, 5994-6002. doi:https://
doi.org/10.1016/j.egypro.2017.03.1734
Karl, D. M., & Letelier, R. M. (2008). Nitrogen fixation-enhanced carbon sequestration in low
nitrate, low chlorophyll seascapes. Marine Ecology Progress Series, 364, 257-268.
Retrieved from http://www.int-res.com/abstracts/meps/v364/p257-268/
Karlen, D. L., Lal, R., Follett, R. F., Kimble, J. M., Hatfield, J. L., Miranowski, J. M., . . . Rice, C.
W. (2009). Crop Residues: The Rest of the Story. Environmental Science & Technology,
43(21), 8011-8015. doi:10.1021/es9011004
Karmee, S. K. (2016). Liquid biofuels from food waste: Current trends, prospect and limitation.
Renewable and Sustainable Energy Reviews, 53, 945 - 953. doi:10.1016/
j.rser.2015.09.041
Karp, A., & Shield, I. (2008). Bioenergy from plants and the sustainable yield challenge. New
Phytologist, 179(1), 15-32. Retrieved from http://onlinelibrary.wiley.com/doi/10.1111/
j.1469-8137.2008.02432.x/abstract
Kartha, S., & Dooley, K. (2016). The Risks of Relying on Tomorrow's 'Negative Emissions' to
Guide Today's Mitigation Action. Retrieved from https://www.sei-international.org/
mediamanager/documents/Publications/Climate/SEI-WP-2016-08-Negative-
emissions.pdf
Karunarathna, T. A. S. S., Mohotti, K. M., Mohotti, A. J., Sangakkara, U. R., & Suriyagoda, L. D.
B. (2015). Short Term Impacts of Biochar Incorperated Soil on Early Growth of Selected
Perennial and Annual Crops. Paper presented at the iPURSE2014. http://
www.dlib.pdn.ac.lk/archive/handle/1/5119?
mode=full&submit_simple=Show+full+item+record
Karve, P., et al. (2011). Biochar for Carbon Reduction, Sustainable Agriculture and Soil
Management (BIOCHARM). Retrieved from http://www.biochar.org.uk/abstract.php?
id=37
Kasozi, G. N., Zimmerman, A. R., Nkedi-Kizza, P., & Gao, B. (2010). Catechol and Humic Acid
Sorption onto a Range of Laboratory-Produced Black Carbons (Biochars).
Environmental Science & Technology, 44, 6189-6195.
Kaspersen, B. S., Christensen, T. B., Fredenslund, A. M., Møller, H. B., Butts, M. B., Jensen, N.
H., & Kjaer, T. (2016). Linking climate change mitigation and coastal eutrophication
management through biogas technology: Evidence from a new Danish bioenergy
concept. Science of The Total Environment, 541(Supplement C), 1124-1131. doi:https://
doi.org/10.1016/j.scitotenv.2015.10.015
Kassim, M. A., & Meng, T. K. (2017). Carbon dioxide (CO2) biofixation by microalgae and its
potential for biorefinery and biofuel production. Science of The Total Environment,
584-585, 1121-1129. doi:https://doi.org/10.1016/j.scitotenv.2017.01.172
Kasting, J. F. (2019). The Goldilocks Planet? How Silicate Weathering Maintains Earth “Just
Right”. Elements, 15(4), 235-240. doi:10.2138/gselements.15.4.235 %J Elements
Kastner, J. R., et al. (2012). Catalytic esterification of fatty acids using solid acid catalysts
generated from biochar and activated carbon. Catalysis Today, 190(1), 122-132.
Retrieved from http://www.sciencedirect.com/science/article/pii/S0920586112000612
Kastner, J. R., Mani, S., & Juneja, A. (2014). Catalytic decomposition of tar using iron supported
biochar. Fuel Processing Technology, 130, 31 - 37. doi:10.1016/j.fuproc.2014.09.038
Kasturi, A., Gabitto, J., Tsouris, C., & Custelcean, R. (2021). Carbon dioxide capture with
aqueous amino acids: Mechanistic study of amino acid regeneration by guanidine
crystallization and process intensification. Separation and Purification Technology, 271,
118839. doi:https://doi.org/10.1016/j.seppur.2021.118839
Kataoka, T., Suzuki, K., Hayakawa, M., Kudo, I., Higashi, S., & Tsuda, A. (2009). Temporal
changes in community composition of heterotrophic bacteria during in situ iron
enrichment in the western subarctic Pacific (SEEDS-II). Deep Sea Research Part II:
Topical Studies in Oceanography, 56(26), 2779-2787. doi:https://doi.org/10.1016/
j.dsr2.2009.06.013
Kätelhön, A., Meys, R., Deutz, S., Suh, S., & Bardow, A. (2019). Climate change mitigation
potential of carbon capture and utilization in the chemical industry. Proceedings of the
National Academy of Sciences, 116(23), 11187-11194. doi:10.1073/pnas.1821029116
Katircioglu, S., Dalir, S., & Olya, H. G. (2016). Is a Clean Development Mechanism project
economically justified? Case study of an International Carbon Sequestration Project in
Iran. Environmental Science and Pollution Research, 23(1), 504-513. doi:10.1007/
s11356-015-5256-2
Kato, E., Kinoshita, T., Ito, A., Kawamiya, M., & Yamagata, Y. (2013). Evaluation of spatially
explicit emission scenario of land-use change and biomass burning using a process-
based biogeochemical model. Journal of Land Use Science, 8(1), 104-122.
doi:10.1080/1747423X.2011.628705
Kato, E., Moriyama, R., & Kurosawa, A. (2017). A Sustainable Pathway of Bioenergy with
Carbon Capture and Storage Deployment. Energy Procedia, 114, 6115-6123. doi:https://
doi.org/10.1016/j.egypro.2017.03.1748
Kato, E., & Yamagata, Y. (2014). BECCS capability of dedicated bioenergy crops under a future
land-use scenario targeting net negative carbon emissions. Earth's Future, 2(9),
421-439. doi:10.1002/2014ef000249
Kato, Y., Kojima, Y., & Yoon, S.-L. (2015). Hydrogen-rich gas production by steam gasification of
bio-char : Influence of char characters, reaction temperature and steam supply on gas
composition and hydrogen gas yield. Bulletin of the Faculty of Agriculture Niigata
University, 67(2), 117-124. Retrieved from http://dspace.lib.niigata-u.ac.jp/dspace/
bitstream/10191/32050/1/67(2)_117-124.pdf
Kaudal, B. B., Chen, D., Madhavan, D. B., Downie, A., & Weatherley, A. (2015). Pyrolysis of
urban waste streams: Their potential use as horticultural media. Journal of Analytical and
Applied Pyrolysis, 112, 105-112. doi:10.1016/j.jaap.2015.02.011
Kaudal, B. B., Chen, D., Madhavan, D. B., Downie, A., & Weatherley, A. (2016). An examination
of physical and chemical properties of urban biochar for use as growing media substrate.
Biomass and Bioenergy, 84, 49 - 58. doi:10.1016/j.biombioe.2015.11.012
Kauffman, N., et al. (2014). Producing energy while sequestering carbon? The relationship
between biochar and agricultural productivity. Biomass and Bioenergy, 63, 167-176.
Retrieved from http://www.sciencedirect.com/science/article/pii/S0961953414000592
Kaufman, A. C. (2020). The Soil Revolution That Could Save Farming And The Climate.
Huffington Post. Retrieved from https://www.huffpost.com/entry/climate-change-
regenerative-farming_n_5f6cba7ec5b653a2bcb1550f
Kaufman, A. C. (2021). Activists Call It A ‘False Solution.’ But UN Scientists Say We Need To
Suck Up CO2. Huffington Post. Retrieved from https://www.huffpost.com/entry/un-ipcc-
carbon-removal_n_6116c65ee4b0454ed70da0ba
Kaufman, A. C. (2021). India Demands Rich Nations Like The U.S. Clean Up Their Climate
Mess, Signaling A Shift. Huffington Post, UK Edition. Retrieved from https://
www.huffingtonpost.co.uk/entry/india-climate-change_n_60678098c5b6832c7937008f
Kaufman, A. C. (2021). John Kerry’s Climate Warning: ‘Even If We Get To Net Zero, We Need
Carbon Removal’. Huffington Post. Retrieved from https://www.huffpost.com/entry/john-
kerry-climate_n_6081c355e4b05c4290738500
Kaufman, L. (2021). Will Covid Stimulus Be the Breakthrough Carbon Capture Has Been
Waiting For? Bloomberg Green. Retrieved from https://www.bloomberg.com/amp/news/
articles/2021-01-04/will-covid-stimulus-be-the-breakthrough-carbon-capture-has-been-
waiting-for-kjigd4i0
Kaufman, L., & Rathi, A. (2021). A Carbon-Sucking Startup Has Been Paralyzed by Its CEO.
Yahoo! News. Retrieved from https://nz.news.yahoo.com/carbon-sucking-startup-
paralyzed-ceo-040116459.html
Kauk, S. (2020). We’re Offsetting All Carbon Emissions from BFCM Order Deliveries. Retrieved
from https://www.shopify.com/blog/bfcm-carbon-offsets?
utm_medium=email&_hsmi=100168559&_hsenc=p2ANqtz-8z_nbTHoS3IxDLkfqixjAZNir
G_8U3GiSrli0GpdISJwEPD3B8Hgi96v8weFgDGgXVISKGTE_kmMYlp7ffe3g7cvyuRg&
utm_content=100168415&utm_source=hs_email
Kauppi, P., & Sedjo, R. (2001). Technological and economic potential of options to enhance,
maintain, and manage biological carbon reservoirs and geo-engineering. In E. Calvo &
B. Solberg (Eds.), Climate Change 2001: Mitigation of Climate Change, Contribution of
Working Group III to the Third Asessment Report of the Intergovernmental Panel on
Climate Change (pp. 301-344).
Kavate, M. (2021). Tree Planting Was Hot This Year—and Hotly Debated. Who’s Funding it, and
Does it Make Sense? Inside Philanthropy. Retrieved from https://
www.insidephilanthropy.com/home/2020/12/10/tree-planting-was-hot-this-yearand-hotly-
debated-whos-funding-it-and-does-it-make-sense
Kaven, J. O., Hickman, S. H., McGarr, A. F., & Ellsworth, W. L. (2015). Surface monitoring of
microseismicity at the Decatur, Illinois, CO2 sequestration demonstration site.
Seismological Research Letters, 86(4), 1096-1101. doi:10.1785/0220150062
Kay, S., Rega, C., Moreno, G., den Herder, M., Palma, J. H. N., Borek, R., . . . Herzog, F.
(2019). Agroforestry creates carbon sinks whilst enhancing the environment in
agricultural landscapes in Europe. Land Use Policy, 83, 581-593. doi:https://doi.org/
10.1016/j.landusepol.2019.02.025
Kaya, Y., Yamaguchi, M., & Geden, O. J. S. S. (2019). Towards net zero CO2 emissions without
relying on massive carbon dioxide removal. Sustainability Science, 14, 1739-1743.
doi:10.1007/s11625-019-00680-1
Kaye, L. (2017). Speed Up Oceanic Carbon Sequestration, to Fight Climate Change. Triple
Pundit. Retrieved from http://www.triplepundit.com/2017/07/scientists-discover-way-
speed-oceanic-carbon-sequestration/
Kealan, G., Groenigen, J. v., & Cayuela, M. L. (2011). Residues of bioenergy production chains
as soil amendments: Immediate and temporal phytotoxicity. Journal of Hazardous
Materials, 186, 2017–2025. Retrieved from http://www.sciencedirect.com/science/article/
pii/S0304389410016857
Kearns, D. (2021). Technology Readiness and Costs of CCS. Retrieved from https://
www.globalccsinstitute.com/resources/publications-reports-research/technology-
readiness-and-costs-of-ccs/
Kearns, J. (2012). Sustainable Decentralized Water Treatment for Rural and Developing
Communities Using Locally Generated Biochar Adsorbents. In.
Kearns, J., Knappe, D., & Summers, R. (2015). Feasibility of using traditional kiln charcoals in
low cost water treatment: The role of pyrolysis conditions on 2,4-D herbicide adsorption.
Environmental Engineering Science, 32.
Kearns, J., Teletzke, G., Palmer, J., Thomann, H., Kheshgi, H., Chen, Y.-H. H., . . . Herzog, H.
(2017). Developing a Consistent Database for Regional Geologic CO2 Storage Capacity
Worldwide. Energy Procedia, 114, 4697-4709. doi:https://doi.org/10.1016/
j.egypro.2017.03.1603
Kearns, J. P., et al. (2015). Meeting multiple water quality objectives through treatment using
locally generated char: improving organoleptic properties and removing synthetic organic
contaminants and disinfection by-products. Journal of Water, Sanitation & Hygiene for
Development, 5(3), 359-371. Retrieved from http://washdev.iwaponline.com/content/
ppiwajwshd/5/3/359.full.pdf
Kearns, J. P., Knappe, D. R. U., & Summer, R. S. s. (2014). Synthetic organic water
contaminants in developing communities: an overlooked challenge addressed by
adsorption with locally generated char. Journal of Water, Sanitation and Hygiene for
Development, 4(3), 422-436. Retrieved from http://www.iwaponline.com/washdev/up/
washdev2014073.htm
Kearns, J. P., Wellborn, L. S., Summers, R. S., & Knappe, D. R. U. (2014). 2,4-D adsorption to
biochars: effect of preparation conditions on equilibrium adsorption capacity and
comparison with commercial activated carbon literature data. Water Research, 63,
20-28. doi:10.1016/j.watres.2014.05.023
Keating, C. (2020). Study: Forestry finance market could soar to $800bn as net zero goals
multiply. Business Green. Retrieved from https://www.businessgreen.com/neCws/
4022276/study-forestry-finance-market-soar-usd800bn-net-zero-goals-multiply
Keating, C. (2021). 'Net zero is not enough': Why climate experts are calling for 'net negative'
emissions strategies. Business Green. Retrieved from https://www.businessgreen.com/
news-analysis/4036327/net-zero-climate-experts-calling-net-negative-emissions-
strategies
Keech, O., Carcaillet, C., & Nilsson, M. C. (2005). Adsorption of allelopathic compounds by
wood-derived charcoal: The role of wood porosity. Plant and Soil, 272(1-2), 291-300.
Retrieved from https://link.springer.com/article/10.1007/s11104-004-5485-5
Keedy, J., Prymak, E., Macken, N., Pourhashem, G., Spatari, S., Mullen, C. A., & Boateng, A. A.
(2015). Exergy Based Assessment of the Production and Conversion of Switchgrass,
Equine Waste, and Forest Residue to Bio-Oil Using Fast Pyrolysis. Industrial &
Engineering Chemistry Research, 54(1), 529 - 539. doi:10.1021/ie5035682
Keeling, T. (2021). CO2 storage plans risk leaving future generations with ‘carbon bombs’,
energy expert warns. National of Change. Retrieved from https://
www.nationofchange.org/2021/08/14/co2-storage-plans-risk-leaving-future-generations-
with-carbon-bombs-energy-expert-warns/
Keesstra, S. D., Bouma, J., Wallinga, J., Tittonell, P., Smith, P., Cerdà, A., . . . Fresco, L. O.
(2016). The significance of soils and soil science towards realization of the United
Nations Sustainable Development Goals. SOIL, 2(2), 111-128. doi:10.5194/
soil-2-111-2016
Keiblinger, K. M., Liu, D., Mentler, A., Zehetner, F., & Zechmeister-Boltenstern, S. (2015).
Biochar application reduces protein sorption in soil. Organic Geochemistry, 87, 21 - 24.
doi:10.1016/j.orggeochem.2015.06.005
Keil, R. G., Nuwer, J. M., & Strand, S. E. (2010). Burial of agricultural byproducts in the deep
sea as a form of carbon sequestration: A preliminary experiment. Marine Chemistry,
122(1–4), 91-95. doi:http://dx.doi.org/10.1016/j.marchem.2010.07.007
Keiluweit, M., et al. (2012). Solvent-extractable Polycyclic Aromatic Hydrocarbons in Biochar:
Influence of Pyrolysis Temperature and Feedstock. Environmental Science &
Technology, 46(7), 9333-9341. doi:10.1021/es302125k
Keiluweit, M., Nico, P. S., Johnson, M. G., & Kleber, M. (2010). Dynamic Molecular Structure of
Plant Biomass-Derived Black Carbon (Biochar). Environmental Science & Technology,
44(4), 1247-1253. Retrieved from http://pubs.acs.org/doi/abs/10.1021/es9031419
Keim, B. (2009). Ocean fertilization works - unless it doesn't. Wired. Retrieved from https://
www.wired.com/2009/01/oceaniron/
Keith, A., Singh, B., & Dijkstra, F. A. (2015). Biochar reduces the rhizosphere priming effect on
soil organic carbon. Soil Biology and Biochemistry, 88, 372 - 379. doi:10.1016/
j.soilbio.2015.06.007
Keith, A., Singh, B., & Pal Singh, B. (2011). Interactive priming of biochar and labile organic
matter mineralization in a smectite-rich soil. Environmental Science & Technology,
45(22), 9611-9618. doi:10.1021/es202186j
Keith, D. (2019). Why I am proud to commercialize direct air capture while I oppose any
commercial work on solar geoengineering. Keith Group. Retrieved from https://
keith.seas.harvard.edu/blog/why-i-am-proud-commercialize-direct-air-capture-while-i-
oppose-any-commercial-work-solar
Keith, D. W. (2001). Sinks, Energy Crops and Land Use: Coherent Climate Policy Demands an
Integrated Analysis of Biomass. Climatic Change, 49(1), 1-10. doi:10.1023/
a:1010617015484
Keith, D. W. (2009). Why Capture CO2 from the Atmosphere? Science, 325, 1654-1655.
Retrieved from http://science.sciencemag.org/content/325/5948/1654
Keith, D. W., et al. (2018). A Process for Capturing CO
2
from the Atmosphere. Joule, 2, 1-22.
Retrieved from https://www.cell.com/joule/pdf/S2542-4351(18)30225-3.pdf
Keith, D. W., Giardina, J. A., Morgan, M. G., & Wilson, E. J. (2005). Regulating the Underground
Injection of CO2. Environmental Science & Technology, 39(24), 499A-505A. doi:10.1021/
es0534203
Keith, D. W., & Ha-Duong, M. (2003). CO2 Capture from the Air: Technology Assessment and
Implications for Climate Policy A2 - Gale, J. In Y. Kaya (Ed.), Greenhouse Gas Control
Technologies - 6th International Conference (pp. 187-192). Oxford: Pergamon.
Keith, D. W., Ha-Duong, M., & Stolaroff, J. K. (2006). Climate Strategy with CO
2
Capture from
the Air. Climatic Change, 74(1), 17-45. doi:10.1007/s10584-005-9026-x
Keith, D. W., Heidel, K., & Cherry, R. (2010). Capturing CO
2
from the Atmosphere: Rationale
and Process Design Considerations. In B. E. Launder & M. L. Thompson (Eds.), Geo-
engineering climate change : environmental necessity or Pandora's box? (pp. 107-126).
Keith, D. W., Holmes, G., St. Angelo, D., & Heidel, K. (2018). A Process for Capturing CO2 from
the Atmosphere. Joule, 2(8), 1573-1594. doi:10.1016/j.joule.2018.05.006
Keith, D. W., & Rhodes, J. S. (2001). Bury, Burn or Both: A Two-for-One Deal on Biomass
Carbon and Energy. Climatic Change, 54, 375-377. Retrieved from https://
keith.seas.harvard.edu/files/tkg/files/47.keith_.2002.buryburnorboth.e.pdf
Keith, D. W., Wagner, G., & Zabel, C. L. (2017). Solar geoengineering reduces atmospheric
carbon burden. Nature Climate Change, 7, 617-619. doi:10.1038/nclimate3376
https://www.nature.com/articles/nclimate3376#supplementary-information
Kelemen, P. B., Aines, R., Bennett, E., Benson, S. M., Carter, E., Coggon, J. A., . . . Wilcox, J.
(2018). In situ carbon mineralization in ultramafic rocks: Natural processes and possible
engineered methods. Energy Procedia, 146, 92-102. doi:https://doi.org/10.1016/
j.egypro.2018.07.013
Kelemen, P. B., & Matter, J. (2008). In situ carbonation of peridotite for CO2 storage.
Proceedings of the National Academy of Sciences, 105(45), 17295-17300. doi:10.1073/
pnas.0805794105
Kelemen, P. B., McQueen, N., Wilcox, J., Renforth, P., Dipple, G., & Vankeuren, A. P. (2020).
Engineered carbon mineralization in ultramafic rocks for CO2 removal from air: Review
and new insights. Chemical Geology, 119628. doi:https://doi.org/10.1016/
j.chemgeo.2020.119628
Kelland, M. E., Wade, P. W., Lewis, A. L., Taylor, L. L., Sarkar, B., Andrews, M. G., . . . Beerling,
D. J. (2020). Increased yield and CO2 sequestration potential with the C4 cereal
Sorghum bicolor cultivated in basaltic rock dust-amended agricultural soil. Global
Change Biology, 26(6), 3658-3676. doi:10.1111/gcb.15089
Keller, D. P., et al. (2018). The Carbon Dioxide Removal Model Intercomparison Project
(CDRMIP): rationale and experimental protocol for CMIP6. Geoscience Model
Development, 11, 1130-1160. Retrieved from https://www.geosci-model-dev.net/
11/1133/2018/
Keller, D. P. (2018). Marine Climate Engineering. In M. Salomon & T. Markus (Eds.), Handbook
on Marine Environment Protection : Science, Impacts and Sustainable Management (pp.
261-276). Cham: Springer International Publishing.
Keller, D. P., Brent, K., Bach, L. T., & Rickles, W. (2021). Editorial: The Role of Ocean-Based
Negative Emission Technologies for Climate Mitigation. Frontiers in Climate, 3(94).
doi:10.3389/fclim.2021.743816
Keller, D. P., Lenton, A., Littleton, E. W., Oschlies, A., Scott, V., & Vaughan, N. E. (2018). The
Effects of Carbon Dioxide Removal on the Carbon Cycle. Current Climate Change
Reports, 4(3), 250-265. doi:10.1007/s40641-018-0104-3
Keller, K., McInerney, D., & Bradford, D. F. (2008). Carbon dioxide sequestration: how much and
when? Climatic Change, 88, 267-291. Retrieved from http://www3.geosc.psu.edu/
~kzk10/Keller_cc_08.pdf
Keller, L., Ohs, B., Lenhart, J., Abduly, L., Blanke, P., & Wessling, M. (2017). High capacity
polyethylenimine impregnated microtubes made of carbon nanotubes for CO2 capture.
Carbon. doi:https://doi.org/10.1016/j.carbon.2017.10.023
Kelly, C. N., et al. (2014). Biochar application to hardrock mine tailings: Soil quality, microbial
activity, and toxic element sorption. Applied Geochemistry, 43, 35-48. Retrieved from
http://www.sciencedirect.com/science/article/pii/S0883292714000250
Kelly, K. E., Silcox, G. D., Sarofim, A. F., & Pershing, D. W. (2011). An evaluation of ex situ,
industrial-scale, aqueous CO2 mineralization. International Journal of Greenhouse Gas
Control, 5(6), 1587-1595. doi:https://doi.org/10.1016/j.ijggc.2011.09.005
Kemache, N., Pasquier, L.-C., Mouedhen, I., Cecchi, E., Blais, J.-F., & Mercier, G. (2016).
Aqueous mineral carbonation of serpentinite on a pilot scale: The effect of liquid
recirculation on CO2 sequestration and carbonate precipitation. Applied Geochemistry,
67, 21-29. doi:https://doi.org/10.1016/j.apgeochem.2016.02.003
Kemper, J. (2015). Biomass and carbon dioxide capture and storage: A review. International
Journal of Greenhouse Gas Control, 40, 401-430. doi:http://dx.doi.org/10.1016/
j.ijggc.2015.06.012
(2019, October 15). Rebuilding The Soil Carbon Sponge, and Cooling the Climate Fast with
Walter Jehne [Retrieved from https://www.youtube.com/watch?
time_continue=1&v=a0pREPLLWrs
Kendall, A., & Chang, B. (2009). Estimating life cycle greenhouse gas emissions from corn–
ethanol: a critical review of current U.S. practices. Journal of Cleaner Production, 17(13),
1175-1182. doi:https://doi.org/10.1016/j.jclepro.2009.03.003
Kennedy, C. (2019). Drax sets 2030 carbon negative goal. New Civil Engineer. Retrieved from
https://www.newcivilengineer.com/latest/drax-sets-2030-carbon-negative-
goal-11-12-2019/
Kennedy, C. (2021). Calls for government to commit to carbon capture technology. New Civil
Engineer. Retrieved from https://www.newcivilengineer.com/latest/229514-29-07-2021/
Kennedy, H., et al. (2010). Seagrass sediments as a global carbon sink: Isotopic constraints.
Global Biogeochemical Cycles, 24(4), 1-8. Retrieved from http://digitalcommons.fiu.edu/
fce_lter_journal_articles/149/
Kennedy, M., Wong, R., Vandenbroek, A., Lovekin, D., & Raynolds, M. (2011). Biomass
Sustainability Analysis. An assessment of Ontario-sourced forest-based biomass for
electricity generation. FINAL REPORT. Revision C. Alberta: Pembina Institute.
Kenny, P., & Flynn, K. J. (2017). Physiology limits commercially viable
photoautotrophicproduction of microalgal biofuels. Journal of Applied Phycology, 1-15.
doi:10.1007/s10811-017-1214-3
Kenyon, K. E. (2007). Upwelling by a Wave Pump. Journal of Oceanography, 63(2), 327-331.
Retrieved from https://ci.nii.ac.jp/naid/10018879442
Kering, M. K., Butler, T. J., Biermacher, J. T., & Guretzky, J. A. (2012). Biomass Yield and
Nutrient Removal Rates of Perennial Grasses under Nitrogen Fertilization. BioEnergy
Research, 5(1), 61-70. doi:10.1007/s12155-011-9167-x
Kern, F., Gaede, J., Meadowcroft, J., & Watson, J. (2016). The political economy of carbon
capture and storage: An analysis of two demonstration projects. Technological
Forecasting and Social Change, 102, 250-260. doi:https://doi.org/10.1016/
j.techfore.2015.09.010
Kern, J., Giani, L., Teixeira, W., Lanza, G., & Glaser, B. (2019). What can we learn from ancient
fertile anthropic soil (Amazonian Dark Earths, shell mounds, Plaggen soil) for soil carbon
sequestration? CATENA, 172, 104-112. doi:https://doi.org/10.1016/j.catena.2018.08.008
Kern, J. D., Hise, A. M., Characklis, G. W., Gerlach, R., Viamajala, S., & Gardner, R. D. (2017).
Using life cycle assessment and techno-economic analysis in a real options framework
to inform the design of algal biofuel production facilities. Bioresource Technology, 225,
418-428. doi:https://doi.org/10.1016/j.biortech.2016.11.116
Kerré, B., Hernandez-Soriano, M. C., & Smolders, E. (2016). Partitioning of carbon sources
among functional pools to investigate short-term priming effects of biochar in soil: A 13C
study. Science of The Total Environment, 547, 30 - 38. doi:10.1016/
j.scitotenv.2015.12.107
Kerrison, P. D., et al. (2015). The cultivation of European kelp for bioenergy: Site and species
selection. Biomass Bioenergy, 80, 229-242.
Kerschner, S., et al. . (2021 ). How US environmental laws and regulations affect
carbon capture and storage Retrieved from https://www.lexology.com/library/detail.aspx?
g=2b12ab2c-c5b1-4437-943b-5ba8e0e47a66
Keshavarz Afshar, R., Hashemi, M., DaCosta, M., Spargo, J., & Sadeghpour, A. (2016). Biochar
Application and Drought Stress Effects on Physiological Characteristics of Silybum
Marianum. Communications in Soil Science and Plant Analysis, 47(6), 743 - 752.
doi:10.1080/00103624.2016.1146752
Kettunen, R., & Saarnio, S. (2013). Biochar can Restrict N2O emissions and the risk of nitrogen
leaching from an agricultural soil during the freeze-thaw period. In Agriculture and Food
Science.
Key, R., & Moesler, F. (20121). Point of View: Boosting Oklahoma's economy through
investments in CO2 removal. The Oklahoman. Retrieved from https://oklahoman.com/
article/5668050/point-of-view-boosting-oklahomas-economy-through-investments-in-co2-
removal
Keyser, P. D. (2015). Project Title Enhancing the Sustainability of Integrated Biofuel Feedstock
Production Systems. Retrieved from http://sungrant.tennessee.edu/NR/rdonlyres/
56CE70EF-88F0-44C1-A3DF-E4E0123F790D/4331/KeyserFinalReport.pdf
Keyßer, L. T., & Lenzen, M. (2021). 1.5°C degrowth scenarios suggest the need for new
mitigation pathways. Nature Communications, 12(1), 2676. doi:10.1038/
s41467-021-22884-9
Khademalrasoul, A., Naveed, M., Heckrath, G., Kumari, K. G. I. D., Jonge, L. W. d., Elsgaard,
L., . . . Iversen, B. V. (2014). Biochar Effects on Soil Aggregate Properties Under No-Till
Maize. Soil Science, 179(6), 273 - 283. doi:10.1097/ss.0000000000000069
Khairnar, K. (2015). Effect of different organic amendments on soil quality, vines growth, grape
production and wine quality of mechanically pruned vineyards. Technical University of
Lisbon, Retrieved from https://www.repository.utl.pt/handle/10400.5/8632
Khalid, F. N. M., & Klarup, D. (2015). The influence of sunlight and oxidative treatment on
measured PAH concentrations in biochar. Environmental Science and Pollution
Research, 22(17), 12975-12981. doi:10.1007/s11356-015-4469-8
Khalidy, R., & Santos, R. M. (2021). The fate of atmospheric carbon sequestrated through
weathering in mine tailings. Minerals Engineering, 163, 106767. doi:https://doi.org/
10.1016/j.mineng.2020.106767
Khalifa, N., & Yousef, L. F. (2015). A Short Report on Changes of Quality Indicators for a Sandy
Textured Soil after Treatment with Biochar Produced from Fronds of Date Palm. Energy
Procedia, 74, 960 - 965. doi:10.1016/j.egypro.2015.07.729
Khalilibad, M. R. (2008). Characterization of the Hellesheidi-Threngsli CO2 Sequestration Target
Aquifer by Tracer Testing. (MSc Thesis).
Khalilibad, M. R., Axelsson, G., & Gislason, S. R. (2008). Aquifer characterization with tracer
test technique; permanent CO2 sequestration into basalt, SW Iceland. Mineralogical
Magazine, 72(1), 121-125.
Khallaghi, N., Jeswani, H., Hanak, D. P., & Manovic, V. (2021). Techno-economic-environmental
assessment of biomass oxy-gasification staged oxy-combustion for negative emission
combined heat and power. Applied Thermal Engineering, 117254. doi:https://doi.org/
10.1016/j.applthermaleng.2021.117254
Khan, A. (2015). Biochar Substrate for Hydroponic Vegetable Production. In Biochar:
Production, Characterization, and Applications.
Khan, A., Mirza, M., Fahlman, B., Rybchuk, R., Yang, J., Harfield, D., & Anyia, A. O. (2015).
Mapping Thermomechanical Pulp Sludge (TMPS) Biochar Characteristics for
Greenhouse Produce Safety. Journal of Agricultural and Food Chemistry, 63(5),
1648-1657. doi:10.1021/jf502556t
Khan, A., Rashid, A., & Younas, R. (2015). Adsorption of Reactive Black-5 by Pine Needles
Biochar Produced Via Catalytic and Non-catalytic Pyrolysis. Arabian Journal for Science
and Engineering, 40(5), 1269-1278. doi:10.1007/s13369-015-1601-5
Khan, K., Chowdhury, M., & Huq, S. I. (2016). Effects of biochar on the fate of the heavy metals
Cd, Cu, Pb and Zn in soil. Bangladesh Journal of Scientific Research, 28(1), 17.
doi:10.3329/bjsr.v28i1.26240
Khan, M. Y., Mangrich, A. S., Schultz, J., Grasel, F. S., Mattoso, N., & Mosca, D. H. (2015).
Green chemistry preparation of superparamagnetic nanoparticles containing Fe3O4
cores in biochar. Journal of Analytical and Applied Pyrolysis, 116, 42 - 48. doi:10.1016/
j.jaap.2015.10.008
Khan, N., et al. (2013). Effect of integrated use of biochar, FYM and nitrogen fertilizer on soil
organic fertility. Pure Applied Biology, 2(2), 42-47. Retrieved from http://www.thepab.org/
Docs/2013/june/PAB-MS-13006.pdf
Khan, N., et al. (2014). Maturity indices in co-composting of chicken manure and sawdust with
biochar. Bioresource Technology, 168, 245-251. Retrieved from http://
www.sciencedirect.com/science/article/pii/S0960852414002946
Khan, N., et al. (2015). Physical and chemical properties of biochars co-composted with
biowastes and incubated with a chicken litter compost. Chemosphere, 142, 14-23.
doi:10.1016/j.chemosphere.2015.05.065
Khan, N., et al. (2016). Development of a buried bag technique to study biochars incorporated in
a compost or composting medium. Journal of Soils and Sediments, 17(3), 656-664.
doi:10.1007/s11368-016-1359-8
Khan, N., & Shea, S. (2013). Turf Root Enhancement by Amendment of Jandakot Sands of
Western Australia with Different Rates of Biochar. Journal of Biobased Materials and
Bioenergy, 7, 1-9. Retrieved from https://www.researchgate.net/publication/
251880768_Turf_Root_Enhancement_by_Amendment_of_Jandakot_Sands_of_Wester
n_Australia_with_Different_Rates_of_Biochar
Khan, S., et al. . (2014). Application of biochar to soil reduces cancer risk via rice consumption:
A case study in Miaoqian village, Longyan, China. Environment International, 68, 154–
161. Retrieved from http://www.sciencedirect.com/science/article/pii/
S0160412014000907
Khan, S., et al. (2015). The influence of various biochars on the bioaccessibility and
bioaccumulation of PAHs and potentially toxic elements to turnips (Brassica rapa L.).
Journal of Hazardous Materials, 300, 243 - 253. doi:10.1016/j.jhazmat.2015.06.050
Khan, S., Chao, C., Waqas, M., Arp, H. P. H., & Zhu, Y.-G. (2013). Sewage Sludge Biochar
Influence upon Rice (Oryza sativa L) Yield, Metal Bioaccumulation and Greenhouse Gas
Emissions from Acidic Paddy Soil. Environmental Science & Technology, 47(15),
8624-8632. doi:10.1021/es400554x
Khan, S., Hwang, J., Horn, Y.-S., & Varanasi, K. K. (2021). Catalyst-proximal plastrons enhance
activity and selectivity of carbon dioxide electroreduction. Cell Reports Physical Science,
100318. doi:https://doi.org/10.1016/j.xcrp.2020.100318
Khan, S., Wang, N., Reid, B. J., Freddo, A., & Cai, C. (2013). Reduced bioaccumulation of PAHs
by Lactuca satuva L. grown in contaminated soil amended with sewage sludge and
sewage sludge derived biochar. Environmental Pollution, 175C, 64-68. Retrieved from
https://www.ncbi.nlm.nih.gov/pubmed/23337353
Khan, S., Wani, O. B., Shoaib, M., Forster, J., Sodhi, R. N., Boucher, D., & Bobicki, E. R. (2021).
Mineral carbonation for serpentine mitigation in nickel processing: a step towards
industrial carbon capture and storage. Faraday Discussions, 230(0), 172-186.
doi:10.1039/D1FD00006C
Khan, T., & Huq, S. M. I. (2014). Effect of Biochar on the Abundance of Soil Bacteria. British
Microbiology Research Journal, 4(8), 896 - 904. doi:10.9734/bmrj/2014/9334
Khan, T. F., & Ahmed, M. M. H., Shah Muhammad Imamul. (2014). Effects of Biochar on the
Abundance of Three Agriculturally Important Soil Bacteria. Journal of Agricultural
Chemistry and Environment, 3, 31-39. Retrieved from http://file.scirp.org/pdf/
JACEN_2014052010550548.pdf
Khan, T. F., & Huq, S. M. I. (2015). Effect of Biochar on the Abundance of Soil Bacteria. British
Microbiology Research Journal, 4(8), 896-904. Retrieved from http://
imsear.li.mahidol.ac.th/jspui/handle/123456789/163224
Khanday, M. U. D., et al. (2018). Quantifying the Stock of Soil Carbon Sequestration in Different
Land Uses: An Overview. International Journal of Current Microbiology and Applied
Sciences, 6(4), 382-392. Retrieved from https://www.ijcmas.com/abstractview.php?
ID=1932&vol=6-4-2017&SNo=43
Khanmohammadi, Z., Afyuni, M., & Mosaddeghi, M. R. (2015). Effect of pyrolysis temperature
on chemical and physical properties of sewage sludge biochar. Environmental Sciences,
33(3), 275-283. Retrieved from http://wmr.sagepub.com/content/early/
2015/01/16/0734242X14565210.abstract
Khare, P., et al. (2013). Plant refuses driven biochar: Application as metal adsorbent from acidic
solutions. Arabian Journal of Chemistry, 10, 1-10. Retrieved from http://
www.sciencedirect.com/science/article/pii/S1878535213004176
Khatab, O. H., Nasib, M. A. A., Ghoneimy, E. A., Abo-Elnasr, A. A., Hassan, H. A. A., Hassan, M.
Y. A., & Attitalla, I. H. (2015). Role of microorganisms in our life's as ecofriendly and
replacement for chemical methods. International Journal of Pharmacy and Life Sciences.
Retrieved from http://www.cabdirect.org/abstracts/
20153103111.html;jsessionid=E22E1A897FB8B33ABAD5B824AA78992E
Kheirfam, H. (2019). Increasing soil potential for carbon sequestration using microbes from
biological soil crusts. Journal of Arid Environments, 104022. doi:https://doi.org/10.1016/
j.jaridenv.2019.104022
Kheshgi, H., Prince, R. C., & Marland, G. (2000). The Potential of Biomass Fuels in the Context
of Global Climate Change: Focus on Transportation Fuels. Annual Review of Energy and
the Environment, 25, 199-244. Retrieved from http://www.annualreviews.org/doi/abs/
10.1146/annurev.energy.25.1.199
Kheshgi, H. S. (1995). Sequestering atmospheric carbon dioxide by increasing ocean alkalinity.
Energy, 20(9), 915-922. doi:http://dx.doi.org/10.1016/0360-5442(95)00035-F
Khoo, H. H., & Tan, R. B. H. (2006). Life Cycle Investigation of CO2 Recovery and
Sequestration. Environmental Science & Technology, 40(12), 4016-4024. doi:10.1021/
es051882a
Khoo, Z.-Y., Ho, E. H. Z., Li, Y., Yeo, Z., Low, J. S. C., Bu, J., & Chia, L. S. O. (2020). Life cycle
assessment of a CO2 mineralisation technology for carbon capture and utilisation in
Singapore. Journal of CO2 Utilization, 101378. doi:https://doi.org/10.1016/
j.jcou.2020.101378
Khor, K. H., & Lim, K. O. (2006). Carbonisation of Oil Palm Fronds. International Energy
Journal, 7(4), 239-243. Retrieved from http://www.rericjournal.ait.ac.th/index.php/reric/
article/view/50/36
Khor, K. H., & Lim, K. O. (2008). Slow Pyrolysis of Oil Palm Empty Fruit Bunches. International
Energy Journal, 9(3), 181-188. Retrieved from http://www.rericjournal.ait.ac.th/index.php/
reric/article/view/484/301
Khor, K. H., Lim, K. O., & Zainal Alimuddin, Z. A. (2010). Laboratory-scale Pyrolysis of Oil Palm
Trunks. Energy Sources, Part A: Recovery, Utilization, and Environmental Effects, 32(6),
518-531. Retrieved from http://www.tandfonline.com/doi/pdf/
10.1080/15567030802612374?needAccess=true
Khor, K. H., Lim, K. O., & Zainal, Z. A. (2009). Characterization of Bio-Oil: A By-Product from
Slow Pyrolysis of Oil Palm Empty Fruit Bunches. American Journal of Applied Sciences,
6, 1647-1652. Retrieved from http://www.scipub.org/scipub/ab_issue.php?
pg_no=1647-1652&j_id=ajas&art_no=1000035&issue_no=217
Khor, K. H., Lim, K. O., Zainal, Z. A., & Mah, K. F. (2008). Small Industrial Scale Pyrolysis of Oil
Palm Shells and Characterizations of their Products. International Energy Journal, 9(4),
251-258. Retrieved from http://www.rericjournal.ait.ac.th/index.php/reric/article/view/532
Khorram, M. S., Wang, Y., Jin, X., Fang, H., & Yu, Y. (2015). Reduced mobility of fomesafen
through enhanced adsorption in biochar amended soil. Environmental Toxicology and
Chemistry, 34(6), 1258-1266. doi:10.1002/etc.2946
Khorshidi, Z., et al. (2014). The impact of biomass quality and quantity on the performance and
economics of co-firing plants with and without CO2 capture. International Journal of
Greenhouse Gas Control, 21, 191-202. Retrieved from https://www.researchgate.net/
publication/
259578661_The_impact_of_biomass_quality_and_quantity_on_the_performance_and_
economics_of_co-firing_plants_with_and_without_CO2_capture
Khraisheh, M., Mukherjee, S., Kumar, A., Al Momani, F., Walker, G., & Zaworotko, M. J. (2020).
An overview on trace CO2 removal by advanced physisorbent materials. Journal of
Environmental Management, 255, 109874. doi:https://doi.org/10.1016/
j.jenvman.2019.109874
Khrennikova, D., et al. (2021). Russia Wants to Use a Forest Bigger Than India to Offset
Carbon. Bloomberg Green. Retrieved from https://www.bloomberg.com/news/articles/
2021-03-23/russia-wants-to-use-a-forest-bigger-than-india-to-offset-carbon
Khura, T., Sundaram, P. K., Lande, S. D., Kushwaha, H. L., & Chandra, R. A. M. (2015). Biochar
for Climate Change Mitigation and Ameliorating Soil Health—A Review. Journal of
AgriSearch, 2(1), 1-6. Retrieved from https://www.jsure.org.in/journal/index.php/jas/
article/view/120
Kidgell, J. T., et al. . (2014). Bioremediation of a Complex Industrial Effluent by Biosorbents
Derived from Freshwater Macroalgae. Plos One, 9(6), 1-9. Retrieved from http://
www.plosone.org/article/info%3Adoi%2F10.1371%2Fjournal.pone.0094706
Kidgell, J. T., et al.. (2014). The Sequential Application of Macroalgal Biosorbents for the
Bioremediation of a Complex Industrial Effluent. Plos One, 9(7), e101309. doi:10.1371/
journal.pone.0101309.s004
Killeen, T. J., Schroth, G., Turner, W., Harvey, C. A., Steininger, M. K., Dragisic, C., &
Mittermeier, R. A. (2011). Stabilizing the agricultural frontier: Leveraging REDD with
biofuels for sustainable development. Biomass and Bioenergy, 35(12), 4815-4823.
doi:http://dx.doi.org/10.1016/j.biombioe.2011.06.027
Kim, B.-R., Shin, W.-S., & Kim, Y.-K. (2015). Biochar Cr6+ As3+
(Adsorption Characteristics of Cr6+ and As3+ Using Seaweed Biochar). In.
Kim, C., et al. (2018). Efficient CO2 Utilization via a Hybrid Na-CO2 System Based on CO2
Dissolution. IScience, 9, 278-285. Retrieved from https://www.cell.com/iscience/pdf/
S2589-0042(18)30186-X.pdf
Kim, D., Anderson, Nathaniel!M. L., & Chung, W. (2014). Financial performance of a mobile
pyrolysis system used to produce biochar from sawmill residues. Forest Products
Journal, 65(6), 189-197. doi:10.13073/fpj-d-14-00052
Kim, D., Kley, C. S., Li, Y., & Yang, P. (2017). Copper nanoparticle ensembles for selective
electroreduction of CO2 to C2–C3 products. Proceedings of the National Academy of
Sciences. doi:10.1073/pnas.1711493114
Kim, D., Yoshikawa, K., & Park, K. (2015). Characteristics of Biochar Obtained by Hydrothermal
Carbonization of Cellulose for Renewable Energy. Energies, 8(12), 14040 - 14048.
doi:10.3390/en81212412
Kim, D.-G., Kirschbaum, M. U. F., & Beedy, T. L. (2016). Carbon sequestration and net
emissions of CH4 and N2O under agroforestry: Synthesizing available data and
suggestions for future studies. Agriculture, Ecosystems & Environment, 226, 65-78.
doi:https://doi.org/10.1016/j.agee.2016.04.011
Kim, D.-G. J. A. S. (2012). Estimation of net gain of soil carbon in a nitrogen-fixing tree and crop
intercropping system in sub-Saharan Africa: results from re-examining a study. 86(2),
175-184. doi:10.1007/s10457-011-9477-1
Kim, E., Gil, H., Park, S., & Park, J. (2015). Bio-oil production from pyrolysis of waste sawdust
with catalyst ZSM-5. Journal of Material Cycles and Waste Management, 19(1),
423-431. doi:10.1007/s10163-015-0438-z
Kim, G., Choi, S.-K., & Seok, J. H. (2020). Does Biomass Energy Consumption Reduce Total
Energy CO2 Emissions in the U.S.? Journal of Policy Modeling. doi:https://doi.org/
10.1016/j.jpolmod.2020.02.009
Kim, H., & Lee, K. S. (2016). Design guidance for an energy-thrift absorption process for carbon
capture: Analysis of thermal energy consumption for a conventional process
configuration. International Journal of Greenhouse Gas Control, 47, 291-302. doi:http://
dx.doi.org/10.1016/j.ijggc.2016.02.003
Kim, H.-J., et al. (2014). Effect of Biochar bead on Adsorption of Heavy Metals.
(Korea Journal of fertilizers), 47(5), 351-355. Retrieved from http://
www.dbpia.co.kr/Journal/ArticleDetail/3524198
Kim, H.-S., et al. . (2015). Effect of biochar on heavy metal immobilization and uptake by lettuce
(Lactuca sativa L.) in agricultural soil. Environmental Earth Sciences, 74(2), 1249-1259.
doi:10.1007/s12665-015-4116-1
Kim, H.-S., et al. . (2015). Effect of biochar on reclaimed tidal land soil properties and maize
(Zea mays L.) response. Chemosphere, 142, 153-159. doi:10.1016/
j.chemosphere.2015.06.041
Kim, H. S., et al. (2015). Examination of Three Different Organic Waste Biochars as Soil
Amendment for Metal-Contaminated Agricultural Soils. Water, Air, & Soil Pollution,
226(9), 282. doi:10.1007/s11270-015-2556-6
Kim, I. J., Kim, R.-Y., Kim, J. I., Kim, H. S., Noh, H.-J., Kim, T. S., . . . Jung, H.-S. (2015).
Feasibility Study of Different Biochars as Adsorbent for Cadmium and Lead. Journal of
Fertilizers Korea, 48(5), 332-339. Retrieved from http://www.dbpia.co.kr/Journal/
PDFViewNew?id=NODE06539226&prevPathCode=&_referer=http://www.dbpia.co.kr/
Journal/articledetail/NODE06539226
Kim, J. (2015). Integrated adsorption, oxidation and biodegradation for treating emerging
contaminants in wastewater and water. University of Hawaii, Retrieved from http://
scholarspace.manoa.hawaii.edu/handle/10125/101099
Kim, J., Sparovek, G., Longo, R. M., De Melo, W. J., & Crowley, D. (2007). Bacterial Diversity of
Terra Preta and Pristine Forest Soil from the Western Amazon. Soil Biology &
Biochemistry, 39((2), 684-690.
Kim, J., Yoo, G., Kim, D., Ding, W., & Kang, H. (2017). Combined application of biochar and
slow-release fertilizer reduces methane emission but enhances rice yield by different
mechanisms. Applied Soil Ecology, 117, 57-62. doi:http://dx.doi.org/10.1016/
j.apsoil.2017.05.006
Kim, J. H., Ok, Y. S., Choi, G.-H., & Park, B.-J. (2015). Residual perfluorochemicals in the
biochar from sewage sludge. Chemosphere, 134, 435 - 437. doi:10.1016/
j.chemosphere.2015.05.012
Kim, K. H., et al. (2012). Influence of pyrolysis temperature on physicochemical properties of
biochar obtained from the fast pyrolysis of pitch pine (Pinus rigida). Bioresource
Technology, 118, 158-162. Retrieved from https://www.ncbi.nlm.nih.gov/pubmed/
22705519
Kim, M., Lee, Y., Park, J., Ryu, C., & Ohm, T.-I. (2016). Partial oxidation of sewage sludge
briquettes in a updraft fixed bed. Waste Management, 49, 204 - 211. doi:10.1016/
j.wasman.2016.01.040
Kim, M., Won, W., & Kim, J. (2017). Integration of carbon capture and sequestration and
renewable resource technologies for sustainable energy supply in the transportation
sector. Energy Conversion and Management, 143, 227-240. doi:https://doi.org/10.1016/
j.enconman.2017.04.010
Kim, M. K., Baldini, L., Leibundgut, H., Wurzbacher, J. A., & Piatkowski, N. (2015). A novel
ventilation strategy with CO2 capture device and energy saving in buildings. Energy and
Buildings, 87(Supplement C), 134-141. doi:https://doi.org/10.1016/j.enbuild.2014.11.017
Kim, M.-S., Min, H.-G., Koo, N., Park, J., Lee, S.-H., Bak, G.-I., & Kim, J.-G. (2014). The
effectiveness of spent coffee grounds and its biochar on the amelioration of heavy
metals-contaminated water and soil using chemical and biological assessments. Journal
of Environmental Management, 146, 124 - 130. doi:10.1016/j.jenvman.2014.07.001
Kim, P., Hensley, D., & Labbé, N. (2014). Nutrient release from switchgrass-derived biochar
pellets embedded with fertilizers. Geoderma, 232-234, 341-351. Retrieved from http://
www.sciencedirect.com/science/article/pii/S0016706114002225
Kim, S., Agblevor, F. A., & Lim, J. (2009). Fast pyrolysis of chicken litter and turkey litter in a
fluidized bed reactor. Journal of Industrial and Engineering Chemistry, 15(2), 247-252.
Kim, S., & Dale, B. E. (2005). Life cycle assessment of various cropping systems utilized for
producing biofuels: Bioethanol and biodiesel. Biomass and Bioenergy, 29(6), 426-439.
doi:https://doi.org/10.1016/j.biombioe.2005.06.004
Kim, S. W., Kaplan, L. A., Benner, R., & Hatcher, P. G. (2004). Hydrogen-deficient molecules in
natural riverine water samples - evidence for the existence of black carbon in DOM.
Marine Chemistry, 92(1-4), 225-234.
Kim, W. I., Kunhikrishnan, A., Go, W. R., Jeong, S. H., & Kim, G. J. (2015). Open Access ;
Influence of Various Biochars on the Survival, Growth, and Oxidative DNA Damage in
the Earthworm Eisenia Fetida. (Korea Journal of Environmental
Agriculture). Retrieved from http://www.papersearch.net/view/detail.asp?
detail_key=09202729
Kim, W.-K., Shim, T., Kim, Y.-S., Hyun, S., Ryu, C., Park, Y.-K., & Jung, J. (2013).
Characterization of cadmium removal from aqueous solution by biochar produced from a
giant Miscanthus at different pyrolytic temperatures. Bioresource Technology, 138,
266-270. Retrieved from http://www.sciencedirect.com/science/article/pii/
S0960852413005907
Kim, Y., Lim, S.-R., Jung, K. A., & Park, J. M. (2019). Process-based life cycle CO2 assessment
of an ammonia-based carbon capture and storage system. Journal of Industrial and
Engineering Chemistry, 76, 223-232. doi:https://doi.org/10.1016/j.jiec.2019.03.044
Kim, Y. J., Park, H., Kim, M. H., Seo, S., Ok, Y. S., & Yoo, G. (2016). GWP (Global Warming
Potential) [GWP (Global Warming
Potential) visible night and bio-char soil analysis considering the effect of lead removal].
(Journal of Korean Society of Environmental Engineers). Retrieved from
http://www.papersearch.net/view/detail.asp?detail_key=04714126
Kimani, A. (2021). Carbon Capture Could Dramatically Improve The LNG Outlook. Retrieved
from https://oilprice.com/Energy/Natural-Gas/Carbon-Capture-Could-Dramatically-
Improve-The-LNG-Outlook.html
Kimbrough, L. (2021). How to pick a tree-planting project? Mongabay launches transparency
tool to help supporters decide. Mongabay. Retrieved from https://news.mongabay.com/
2021/05/how-to-pick-a-tree-planting-project-mongabay-launches-transparency-tool-to-
help-potential-supporters-decide/?
utm_source=Mongabay+Newsletter&utm_campaign=11b925d27a-
Newsletter_2020_04_30_COPY_01&utm_medium=email&utm_term=0_940652e1f4-11b
925d27a-77159097&mc_cid=11b925d27a&mc_eid=ceaae677fe
Kimetu, J., et al. (2008). Reversibility of Soil Productivity Decline with Organic Matter of Differing
Quality Along a Degradation Gradient. Ecosystems, 11, 726-739. Retrieved from https://
link.springer.com/article/10.1007/s10021-008-9154-z
Kimetu, J. M., Hill, J. M., Husein, M., Bergerson, J., & Layzell, D. B. (2014). Using activated
biochar for greenhouse gas mitigation and industrial water treatment. Mitigation and
Adaptation Strategies for Global Change, 21(5), 761-777. doi:10.1007/
s11027-014-9625-9
Kimetu, J. M., & Lehmann, J. (2010). Stability and stabilisation of biochar and green manure in
soil with different organic carbon contents. Australian Journal of Soil Research, 48,
577-585.
Kimura, K., Hachinohe, M., Klasson, K. T., Hamamatsu, S., Hagiwara, S., Todoriki, S., &
Kawamoto, S. (2014). Removal of Radioactive Cesium (134Cs plus 137Cs) from Low-
Level Contaminated Water by Charcoal and Broiler Litter Biochar. Food Science and
Technology Research, 20(6), 1183 - 1189. doi:10.3136/fstr.20.1183
Kindermann, G., Obersteiner, M., Sohngen, B., Sathaye, J., Andrasko, K., Rametsteiner, E., . . .
Beach, R. (2008). Global cost estimates of reducing carbon emissions through avoided
deforestation. Proceedings of the National Academy of Sciences, 105(30), 10302-10307.
doi:10.1073/pnas.0710616105
King, G. M. (2011). Enhancing soil carbon storage for carbon remediation: potential
contributions and constraints by microbes. Trends in Microbiology, 19(2), 75-84.
doi:http://dx.doi.org/10.1016/j.tim.2010.11.006
King, J. S., Ceulemans, R., Albaugh, J. M., Dillen, S. Y., Domec, J.-C., Fichot, R., . . . Zenone, T.
(2013). The Challenge of Lignocellulosic Bioenergy in a Water-Limited World.
BioScience, 63(2), 102-117. doi:10.1525/bio.2013.63.2.6
King, R., & Parnell, R. (2020). Stopping climate change could cost less than fighting covid-19.
Washington Post. Retrieved from https://www.washingtonpost.com/outlook/climate-
change-intervention-cost/2020/09/17/c6715db6-
f784-11ea-89e3-4b9efa36dc64_story.html
Kingdom), N. E. R. C. U. (2019). Greenhouse Gas Removal Demonstrators: Directorate Hub.
Retrieved from https://nerc.ukri.org/research/funded/programmes/ggrd/
Kinney, T. J., et al. (2012). Hydrologic properties of biochars produced at different temperatures.
Biomass and Bioenergy, 41, 34 - 43.
Kintisch, E. (2014). Can Sucking CO2 Out of the Atmosphere Really Work? MIT Technology
Review. Retrieved from https://www.technologyreview.com/s/531346/can-sucking-co2-
out-of-the-atmosphere-really-work/
Kinyangi, J., et al. . (2006). Nanoscale Biogeocomplexity of the Organo-Mineral Assemblage in
Soil: Application of STXM Microscopy and C 1s-NEXAFS Spectroscopy. Soil Science
Society of America Journal, 70(5), 1708-1718. Retrieved from https://
dl.sciencesocieties.org/publications/sssaj/abstracts/70/5/1708
Kiran, B., Kumar, R., & Deshmukh, D. (2014). Perspectives of microalgal biofuels as a
renewable source of energy. Energy Conversion and Management, 88, 1228-1244.
doi:https://doi.org/10.1016/j.enconman.2014.06.022
Kiran, G. A. R. (2015). CFD Modeling and Simulations of Catalytic Hydrotreatment of Bio-Oil.
Indian Institute of Technology Guwahati, Retrieved from http://gyan.iitg.ernet.in/handle/
123456789/629?show=full
Kırbıyık, Ç., Pütün, A. E., & Pütün, E. (2015). Comparative studies on adsorptive removal of
heavy metal ions by biosorbent, bio-char and activated carbon obtained from low cost
agro residue. In.
Kirchner, J. S., Berry, A., Ohnemüller, F., Schnetger, B., Erich, E., Brumsack, H.-J., & Lettmann,
K. A. (2020). Reducing CO2 Emissions of a Coal-Fired Power Plant via Accelerated
Weathering of Limestone: Carbon Capture Efficiency and Environmental Safety.
Environmental Science & Technology. doi:10.1021/acs.est.9b07009
Kirchofer, A., et al. (2012). Impact of alkalinity sources on the life-cycle energy efficiency of
mineral carbonation technologies. Energy & Environmental Science, 5, 8631-8641.
Retrieved from http://pubs.rsc.org/en/content/articlehtml/2012/ee/c2ee22180b
Kirchofer, A., et al. (2013). CO2 Mitigation Potential of Mineral Carbonation with Industrial
Alkalinity Sources in the United States. Environmental Science and Technology, 47,
7548-7554. Retrieved from http://pubs.acs.org/doi/pdf/10.1021/es4003982
Kirkby, C. A., Richardson, A. E., Wade, L. J., Batten, G. D., Blanchard, C., & Kirkegaard, J. A.
(2013). Carbon-nutrient stoichiometry to increase soil carbon sequestration. Soil Biology
and Biochemistry, 60, 77-86. doi:https://doi.org/10.1016/j.soilbio.2013.01.011
Kirrolia, A., Bishnoi, N. R., & Singh, R. (2013). Microalgae as a boon for sustainable energy
production and its future research & development aspects. Renewable and Sustainable
Energy Reviews, 20, 642-656. doi:https://doi.org/10.1016/j.rser.2012.12.003
Kirschbaum, M. U. F., Whitehead, D., Dean, S. M., Beets, P. N., Shepherd, J. D., & Ausseil, A.
G. E. (2011). Implications of albedo changes following afforestation on the benefits of
forests as carbon sinks. Biogeosciences, 8(12), 3687-3696. doi:10.5194/bg-8-3687-2011
Kiser, L. C., & Fox, T. R. (2013). Short-rotation Wood Crop Biomass Production for Bioenergy. In
B. P. Singh (Ed.), Biofuel Crop Sustainability (pp. 205-237).
Kishimoto, M., Okakura, T., Nagashima, H., Minowa, T., Yokoyama, S.-Y., & Yamaberi, K.
(1994). CO2 fixation and oil production using micro-algae. Journal of Fermentation and
Bioengineering, 78(6), 479-482. doi:https://doi.org/10.1016/0922-338X(94)90052-3
Kite-Powell, H., Buesseler, K. O., & Doney, S. C. (2008). To Fertilize, or Not to Fertilize.
Oceanus, 46(1). Retrieved from http://www.whoi.edu/oceanus/viewArticle.do?id=37026
Kittredge, J. (2020). Soil Carbon Restoration: Can Biology do the Job? Part One. Future
Directions International. Retrieved from http://www.futuredirections.org.au/publication/
soil-carbon-restoration-can-biology-do-the-job-part-one/
Kittredge, J. (2020). Soil Carbon Restoration: Can Biology do the Job? Part Three. Future
Directions International. Retrieved from http://www.futuredirections.org.au/publication/
soil-carbon-restoration-can-biology-do-the-job-part-three/
Kittredge, J. (2020). Soil Carbon Restoration: Can Biology do the Job? Part Two. Future
Directions International. Retrieved from http://www.futuredirections.org.au/publication/
soil-carbon-restoration-can-biology-do-the-job-part-two/
Kizha, A. R., & Han, H.-s. (2015). Cost and productivity for processing and sorting forest
residues. Paper presented at the 2015 Council on Forest Engineering Annual Meeting.
http://www.researchgate.net/profile/Anil_Raj_Kizha2/publication/
281452862_Cost_and_productivity_for_processing_and_sorting_forest_residues/links/
55e8791f08ae21d099c179b4.pdf
Kizito, S., Wu, S., Kipkemoi Kirui, W., Lei, M., Lu, Q., Bah, H., & Dong, R. (2014). Evaluation of
slow pyrolyzed wood and rice husks biochar for adsorption of ammonium nitrogen from
piggery manure anaerobic digestate slurry. Science of The Total Environment, 505, 102 -
112. doi:10.1016/j.scitotenv.2014.09.096
Klasson, K. T., Ledbetter, C. A., Wartelle, L. H., & Lingle, S. E. (2010). Feasibility of
dibromochloropropane (DBCP) and trichloroethylene (TCE) adsorption onto activated
carbons made from nut shells of different almond varieties. Industrial Crops and
Products, 31, 261-265. Retrieved from https://www.ars.usda.gov/research/publications/
publication/?seqNo115=244132
Klasson, K. T., Lima, I. M., & Boihem, J., L. L. (2009). Poultry manure as raw material for
mercury adsorbents in gas applications. Journal of Applied Poultry Research, 18(3),
562-569. Retrieved from https://academic.oup.com/japr/article/18/3/562/879801/Poultry-
manure-as-raw-material-for-mercury
Klasson, K. T., Lima, I. M., Boihem, J., L. L., & Wartelle, L. H. (2010). Feasibility of mercury
removal from simulated flue gas by activated chars made from poultry manures. Journal
of Environmental Management, 91(12), 2466-2470. Retrieved from https://
www.ncbi.nlm.nih.gov/pubmed/20678859
Klasson, K. T., Wartelle, L. H., Lima, I. M., Marshall, W. E., & Akin, D. E. (2009). Activated
carbons from flax shive and cotton gin waste as environmental adsorbents for the
chlorinated hydrocarbon trichloroethylene. Bioresource Technology, 100(21), 5045-5050.
Retrieved from http://www.sciencedirect.com/science/article/pii/S0960852409005896
Klasson, K. T., Wartelle, L. H., Rodgers III, J. E., & Lima, I. M. (2009). Copper (II) adsorption by
activated carbons from pecan shells: Effect of oxygen level during activation. Industrial
Crops and Products, 30(1), 72-77. Retrieved from http://www.sciencedirect.com/science/
article/pii/S0926669009000235
Kleber, M., Hockaday, W., & Nico, P. S. (2015). Characteristics ofbiochar: macro-molecular
properties. In Biochar for Environmental Management: Science and Technology and
Implementation.
Klein, D., Bauer, N., Bodirsky, B., Dietrich, J. P., & Popp, A. (2011). Bio-IGCC with CCS as a
long-term mitigation option in a coupled energy-system and land-use model. Energy
Procedia, 4, 2933-2940. doi:http://dx.doi.org/10.1016/j.egypro.2011.02.201
Klein, D., Luderer, G., & Kriegler, E. (2014). The value of bioenergy in low stabilization
scenarios: An assessment using REMIND-MAgPIE. Climatic Change, 123(3-4), 705-718.
Retrieved from https://www.researchgate.net/publication/
259637129_The_value_of_bioenergy_in_low_stabilization_scenarios_An_assessment_
using_REMIND-MAgPIE
Klein, D. e. a. (2014). The global economic long-term potential of modern biomass in a climate-
constrained world. Environmental Research Letters, 9(7), 1-11. Retrieved from http://
stacks.iop.org/1748-9326/9/i=7/a=074017
Klein, F., & Garrido, C. J. (2011). Thermodynamic constraints on mineral carbonation of
serpentinized peridotite. Lithos, 126(3), 147-160. doi:https://doi.org/10.1016/
j.lithos.2011.07.020
Klein, J. (2020). In the quest for carbon offsets, (almost) anything goes. Greenbiz101. Retrieved
from https://www.greenbiz.com/article/quest-carbon-offsets-almost-anything-goes
Klement, J., Rootzén, J., Normann, F., & Johnsson, F. (2021). Supply Chain Driven
Commercialisation of Bio Energy Carbon Capture and Storage. Frontiers in Climate,
3(6). doi:10.3389/fclim.2021.615578
Klinar, D. (2016). Universal model of slow pyrolysis technology producing biochar and heat from
standard biomass needed for the techno-economic assessment. Bioresource
Technolnology, 206, 112-120. doi:10.1016/j.biortech.2016.01.053
Kline, K. L., Msangi, S., Dale, V. H., Woods, J., Souza, Glaucia!M., Osseweijer, P., . . . Mugera,
H. K. (2017). Reconciling food security and bioenergy: priorities for action. GCB
Bioenergy, 9(3), 557-576. doi:10.1111/gcbb.12366
Kloss, S., et al. (2013). Biochar application to temperate soils: Effects on soil fertility and crop
growth under greenhouse conditions. Journal of Plant Nutrition and Soil Science, 177(1),
3-15. Retrieved from http://onlinelibrary.wiley.com/doi/10.1002/jpln.201200282/abstract
Kloss, S., et al. (2014). Trace element biogeochemistry in the soil-water-plant system of a
temperate agricultural soil amended with different biochars. Environmental Science and
Pollution Research, 22(6), 4513-4526. doi:10.1007/s11356-014-3685-y
Kloss, S., et al. (2014). Trace element concentrations in leachates and mustard plant tissue
(Sinapis alba L.) after biochar application to temperate soils. Science of The Total
Environment, 481, 498–508. Retrieved from http://www.sciencedirect.com/science/
article/pii/S0048969714002769
Kloss, S., Zehetner, F., Dellantonio, A., Hamid, R., Ottner, F., Liedtke, V., . . . Soja, G. (2012).
Characterization of Slow Pyrolysis Biochars: Effects of Feedstocks and Pyrolysis
Temperature on Biochar Properties. Journal of Environmental Quality, 41(4), 990-1000.
doi:10.2134/jeq2011.0070
Kluepfel, L., et al. . (2014). Redox properties of plant biomass-derived black carbon (biochar).
Environmental Science & Technology, 48(10), 5601-5611. doi:10.1021/es500906d
Kluiters, S. C., Van Den Brink, R. W., & Haije, W. G. (2010). Advanced oxygen production
systems for power plants with integrated carbon dioxide (CO2) capture A2 - Maroto-
Valer, M. Mercedes. In Developments and Innovation in Carbon Dioxide (CO2) Capture
and Storage Technology (Vol. 1, pp. 320-357): Woodhead Publishing.
Knicker, H. (2011). Pyrogenic organic matter in soil: Its origin and occurrence, its chemistry and
survival in soil environments. Quaternary International, 243(2), 251-263. Retrieved from
http://www.sciencedirect.com/science/article/
B6VGS-52C8FW1-1/2/88e86278c0aa46049bbc5c49ae770024
Knicker, H., Almendros, G., Gonzalez-Vila, F. J., Gonzalez-Perez, J. A., & Polvillo, O. (2006).
Characteristic alterations of quantity and quality of soil organic matter caused by forest
fires in continental Mediterranean ecosystems: a solid-state C-13 NMR study. European
Journal of Soil Science, 57(4), 558-569. Retrieved from http://onlinelibrary.wiley.com/doi/
10.1111/j.1365-2389.2006.00814.x/abstract
Knicker, H., Muffler, P., & Hilscher, A. (2007). How useful is chemical oxidation with dichromate
for the determination of "black carbon" in fire-affected soils? Geoderma, 142(1-2),
178-196.
Knowles, O. A., Robinson, B. H., Contangelo, A., & Clucas, L. (2011). Biochar for the mitigation
of nitrate leaching from soil amended with biosolids. Science of The Total Environment,
409, 3206-3210. Retrieved from http://kiwiscience.com/JournalArticles/STOTEN2011.pdf
Knox, O. G. G., et al. (2015). Biochar Increases Soil PH, But Is As Ineffective As Liming at
Controlling Clubroot. Journal of Plant Pathology, 95(1), 149-152. doi:10.4454/
jpp.v97i1.016
Kobayashi-Solomon, E. (2019). Capitalism vs Climate Change: Front Line Interview I. Forbes.
Retrieved from https://www.forbes.com/sites/erikkobayashisolomon/2019/05/21/
capitalism-vs-climate-change-front-line-interview-i/#2ab918406b18
Kobayashi-Solomon, E. (2019). Capitalism vs Climate Change: The Venture Capitalists'
Perspective. Forbes. Retrieved from https://www.forbes.com/sites/
erikkobayashisolomon/2019/06/18/capitalism-vs-climate-change-the-venture-capitalists-
perspective/#1f9d4beb4c24
Köberle, A. C. (2019). The Value of BECCS in IAMs: a Review. Current Sustainable/Renewable
Energy Reports. doi:10.1007/s40518-019-00142-3
Kocsis, T., & Biró, B. (2015). Bioszén hatása a talaj-növény-mikróba rendszerre: előnyök és
aggályok — Szemle. Agrokémia és Talajtan, 64(1), 257 - 272.
doi:10.1556/0088.2015.64.1.19
Kodama, S., Nishimoto, T., Yamamoto, N., Yogo, K., & Yamada, K. (2008). Development of a
new pH-swing CO2 mineralization process with a recyclable reaction solution. Energy,
33(5), 776-784. doi:https://doi.org/10.1016/j.energy.2008.01.005
Koehler, S. D., Gerhardt, E., & Joseph, S. (2012). Improving Yields of Strawberries Grown in
South Florida Through Addition of Compost Biochar and Minerals. Retrieved from http://
www.biochar-international.org/sites/default/files/
Biochar_Strawberry_Trial%20writeup_clean-1.pdf
Koelbl, B. S., van den Broek, M. A., Faaij, A. P. C., & van Vuuren, D. P. (2014). Uncertainty in
Carbon Capture and Storage (CCS) deployment projections: a cross-model comparison
exercise. Climatic Change, 123(3), 461-476. doi:10.1007/s10584-013-1050-7
Koh, L. P., & Ghazoul, J. (2008). Biofuels, biodiversity, and people: Understanding the conflicts
and finding opportunities. Biological Conservation, 141(10), 2450-2460. doi:https://
doi.org/10.1016/j.biocon.2008.08.005
Köhl, M., Ehrhart, H.-P., Knauf, M., & Neupane, P. R. (2020). A viable indicator approach for
assessing sustainable forest management in terms of carbon emissions and removals.
Ecological Indicators, 111, 106057. doi:https://doi.org/10.1016/j.ecolind.2019.106057
Köhler, P., et al. (2013). Geoengineering impact of open ocean dissolution of olivine on
atmospheric CO 2 , surface ocean pH and marine biology. Environmental Research
Letters, 8(1), 014009. Retrieved from http://stacks.iop.org/1748-9326/8/i=1/a=014009
Köhler, P. (2016). Using the Suess effect on the stable carbon isotope to distinguish the future
from the past in radiocarbon. Environmental Research Letters, 11(124016). Retrieved
from http://iopscience.iop.org/article/10.1088/1748-9326/11/12/124016/meta
Köhler, P. (2020). Anthropogenic CO2 of High Emission Scenario Compensated After 3500
Years of Ocean Alkalinization With an Annually Constant Dissolution of 5 Pg of Olivine.
Frontiers in Climate, 2(7). doi:10.3389/fclim.2020.575744
Köhler, P., Hartmann, J., & Wolf-Gladrow, D. A. (2010). Geoengineering potential of artificially
enhanced silicate weathering of olivine. Proceedings of the National Academy of
Sciences, 107(47), 20228-20233. doi:10.1073/pnas.1000545107
Koide, H., Tazaki, Y., Noguchi, Y., Iijima, M., Ito, K., & Shindo, Y. (1993). Underground storage of
carbon dioxide in depleted natural gas reservoirs and in useless aquifers. Engineering
Geology, 34(3), 175-179. doi:https://doi.org/10.1016/0013-7952(93)90086-R
Koide, R. T., et al. . (2014). Biochar amendment of soil improves resilience to climate change.
Global Change Biology, 7(5), 1084-1091. Retrieved from http://onlinelibrary.wiley.com/
doi/10.1111/gcbb.12191/abstract
Koide, R. T., Petprakob, K., & Peoples, M. (2011). Quantitative analysis of biochar in field soil.
Soil Biology and Biochemistry, 43(7), 1563-1568. doi:10.1016/j.soilbio.2011.04.006
Koizumi, T. (2014). Biofuels and Food Security. In Biofuels and Food Security (pp. 103-121).
Koizumi, T. (2014). Biofuels and Food Security in Brazil. In Biofuels and Food Security (pp.
13-30).
Koizumi, T. (2014). Biofuels and Food Security in China. In Biofuels and Food Security (pp.
31-41).
Koizumi, T. (2014). Biofuels and Food Security in Japan and Other Asian Countries. In Biofuels
and Food Security (pp. 43-57).
Koizumi, T. (2014). Biofuels and Food Security in the US, the EU and Other Countries. In
Biofuels and Food Security (pp. 59-78).
Koizumi, T. (2014). Global Discussion of Biofuels and Food Security. In Biofuels and Food
Security (pp. 79-102).
Kojima, T., Nagamine, A., Ueno, N., & Uemiya, S. (1997). Absorption and fixation of carbon
dioxide by rock weathering. Energy Conversion and Management, 38, S461-S466.
doi:https://doi.org/10.1016/S0196-8904(96)00311-1
Kokal, S., et al. (2017). Design and Implementation of First CO2-EOR Demonstration Project in
Saudi Arabia. Paper presented at the Society of Petroleum Engineers. https://
www.onepetro.org/download/conference-paper/SPE-181729-MS?id=conference-
paper%2FSPE-181729-MS
Kokal, S. (2017). Technology Focus: CO
2
Applications. Journal of Petroleum Technology, 69(7).
Retrieved from https://www.spe.org/en/jpt/jpt-article-detail/?art=3119
Kokal, S., Sanni, M., & Alhashboul, A. (2016). Design and Implementation of the First CO2-EOR
Demonstration Project in Saudi Arabia. https://www.onepetro.org/conference-paper/
SPE-181729-MS
Kolb, S. E., Fermanich, K. J., & Dornbush, M. E. (2009). Effect of Charcoal Quantity on
Microbial Biomass and Activity in Temperate Soils. Soil Science of America Journal,
73(4), 1173-1182. Retrieved from http://soil.scijournals.org/cgi/content/abstract/73/4/1173
Kolber, Z. S., Barber, R. T., Coale, K. H., Fitzwateri, S. E., Greene, R. M., Johnson, K. S., . . .
Falkowski, P. G. (1994). Iron limitation of phytoplankton photosynthesis in the equatorial
Pacific Ocean. Nature, 371(6493), 145-149. Retrieved from http://dx.doi.org/
10.1038/371145a0
Kolbert, E. (2017). Going Negative. New Yorker. Retrieved from https://www.newyorker.com/
magazine/2017/11/20/can-carbon-dioxide-removal-save-the-world/amp
Kolby Smith, W., Zhao, M., & Running, S. W. (2012). Global Bioenergy Capacity as Constrained
by Observed Biospheric Productivity Rates. BioScience, 62(10), 911-922. Retrieved from
https://academic.oup.com/bioscience/article/62/10/911/238201/Global-Bioenergy-
Capacity-as-Constrained-by
Kollah, B., Dubey, G., Parasai, P., Saha, J. K., Gangil, S., & Mohanty, S. R. (2015). Interactive
effect of biochar size and organic amendments on methane consumption in a tropical
vertisol. Soil Use and Management, n/a - n/a. doi:10.1111/sum.12168
Kolodynska, D., , et al. (2012). Kinetic and Adsorptive Characterisation of Biochar in Metal Ions
Removal. Chemical Engineering Journal, 197, 295-305. Retrieved from http://
www.sciencedirect.com/science/article/pii/S1385894712005979
Kolosz, B. W., Sohi, S. P., & Manning, D. A. C. (2019). CASPER: A modelling framework to link
mineral carbonation with the turnover of organic matter in soil. Computers &
Geosciences. doi:https://doi.org/10.1016/j.cageo.2018.12.012
Kolster, C., Masnadi, M. S., Krevor, S., Mac Dowell, N., & Brandt, A. R. (2017). CO2 enhanced
oil recovery: a catalyst for gigatonne-scale carbon capture and storage deployment?
Energy & Environmental Science, 10(12), 2594-2608. doi:10.1039/C7EE02102J
Kolton, M., et al. . (2011). Impact of biochar application to soil on the root-associated bacterial
community structure of fully developed greenhouse pepper plants. Applied and
Environmental Microbiology, 77(14), 4924-4930. doi:10.1128/aem.00148-11
Kołtowski, M., Hilber, I., Bucheli, T. D., & Oleszczuk, P. (2016). Effect of activated carbon and
biochars on the bioavailability of polycyclic aromatic hydrocarbons in different industrially
contaminated soils. Environmental Science and Pollution Research, 23(11),
11058-11068. doi:10.1007/s11356-016-6196-1
Kołtowski, M., & Oleszczuk, P. (2015). Effect of activated carbon or biochars on toxicity of
different soils contaminated by mixture of native polycyclic aromatic hydrocarbons and
heavy metals. Environmental Toxicology and Chemistry, 35(5), 1321-1328. doi:10.1002/
etc.3246
Kołtowski, M., & Oleszczuk, P. (2015). Toxicity of biochars after polycyclic aromatic
hydrocarbons removal by thermal treatment. Ecological Engineering, 75, 79 - 85.
doi:10.1016/j.ecoleng.2014.11.004
Komaki, Y., Nakano, A., Katoh, H., & Uehara, Y. (2002). Utilization of chaff charcoal for medium
of flower bed seedlings and its effect of growth and quality of madagacar periwinkle
(Catharanthus roseus G. Don) seedlings. Japanese Journal of Soil Science and Plant
Nutrition, 73(1), 49-52. Retrieved from https://www.jstage.jst.go.jp/article/dojo/
73/1/73_KJ00000888648/_pdf
Komar, N., & Zeebe, R. E. (2011). Oceanic calcium changes from enhanced weatheringduring
the PaleoceneEocene thermal maximum:No effect on calciumbased proxies.
Paleoceanography, 26, 1-13.
Komkiene, J., & Baltrenaite, E. (2015). Biochar as adsorbent for removal of heavy metal ions
[Cadmium(II), Copper(II), Lead(II), Zinc(II)] from aqueous phase. International Journal of
Environmental Science and Technology, 13(2), 471-482. doi:10.1007/
s13762-015-0873-3
Komnitsas, K., et al. (2014). Assessment of pistachio shell biochar quality and its potential for
absorption of heavy metals. Waste and Biomass Valorization, 6(5), 805-816. Retrieved
from http://athens2014.biowaste.gr/pdf/komnitsas_et_al.pdf
Komnitsas, K., Zaharaki, D., Bartzas, G., Kaliakatsou, G., & Kritikaki, A. (2014). Efficiency of
pecan shells and sawdust biochar on Pb and Cu adsorption. Desalination and Water
Treatment, 57(7), 3237-3246. doi:10.1080/19443994.2014.981227
Konadu, D. D., Mourão, Z. S., Allwood, J. M., Richards, K. S., Kopec, G., McMahon, R., &
Fenner, R. (2015). Land use implications of future energy system trajectories—The case
of the UK 2050 Carbon Plan. Energy Policy, 86, 328-337. doi:http://dx.doi.org/10.1016/
j.enpol.2015.07.008
Konadu, D. D., Mourão, Z. S., Allwood, J. M., Richards, K. S., Kopec, G. M., McMahon, R. A., &
Fenner, R. A. (2015). Not all low-carbon energy pathways are environmentally “no-
regrets” options. Global Environmental Change, 35, 379-390. doi:http://dx.doi.org/
10.1016/j.gloenvcha.2015.10.002
Kondo, Y., et al. . (2012). A new application of bagasse char as a solar energy absorption and
accumulation material. Earth and Environmental Science Transactions of the Royal
Society of Edinburgh, 103, 31-38. Retrieved from https://www.cambridge.org/core/
journals/earth-and-environmental-science-transactions-of-royal-society-of-edinburgh/
article/a-new-application-of-bagasse-char-as-a-solar-energy-absorption-and-
accumulation-material/4285D34F015CA038C01A2ED961168BD8
Kong, H., et al. . (2011). Cosorption of Phenanthrene and Hg (II) from Aqueous Solution by
Soybean Stalk-based Biochar. Journal of Agricultural and Food Chemistry, 59(22),
12116-12123. Retrieved from http://pubs.acs.org/doi/abs/10.1021/jf202924a
Kong, H., He, J., Han, J., & Gao, Y. (2013). Utilizing Stalk-Based Biochar to Control the Risk of
Persistent Organic Pollutants in the Environment. Functions of Natural Organic Matter in
Changing Environment.
Kong, L. L., & Zhou, Q. X. (2013). Influences of Biochar Aging Processes by Eco-Environmental
Conditions. Advanced Materials Research, 790, 467-470. Retrieved from https://
www.scientific.net/AMR.790.467
Kong, L.-L., Liu, W.-T., & Zhou, Q.-X. (2014). Biochar: An Effective Amendment for Remediating
Contaminated Soil. Reviews of Environmental Contamination and Toxicology, 228,
83-99.
Kong, S.-H., Loh, S.-K., Bachmann, R. T., Rahim, S. A., & Salimon, J. (2014). Biochar from oil
palm biomass: A review of its potential and challenges. Renewable and Sustainable
Energy Reviews, 39, 729 - 739. doi:10.1016/j.rser.2014.07.107
Kong, Y., et al. (2017). Supercritical drying: a promising technique on synthesis of sorbent for
CO2 capture. International Journal of Global Warming, 12(2), 228-241. Retrieved from
http://www.inderscience.com/info/inarticle.php?artid=84507
Kong, Y., Jiang, G., Wu, Y., Cui, S., & Shen, X. (2016). Amine hybrid aerogel for high-efficiency
CO2 capture: Effect of amine loading and CO2 concentration. Chemical Engineering
Journal, 306, 362-368. doi:http://dx.doi.org/10.1016/j.cej.2016.07.092
Kong, Z. (2014). Effects of pyrolysis conditions and biomass properties on leachability and
recyclability of inorganic nutrients in biochars produced from mallee biomass pyrolysis.
Curtin University, Retrieved from http://espace.library.curtin.edu.au/R?func=dbin-jump-
full&object_id=225820
Kongmuang, R. (2019). Carbon Capture: What We Don’t Talk About When We Talk About
Climate Change. TruthOut. Retrieved from https://truthout.org/articles/carbon-capture-
what-we-dont-talk-about-when-we-talk-about-climate-change/
KONGTHOD, T., Thanachit, S., Anusontpornperm, S., & Wiriyakitnateekul, W. (2015). Effects of
Biochars and Other Organic Soil Amendments on Plant Nutrient Availability in an Ustoxic
Quartzipsamment. Pedosphere, 25(5), 790 - 798. doi:10.1016/s1002-0160(15)30060-6
König, M., Lin, S.-H., Vaes, J., Pant, D., & Klemm, E. (2021). Integration of aprotic CO2
reduction to oxalate at a Pb catalyst into a GDE flow cell configuration. Faraday
Discussions, 230(0), 360-374. doi:10.1039/D0FD00141D
Konsolakis, M., Kaklidis, N., Marnellos, G. E., Zaharaki, D., & Komnitsas, K. (2015).
Assessment of biochar as feedstock in a direct carbon solid oxide fuel cell. RSC Adv.,
5(90), 73399 - 73409. doi:10.1039/c5ra13409a
Konz, J., Cohen, B., & van der Merwe, A. B. (2015). Assessment of the potential to produce
biochar and its application to South African soils as a mitigation measure. Retrieved from
https://www.environment.gov.za/sites/default/files/reports/biocharreport2015.pdf
Kookana, R. S. (2010). The role of biochar in modifying the environmental fate, bioavailability,
and efficacy of pesticides in soils: a review. Australian Journal of Soil Research, 48,
627-637. Retrieved from http://www.publish.csiro.au/sr/pdf/SR10007
Kookana, R. S., Sarmah, A. K., Van Zwieten, L., Krull, E., & B., S. (2011). BIOCHAR
APPLICATION TO SOIL: AGRONOMIC AND ENVIRONMENTAL BENEFITS AND
UNINTENDED CONSEQUENCES. In D. L. Sparks (Ed.), Advances in Agronomy San
Diego (Vol. 112, pp. 103-143). San Diego: Elsevier Academic Press Inc.
Koomson, E. (2014). Measurement of CO2 Emission from Bio-Char-Amended Rice Paddy Field
in the Coastal Savannah Zone of Ghana. University of Ghana, Retrieved from http://
ugspace.ug.edu.gh/handle/123456789/5570
Koornneef, J., et al. (2011). Carbon Dioxide Capture and Air Quality. In N. Mazzeo (Ed.),
Chemistry, Emission Control, Radioactive Pollution and Indoor Air Quality (pp. 17-44).
Koornneef, J., Ramírez, A., Turkenburg, W., & Faaij, A. (2011). The environmental impact and
risk assessment of CO2 capture, transport and storage-an evaluation of the knowledge
base using the DPSIR framework. Energy Procedia, 4, 2293-2300. doi:https://doi.org/
10.1016/j.egypro.2011.02.119
Koornneef, J., Ramírez, A., Turkenburg, W., & Faaij, A. (2012). The environmental impact and
risk assessment of CO2 capture, transport and storage – An evaluation of the knowledge
base. Progress in Energy and Combustion Science, 38(1), 62-86. doi:http://dx.doi.org/
10.1016/j.pecs.2011.05.002
Koornneef, J., van Breevoort, P., Hamelinck, C., Hendriks, C., Hoogwijk, M., Koop, K., . . .
Camps, A. (2012). Global potential for biomass and carbon dioxide capture, transport
and storage up to 2050. International Journal of Greenhouse Gas Control, 11, 117-132.
doi:10.1016/j.ijggc.2012.07.027
Korchagin, J., Caner, L., & Bortoluzzi, E. C. (2019). Variability of amethyst mining waste: A
mineralogical and geochemical approach to evaluate the potential use in agriculture.
Journal of Cleaner Production, 210, 749-758. doi:https://doi.org/10.1016/
j.jclepro.2018.11.039
Kortsch, T., Hildebrand, J., & Schweizer-Ries, P. (2015). Acceptance of biomass plants –
Results of a longitudinal study in the bioenergy-region Altmark. Renewable Energy,
83(Supplement C), 690-697. doi:https://doi.org/10.1016/j.renene.2015.04.059
Kosar, U. (2020). Creating Jobs and Meeting Climate Goals: The Evolving Case for Direct Air
Capture. Medium. Retrieved from https://medium.com/@carbon180/creating-jobs-and-
meeting-climate-goals-the-evolving-case-for-direct-air-capture-428a853223d3
Kosar, U. (2020). The opportunity to root carbon removal in equity and justice. Retrieved from
https://www.c2g2.net/the-opportunity-to-root-carbon-removal-in-equity-and-justice/
Kosar, U. (2020). We’re bringing environmental justice to the forefront of our work. Retrieved
from https://carbon180.medium.com/were-bringing-environmental-justice-to-the-
forefront-of-our-work-723b6e65e0d7
Kosar, U., & Suarez, V. (2021). The carbon removal field has a responsibility to the
environmental justice movement. The Deep End. Retrieved from https://us11.campaign-
archive.com/?u=4823fd7f19ac2e684f23c310e&id=9a41fdf246
Kosar, U., & Suarez, V. (2021). Removing Forward: Centering Equity and Justice in a Carbon-
Removing Future. Retrieved from https://carbon180.org/s/Carbon180-
RemovingForward.pdf
Koski, K., et al. (2020). Study on States’ Policies and Regulations per CO2-EOR Storage
Conventional, ROZ and EOR in Shale. Retrieved from
Kostić, M. D., Bazargan, A., Stamenković, O. S., Veljković, V. B., & McKay, G. (2016).
Optimization and kinetics of sunflower oil methanolysis catalyzed by calcium oxide-
based catalyst derived from palm kernel shell biochar. Fuel, 163, 304 - 313. doi:10.1016/
j.fuel.2015.09.042
Kotecki, P. (2019). A Coca Cola-owned brand will sell sparkling water made with carbon dioxide
captured from the atmosphere. Business Insider, (January 15). Retrieved from https://
www.businessinsider.com/coca-cola-owned-valser-sparkling-water-carbon-dioxide-from-
atmosphere-2019-1
Kothandaraman, J., Goeppert, A., Czaun, M., Olah, G. A., & Prakash, G. K. S. (2016).
Conversion of CO2 from Air into Methanol Using a Polyamine and a Homogeneous
Ruthenium Catalyst. Journal of the American Chemical Society, 138(3), 778-781.
doi:10.1021/jacs.5b12354
Kotiya, A., Sharma, M. K., & Kumar, A. (2018). Potential Biomass for Biofuels from Wastelands.
In A. Kumar, S. Ogita, & Y.-Y. Yau (Eds.), Biofuels: Greenhouse Gas Mitigation and
Global Warming: Next Generation Biofuels and Role of Biotechnology (pp. 59-79). New
Delhi: Springer India.
Kotowicz, J., Brzęczek, M., & Job, M. (2017). The influence of carbon capture and compression
unit on the characteristics of ultramodern combined cycle power plant. International
Journal of Global Warming, 12(2), 164-187. Retrieved from http://www.inderscience.com/
info/inarticle.php?artid=84511
Kouchachvili, L., Maffei, N., & Entchev, E. (2015). Infested ash trees as a carbon source for
supercapacitor electrodes. Journal of Porous Materials, 22(4), 979-988. doi:10.1007/
s10934-015-9972-2
Koutcheiko, S., & Vorontsov, V. (2013). Activated Carbon Derived from Wood Biochar and Its
Application in Supercapacitors. Journal of Biobased Materials and Bioenergy, 7(5),
733-740. Retrieved from https://www.researchgate.net/publication/
255483262_Activated_Carbon_Derived_from_Wood_Biochar_and_Its_Application_in_S
upercapacitors
Kovscek, A. R., & Cakici, M. D. (2005). Geologic storage of carbon dioxide and enhanced oil
recovery. II. Cooptimization of storage and recovery. Energy Conversion and
Management, 46(11), 1941-1956. doi:https://doi.org/10.1016/j.enconman.2004.09.009
Koweek, D. A., Mucciarone, D. A., & Dunbar, R. B. (2016). Bubble Stripping as a Tool To
Reduce High Dissolved CO
2
in Coastal Marine Ecosystems. Environmental Science &
Technology, 50(7), 3790-3797. doi:10.1021/acs.est.5b04733
Koyama, S., Inazaki, F., Minamikawa, K., Kato, M., & Hayashi, H. (2015). Increase in soil carbon
sequestration using rice husk charcoal without stimulating CH
4
and N
2
O emissions in an
Andosol paddy field in Japan. Soil Science and Plant Nutrition, 1 - 12.
doi:10.1080/00380768.2015.1065511
Koytsoumpa, E. I., Bergins, C., & Kakaras, E. (2018). The CO2 economy: Review of CO2
capture and reuse technologies. The Journal of Supercritical Fluids, 132, 3-16.
doi:https://doi.org/10.1016/j.supflu.2017.07.029
Kraan, S. (2013). Mass-cultivation of carbohydrate rich macroalgae, a possible solution for
sustainable biofuel production. Mitigation and Adaptation Strategies for Global Change,
18(1), 27-46. doi:10.1007/s11027-010-9275-5
Krack, K., Clay, S. A., Clay, D. E., & Schumacher, T. (2015). Impact of Biochar Application on
Soil Porperties and Herbicide Sorption. Paper presented at the Proceedings of the South
Dakota Academy of Science.
Kraemer, S. (2020). CEMEX and Synhelion to Demo Zero CO2 Cement. Retrieved from https://
www.solarpaces.org/cemex-and-synhelion-to-demo-zero-co2-cement/
Kragt, M. E., Dumbrell, N. P., & Blackmore, L. (2017). Motivations and barriers for Western
Australian broad-acre farmers to adopt carbon farming. Environmental Science & Policy,
73, 115-123. doi:https://doi.org/10.1016/j.envsci.2017.04.009
Kraiem, T., et al. (2014). Characterization of syngas and bio-char: Co-products from pyrolysis of
waste fish fats. Paper presented at the 5th International Renewable Energy Congress.
Krampitz, L. O. (1988). Discovery of heterotrophic carbon dioxide utilization. Trends in
Biochemical Sciences, 13(4), 152-154. doi:https://doi.org/
10.1016/0968-0004(88)90075-8
Kranking, C. (2020). Scientists look to remove CO2 from atmosphere by accelerating natural
Earth processes. Medill Reports Chicago. Retrieved from https://
news.medill.northwestern.edu/chicago/scientists-look-to-remove-co2-from-atmosphere-
by-accelerating-natural-earth-processes/
Krapfl, K. J., et al. (2014). Soil Properties, Nitrogen Status, and Switchgrass Productivity in a
Biochar-Amended Silty Clay Loam. Soil Science Society of America Journal, 78(S1),
S136. doi:10.2136/sssaj2013.07.0304nafsc
Kratz, D., Wendling, I., & Pires, P. P. (2012). Mini-cutting technique of rooting Eucalyptus
benthamii × E. dunnii in carbonized rice husk substrates. Scientia Forestalis, 40,
547-556.
Krause, A., et al. (2018). Large uncertainty in carbon uptake potential of land-based climate-
change mitigation efforts. 24, Global Change Biology, 3025-3038. Retrieved from https://
onlinelibrary.wiley.com/doi/pdf/10.1111/gcb.14144
Krause, R. M., Carley, S. R., Warren, D. C., Rupp, J. A., & Graham, J. D. (2014). “Not in (or
Under) My Backyard”: Geographic Proximity and Public Acceptance of Carbon Capture
and Storage Facilities. Risk Analysis, 34(3), 529-540. doi:doi:10.1111/risa.12119
Krause-Jensen, D., & Duarte, C. M. (2016). Substantial role of macroalgae in marine carbon
sequestration. Nature Geoscience, 9, 737. doi:10.1038/ngeo2790
https://www.nature.com/articles/ngeo2790#supplementary-information
Krause-Jensen, D., Lavery, P., Serrano, O., Marbà, N., Masque, P., & Duarte, C. M. (2018).
Sequestration of macroalgal carbon: the elephant in the Blue Carbon room. Biology
Letters, 14(6), 20180236. doi:doi:10.1098/rsbl.2018.0236
Krauss, C. (2019). Blamed for Climate Change, Oil Companies Invest in Carbon Removal. New
York Times, (April 7). Retrieved from https://www.nytimes.com/2019/04/07/business/
energy-environment/climate-change-carbon-engineering.html
Krauss, L. (2013). Cutting Carbon Dioxide Isn’t Enough. Slate.com. Retrieved from http://
www.slate.com/articles/technology/future_tense/2013/05/
direct_air_carbon_capture_technology_must_be_developed_to_help_fight_climate.html
Krauss, M., Ruser, R., Müller, T., Hansen, S., Mäder, P., & Gattinger, A. (2017). Impact of
reduced tillage on greenhouse gas emissions and soil carbon stocks in an organic
grass-clover ley - winter wheat cropping sequence. Agriculture, Ecosystems &
Environment, 239, 324-333. doi:https://doi.org/10.1016/j.agee.2017.01.029
Kraxner, F. (2013). Global bioenergy scenarios - Future forest development, land-use
implications, and trade-offs. Biomass & Bioenergy, 57, 86-96. Retrieved from http://
www.sciencedirect.com/science/article/pii/S0961953413000524
Kraxner, F., et al. (2015). The Role of Bioenergy with Carbon Capture and Storage (BECCS) for
Climate Policy. In J. Yan (Ed.), Handbook of Clean Energy Systems (pp. 1-19).
Kraxner, F., Aoki, K., Kindermann, G., Leduc, S., Albrecht, F., Liu, J., & Yamagata, Y. (2016).
Bioenergy and the city – What can urban forests contribute? Applied Energy, 165,
990-1003. doi:http://dx.doi.org/10.1016/j.apenergy.2015.12.121
Kraxner, F., Aoki, K., Leduc, S., Kindermann, G., Fuss, S., Yang, J., . . . Obersteiner, M. (2014).
BECCS in South Korea—Analyzing the negative emissions potential of bioenergy as a
mitigation tool. Renewable Energy, 61, 102-108. doi:http://dx.doi.org/10.1016/
j.renene.2012.09.064
Kraxner, F., Leduc, S., Fuss, S., Aoki, K., Kindermann, G., & Yamagata, Y. (2014). Energy
Resilient Solutions for Japan - a BECCS Case Study. Energy Procedia, 61(Supplement
C), 2791-2796. doi:https://doi.org/10.1016/j.egypro.2014.12.316
Kraxner, F., Nilsson, S., & Obersteiner, M. (2003). Negative emissions from BioEnergy use,
carbon capture and sequestration (BECS)—the case of biomass production by
sustainable forest management from semi-natural temperate forests. Biomass and
Bioenergy, 24(4), 285-296. doi:https://doi.org/10.1016/S0961-9534(02)00172-1
Krebs, R. B. (2015). Caracterização do biochar de pirólise rápida (Characterization of biochar
fast pyrolysis). Federal University of Rio Grande do Sul, Retrieved from http://
www.lume.ufrgs.br/handle/10183/109714
Kreidenweis, U., et al. . (2016). Afforestation to mitigate climate change: impacts on food prices
under consideration of albedo effects. Environmental Research Letters, 11(8). Retrieved
from http://iopscience.iop.org/article/10.1088/1748-9326/11/8/085001
Krekel, D., et al. (2018). The separation of CO2 from ambient air – A techno-economic
assessment. Applied Energy, 218, 361-381. Retrieved from https://www.deepdyve.com/
lp/elsevier/the-separation-of-co2-from-ambient-air-a-techno-economic-assessment-
AqP0IVbhpX
Kremer, D., Etzold, S., Boldt, J., Blaum, P., Hahn, K. M., Wotruba, H., & Telle, R. (2019).
Geological Mapping and Characterization of Possible Primary Input Materials for the
Mineral Sequestration of Carbon Dioxide in Europe. Minerals, 9(8), 485. Retrieved from
https://www.mdpi.com/2075-163X/9/8/485
Kreuter, J. (2020). Climate Engineering as an Instance of Politicization(pp. 1-264). Retrieved
from https://link.springer.com/book/10.1007%2F978-3-030-60340-3
Kreutz, T. (2011). Prospects for producing low carbon transportation fuels from captured CO2 in
a climate constrained world. Energy Procedia, 4, 2121-2128. doi:http://dx.doi.org/
10.1016/j.egypro.2011.02.096
Krevor, S., Blunt, M. J., Trusler, J. P. M., & De Simone, S. (2020). Chapter 8 An Introduction to
Subsurface CO2 Storage. In Carbon Capture and Storage (pp. 238-295): The Royal
Society of Chemistry.
Krevor, S. C. M., & Lackner, K. S. (2011). Enhancing serpentine dissolution kinetics for mineral
carbon dioxide sequestration. International Journal of Greenhouse Gas Control, 5(4),
1073-1080. Retrieved from http://www.sciencedirect.com/science/article/pii/
S1750583611000077
Kreysa, G. (2009). Sustainable Management of the Global Carbon Cycle Through Geostorage
of Wood. ChemSusChem, 2(7), 633-644. doi:10.1002/cssc.200900102
Kriegler, E., et al. (2013). Is atmospheric carbon dioxide removal a game changer for climate
change mitigation? Climatic Change, 118, 45-57. Retrieved from https://www.pik-
potsdam.de/members/edenh/publications-1/
Isatmosphericcarbondioxideremovalagame.pdf
Krishna, A. R., Dev, L., & Thankamani, V. (2012). An integrated process for Industrial effluent
treatment and Biodiesel production using Microalgae. Research in Biotechnology, 3(1),
47-60. Retrieved from http://researchinbiotechnology.com/index.php/rib/article/viewFile/
72/69
Krishna, B. B., Biswas, B., Kumar, J., Singh, R., & Bhaskar, T. (2015). Role of Reaction
Temperature on Pyrolysis of Cotton Residue. Waste and Biomass Valorization.
doi:10.1007/s12649-015-9440-x
Krishna, B. B., Biswas, B., Ohri, P., Kumar, J., Singh, R., & Bhaskar, T. (2016). Pyrolysis of
Cedrus deodara saw mill shavings in hydrogen and nitrogen atmosphere for the
production of bio-oil. Renewable Energy. doi:10.1016/j.renene.2016.02.056
Krishna, B. B., Singh, R., & Bhaskar, T. (2015). Effect of catalyst contact on the pyrolysis of
wheat straw and wheat husk. Fuel, 160, 64 - 70. doi:10.1016/j.fuel.2015.07.065
Krishna Sethi, V., & S. Dutta, P. (2018). An Innovative Approach in Post Combustion Carbon
Capture and Sequestration towards Reduction of Energy Penalty in Regeneration of
Solvent.
Krishnakumar, S., et al. (2014). Impact of Biochar on Soil Health. International Journal of
Advanced Research, 2(4), 933-950. Retrieved from http://www.researchgate.net/profile/
Vinoth_Chelladurai/publication/274712806_Impact_of_Biochar_on_Soil_Health/links/
552744d10cf2e486ae40fd5f.pdf
Krishnakumar, S., Rajalakshmi, G., & Balaganesh, B. (2015). Effect of black carbon in
germination of maize seeds. Environment and Ecology, 33(2), 730-733. Retrieved from
http://www.cabdirect.org/abstracts/
20153193762.html;jsessionid=B321C75A5D36617818C884B6BABD391C
Krishnamurthy, A., Moore, J. K., & Doney, S. C. (2008). The effects of dilution and mixed layer
depth on deliberate ocean iron fertilization: 1-D simulations of the southern ocean iron
experiment (SOFeX). Journal of Marine Systems, 71(1–2), 112-130. doi:http://dx.doi.org/
10.1016/j.jmarsys.2007.07.002
Kroeger, J. E., Pourhashem, G., Medlock, K. B., & Masiello, C. A. (2021). Water cost savings
from soil biochar amendment: A spatial analysis. GCB Bioenergy, 13(1), 133-142.
doi:https://doi.org/10.1111/gcbb.12765
Kroumov, A. D., Scheufele, F. B., Trigueros, D. E. G., Modenes, A. N., Zaharieva, M., &
Najdenski, H. (2017). Chapter 11 - Modeling and Technoeconomic Analysis of Algae for
Bioenergy and Coproducts A2 - Rastogi, Rajesh Prasad. In D. Madamwar & A. Pandey
(Eds.), Algal Green Chemistry (pp. 201-241). Amsterdam: Elsevier.
Kruesi, M., Jovanovic, Z. R., Haselbacher, A., & Steinfeld, A. (2014). Analysis of solar-driven
gasification of biochar trickling through an interconnected porous structure. AIChE
Journal, 61(3), 867-879. doi:10.1002/aic.14672
Kruger, T. (2015). We need to get serious about ‘negative emissions’ technology – fast. The
Conversation. Retrieved from https://theconversation.com/we-need-to-get-serious-about-
negative-emissions-technology-fast-52549
Krüger, T. (2017). Conflicts over carbon capture and storage in international climate
governance. Energy Policy, 100(Supplement C), 58-67. doi:https://doi.org/10.1016/
j.enpol.2016.09.059
Krull, E., et al. (2008). The global extent of black C in soils: is it everywhere? In G. S. Hans
(Ed.), Grasslands: Ecology, Management and Restoration (pp. 13-17): Nova Science
Publishers, Inc.
Krull, E., Baldock, J., & Skjemstad, J. (2003). Importance of mechanisms and processes of the
stabilization of soil organic matter for modeling carbon turnover. Functional Plan Biology,
30, 207–222. Retrieved from http://www.publish.csiro.au/FP/pdf/FP02085
Krull, E., Singh, B., & Joseph, S. (2009, 10/2010). Preface to Special Issue: Proceedings from
the 1st Asia-Pacific Biochar Conference, 2009, Gold Coast, Australia. Paper presented
at the 1st Asia-Pacific Biochar Conference, Gold Coast, Australia.
Krull, E. S., Baldock, J., Skjemstad, J. O., & Smernik, R. S. (2009). Characteristics of biochar -
organo-chemical properties. In Biochar for environmental management: Science and
technology (pp. 53-66): Earthscan.
Krupp, F., et al. (2019). Can Carbon-Removal Technologies Curb Climate Change? Foreign
Affairs, March/April. Retrieved from https://www.foreignaffairs.com/articles/2019-02-12/
less-zero
Krzesinska, M., & Zachariasz, J. (2007). The effect of pyrolysis temperature on the physical
properties of monolithic carbons derived from solid iron bamboo. Journal of Analytical
and Applied Pyrolysis, 80(1), 209-215. Retrieved from http://www.sciencedirect.com/
science/article/pii/S0165237007000393
Kua, H. W., & Gladys Choo, S. Y. (2019). Chapter 17 - The Use of Biochar-Coated Lime Plaster
Pellets for Indoor Carbon Dioxide Sequestration. In Y. S. Ok, D. C. W. Tsang, N. Bolan, &
J. M. Novak (Eds.), Biochar from Biomass and Waste (pp. 305-317): Elsevier.
Kua, H. W., Pedapati, C., Lee, R. V., & Kawi, S. (2019). Effect of indoor contamination on
carbon dioxide adsorption of wood-based biochar – Lessons for direct air capture.
Journal of Cleaner Production, 210, 860-871. doi:https://doi.org/10.1016/
j.jclepro.2018.10.206
Kubota, H., & Shimota, A. (2017). How should Information about CCS be Shared with the
Japanese Public? Energy Procedia, 114(Supplement C), 7205-7211. doi:https://doi.org/
10.1016/j.egypro.2017.03.1827
Kuch, D. (2017). “Fixing” climate change through carbon capture and storage: Situating
industrial risk cultures. Futures, 92, 90-99. Retrieved from https://
www.sciencedirect.com/science/article/abs/pii/S001632871630146X?via%3Dihub
Kudo, I., Noiri, Y., Imai, K., Nojiri, Y., Nishioka, J., & Tsuda, A. (2005). Primary productivity and
nitrogenous nutrient assimilation dynamics during the Subarctic Pacific Iron Experiment
for Ecosystem Dynamics Study. Progress in Oceanography, 64(2), 207-221. doi:https://
doi.org/10.1016/j.pocean.2005.02.009
Kudo, I., Noiri, Y., Nishioka, J., Taira, Y., Kiyosawa, H., & Tsuda, A. (2006). Phytoplankton
community response to Fe and temperature gradients in the NE (SERIES) and NW
(SEEDS) subarctic Pacific Ocean. Deep Sea Research Part II: Topical Studies in
Oceanography, 53(20–22), 2201-2213. doi:http://dx.doi.org/10.1016/j.dsr2.2006.05.033
Kuhlbusch, T. A. J. (1998). Black carbon and the carbon cycle. Science, 280(5371), 1903-1904.
Retrieved from http://science.sciencemag.org/content/280/5371/1903
Kuijper, M. (2021). Carbon Takeback Obligation: A Producers Responsibility Scheme on the
Way to a Climate Neutral Energy System. Retrieved from https://www.gemeynt.nl/
bericht/carbon-takeback-obligation-a-producers-responsibility-scheme-on-the-way-to-a-
climate-neutral-energy-system
Kuijun, L. (2016). Multi-Scale Simulation of Carbon Capture Processes Based on Mesoporous
Silica-Supported, Polyethyleneimine-Impregnated Sorbents. (Ph.D. Dissertation/Thesis).
West Virginia University, Retrieved from https://search.proquest.com/docview/
1848669049?accountid=14496
Kuittinen, M., Zernicke, C., Slabik, S., & Hafner, A. (2021). How can carbon be stored in the built
environment? A review of potential options. Architectural Science Review, 1-17.
doi:10.1080/00038628.2021.1896471
Kujanpää, L., Rauramo, J., & Arasto, A. (2011). Cross-border CO2 infrastructure options for a
CCS demonstration in Finland. Energy Procedia, 4, 2425-2431. doi:http://dx.doi.org/
10.1016/j.egypro.2011.02.136
Kula, E. (2010). Afforestation with carbon sequestration and land use policy in Northern Ireland.
Land Use Policy, 27(3), 749-752. doi:https://doi.org/10.1016/j.landusepol.2009.10.004
Kulkarni, & R., D. S. S. (2012). Analysis of Equilibrium-Based TSA Processes for Direct Capture
of CO2 from Air. Industrial & Engineering Chemistry Research, 51(25), 8631-8645.
Retrieved from http://pubs.acs.org/doi/abs/10.1021/ie300691c?
prevSearch=air%2Bcapture&searchHistoryKey=&
Kulshrestha, U. C. (2020). Biochar Application in Agricultural Fields may be Fatal for Solar
Energy Mission and Climate Change Targets. Current World Environment, 15(3),
377-379. doi:10.12944/cwe.15.3.01
Kulyk, N. (2012). Cost-benefit analysis of the biochar application in the U.S. Cereal Crop
Cultivation. Technical Report # 12. Amherst: Center for Public Policy and Administration
University of Massachusetts.
Kuma, A., et al. (2010). Enhanced CO2 fixation and biofuel production via microalgae: recent
developments and future directions. Trends in Biotechnology, 28, 371-380. Retrieved
from http://lira.pro.br/wordpress/wp-content/uploads/downloads/2011/11/kumar-et-
al-2011.pdf
Kumar, A., et al. (2015). Direct Air Capture of CO2 by Physisorbent Materials. Angewandte
Chemie International Edition, 54(48), 14372-14377. Retrieved from http://
onlinelibrary.wiley.com/doi/10.1002/anie.201506952/full
Kumar, A., Ergas, S., Yuan, X., Sahu, A., Zhang, Q., Dewulf, J., . . . van Langenhove, H. (2010).
Enhanced CO2 fixation and biofuel production via microalgae: recent developments and
future directions. Trends in Biotechnology, 28(7), 371-380. doi:https://doi.org/10.1016/
j.tibtech.2010.04.004
Kumar, A., & Sokhansanj, S. (2007). Switchgrass (Panicum vigratum, L.) delivery to a
biorefinery using integrated biomass supply analysis and logistics (IBSAL) model.
Bioresource Technology, 98(5), 1033-1044. doi:https://doi.org/10.1016/
j.biortech.2006.04.027
Kumar, D., & Pant, K. K. (2015). Production and characterization of biocrude and biochar
obtained from non-edible de-oiled seed cakes hydrothermal conversion. Journal of
Analytical and Applied Pyrolysis, 115, 77-86. doi:10.1016/j.jaap.2015.06.014
Kumar, K., Dasgupta, C. N., Nayak, B., Lindblad, P., & Das, D. (2011). Development of suitable
photobioreactors for CO2 sequestration addressing global warming using green algae
and cyanobacteria. Bioresource Technology, 102(8), 4945-4953. doi:https://doi.org/
10.1016/j.biortech.2011.01.054
Kumar, R., et al. (2019). Climate Change and Mitigation through Agroforestry. International
Journal of Current Microbiology and Applied Sciences, 8(6), 1662-1667. Retrieved from
https://www.ijcmas.com/abstractview.php?ID=13296&vol=8-6-2019&SNo=198
Kumar, R., Bhatnagar, P. R., Kakade, V., & Dobhal, S. (2020). Tree plantation and soil water
conservation enhances climate resilience and carbon sequestration of agro ecosystem
in semi-arid degraded ravine lands. Agricultural and Forest Meteorology, 282-283,
107857. doi:https://doi.org/10.1016/j.agrformet.2019.107857
Kumar, S., et al. (2011). An Assessment of U(VI) removal from groundwater using biochar
produced from hydrothermal carbonization. Journal of Environmental Management,
92(10), 2504-2512. doi:10.1016/j.jenvman.2011.05.013
Kumar, S., et al. (2013). Biochar preparation from Parthenium hysterophorus and its potential
use in soil application. Ecological Engineering, 55, 67–72. Retrieved from http://
www.sciencedirect.com/science/article/pii/S092585741300089X
Kumar, S., Jain, M. C., & Chhonkar, P. K. (1987). A Note on Stimulation of Biogas Production
from Cattle Dung by Addition of Charcoal. Biological Wastes, 20(3), 1209-1215.
Retrieved from http://www.sciencedirect.com/science/article/pii/0269748387901558
Kumar Sakhiya, A., Anand, A., Aier, I., Baghel, P., Vijay, V. K., & Kaushal, P. (2020). Sustainable
utilization of rice straw to mitigate climate change: A bioenergy approach. Materials
Today: Proceedings. doi:https://doi.org/10.1016/j.matpr.2020.08.795
Kumar Shukla, A., et al. . (2020). Advances of Carbon Capture and Storage in Coal-Based
Power Generating Units in an Indian Context. Energies, 13(16), 1-17. Retrieved from
https://www.mdpi.com/1996-1073/13/16/4124
Kumarathilaka, P., Mayakaduwa, S., Herath, I., & Vithanage, M. (2015). Biochar. In Biochar:
Production, Characterization, and Applications.
Kumari, H. B. J., Vithanage, M., Dissanayaka, D. M. S. H., Rajakaruna, R. M. P., & Seneviratne,
G. (2014). Novel Bio-Amendments For Phytotoxicity Reduction of Heavy Metals in
Contaminated Soils. Paper presented at the Agricultural Engineering and Soil Sciences -
6th Annual Research Symposium. http://repository.rjt.ac.lk/jspui/bitstream/
7013/2028/1/18.pdf
Kumari, K. G. I. D., Moldrup, P., Paradelo, M., & de Jonge, L. W. (2014). Phenanthrene Sorption
on Biochar-Amended Soils: Application Rate, Aging, and Physicochemical Properties of
Soil. Water, Air, & Soil Pollution, 225(9), 2105. doi:10.1007/s11270-014-2105-8
Kumari, N., & Singh, R. K. (2019). Biofuel and co-products from algae solvent extraction.
Journal of Environmental Management, 247, 196-204. doi:https://doi.org/10.1016/
j.jenvman.2019.06.042
Kump, L. R., Brantley, S. L., & Arthur, M. A. (2000). Chemical Weathering, Atmospheric CO2,
and Climate. Annual Review of Earth and Planetary Sciences, 28(1), 611-667.
doi:10.1146/annurev.earth.28.1.611
Kung, C.-C., et al. (2014). Environmental Impact and Bioenergy Potential: Evaluation of
Agricultural Commodity and Animal Waste Based Biochar Application on Taiwanese Set-
aside Land. Energy Procedia, 61, 679 - 682. doi:10.1016/j.egypro.2014.11.941
Kung, C. C. (2012). Biochar Utilization in Poyang Lake Eco-Economic Zone: Chances and
Difficulties. Journal Advanced Materials Research, Renewable and Sustainable Energy II
(Volumes 512 - 515), 347-350. doi:10.4028/www.scientific.net/AMR.512-515.347
Kung, C. C., Mccarl, B. A., & Cao, X. Y. (2013). Economics of pyrolysis-based energy production
and biochar utilization: A case study in Taiwan. Energy Policy, 60. doi:10.1016/
j.enpol.2013.05.029
Kung, C.-C., & Chang, M.-S. (2015). Effect of Agricultural Feedstock to Energy Conversion Rate
on Bioenergy and GHG Emissions. Sustainability, 7(5), 5981 - 5995. doi:10.3390/
su7055981
Kung, C.-C., Kong, F., & Choi, Y. (2014). Pyrolysis and biochar potential using crop residues and
agricultural wastes in China. Ecological Indicators, 51, 139-145. doi:10.1016/
j.ecolind.2014.06.043
Kung, C.-C., McCarl, B., & Chen, C.-C. (2012). Environmental Impact and Energy Production:
Evaluation of Biochar Applicaiton on Taiwanese Set-Aside Land. Retrieved from http://
www.usaee.org/usaee2012/submissions/OnlineProceedings/
Environmental%20Impact%20and%20Energy%20Production.pdf
Kung, C.-C., McCarl, B. A., & CaoX, i. (2013). Economics of pyrolysis-based energy production
and biochar utilization: A case study in Taiwan. Energy Policy, 60, 317-323. Retrieved
from https://www.sciencedirect.com/science/article/pii/S0301421513003613
Kung, C.-C., & Mu, J. E. (2019). Prospect of China's renewable energy development from
pyrolysis and biochar applications under climate change. Renewable and Sustainable
Energy Reviews, 114, 109343. doi:https://doi.org/10.1016/j.rser.2019.109343
Kunz, R., et al. (2013). Mapping the potential water use of biofuel feedstock production in South
Africa. In J. F. Dellemand & P. W. Gerbens-Leenes (Eds.), Bioenergy and Water (pp.
173-190): European Commission.
Kunzig, R., & Broecker, W. S. (2009). Can technology clear the air? New Scientist, (January 7).
Retrieved from https://www.newscientist.com/article/mg20126901.200-can-technology-
clear-the-air/
Kuoppamäki, K., Hagner, M., Lehvävirta, S., & Setälä, H. (2016). Biochar amendment in the
green roof substrate affects runoff quality and quantity. Ecological Engineering, 88, 1 - 9.
doi:10.1016/j.ecoleng.2015.12.010
Kuparinen, K., Vakkilainen, E., Tynjälä, T. J. M., & Change, A. S. f. G. (2019). Biomass-based
carbon capture and utilization in kraft pulp mills. doi:10.1007/s11027-018-9833-9
Kuppens, T., Van Dael, M., Vanreppelen, K., Carleer, R., Yperman, J., Schreurs, S., & Van
Passel, S. (2014). Techno-Economic Assessment of Pyrolysis Char Production and
Application – A Review. Paper presented at the Institute for Materials Reasearch,
Nuclear Technology Centre, Environmental Economics, Research Institute: Centre for
Environmental Sciences, Applied and Analytical Chemistry.
Kuppusamy, S., et al. . (2016). Agronomic and remedial benefits and risks of applying biochar to
soil: Current knowledge and future research directions. Environment International, 87, 1
- 12. doi:10.1016/j.envint.2015.10.018
Kuppusamy, S., Krishnan, P. S., Kumutha, K., French, J., Carlos, G. E., & Toefield, B. (2011).
Suitability of UK and Indian Source Acacia Wood Based Biochar as a Best Carrier
Material for the Preparation of Azospirillum Inoculum. International Journal of
Biotechnology, 4, 582-588. Retrieved from http://ijbiotch.webs.com/ijb462011.htm
Kupryianchyk, D., Hale, S., Zimmerman, A. R., Harvey, O., Rutherford, D., Abiven, S., . . .
Cornelissen, G. (2016). Sorption of hydrophobic organic compounds to a diverse suite of
carbonaceous materials with emphasis on biochar. Chemosphere, 144, 879 - 887.
doi:10.1016/j.chemosphere.2015.09.055
Kupryianchyk, D., Hale, S. E., Breedveld, G. D., & Cornelissen, G. (2015). Treatment of sites
contaminated with perfluorinated compounds using biochar amendment. Chemosphere.
doi:10.1016/j.chemosphere.2015.04.085
Kuramochi, T., Ramirez, A., Turkenburg, W., & Faaij, A. (2012). Comparative assessment of
CO2 capture technologies for carbon-intensive industrial processes. Progress in Energy
and Combustion Science, 38(1), 87-112. doi:10.1016/j.pecs.2011.05.001
Kuramochi, T., Ramírez, A., Turkenburg, W., & Faaij, A. (2013). Techno-economic prospects for
CO2 capture from distributed energy systems. Renewable and Sustainable Energy
Reviews, 19, 328-347. doi:http://dx.doi.org/10.1016/j.rser.2012.10.051
Kurano, N., Ikemoto, H., Miyashita, H., Hasegawa, T., Hata, H., & Miyachi, S. (1995). Fixation
and utilization of carbon dioxide by microalgal photosynthesis. Energy Conversion and
Management, 36(6), 689-692. doi:https://doi.org/10.1016/0196-8904(95)00099-Y
Kurbanov, E., Vorobyov, O., Gubayev, A., Moshkina, L., & Lezhnin, S. (2007). Carbon
sequestration after pine afforestation on marginal lands in the Povolgie region of Russia:
A case study of the potential for a Joint Implementation activity. Scandinavian Journal of
Forest Research, 22(6), 488-499. doi:10.1080/02827580701803080
Kurlov, A., Broda, M., Hosseini, D., Mitchell, S. J., Pérez-Ramírez, J., & Müller, C. R. (2016).
Mechanochemically Activated, Calcium Oxide-Based, Magnesium Oxide-Stabilized
Carbon Dioxide Sorbents. ChemSusChem, 9(17), 2380-2390. doi:10.1002/
cssc.201600510
Kurth, V. J., MacKenzie, M. D., & DeLuca, T. H. (2006). Estimating charcoal content in forest
mineral soils. Geoderma, 137(1-2), 135-139. Retrieved from http://
www.sciencedirect.com/science/article/pii/S0016706106002394
Kurz, K. D., & Maier-Reimer, E. (1993). Iron fertilization of the Austral Ocean—The Hamburg
Model Assessment. Global Biogeochemical Cycles, 7(1), 229-244. Retrieved from http://
onlinelibrary.wiley.com/doi/10.1029/92GB02910/full
Kuse, K. (2019). USA Patent No.: U. S. P. Office.
Kusmer, A. (2020). Can direct air capture make a real impact on climate change? The World.
Retrieved from https://www.pri.org/stories/2020-07-03/can-direct-air-capture-make-real-
impact-climate-change
Kusmierz, M., & Oleszczuk, P. (2013). Biochar production increases the polycyclic aromatic
hydrocarbon content in surrounding soils and potential cancer risk. Environmental
Science and Pollution Research, 21, 3646-3652. Retrieved from https://
link.springer.com/article/10.1007/s11356-013-2334-1
Kuśmierz, M., Oleszczuk, P., Kraska, P., Pałys, E., & Andruszczak, S. (2016). Persistence of
polycyclic aromatic hydrocarbons (PAHs) in biochar-amended soil. Chemosphere, 146,
272 - 279. doi:10.1016/j.chemosphere.2015.12.010
Kusnetz, N. (2020). Exxon Touts Carbon Capture as a Climate Fix, but Uses It to Maximize
Profit and Keep Oil Flowing. Inside Climate News. Retrieved from https://
insideclimatenews.org/news/25092020/exxon-carbon-capture?
utm_source=InsideClimate+News&utm_campaign=9cd7f309b9-
&utm_medium=email&utm_term=0_29c928ffb5-9cd7f309b9-326466933
Kusumo, B. H., Arbestain, M. C., Mahmud, A. F., Hedley, M. J., Hedley, C. B., Pereira, R. C., . . .
Singh, B. P. (2014). Assessing biochar stability indices using near infrared spectroscopy.
In.
Kuuskraa, V. (2013). The role of enhanced oil recovery for carbon capture, use, and storage.
Greenhouse Gases: Science and Technology, 3(1), 3-4. doi:doi:10.1002/ghg.1334
Kuuskraa, V. A., Godec, M. L., & Dipietro, P. (2013). CO2 Utilization from “Next Generation”
CO2 Enhanced Oil Recovery Technology. Energy Procedia, 37(Supplement C),
6854-6866. doi:https://doi.org/10.1016/j.egypro.2013.06.618
Kuwae, T., & Hori, M. (2018). The Future of Blue Carbon: Addressing Global Environmental
Issues. In T. Kuwae & M. Hori (Eds.), Blue Carbon in Shallow Coastal Ecosystems:
Carbon Dynamics, Policy, and Implementation (pp. 347-373). Singapore: Springer
Singapore.
Kuwae, T., Kanda, J., Kubo, A., Nakajima, F., Ogawa, H., Sohma, A., & Suzumura, M. (2018).
CO2 Uptake in the Shallow Coastal Ecosystems Affected by Anthropogenic Impacts. In
T. Kuwae & M. Hori (Eds.), Blue Carbon in Shallow Coastal Ecosystems: Carbon
Dynamics, Policy, and Implementation (pp. 295-319). Singapore: Springer Singapore.
Kuwagaki, H., & Tamura, K. (1990). Aptitude of wood charcoal to a soil improvement and other
non-fuel use. In Mitigation and Adaptation Strategies for Global Change.
Kuzyakov, Y., et al. (2009). Black Carbon Decomposition and Incorporation into Soil Microbial
Biomass Estimated by Carbon 14 Labeling. Soil Biology and Biochemistry, 41, 210 -
219. Retrieved from http://www.aec.uni-bayreuth.de/kuzyakov/K_SBB_2009_14C-BC-
Decomposition-MB.pdf
Kuzyakov, Y., Bogomolova, I., & Glaser, B. (2014). Biochar stability in soil: Decomposition during
eight years and transformation as assessed by compound-specific 14C analysis. Soil
Biology and Biochemistry, 70, 229-238. Retrieved from http://www.sciencedirect.com/
science/article/pii/S0038071713004653
Kwak, D.-H., & Kim, J.-K. (2017). Techno-economic evaluation of CO2 enhanced oil recovery
(EOR) with the optimization of CO2 supply. International Journal of Greenhouse Gas
Control, 58, 169-184. doi:https://doi.org/10.1016/j.ijggc.2017.01.002
Kwan, B. (2018). The discovery giving the Great Barrier Reef a fighting chance. SBS News.
Retrieved from https://www.sbs.com.au/news/the-discovery-giving-the-great-barrier-reef-
a-fighting-chance
Kwapinski, W., et al. (2010). Biochar from Biomass and Waste. Waste and Biomass
Valorization, 1(2), 177-189. Retrieved from https://link.springer.com/article/10.1007/
s12649-010-9024-8#citeas
Kwiatkowski, L., Ricke, K. L., & Caldeira, K. (2015). Atmospheric consequences of disruption of
the ocean thermocline. Environmental Research Letters, 10(3), 034016. Retrieved from
http://stacks.iop.org/1748-9326/10/i=3/a=034016
Kyrimis, S., Potter, M. E., Raja, R., & Armstrong, L.-M. (2021). Understanding catalytic CO2 and
CO conversion into methanol using computational fluid dynamics. Faraday Discussions,
230(0), 100-123. doi:10.1039/D0FD00136H
La Shier, B. (2018). Carbon Removal Strategies: A Broad Overview Combating Climate Change
Will Almost Certainly Require Removing Carbon from the Atmosphere. Retrieved from
https://www.eesi.org/articles/view/carbon-removal-strategies-a-broad-overview
Lab, S. N. A. (2019). First snapshots of trapped CO2 molecules shed new light on carbon
capture. Phys.org. Retrieved from https://phys.org/news/2019-06-snapshots-co2-
molecules-carbon-capture.html
Lababpour, A. (2018). A dynamic model for the prediction of flue gas carbon dioxide removal by
the microalga Chlorella vulgaris in column photobioreactor. Alexandria Engineering
Journal, 57(4), 3311-3320. doi:https://doi.org/10.1016/j.aej.2018.01.013
Labbé, S. (2021). B.C. company moves to suck jet fuel out of the atmosphere. North Shore
News. Retrieved from https://www.nsnews.com/highlights/bc-company-moves-to-suck-
jet-fuel-out-of-the-atmosphere-4180792
Laboratory, D. A. N. (2013). Iron fertilization, process of putting iron into ocean to help capture
carbon, could backfire. ScienceDaily.
Lackner, K., et. al. (2012). The urgency of the development of CO2 capture from ambient air.
PNAS, 109(33), 13156-13162. Retrieved from http://www.pnas.org/content/
109/33/13156.abstract?etoc
Lackner, K. (2021). How do we solve a problem like climate change? With innovations like
Mechanical Trees. Azcentral. Retrieved from https://www.azcentral.com/story/opinion/op-
ed/2021/01/01/mechanical-trees-innovative-way-address-climate-change/4027597001/
Lackner, K., Ziock, H.-J., & Grimes, P. (1999). Carbon Dioxide Extraction From Air: Is It An
Option? Paper presented at the 24th Annual Technical Conference on Coal Utilization &
Fuel Systems.
Lackner, K. S. (1995). A Guide to CO2 Sequestration. Science, 300(5626), 1677-1678.
Retrieved from http://science.sciencemag.org/content/300/5626/1677
Lackner, K. S. (2002). Carbonate Chemistry for Sequestering Fossil Carbon. Annual Review of
Energy and the Environment, 27, 193-232. Retrieved from http://www.annualreviews.org/
doi/pdf/10.1146/annurev.energy.27.122001.083433
Lackner, K. S. (2003). A Guide to CO2 Sequestration. Science, 300(5626), 1677-1678.
doi:10.1126/science.1079033
Lackner, K. S. (2009). Capture of carbon dioxide from ambient air. European Physical Journal
Special Topics, 176(1), 93-106. Retrieved from http://link.springer.com/article/
10.1140%2Fepjst%2Fe2009-01150-3
Lackner, K. S. (2013). The thermodynamics of direct air capture of carbon dioxide. Energy, 50,
38-46. doi:http://dx.doi.org/10.1016/j.energy.2012.09.012
Lackner, K. S. (2014). The Use of Artificial Trees. In R. E. Hester & R. M. Harrison (Eds.),
Geoengineering of the Climate System (pp. 80-104). Cambridge: Royal Soc Chemistry.
Lackner, K. S. (2015). State of Direct Air Capture. Paper presented at the Carbon Management
Technologies Conference, Sugarland, TX. https://engineering.asu.edu/cnce/wp-content/
uploads/sites/69/2015/02/11.19.15-Lackner-presentation-CMTC-conference.pdf
Lackner, K. S. (2016). The Promise of Negative Emissions. Science, 354(6313), 714. Retrieved
from http://science.sciencemag.org/content/354/6313/714.1
Lackner, K. S., & Azarabadi, H. (2021). Buying down the Cost of Direct Air Capture. Industrial &
Engineering Chemistry Research. doi:10.1021/acs.iecr.0c04839
Lackner, K. S., & Brennan, S. (2009). Envisioning carbon capture and storage: expanded
possibilities due to air capture, leakage insurance, and C-14 monitoring. Climatic
Change, 96(3), 357-378. doi:10.1007/s10584-009-9632-0
Lackner, K. S., Brennan, S., Matter, J. M., Park, A. H. A., Wright, A., & van der Zwaan, B.
(2012). Proc. Natl. Acad. Sci. U. S. A., 109, 13156.
Lackner, K. S., Butt, D. P., & Wendt, C. H. (1997). Progress on binding CO2 in mineral
substrates. Energy Conversion and Management, 38, S259-S264. doi:https://doi.org/
10.1016/S0196-8904(96)00279-8
Lackner, K. S., & Jospe, C. (2017). Climate Change is a Waste Management Problem. Issues in
Science and Technology(Spring), 83-88. Retrieved from https://issues.org/climate-
change-is-a-waste-management-problem/
Lackner, K. S., Wendt, C. H., Butt, D. P., Joyce, E. L., & Sharp, D. H. (1995). Carbon dioxide
disposal in carbonate minerals. Energy, 20(11), 1153-1170. doi:http://dx.doi.org/
10.1016/0360-5442(95)00071-N
Lackner, K. S., Wilson, R., & Ziock, H.-J. (2000). Free-Market Approaches to Controlling Carbon
Dioxide Emissions to the Atmosphere. Paper presented at the Proceedings of the Global
Warming and Energy Policy Conference,, Ft. Lauderdale, FL.
Låg, M., et al. (2009). Health effects of different amines and possible degradation products
relevant for CO2 capture. Retrieved from https://brage.bibsys.no/xmlui/bitstream/handle/
11250/220543/L%C3%A5g_2009_Hea.pdf?sequence=3
Laganière, J., Angers, D. A., & Pare, D. (2010). Carbon accumulation in agricultural soils after
afforestation: a metaanalysis. Global Change Biology, 16(1), 439-453. doi:doi:10.1111/
j.1365-2486.2009.01930.x
Laganière, J., Paré, D., Thiffault, E., & Bernier, P. Y. (2017). Range and uncertainties in
estimating delays in greenhouse gas mitigation potential of forest bioenergy sourced
from Canadian forests. GCB Bioenergy, 9(2), 358-369. doi:doi:10.1111/gcbb.12327
Laghari, M., Hu, Z., Mirjat, M. S., Xiao, B., Tagar, A. A., & Hu, M. (2015). Fast pyrolysis biochar
from sawdust improves quality of desert soils and enhances plant growth. Journal of the
Science of Food and Agriculture, 96(1), 199-206. doi:10.1002/jsfa.7082
Laghari, M., Mirjat, M. S., Hu, Z., Fazal, S., Xiao, B., Hu, M., . . . Guo, D. (2015). Effects of
biochar application rate on sandy desert soil properties and sorghum growth. CATENA,
135, 313 - 320. doi:10.1016/j.catena.2015.08.013
Laglera, L. M., Tovar-Sánchez, A., Iversen, M. H., González, H. E., Naik, H., Mangesh, G., . . .
Wolf-Gladrow, D. A. (2017). Iron partitioning during LOHAFEX: Copepod grazing as a
major driver for iron recycling in the Southern Ocean. Marine Chemistry,
196(Supplement C), 148-161. doi:https://doi.org/10.1016/j.marchem.2017.08.011
Lahijani, P., Mohammadi, M., & Mohamed, A. R. (2018). Metal incorporated biochar as a
potential adsorbent for high capacity CO2 capture at ambient condition. Journal of CO2
Utilization, 26, 281-293. doi:https://doi.org/10.1016/j.jcou.2018.05.018
Lai, W.-Y., et al. . (2013). The effects of woodchip biochar application on crop yield, carbon
sequestration and greenhouse gas emissions from soils planted with rice or leaf beet.
Journal of the Taiwan Institute of Chemical Engineers, 44(6), 1039-1044. Retrieved from
http://www.sciencedirect.com/science/article/pii/S1876107013001740
Laili, Z., Wahab, M. A., Laili, Z., Yasir, M. S., Mahmud, N. A., & Abidin, N. Z. (2015).
Immobilisation Of Spent Ion Exchange Resins Using Portland Cement Blending With
Organic Material. In.
Laili, Z., Yasir, M. S., & Wahab, M. A. (2015). AIP Conference Proceedings Solidification of
radioactive waste resins using cement mixed with organic material. Paper presented at
the ADVANCING OF NUCLEAR SCIENCE AND ENERGY FOR NATIONAL
DEVELOPMENT: Proceedings of the Nuclear Science, Technology, and Engineering
Conference 2014 (NuSTEC2014), Skudai, Johor, Malaysia. http://scitation.aip.org/
content/aip/proceeding/aipcp/10.1063/1.4916876
Laili, Z., Yasir, M. S., Wahab, M. A., Mahmud, N. A., & Abidin, N. Z. (2015). Penilaian kekuatan
mampatan matriks simen-resin terpakai yang dicampur dengan bioarang (Evaluation of
compressive strength of cement-resin matrix used mixed with charcoal). Malaysian
Journal of Analytical Sciences, 19(3), 565-573. Retrieved from http://www.ukm.my/mjas/
v19_n3/pdf/ZalinaLaili_19_3_13.pdf
Laird, D., Fleming, P., Wang, B. Q., Horton, R., & Karlen, D. (2010). Biochar impact on nutrient
leaching from a Midwestern agricultural soil. Geoderma, 158(3-4), 436-442. Retrieved
from http://www.sciencedirect.com/science/article/pii/S0016706110001758
Laird, D. A. (2008). The charcoal vision: A win-win-win scenario for simultaneously producing
bioenergy, permanently sequestering carbon, while improving soil and water quality.
Agronomy Journal, 100(1), 178-181.
Laird, D. A., Brown, R., Amonette, J., & Lehmann, J. (2009). Review of the pyrolysis platform for
coproducing bio-oil and biochar. Biofuels, Bioproducts and Biorefining, 3(5), 547 - 562.
Retrieved from http://www.css.cornell.edu/faculty/lehmann/publ/
BiofBioproBioref%203,%20547-562,%202009%20Laird.pdf
Laird, D. A., Fleming, P., Davis, D. D., Horton, R., Wang, B. Q., & Karlen, D. L. (2010). Impact of
biochar amendments on the quality of a typical Midwestern agricultural soil. Geoderma,
158(3-4), 443-449. Retrieved from http://www.sciencedirect.com/science/article/pii/
S001670611000176X
Laird, D. A., & Novak., J. M. (2009). Biochar and Soil Quality. In R. Lal (Ed.), Encyclopedia of
Soil Science. New York: Taylor and Francis Group.
Laird, D. A., Thompson, M. L., Chappell, M. A., Martens, D. A., & Wershaw, R. L. (2008).
Distinguishing Black Carbon from Biogenic Humic Substances in Soil Clay Fractions.
Geoderma, 143(1-2), 115–122. Retrieved from http://www.sciencedirect.com/science/
article/pii/S0016706107003084
Lake, L. W., et al. (2014). Fundamentals of Enhanced Oil Recovery: Society of Petroleum
Engineerings.
Lal, R., et al. (1999). Management of U.S. cropland to sequester carbon in soil. Journal of Soil
and Water Conservation, 54(1), 374-381. Retrieved from http://www.jswconline.org/
content/54/1/374.extract
Lal, R. (2003). Global Potential of Soil Carbon Sequestration to Mitigate the Greenhouse Effect.
Critical Reviews in Plant Sciences, 22(2), 151-184. doi:10.1080/713610854
Lal, R. (2004). Carbon Sequestration in Dryland Ecosystems. Environmental Management,
33(4), 528-544. doi:10.1007/s00267-003-9110-9
Lal, R. (2004). Soil Carbon Sequestration Impacts on Global Climate Change and Food
Security. Science, 304(5677), 1623-1627. Retrieved from http://science.sciencemag.org/
content/304/5677/1623
Lal, R. (2004). Soil carbon sequestration to mitigate climate change. Geoderma, 123(1), 1-22.
doi:https://doi.org/10.1016/j.geoderma.2004.01.032
Lal, R. (2005). Forest soils and carbon sequestration. Forest Ecology and Management, 220(1–
3), 242-258. doi:http://dx.doi.org/10.1016/j.foreco.2005.08.015
Lal, R. (2005). World crop residues production and implications of its use as a biofuel.
Environment International, 31(4), 575-584. doi:https://doi.org/10.1016/
j.envint.2004.09.005
Lal, R. (2006). Soil and environmental implications of using crop residues as biofuel feedstock.
International Sugar Journal, 108(1287), 162-167. Retrieved from http://web.natur.cuni.cz/
fyziol5/kfrserver/gztu/pdf/LAL_residues_biofuel_2006.pdf
Lal, R., et al. (2007). Soil Carbon Sequestration to Mitigate Climate Change and Advance Food
Security. Soil Science, 172(12), 943-956. Retrieved from https://journals.lww.com/soilsci/
Abstract/2007/12000/Soil_Carbon_Sequestration_To_Mitigate_Climate.1.aspx
Lal, R. (2008). Sequestration of atmospheric CO2 in global carbon pools. Energy &
Environmental Science, 1(1), 86-100. doi:10.1039/B809492F
Lal, R. (2009). Sequestering Atmospheric Carbon Dioxide. Critical Reviews in Plant Sciences,
28(3), 90-96. doi:10.1080/07352680902782711
Lal, R. (2009). Soils and food sufficiency. A review. Agronomy for Sustainable Development,
29(1), 113-133. Retrieved from http://link.springer.com/article/10.1051/agro:2008044
Lal, R. (2009). Use of crop residues in the production of biofuel A2 -. In Handbook of Waste
Management and Co-Product Recovery in Food Processing (pp. 455-478): Woodhead
Publishing.
Lal, R. (2010). Beyond Copenhagen: mitigating climate change and achieving food security
through soil carbon sequestration. Food Security, 2(2), 169-177. doi:10.1007/
s12571-010-0060-9
Lal, R. (2010). Terrestrial sequestration of carbon dioxide (CO2) A2 - Maroto-Valer, M.
Mercedes. In Developments and Innovation in Carbon Dioxide (CO2) Capture and
Storage Technology (Vol. 2, pp. 271-303): Woodhead Publishing.
Lal, R. (2011). Sequestering carbon in soils of agro-ecosystems. Food Policy, 36(1), S33-S39.
Retrieved from http://www.sciencedirect.com/science/article/pii/S0306919210001454
Lal, R. (2013). Intensive Agriculture and the Soil Carbon Pool. Journal of Crop Improvement,
27(6), 735-751. doi:10.1080/15427528.2013.845053
Lal, R. (2016). Beyond COP 21: Potential and challenges of the “4 per Thousand” initiative.
Journal of Soil and Water Conservation, 71(1), 20A-25A. Retrieved from http://
www.jswconline.org/content/71/1/20A.extract%E2%80%8B
Lal, R. (2016). Biochar and Soil Carbon Sequestration. In M. Guo, Z. He, & M. Uchimiya (Eds.),
Agricultural and Environmental Applications of Biochar: Advances and Barriers (pp.
175-198).
Lal, R., Bouma, J., Brevik, E., Dawson, L., Field, D. J., Glaser, B., . . . Zhang, J. (2021). Soils
and sustainable development goals of the United Nations (New York, USA): An IUSS
perspective. Geoderma Regional, e00398. doi:https://doi.org/10.1016/
j.geodrs.2021.e00398
Lal, R., Negassa, W., & Lorenz, K. (2015). Carbon sequestration in soil. Current Opinion in
Environmental Sustainability, 15, 79-86. doi:https://doi.org/10.1016/j.cosust.2015.09.002
Lam, M. K., Lee, K. T., & Mohamed, A. R. (2012). Current status and challenges on microalgae-
based carbon capture. International Journal of Greenhouse Gas Control, 10, 456-469.
doi:https://doi.org/10.1016/j.ijggc.2012.07.010
Lambe, D. (2020). Why trees really matter in the race to decarbonization. Retrieved from https://
www.weforum.org/agenda/2020/11/how-do-trees-affect-climate-change
Lamers, P., & Junginger, M. (2013). The ‘debt’ is in the detail: A synthesis of recent temporal
forest carbon analyses on woody biomass forenergy. Biofuels, Bioproducts &
Biorefining, 7(4), 373-385. Retrieved from http://onlinelibrary.wiley.com/doi/10.1002/
bbb.1407/abstract
Lamichhane, S., Bal Krishna, K. C., & Sarukkalige, R. (2016). Polycyclic aromatic hydrocarbons
(PAHs) removal by sorption: A review. Chemosphere, 148, 336 - 353. doi:10.1016/
j.chemosphere.2016.01.036
Lammirato, C., Miltner, A., & Kaestner, M. (2011). Effects of wood char and activated carbon on
the hydrolysis of cellobiose by beta-glucosidase from Aspergillus niger. Soil Biology &
Biochemistry, 43(9), 1936-1942. Retrieved from http://cat.inist.fr/?
aModele=afficheN&cpsidt=24765751
Lampitt, R. S., et al. (2008). Ocean fertilization: a potential means of geoengineering?
Philosophical Transactions of the Royal Society A, 366(1882), 3919-3945.
Lance, V. P., Hiscock, M. R., Hilting, A. K., Stuebe, D. A., Bidigare, R. R., Smith, W. O., &
Barber, R. T. (2007). Primary productivity, differential size fraction and pigment
composition responses in two Southern Ocean in situ iron enrichments. Deep Sea
Research Part I: Oceanographic Research Papers, 54(5), 747-773. doi:https://doi.org/
10.1016/j.dsr.2007.02.008
Lancelot, C., Veth, C., & Mathot, S. (1991). Modelling ice-edge phytoplankton bloom in the
Scotia-Weddell sea sector of the Southern Ocean during spring 1988. Journal of Marine
Systems, 2(3), 333-346. doi:https://doi.org/10.1016/0924-7963(91)90040-2
Landis, D. A., Gardiner, M. M., van der Werf, W., & Swinton, S. M. (2008). Increasing corn for
biofuel production reduces biocontrol services in agricultural landscapes. Proceedings of
the National Academy of Sciences, 105(51), 20552-20557. doi:10.1073/
pnas.0804951106
Landry, M. R., et al. (2000). Biological response to iron fertilization in the eastern equatorial
Pacific (IronEx II).: III. Dynamics of phytoplankton growth and microzooplankton grazing.
Marine Ecology Progress Series, 201, 57-72. Retrieved from http://www.int-res.com/
articles/meps/201/m201p027.pdf
Lang, J. O., et al. (2020). Summary of Guidance on Section 45Q Carbon Tax Credits Under
2020 Notice and Revenue Procedure. GT Alert. Retrieved from https://www.gtlaw.com/
en/insights/2020/3/summary-of-guidance-on-section-45q-carbon-tax-credits-under-2020-
notice-and-revenue-procedure
Langanke, J., Wolf, A., Hofmann, J., Böhm, K., Subhani, M. A., Müller, T. E., . . . Gürtler, C.
(2014). Carbon dioxide (CO2) as sustainable feedstock for polyurethane production.
Green Chemistry, 16(4), 1865-1870. doi:10.1039/C3GC41788C
Langer, W. H., San Juan, C. A., Rau, G., & Caldeira, K. (2009). Accelerated weathering of
limestone for CO2 mitigation: Opportunities for the stone and cement industries. Mining
Engineering, 61(2), 27-32. Retrieved from https://www.researchgate.net/profile/
Ken_Caldeira/publication/
283868780_Accelerated_weathering_of_limestone_for_CO2_mitigation_Opportunities_f
or_the_stone_and_cement_industries/links/56a9486108ae2df821651f60/Accelerated-
weathering-of-limestone-for-CO2-mitigation-Opportunities-for-the-stone-and-cement-
industries.pdf?origin=publication_detail
Langholtz, M., Busch, I., Kasturi, A., Hilliard, M. R., McFarlane, J., Tsouris, C., . . . Parish, E. S.
(2020). The Economic Accessibility of CO2 Sequestration through Bioenergy with
Carbon Capture and Storage (BECCS) in the US. Land, 9(9), 299. Retrieved from
https://www.mdpi.com/2073-445X/9/9/299
Lankoski, J., & Ollikainen, M. (2011). Biofuel policies and the environment: Do climate benefits
warrant increased production from biofuel feedstocks? Ecological Economics, 70(4),
676-687. doi:10.1016/j.ecolecon.2010.11.002
Lannuzel, D., Chever, F., van der Merwe, P. C., Janssens, J., Roukaerts, A., Cavagna, A.-J., . . .
Meiners, K. M. (2016). Iron biogeochemistry in Antarctic pack ice during SIPEX-2. Deep
Sea Research Part II: Topical Studies in Oceanography, 131, 111-122. doi:https://doi.org/
10.1016/j.dsr2.2014.12.003
Lant, K. (2017). A Plant 1,000 Times More Efficient at CO2 Removal Than Photosynthesis Is
Now Active. Futurism. Retrieved from https://futurism.com/a-plant-1000-times-more-
efficient-at-co2-removal-than-photosynthesis-is-now-active/
Lapola, D. M., Schaldach, R., Alcamo, J., Bondeau, A., Koch, J., Koelking, C., & Priess, J. A.
(2010). Indirect land-use changes can overcome carbon savings from biofuels in Brazil.
Proceedings of the National Academy of Sciences, 107(8), 3388-3393. doi:10.1073/
pnas.0907318107
Larjavaara, M., Kanninen, M., Gordillo, H., Koskinen, J., Kukkonen, M., Käyhkö, N., . . . Wunder,
S. (2017). Global variation in the cost of increasing ecosystem carbon. Nature Climate
Change. doi:10.1038/s41558-017-0015-7
Larkin, A., Kuriakose, J., Sharmina, M., & Anderson, K. (2017). What if negative emission
technologies fail at scale? Implications of the Paris Agreement for big emitting nations.
Climate Policy, 1-25. doi:10.1080/14693062.2017.1346498
Larkin, P., Bird, S., & Gattinger, M. (2021). Carbon Capture, Utilization and Storage:
Polarization, Public Confidence and Decision-Making. Retrieved from https://
www.uottawa.ca/positive-energy/content/carbon-capture-utilization-and-storage-
polarization-public-confidence-and-decision-making
Larsbo, M., et al. (2013). Pesticide leaching from two Swedish topsoils of contrasting texture
amended with biochar. Journal of Contaminant Hydrology, 147, 73-81. Retrieved from
http://www.sciencedirect.com/science/article/pii/S0169772213000156
Larsen, J., et al. (2019). Capturing Leadership: Policies for the US to Advance Direct Air
Capture Technology. Retrieved from https://rhg.com/wp-content/uploads/2019/05/
Rhodium_CapturingLeadership_May2019-1.pdf
Larsen, J., et al. (2020). Capturing New Business: The market opportunities associated with
scale-up of Direct Air Capture (DAC) technology in the US. Retrieved from https://
rhg.com/research/capturing-new-jobs-and-new-business/
Larsen, J., et al. (2020). Capturing New Jobs. Retrieved from https://rhg.com/research/
capturing-new-jobs-and-new-business/
Larsen, R. K., Jiwan, N., Rompas, A., Jenito, J., Osbeck, M., & Tarigan, A. (2014). Towards
‘hybrid accountability’ in EU biofuels policy? Community grievances and competing
water claims in the Central Kalimantan oil palm sector. Geoforum, 54, 295-305.
doi:https://doi.org/10.1016/j.geoforum.2013.09.010
Larson, A. M., et al. (2013). Land tenure and REDD+: the good, the bad and the ugly. Global
Environmental Change, 23(3), 678-689. Retrieved from https://www.cifor.org/library/
4146/
Larson, R. A., & Sharma, B. K. (2015). Antioxidants from Wood-derived Pyrolyzates (Bio-oils).
Retrieved from https://www.ideals.illinois.edu/handle/2142/77812
Larson, R. W. (2015). Potential Annual and Cumulative Carbon Dioxide Removal via Biochar. In
T. Goreau, R. Larson, & J. Campe (Eds.), Geotherapy: Innovative Methods of Soil
Fertility Restoration, Carbon Sequestration, and Reversing CO2 Increase (pp. 59-80).
Lasco, R. D., Delfino, R. J. P., Catacutan, D. C., Simelton, E. S., & Wilson, D. M. (2014).
Climate risk adaptation by smallholder farmers: the roles of trees and agroforestry.
Current Opinion in Environmental Sustainability, 6, 83-88. doi:https://doi.org/10.1016/
j.cosust.2013.11.013
Lasen, M., Jackson, C., Beavan, A., Johnson, B., & Callin, R. (2015). Paper: An Investigation of
Secondary Students’ Engagement in a Science Inquiry through a Student–Scientist
Partnership. In.
Lashari, M. S., Liu, Y., Li, L., Pan, W., Fu, J., Pan, G., . . . Zhang, X. (2013). Effects of
amendment of biochar-manure compost in conjunction with pyroligneous solution on soil
quality and wheat yield of a salt-stressed cropland from Central China Great Plain. Field
Crops Research, 144, 113–118.
Lashari, M. S., Ye, Y., Ji, H., Li, L., Kibue, G. W., Lu, H., . . . Pan, G. (2014). Biochar-manure
compost in conjunction with pyroligneous solution alleviated salt stress and improved
leaf bioactivity of maize in a saline soil from Central China: A two-year field experiment.
Journal of the Science of Food and Agriculture, n/a - n/a. doi:10.1002/jsfa.6825
Laskosky, J. (2015). Productivity and greenhouse gas emissions from longterm stockpiled soils
treated with organic amendments. University of Manitoba, Retrieved from http://
mspace.lib.umanitoba.ca/handle/1993/30846
Lassaletta, L., & Aguilera, E. (2015). Soil carbon sequestration is a climate stabilization wedge:
Comments on Sommer and Bossio (2014). Journal of Environmental Management, 153,
48-49. doi:https://doi.org/10.1016/j.jenvman.2015.01.038
Latasa, M., et al. (2014). Progressive decoupling between phytoplankton growth and
microzooplankton grazing during an iron-induced phytoplankton bloom in the Southern
Ocean (EIFEX). Marine Ecology Progress Series, 513, 39-50.
Lau, W. W. Y. (2013). Beyond carbon: Conceptualizing payments for ecosystem services in blue
forests on carbon and other marine and coastal ecosystem services. Ocean & Coastal
Management, 83, 5-14. doi:https://doi.org/10.1016/j.ocecoaman.2012.03.011
Laude, A., Ricci, O., Bureau, G., Royer-Adnot, J., & Fabbri, A. (2011). CO2 capture and storage
from a bioethanol plant: Carbon and energy footprint and economic assessment.
International Journal of Greenhouse Gas Control, 5(5), 1220-1231. doi:https://doi.org/
10.1016/j.ijggc.2011.06.004
Laude, A. J. M., & Change, A. S. f. G. (2019). Bioenergy with carbon capture and storage: are
short-term issues set aside? doi:10.1007/s11027-019-09856-7
Lauderdale, J. M., Braakman, R., Forget, G., Dutkiewicz, S., & Follows, M. J. (2020). Microbial
feedbacks optimize ocean iron availability. Proceedings of the National Academy of
Sciences, 201917277. doi:10.1073/pnas.1917277117
Launder, B. E., & Thompson, M. T. (2010). Geo-engineering climate change : environmental
necessity or Pandora's box? Cambridge, UK; New York: Cambridge University Press.
Laurens, L. M. L., Chen-Glasser, M., & McMillan, J. D. (2017). A perspective on renewable
bioenergy from photosynthetic algae as feedstock for biofuels and bioproducts. Algal
Research, 24, 261-264. doi:https://doi.org/10.1016/j.algal.2017.04.002
Lauri, P., Havlík, P., Kindermann, G., Forsell, N., Böttcher, H., & Obersteiner, M. (2014). Woody
biomass energy potential in 2050. Energy Policy, 66, 19-31. doi:https://doi.org/10.1016/
j.enpol.2013.11.033
Laurin-Lanctôt, S. (2015). "Effet de l’amendement en biochar des sols biologiques pour une
culture de tomates sous serre : Rétention en nutriments, activité biologique et régie de
fertilisation (Effect of biochar amendment biological soil for tomatoes in greenhouses:
Nutrient reten. Universite Laval, Retrieved from http://theses.ulaval.ca/archimede/
fichiers/31583/31583.pdf
Lavars, N. (2019). Algae-fueled bioreactor soaks up CO2 400x more effectively than trees.
Retrieved from https://newatlas.com/environment/algae-fueled-bioreactor-carbon-
sequestration/
Lavery, P. S., et al. (2013). Variability in the Carbon Storage of Seagrass Habitats and Its
Implications for Global Estimates of Blue Carbon Ecosystem Service. Plos One, 8,
e73748. Retrieved from http://journals.plos.org/plosone/article?id=10.1371/
journal.pone.0073748
Lavery, T. J., Roudnew, B., Gill, P., Seymour, J., Seuront, L., Johnson, G., . . . Smetacek, V.
(2010). Iron defecation by sperm whales stimulates carbon export in the Southern
Ocean. Proceedings of the Royal Society B: Biological Sciences, 277(1699), 3527-3531.
doi:10.1098/rspb.2010.0863
Law, B. E., Hudiburg, T. W., Berner, L. T., Kent, J. J., Buotte, P. C., & Harmon, M. E. (2018).
Land use strategies to mitigate climate change in carbon dense temperate forests.
115(14), 3663-3668. doi:10.1073/pnas.1720064115 %J Proceedings of the National
Academy of Sciences
Law, C. f. I. E. (2021). Carbon capture is not a climate solution Retrieved from https://
www.ciel.org/wp-content/uploads/2021/07/CCS-Letter_FINAL_US-1.pdf
Law, C. S. (2008). Predicting and monitoring the effects of large-scale ocean iron fertilization on
marine trace gas emissions. Marine Ecology Progress Series, 364, 283-288.
doi:10.3354/meps07549
Law, C. S., Crawford, W. R., Smith, M. J., Boyd, P. W., Wong, C. S., Nojiri, Y., . . . Arychuk, M.
(2006). Patch evolution and the biogeochemical impact of entrainment during an iron
fertilisation experiment in the sub-Arctic Pacific. Deep Sea Research Part II: Topical
Studies in Oceanography, 53(20–22), 2012-2033. doi:http://dx.doi.org/10.1016/
j.dsr2.2006.05.028
Law, C. S., & Ling, R. D. (2001). Nitrous oxide flux and response to increased iron availability in
the Antarctic Circumpolar Current. Deep Sea Research Part II: Topical Studies in
Oceanography, 48(11–12), 2509-2527. doi:http://dx.doi.org/10.1016/
S0967-0645(01)00006-6
Law, C. S., Smith, M. J., Stevens, C. L., Abraham, E. R., Ellwood, M. J., Hill, P., . . . Walkington,
C. M. (2011). Did dilution limit the phytoplankton response to iron addition in HNLCLSi
sub-Antarctic waters during the SAGE experiment? Deep Sea Research Part II: Topical
Studies in Oceanography, 58(6), 786-799. doi:https://doi.org/10.1016/j.dsr2.2010.10.018
Law, C. S., Watson, A. J., Liddicoat, M. I., & Stanton, T. (1998). Sulphur hexafluoride as a tracer
of biogeochemical and physical processes in an open-ocean iron fertilisation experiment.
Deep Sea Research Part II: Topical Studies in Oceanography, 45(6), 977-994. doi:http://
dx.doi.org/10.1016/S0967-0645(98)00022-8
Lawal OO, O. M. (2015). Stabilization of Pb in Pb Smelting Slag-Contaminated Soil by
Compostmodified Bio Chars and their Effects on Maize Plant Growth. Journal of
Bioremediation & Biodegradation, 06(04). doi:10.4172/2155-6199.1000297
Lawford-Smith, H., & Currie, A. (2017). Accelerating the carbon cycle: the ethics of enhanced
weathering. Biology Letters, 13(4), 1-6. Retrieved from http://
rsbl.royalsocietypublishing.org/content/13/4/20160859
Lawrence, C. R., Schulz, M. S., Masiello, C. A., Chadwick, O. A., & Harden, J. W. (2021). The
trajectory of soil development and its relationship to soil carbon dynamics. Geoderma,
403, 115378. doi:https://doi.org/10.1016/j.geoderma.2021.115378
Lawrence, M. G., & Schäfer, S. (2019). Promises and perils of the Paris Agreement. Science,
364(6443), 829-830. doi:10.1126/science.aaw4602
Lawrence, M. G., Schäfer, S., Muri, H., Scott, V., Oschlies, A., Vaughan, N. E., . . . Scheffran, J.
(2018). Evaluating climate geoengineering proposals in the context of the Paris
Agreement temperature goals. Nature Communications, 9(1), 3734. doi:10.1038/
s41467-018-05938-3
Lawrence, M. W. (2014). Efficiency of carbon sequestration by added reactive nitrogen in ocean
fertilisation. International Journal of Global Warming, 6(1), 15-33. doi:10.1504/
ijgw.2014.058754
Lawrinenko, M. (2014). Anion exchange capacity of biochar. Iowa State University, Retrieved
from http://lib.dr.iastate.edu/etd/13685/
Lawter, A. R., Qafoku, N. P., Asmussen, R. M., Bacon, D. H., Zheng, L., & Brown, C. F. (2017).
Risk of Geologic Sequestration of CO2 to Groundwater Aquifers: Current Knowledge
and Remaining Questions. Energy Procedia, 114, 3052-3059. doi:https://doi.org/
10.1016/j.egypro.2017.03.1433
Le Brech, Y., et al. (2015). High Resolution Solid State 2D NMR Analysis of Biomass and
Biochar. Analytical Chemistry, 87(2), 843 - 847. doi:10.1021/ac504237c
Le Noë, J., Billen, G., & Garnier, J. (2019). Carbon Dioxide Emission and Soil Sequestration for
the French Agro-Food System: Present and Prospective Scenarios. Frontiers in
Sustainable Food Systems, 3(19). doi:10.3389/fsufs.2019.00019
Leach, A., et al. (2009). Co-Optimization of Enhanced Oil Recovery and Carbon Sequestration.
Retrieved from https://poseidon01.ssrn.com/delivery.php?
ID=5371001000070260880850281060310710000710510060340260160250560260600
5502506508602302311703510109802400206807405008701407210106803009610612
7005007081115086126064073126113104066094005005029020064027&EXT=pdf
Leach, A., Mason, C. F., & Veld, K. v. t. (2011). Co-optimization of enhanced oil recovery and
carbon sequestration. Resource and Energy Economics, 33(4), 893-912. doi:https://
doi.org/10.1016/j.reseneeco.2010.11.002
Leach, D. J., et al. (2015). Removing Nutrient Pollutants from Urban Stormwater Run-Off Using
Adsorptive Substrates. Paper presented at the Southeastern Section, Geological Society
of America - 64th Annual Meeting. https://gsa.confex.com/gsa/2015SE/webprogram/
Paper253415.html
Leach, M., Fairhead, J., & Fraser, J. (2012). Green grabs and biochar: Revaluing African soils
and farming in the new carbon economy. The Journal of Peasant Studies, 39(2),
285-307. doi:10.1080/03066150.2012.658042
Leahy, S. (2019). Earth's rocks can absorb a shocking amount of carbon: here’s how. National
Geographic. Retrieved from https://www.nationalgeographic.com/science/2019/10/earth-
rocks-can-absorb-shocking-amount-of-carbon/
Learn, J. (2014). Are Record Salmon Runs int he Northwest the Result of a Controversial CO2
Reduction Scheme? ClimateWire. Retrieved from https://www.eenews.net/stories/
1060008722
Learn, J. (2014). Legal mess hampers understanding of a major CO2 sequestration test.
ClimateWire. Retrieved from https://www.eenews.net/stories/1060008800
Learn, J. (2017, 11/15/
2017 Nov 15). Carbon capture sees significant milestones in 2017 despite Kemper setback.
SNL Energy Daily Coal Report. Retrieved from https://search.proquest.com/docview/
1964904100?accountid=14496
http://ucelinks.cdlib.org:8888/sfx_local?url_ver=Z39.88-2004&rft_val_fmt=info:ofi/
fmt:kev:mtx:journal&genre=unknown&sid=ProQ:ProQ%3Aenvscijournals&atitle=Carbon
+capture+sees+significant+milestones+in+2017+despite+Kemper+setback&title=SNL+E
nergy+Daily+Coal+Report&issn=19357311&date=2017-11-15&volume=&issue=&spage=
&au=Learn%2C+Joshua&isbn=&jtitle=SNL+Energy+Daily+Coal+Report&btitle=&rft_id=i
nfo:eric/&rft_id=info:doi/
Lebling, K. (2020). 3 ways we could store carbon in the ocean - without harming it. World
Economic Forum. Retrieved from https://www.weforum.org/agenda/2020/10/leveraging-
oceans-carbon-removal-potential/
Lebling, K. (2021). Direct Air Capture: Resource Considerations and Costs for Carbon Removal.
Retrieved from https://www.wri.org/blog/2021/01/direct-air-capture-definition-cost-
considerations
Lebling, K., & Northrop, E. (2020). Leveraging the Ocean's Carbon Removal Potential.
Retrieved from https://www.wri.org/blog/2020/10/ocean-carbon-dioxide-sequestration
Lebo, J. A., Huckins, J. N., Petty, J. D., Cranor, W. L., & Ho, K. T. (2003). Comparisons of coarse
and fine versions of two carbons for reducing the bioavailabilities of sediment-bound
hydrophobic organic contaminants. Chemosphere, 50(10), 1309-1317. Retrieved from
https://www.ncbi.nlm.nih.gov/pubmed/12586162
LeCroy, C., et al. . (2012). Nitrogen, biochar, and mycorrhizae: Alteration of the symbiosis and
oxidation of the char surface. Soil Biology and Biochemistry, 58, 248-254. Retrieved from
http://www.sciencedirect.com/science/article/pii/S0038071712004671
Lee, B.-K., & Nguyen, M.-V. (2014). Cu2+ ion adsorption from aqueous solutions by amine
activated poultry manure biochar. Journal of Selcuk University Natural and Applied
Science. Retrieved from http://www.josunas.org/login/index.php/josunas/article/view/438
Lee, D.-H. (2017). Econometric assessment of bioenergy development. International Journal of
Hydrogen Energy, 42(45), 27701-27717. doi:https://doi.org/10.1016/
j.ijhydene.2017.08.055
Lee, J., Xiao, Y., Seong-Heo, C., & Kwon, E. (2017). Pyrolysis process of agricultural waste
using CO2 for waste management, energy recovery, and biochar fabrication. Applied
Energy, 185, 214-222. Retrieved from https://www.researchgate.net/publication/
309589573_Pyrolysis_process_of_agricultural_waste_using_CO2_for_waste_managem
ent_energy_recovery_and_biochar_fabrication
Lee, J.-S. M., Rochelle, G., Styring, P., Fennell, P., Wilson, G., Trusler, M., . . . Smit, B. (2016).
CCS – A technology for now: general discussion. Faraday Discussions, 192(0), 125-151.
doi:10.1039/C6FD90052F
Lee, J. W., et al. (2010). Characterization of Biochars Produced from Cornstovers for Soil
Amendment. Environmental Science and Technology, 44(20), 7970–7974. Retrieved
from http://pubs.acs.org/doi/abs/10.1021/es101337x
Lee, J. W., et al. (2010). Sustainability: the capacity of smokeless biomass pyrolysis for energy
production, global carbon capture and sequestration. Energy & Environmental Science,
3(11), 1695-1705. doi:10.1039/c004561f
Lee, J. W., et al. (2013). Biochar Fertilizer for Soil Amendment and Carbon Sequestration. In
Advanced Biofuels and Bioproducts (Vol. 2, pp. 57-68).
Lee, J. W., et al. (2013). Oxygenation of Biochar for Enhanced Cation Exchange Capacity. In
Advanced Biofuels and Bioproducts (Vol. 2, pp. 35-45).
Lee, J. W., & Day, D. M. (2013). Smokeless Biomass Pyrolysis for Producing Biofuels and
Biochar as a Possible Arsenal to Control Climate Change. In Advanced Biofuels and
Bioproducts (Vol. 2, pp. 23-34).
Lee, J. W., Hawkins, B., Day, D. M., & Reicosky, D. C. (2010). Sustainability: the capacity of
smokeless biomass pyrolysis for energy production, global carbon capture and
sequestration. Energy & Environmental Science, 3(11), 1695-1705. doi:10.1039/
C004561F
Lee, J. W., & Li, R. (2003). Integration of fossil energy systems with CO2 sequestration through
NH4HCO3 production. Energy Conversion and Management, 44(9), 1535-1546.
doi:https://doi.org/10.1016/S0196-8904(02)00149-8
Lee, J. W., Smith, C., & Buzan, E. (2012). Potential Impact of Biochar Water-Extractable
Substances on Environmental Sustainability. ACS Sustainable Chemical Engineering,
1(1), 116-126. doi:10.1021/sc300063f
Lee, K. S. B., Fyson, C., & Schleussner, C.-F. (2021). Fair distributions of carbon dioxide
removal obligations and implications for effective national net-zero targets.
Environmental Research Letters. Retrieved from http://iopscience.iop.org/article/
10.1088/1748-9326/ac1970
Lee, M., & Den, W. (2015). Life cycle value analysis for sustainability evaluation of bioenergy
products. Journal of Cleaner Production. doi:10.1016/j.jclepro.2015.11.073
Lee, O. K., Seong, D. H., Lee, C. G., & Lee, E. Y. (2015). Sustainable production of liquid
biofuels from renewable microalgae biomass. Journal of Industrial and Engineering
Chemistry. doi:10.1016/j.jiec.2015.04.016
Lee, S., Kim, J.-W., Chae, S., Bang, J.-H., & Lee, S.-W. (2016). CO2 sequestration technology
through mineral carbonation: An extraction and carbonation of blast slag. Journal of CO2
Utilization, 16, 336-345. doi:https://doi.org/10.1016/j.jcou.2016.09.003
Lee, S., Liang, L., Riestenberg, D., West, O. R., Tsouris, C., & Adams, E. (2003). CO2 Hydrate
Composite for Ocean Carbon Sequestration. Environmental Science & Technology,
37(16), 3701-3708. doi:10.1021/es026301l
Lee, S. E., et al. . (2011). Effects of Biochar on Soil Quality and Heavy Metal Availability in a
Military Shooting Range Soil in Korea. 67-77. Retrieved from http://
www.papersearch.net/view/detail.asp?detail_key=09405130
Lee, S.-J., Park, J. H., Ahn, Y.-T., & Chung, J. W. (2015). Comparison of Heavy Metal Adsorption
by Peat Moss and Peat Moss-Derived Biochar Produced Under Different Carbonization
Conditions. Water, Air, & Soil Pollution, 226(2). doi:10.1007/s11270-014-2275-4
Lee, S. S., et al. . (2015). Synergy effects of biochar and polyacrylamide on plants growth and
soil erosion control. Environmental Earth Sciences, 74(3), 2463-2473. doi:10.1007/
s12665-015-4262-5
Lee, T. S., Cho, J. H., & Chi, S. H. (2015). Carbon dioxide removal using carbon monolith as
electric swing adsorption to improve indoor air quality. Building and Environment, 92,
209-221. doi:https://doi.org/10.1016/j.buildenv.2015.04.028
Lee, W. R., Hwang, S. Y., Ryu, D. W., Lim, K. S., Han, S. S., Moon, D., . . . Hong, C. S. (2014).
Diamine-functionalized metal–organic framework: exceptionally high CO2 capacities
from ambient air and flue gas, ultrafast CO2 uptake rate, and adsorption mechanism.
Energy & Environmental Science, 7(2), 744-751. doi:10.1039/C3EE42328J
Lee, Y., et al. (2013). Characteristics of biochar produced from slow pyrolysis of Geodae-Uksae
1. Bioresource Technology, 130, 345 - 350. doi:10.1016/j.biortech.2012.12.012
Lee, Y., Eum, P.-R.-B., Ryu, C., Park, Y.-K., Jung, J.-H., & Hyun, S. (2012). Characteristics of
Biochar Produced from Slow Pyrolysis of Geodae-Uksae 1. Bioresource Technology.
Lee, Y., Park, J., Gang, K. S., Ryu, C., Yang, W., Jung, J.-H., & Hyun, S. (2015). Production and
characterization of Biochar from Various Biomass materials By slow Pyrolysis. In.
Lee, Y., Park, J., Ryu, C., Gang, K. S., Yang, W., Park, Y.-K., . . . Hyun, S. (2013). Comparison
of Biochar Properties from Biomass Residues Produced by Slow Pyrolysis at 500 °C.
Bioresource Technology.
Lee, Y. H., Kwon, Y., Kim, C., Hwang, Y.-E., Choi, M., Park, Y., . . . Koh, D.-Y. (2021). Controlled
Synthesis of Metal–Organic Frameworks in Scalable Open-Porous Contactor for
Maximizing Carbon Capture Efficiency. JACS Au. doi:10.1021/jacsau.1c00068
Leenes, W. G. (2013). The water footprint of biofuels from microalgae. In J. F. Dellemand & P.
W. Gerbens-Leenes (Eds.), Bioenergy and Water (pp. 191-200): European Commission.
Leenes, W. G. (2013). Water footprint quantification of energy at global level. In J. F. Dellemand
& P. W. Gerbens-Leenes (Eds.), Bioenergy and Water (pp. 61-76): European
Commission.
Leeson, D., Ramirez, A., & Mac Dowell, N. (2020). Chapter 9 Carbon Capture and Storage from
Industrial Sources. In Carbon Capture and Storage (pp. 296-314): The Royal Society of
Chemistry.
Lefebvre, D., Goglio, P., Williams, A., Manning, D. A. C., de Azevedo, A. C., Bergmann, M., . . .
Smith, P. (2019). Assessing the potential of soil carbonation and enhanced weathering
through Life Cycle Assessment: A case study for Sao Paulo State, Brazil. Journal of
Cleaner Production, 233, 468-481. doi:https://doi.org/10.1016/j.jclepro.2019.06.099
Lefebvre, D., Williams, A., Kirk, G. J. D., Meersmans, J., Sohi, S., Goglio, P., & Smith, P. (2021).
An anticipatory life cycle assessment of the use of biochar from sugarcane residues as a
greenhouse gas removal technology. Journal of Cleaner Production, 127764. doi:https://
doi.org/10.1016/j.jclepro.2021.127764
Lefebvre, D., Williams, A., Meersmans, J., Kirk, G. J. D., Sohi, S., Goglio, P., & Smith, P. (2020).
Modelling the potential for soil carbon sequestration using biochar from sugarcane
residues in Brazil. Scientific Reports, 10(1), 19479. doi:10.1038/s41598-020-76470-y
Lefèvre, D., Guigue, C., & Obernosterer, I. (2008). The metabolic balance at two contrasting
sites in the Southern Ocean: The iron-fertilized Kerguelen area and HNLC waters. Deep
Sea Research Part II: Topical Studies in Oceanography, 55(5), 766-776. doi:https://
doi.org/10.1016/j.dsr2.2007.12.006
Leffler, T., Brackmann, C., Berg, M., Aldén, M., & Li, Z. (2017). Online Alkali Measurement
during Oxy-fuel Combustion. Energy Procedia, 120(Supplement C), 365-372. doi:https://
doi.org/10.1016/j.egypro.2017.07.217
Legendre, L., Rivkin, R. B., & Jiao, N. Z. (2018). Advanced experimental approaches to marine
water-column biogeochemical processes. ICES Journal of Marine Science, 75(1), 30-42.
doi:10.1093/icesjms/fsx146
Leger, D., Matassa, S., Noor, E., Shepon, A., Milo, R., & Bar-Even, A. (2021). Photovoltaic-
driven microbial protein production can use land and sunlight more efficiently than
conventional crops. Proceedings of the National Academy of Sciences, 118(26),
e2015025118. doi:10.1073/pnas.2015025118
Legislators, N. C. o. E. (2017). Carbon Farming Study Included in NY Budget. Retrieved from
http://ncel.net/2017/06/26/carbon-farming-study-included-ny-budget/
Lehahn, Y., et al. (2016). Global potential of offshore and shallow waters macroalgal
biorefineries to provide for food, chemicals and energy: feasibility and sustainability.
Algal Research, 17, 150-160. Retrieved from https://ylhomepage.files.wordpress.com/
2016/05/lehahn_ar_2016.pdf
Lehmann, J., et al. (1998). Below-Ground Interactions in Dryland Agroforestry. Forest Ecology
and Management, 111, 157-169. Retrieved from http://www.sciencedirect.com/science/
article/pii/S0378112798003223
Lehmann, J., et al. (1998). Short-Term Effects of Soil Amendment with Legume Tree Biomass
on Carbon and Nitrogen in Particle Size Fractions in Central Togo. Soil Biology and
Biochemistry, 30(12), 1545-1552. Retrieved from http://www.css.cornell.edu/faculty/
lehmann/publ/SoilBiolBiochem%2030,%201545-1552,%201998%20Lehmann.pdf
Lehmann, J., et al. (2003). Amazonian Dark Earths: Origin, Properties, Management.
Amsterdam: Kluwer Academic Publishers.
Lehmann, J., et al. (2003). Nutrient Availability and Leaching in an Archaeological Anthrosol and
a Ferralsol of the Central Amazon Basin: Fertilizer, Manure and Charcoal Amendments.
Plant and Soil, 249, 343-357. Retrieved from http://www.css.cornell.edu/faculty/lehmann/
publ/PlantSoil%20249,%20343-357,%202003%20Lehmann.pdf
Lehmann, J., et al. (2004). Subsoil Retention of Organic and Inorganic Nitrogen in a Brazilian
Savanna Oxisol. Soil Use and Management, 20, 163-172. Retrieved from http://
onlinelibrary.wiley.com/doi/10.1111/j.1475-2743.2004.tb00352.x/abstract
Lehmann, J., et al. (2005). Near-Edge X-Ray Absorption Fine Structure (NEXAFS)
Spectroscopy for Mapping Nano-Scale Distribution of Organic Carbon Forms in Soil:
Application to Black Carbon Particles. Global Biogeochemical Cycles, 19(1), 1-12.
Lehmann, J. (2007). Biochar for Mitigating Climate Change: Carbon Sequestration in the Black.
Forum Geooekologie, 18(2), 15-17. Retrieved from http://geooekologie.de/
download_forum/forum_2007_2_spfo072b.pdf
Lehmann, J. (2007). Bio-energy in the Black. Frontiers in Ecology, 5(7), 381-387. Retrieved from
http://www.css.cornell.edu/faculty/lehmann/publ/
FrontiersEcolEnv%205,%20381-387,%202007%20Lehmann.pdf
Lehmann, J. (2007). Environmentally Friendly Bioenergy. Scitizen. Retrieved from http://
scitizen.com/future-energies/environmentally-friendly-bioenergy_a-14-709.html
Lehmann, J. (2007). A handful of carbon. Nature, 447(7141), 143-144. Retrieved from http://
dx.doi.org/10.1038/447143a
Lehmann, J., et al. (2008). Australian Climate-Carbon Cycle Feedback Reduced by Soil Black
Carbon. Nature Geoscience, 1, 832–835. Retrieved from http://www.nature.com/ngeo/
journal/v1/n12/abs/ngeo358.html
Lehmann, J., et al. (2009). Bacterial Community Composition in Brazilian Anthrosols and
Adjacent Soils Characterized Using Culturing and Molecular Identification. Microbial
Ecology, 58, 23-35. Retrieved from http://www.css.cornell.edu/faculty/lehmann/publ/
MicrobEcol%2058,%2023-35,%202009%20ONeill.pdf
Lehmann, J., et al. (2009). Biogenic calcium phosphate transformation in soils over millennial
time scales. Journal of Soils and Sediments, 3, 194 - 205. Retrieved from http://
www.nature.com/ngeo/journal/v1/n12/abs/ngeo358.html
Lehmann, J. (2009). Biological carbon sequestration must and can be a win-win approach.
Climatic Change, 97(3), 459. doi:10.1007/s10584-009-9695-y
Lehmann, J., et al. (2009). Stability of biochar in soil. In L. Johannes & J. Stephen (Eds.),
Biochar for environmental management: Science and technology (pp. 183-206). London,
UK: Earthscan.
Lehmann, J., et al. . (2011). Biochar effects on soil biota – A review. Soil Biology and
Biochemistry, 43(9), 1812-1836. doi:10.1016/j.soilbio.2011.04.022
Lehmann, J., et al. (2015). Biochars and the plant-soil interface. Plant and Soil, 395(1-2), 1 - 5.
doi:10.1007/s11104-015-2658-3
Lehmann, J., et al. (2015). Persistence of Biochar in Soil. In Biochar For Environmental
Engineering.
Lehmann, J., Cravo, M. S., & Zech, W. (2001). Organic Matter Stabilization in a Xanthic
Ferralsol of the Central Amazon as Affected by Single Trees: Chemical Characterization
of Density, Aggregate and Particle Size Fractions. Geoderma, 99(1-2), 147-168.
Retrieved from http://www.sciencedirect.com/science/article/pii/S0016706100000707
Lehmann, J., Gaunt, J., Rondon, M. J. M., & Change, A. S. f. G. (2006). Bio-char Sequestration
in Terrestrial Ecosystems – A Review. 11(2), 403-427. doi:10.1007/s11027-005-9006-5
Lehmann, J., Hansel, C. M., Kaiser, C., Kleber, M., Maher, K., Manzoni, S., . . . Kögel-Knabner,
I. (2020). Persistence of soil organic carbon caused by functional complexity. Nature
Geoscience, 13(8), 529-534. doi:10.1038/s41561-020-0612-3
Lehmann, J., & Joseph, S. (2009). Biochar for environmental management: An introduction. In
J. Lehmann & S. Joseph (Eds.), Biochar for environmental management science and
technology. Washington D.C.: Earthscan, London.
Lehmann, J., & Joseph, S. (2009). Biochar for Environmental Management: Science and
Technology. London, UK: Earthscan.
Lehmann, J., & Joseph, S. (2009). Biochar Systems. In Biochar for Environmental Management:
Science and Technology (pp. 147-168). London, UK: Earthscan.
Lehmann, J., Kinyangi, J., & Solomon, D. (2007). Organic Matter Stabilization in Soil
Microaggregates: Implications from Spatial Heterogeneity of Organic Carbon Contents
and Carbon Forms. Biogeochemistry, 85(1), 45-57. Retrieved from https://
link.springer.com/article/10.1007/s10533-007-9105-3
Lehmann, J., & Kleber, M. (2015). The contentious nature of soil organic matter. Nature, 528,
60. doi:10.1038/nature16069
Lehmann, J., & Possinger, A. (2020). Removal of atmospheric CO2 by rock weathering holds
promise for mitigating climate change. Nature, 583(July 9), 204-205. Retrieved from
https://www.nature.com/articles/d41586-020-01965-7
Lehmann, J., & Rondon, M. (2006). Bio-char soil management on highly weathered soils in the
humid tropics. Biological approaches to sustainable soil systems, 517-530.
Lehmann, J., & Saran, S. (2008). Comment on "Fire-Derived Charcoal Causes Loss of Forest
Humus". In (5894 ed., Vol. 321, pp. 1295).
Lehmann, J., & Stephen, J. (2009). Biochar for Environmental Management - An Introduction. In
Biochar for Environemental Management: Science and Technology (pp. 1-12). London,
UK: Earthscan.
Lehrer II, J. (2021). Monetizing the Section 45Q Tax Credit: The Key to Carbon Sequestration.
JD Supra. Retrieved from https://www.jdsupra.com/legalnews/monetizing-the-
section-45q-tax-credit-2165203/
Lehtonen, J., et al. (2019). The Carbon Reuse Economy: Transforming CO2 from a Pollutant
into a Resource. Retrieved from https://doi.org/10.32040/2019.978-951-38-8709-4
Lehtveer, M. (2018). BECCS in Climate Scenarios. In M. Fridahl (Ed.), Bioenergy with carbon
capture and storage: From global potentials to domestic realities (pp. 7-15).
Lei, H., et al. (2009). The Effects of Reaction Temperature and Time and Particle Size of Corn
Stover on Microwave Pyrolysis. Energy Fuels, 23(6), 3254–3261. Retrieved from http://
pubs.acs.org/doi/abs/10.1021/ef9000264
Leifeld, J. (2007). Thermal stability of black carbon characterised by oxidative differential
scanning calorimetry. Organic Geochemistry, 38(1), 112-127. Retrieved from http://
www.sciencedirect.com/science/article/pii/S0146638006002087
Leifeld, J., Fenner, S., & Muller, M. (2007). Mobility of black carbon in drained peatland soils.
Biogeosciences, 4(3), 425-432. Retrieved from http://www.biogeosciences.net/
4/425/2007/
Leigh, D. (2020). Interview with Antti Vihavainen, Co-Founder at B2B Carbon Removal
Marketplace Puro.earth. Retrieved from https://techround.co.uk/interviews/interview-
with-antti-vihavainen-co-founder-at-b2b-carbon-removal-marketplace-puro-earth/amp/
Leinen, M. (2008). Building relationships between scientists and business in ocean iron
fertilization. Marine Ecology Progress Series, 364, 251-256. Retrieved from http://
www.int-res.com/abstracts/meps/v364/p251-256/
Leinen, M. (2008). Building relationships between scientists and business in ocean iron
fertilization. Marine Ecology Progress Series, 364, 251-256. Retrieved from https://
www.int-res.com/abstracts/meps/v364/p251-256/
Leinweber, P., Schulten, H. R., & Kerschens, M. (1995). Hot water extracted organic matter:
chemical composition and temporal variations in a long-term field experiment. Biology
and Fertility in Soils, 20(1), 17-23. Retrieved from https://link.springer.com/article/
10.1007/BF00307836
Leite, D. C. A., et al. (2014). Comparison of DNA extraction protocols for microbial communities
from soil treated with biochar. Brazilian Journal of Microbiology, 45(1), 175-183.
Retrieved from http://www.scielo.br/scielo.php?
pid=S1517-83822014000100023&script=sci_arttext
Leitner, W., & Schmitz, M. (2021). Concluding remarks: Carbon dioxide utilization: where are we
now?… and where are we going? Faraday Discussions, 230(0), 413-426. doi:10.1039/
D1FD00038A
Lemieux, J.-M. (2011). Review: The potential impact of underground geological storage of
carbon dioxide in deep saline aquifers on shallow groundwater resources. Hydrogeology
Journal, 4, 757-778. Retrieved from https://www.springerprofessional.de/en/review-the-
potential-impact-of-underground-geological-storage-of/11677912#pay-wall
Lemoine, D. (2020). Incentivizing Negative Emissions Through Carbon Shares. Retrieved from
https://www.nber.org/papers/w27880
Lemoine, D. (2021). Incentivizing Negative Emissions Through Carbon Shares. Retrieved from
https://conference.nber.org/conf_papers/f150627/f150627.pdf
Lemoine, D. (2021). A policy framework for achieving negative emissions Vox EU CEPR.
Retrieved from https://voxeu.org/article/policy-framework-achieving-negative-emissions
Lemoine, D. M., Fuss, S., Szolgayova, J., Obersteiner, M., & Kammen, D. M. (2012). The
influence of negative emission technologies and technology policies on the optimal
climate mitigation portfolio. Climatic Change, 113(2), 141-162. doi:10.1007/
s10584-011-0269-4
Lempert, R. J., et al. (2018). Is Climate Restoration an Appropriate Climate Policy Goal?
Retrieved from https://www.rand.org/pubs/research_reports/RR2442.html
Lemus, R. (2013). Nutrient Management in Biofuel Crop Production. In B. P. Singh (Ed.), Biofuel
Crop Sustainability (pp. 301-324).
Lemus, R., Brummer, E. C., Moore, K. J., Molstad, N. E., Burras, C. L., & Barker, M. F. (2002).
Biomass yield and quality of 20 switchgrass populations in southern Iowa, USA.
Biomass and Bioenergy, 23(6), 433-442. doi:https://doi.org/10.1016/
S0961-9534(02)00073-9
Lemus, R., & Lal, R. (2005). Bioenergy Crops and Carbon Sequestration. Critical Reviews in
Plant Sciences, 24(1), 1-21. doi:10.1080/07352680590910393
Lenczewski, M. (2014). Incorporating Undergraduate Geology, Engineering, and Business
Students Into Examining Fluoride and Arsenic Issues in Groundwater in San Miguel de
Allende, Mexico. Paper presented at the 2014 GSA Annual Meeting in Vancouver, British
Columbia. https://gsa.confex.com/gsa/2014AM/finalprogram/abstract_250330.htm
Leng, J. Y., Chen, J. W., Huang, H. C., Lin, S., Liu, M. Z., & Liu, J. B. (2014). Impact of Structure
Design of Artififical Upwelling Tube. Applied Mechanics and Materials, 496-500,
547-550. doi:10.4028/www.scientific.net/AMM.496-500.547
Leng, L., Li, J., Yuan, X., Li, J., Han, P., Hong, Y., . . . Zhou, W. (2018). Beneficial synergistic
effect on bio-oil production from co-liquefaction of sewage sludge and lignocellulosic
biomass. Bioresource Technology, 251, 49-56. doi:https://doi.org/10.1016/
j.biortech.2017.12.018
Leng, L., Yuan, X., Huang, H., Shao, J., Wang, H., Chen, X., & Zeng, G. (2015). Bio-char
derived from sewage sludge by liquefaction: characterization and application for dye
adsorption. Applied Surface Science, 346, 223-231. doi:10.1016/j.apsusc.2015.04.014
Leng, L., Yuan, X., Shao, J., Huang, H., Wang, H., Li, H., . . . Zeng, G. (2016). Study on
demetalization of sewage sludge by sequential extraction before liquefaction for the
production of cleaner bio-oil and bio-char. Bioresource Technology, 200, 320 - 327.
doi:10.1016/j.biortech.2015.10.040
Leng, L., Yuan, X., Zeng, G., Shao, J., Chen, X., Wu, Z., . . . Peng, X. (2015). Surface
characterization of rice husk bio-char produced by liquefaction and application for
cationic dye (Malachite green) adsorption. Fuel, 155, 77-85. doi:10.1016/
j.fuel.2015.04.019
Leng, R. A., Inthapany, S. a., & Preston, T. (2012). Methane production is reduced in an in vitro
incubation when the rumen fluid is taken from cattle that previously received biochar in
their diet. Livestock Research for Rural Development, 24(11). Retrieved from http://
lrrd.cipav.org.co/lrrd24/11/sang24211.htm
Leng, R. A., Inthapanya, S., & Preston, T. (2012). Biochar lowers net methane production from
rumen fluid in vitro. Livestock Research for Rural Development, 24(6). Retrieved from
http://lrrd.cipav.org.co/lrrd24/6/sang24103.htm
Leng, R. A., Preston, T., & Inthapanya, S. (2012). Biochar reduces enteric methane and
improves growth and feed conversion in local “Yellow” cattle fed cassava root chips and
fresh cassava foliage. Livestock Research for Rural Development, 24(11). Retrieved
from http://www.lrrd.org/public-lrrd/proofs/lrrd2411/leng24199.htm
Lenton, A., et al. (2017). How will Earth respond to plans for carbon dioxide removal? EOS, 98.
Retrieved from https://doi.org/10.1029/2017EO068385
Lenton, A. (2018). Assessing carbon dioxide removal through global and regional ocean
alkalinization under high and low emission pathways. Earth System Dynamics, 9,
339-357. Retrieved from https://www.earth-syst-dynam.net/9/339/2018/esd-9-339-2018-
discussion.html
Lenton, T. M. (2010). The potential for land-based biological CO
2
removal to lower future
atmospheric CO
2
concentration. Carbon Management, 1(1), 145-160. Retrieved from
http://www.tandfonline.com/doi/pdf/10.4155/cmt.10.12
Lenton, T. M. (2014). The Global Potential for Carbon Dioxide Removal. In R. E. Hester & R. M.
Harrison (Eds.), Geoengineering of the Climate System (pp. 52-79). Cambridge: Royal
Soc Chemistry.
Lenton, T. M., & Huntingford, C. (2003). Global terrestrial carbon storage and uncertainties in its
temperature sensitivity examined with a simple model. Global Change Biology, 9(10),
1333-1352. Retrieved from http://onlinelibrary.wiley.com/doi/10.1046/
j.1365-2486.2003.00674.x/full
Lenton, T. M., & Vaughan, N. E. (2009). The radiative forcing potential of different climate
geoengineering options. Atmospheric Chemistry and Physics, 9, 5539 -5561.
Lentz, R. D., et al. (2015). The effects of biochar and manure in silage corn. Progressive Forage
Grower, 16(2), 26-29. Retrieved from http://eprints.nwisrl.ars.usda.gov/1584/
Lentz, R. D., Ippolito, J. A., & Spokas, K. A. (2014). Biochar and Manure Effects on Net Nitrogen
Mineralization and Greenhouse Gas Emissions from Calcareous Soil under Corn. Soil
Science Society of America Journal, 78(5), 1641. doi:10.2136/sssaj2014.05.0198
Lenzi, D. (2018). Weigh the ethics of plans to mop up carbon dioxide. Nature, 561, 303-305.
Retrieved from https://www.nature.com/magazine-assets/d41586-018-06695-5/
d41586-018-06695-5.pdf
Lenzi, D. (2021). On the Permissibility (Or Otherwise) of Negative Emissions. Ethics, Policy &
Environment, 1-14. doi:10.1080/21550085.2021.1885249
Leonardos, O. H., Fyfe, W. S., & Kronberg, B. I. (1987). The Use of Ground Rocks in Laterite
Systems - An Improvement to the Use of Conventional Soluble Fertilizers. Chemical
Geology, 60, 360-370. Retrieved from https://ac.els-cdn.com/0009254187901434/1-
s2.0-0009254187901434-main.pdf?_tid=3f723c0c-c82c-11e7-
a0c1-00000aab0f27&acdnat=1510547982_5a416823fd78844e4195de111cd3bcc2
Leonzio, G., Foscolo, P. U., Zondervan, E., & Bogle, I. D. L. (2020). Scenario Analysis of Carbon
Capture, Utilization (Particularly Producing Methane and Methanol), and Storage
(CCUS) Systems. Industrial & Engineering Chemistry Research, 59(15), 6961-6976.
doi:10.1021/acs.iecr.9b05428
Lepodise, L., et al. (2015). THz spectroscopic characterization of biochar. Paper presented at
the 2015 40th International Conference on Infrared, Millimeter, and Terahertz waves
(IRMMW-THz)2015 40th International Conference on Infrared, Millimeter, and Terahertz
waves (IRMMW-THz), Hong Kong, China. http://ieeexplore.ieee.org/xpl/
articleDetails.jsp?
tp=&arnumber=7327752&url=http%3A%2F%2Fieeexplore.ieee.org%2Fxpls%2Fabs_all.j
sp%3Farnumber%3D7327752
Lessio, M., Senftle, T. P., & Carter, E. A. (2016). Is the Surface Playing a Role during Pyridine-
Catalyzed CO2 Reduction on p-GaP Photoelectrodes? ACS Energy Lett., 1(2), 464-468.
Letelier, R. M., Björkman, K. M., Church, M. J., Hamilton, D. S., Mahowald, N. M., Scanza, R.
A., . . . Karl, D. M. (2019). Climate-driven oscillation of phosphorus and iron limitation in
the North Pacific Subtropical Gyre. Proceedings of the National Academy of Sciences,
116(26), 12720-12728. doi:10.1073/pnas.1900789116
Lettens, S., et al. (2003). Energy budget and greenhouse gas balance evaluation of sustainable
coppice systems for electricity production. Biomass & Bioenergy, 24(3), 179-197.
Retrieved from https://www.researchgate.net/publication/
223801600_Energy_budget_and_greenhouse_gas_balance_evaluation_of_sustainable
_coppice_systems_for_electricity_production
Leung, D. Y. C., Caramanna, G., & Maroto-Valer, M. M. (2014). An overview of current status of
carbon dioxide capture and storage technologies. Renewable and Sustainable Energy
Reviews, 39, 426-443. doi:http://dx.doi.org/10.1016/j.rser.2014.07.093
Levasseur, M., et al. (2006). DMSP and DMS dynamics during a mesoscale iron fertilization
experiment in the Northeast Pacific-Part I: Temporal and vertical distributions. Deep-Sea
Research Part II: Topical Studies in Oceanography, 53(20-22), 2353-2369. Retrieved
from https://www.scopus.com/search/form.uri?display=basic
Levey, S., & Butler, L. (2020). Q&A: Is planting trees the answer to climate change? Retrieved
from https://www.imperial.ac.uk/news/199473/qa-is-planting-trees-answer-climate/
Levitan, D. (2010). Refilling the Carbon Sink: Biochar’s Potential and Pitfalls. Yale Environment
360. Retrieved from https://e360.yale.edu/features/
refilling_the_carbon_sink_biochars_potential_and_pitfalls
Levitt, S. (2021). UK startup raises 8m of funding to convert CO2 into animal feed. The
Guardian. Retrieved from https://www.theguardian.com/environment/2021/mar/22/uk-
startup-raises-8m-funding-convert-co2-animal-feed
Levy, G. (2019). Getting geoengineering back-to-front. Ecologist.
Lewandowski, I., et al. (2000). Miscanthus: European experience with a novel energy crop.
Biomass and Bioenergy, 19(4), 209-227. Retrieved from https://www.researchgate.net/
profile/Iris_Lewandowski/publication/
40137215_Miscanthus_European_experience_with_a_novel_energy_crop/links/
0c96051e6421bc9df9000000/Miscanthus-European-experience-with-a-novel-energy-
crop.pdf?
origin=publication_detail&ev=pub_int_prw_xdl&msrp=dHJAJ3BS76do7FwHWcreNvOfB
38C2TaaNcqGgs0a0CP3KsYaHRD_MByN8gUwACKwhCqnF48B8Y7U8BM7SycvYWeP
6R4rYB9ak3gusCOthBM.OtEyA3sxiTlr7fJyFHuXC5TPFPzZguFsa7obE0Us_THV63zGD
6nOcFjHNkVH58Z6CxVlVFOWKq0J-DFlHRd_CQ.IA-
GFZoT03KigYH5GJOcETmuk345jCdwtazSUuSST4yl2ReqmJnjS5YL6JLLoruOuGDdE-
t0mDHkBUaLlZh1rQ.c-sGYbE0L623_CR-
kTWKH1bpVUYYdI7aX8pGKKw8_Uery5zwanb8BNydBU8K2OmZYCQIUQ7c8iLTeIF2J
3p3hw
Lewandowski, I. (2015). Securing a sustainable biomass supply in a growing bioeconomy.
Global Food Security, 6, 34-42. doi:https://doi.org/10.1016/j.gfs.2015.10.001
Lewis, A. L., Sarkar, B., Wade, P., Kemp, S. J., Hodson, M. E., Taylor, L. L., . . . Beerling, D. J.
(2021). Effects of mineralogy, chemistry and physical properties of basalts on carbon
capture potential and plant-nutrient element release via enhanced weathering. Applied
Geochemistry, 105023. doi:https://doi.org/10.1016/j.apgeochem.2021.105023
Lewis, A. L., Sarkar, B., Wade, P., Kemp, S. J., Hodson, M. E., Taylor, L. L., . . . Beerling, D. J.
(2021). Effects of mineralogy, chemistry and physical properties of basalts on carbon
capture potential and plant-nutrient element release via enhanced weathering. Applied
Geochemistry, 105023. doi:https://doi.org/10.1016/j.apgeochem.2021.105023
Lewis, J. (2021). Worley wins direct air capture engineering deal from Occidental in US Permian
basin Upstream. Retrieved from https://www.upstreamonline.com/energy-transition/
worley-wins-direct-air-capture-engineering-deal-from-occidental-in-us-permian-basin/
2-1-968120
Lewis, M. (2020). Norway funds world’s first full-scale carbon capture and storage project.
Electrek. Retrieved from https://electrek.co/2020/09/21/norway-world-first-carbon-
capture-storage-project/
Lewis, S. (2019). Sucking carbon out of the air is no magic fix for the climate emergency. The
Guardian. Retrieved from https://www.theguardian.com/commentisfree/2019/aug/01/
negative-emissions-tech-climate-emergency-carbon-dioxide-emissions?
utm_campaign=Carbon%20Brief%20Daily%20Briefing&utm_medium=email&utm_sourc
e=Revue%20newsletter
Lewis, S. L., et al. (2019). Restoring natural forests is the best way to remove atmospheric
carbon. Nature, 568, 25-28. Retrieved from https://www.nature.com/magazine-assets/
d41586-019-01026-8/d41586-019-01026-8.pdf
Lezaun, J. (2021). Hugging the Shore: Tackling Marine Carbon Dioxide Removal as a Local
Governance Problem. Frontiers in Climate, 3(98). doi:10.3389/fclim.2021.684063
Li, A., et al. . (2016). Effects of Temperature and Heating Rate on the Characteristics of Molded
Bio-char. BioResources, 11(2), 3259-3274. Retrieved from http://152.1.0.246/index.php/
BioRes/article/view/
BioRes_11_2_3259_Li_Temperature_Heating_Rate_Molded_Bio_char
Li, B., Fan, C. H., Xiong, Z. Q., Li, Q. L., & Zhang, M. (2015). The combined effects of
nitrification inhibitor and biochar incorporation on yield-scaled N2O emissions from an
intensively managed vegetable field in southeastern China. Biogeosciences, 12(6), 2003
- 2017. doi:10.5194/bg-12-2003-2015
Li, B., Fan, C. H., Zhang, H., Chen, Z. Z., Sun, L. Y., & Xiong, Z. Q. (2014). Combined effects of
nitrogen fertilization and biochar on the net global warming potential, greenhouse gas
intensity and net ecosystem economic budget in intensive vegetable agriculture in
southeastern China. Atmospheric Environment, 100, 10 - 19. doi:10.1016/
j.atmosenv.2014.10.034
Li, B., Fan, C. H., Zhang, H., Chen, Z. Z., Sun, L. Y., & Xiong, Z. Q. (2015). Combined effects of
nitrogen fertilization and biochar on the net global warming potential, greenhouse gas
intensity and net ecosystem economic budget in intensive vegetable agriculture in
southeastern China. Atmospheric Environment, 100, 10-19. doi:https://doi.org/10.1016/
j.atmosenv.2014.10.034
Li, B., Li, Q.-L., Fan, C.-H., Sun, L.-Y., & Xiong, Z.-Q. (2014). Effects of biochar and nitrification
inhibitor incorporation on global warming potential of a vegetable field in Nanjing, China.
Ying yong sheng tai xue bao = The journal of applied ecology / Zhongguo sheng tai xue
xue hui, Zhongguo ke xue yuan Shenyang ying yong sheng tai yan jiu suo zhu ban,
25(9), 2651-2657. Retrieved from http://europepmc.org/abstract/med/25757318
Li, B., Ou, L., Dang, Q., Meyer, P., Jones, S., Brown, R., & Wright, M. (2015). Techno-economic
and uncertainty analysis of in situ and ex situ fast pyrolysis for biofuel production.
Bioresource Technology, 196, 49 - 56. doi:10.1016/j.biortech.2015.07.073
Li, C., Frolking, S., & Butterbach-Bahl, K. (2005). Carbon Sequestration in Arable Soils is Likely
to Increase Nitrous Oxide Emissions, Offsetting Reductions in Climate Radiative
Forcing. Climatic Change, 72(3), 321-338. doi:10.1007/s10584-005-6791-5
Li, C., Shi, H., Cao, Y., Kuang, Y., Zhang, Y., Gao, D., & Sun, L. (2015). Modeling and optimal
operation of carbon capture from the air driven by intermittent and volatile wind power.
Energy, 87, 201-211. doi:https://doi.org/10.1016/j.energy.2015.04.098
Li, C. W., & Kanan, M. W. (2012). CO2 Reduction at Low Overpotential on Cu Electrodes
Resulting from the Reduction of Thick Cu2O Films. J. Am. Chem. Soc., 134, 7231.
Retrieved from https://pubs.acs.org/doi/10.1021/ja309317u
Li, D., et al. (2011). Earthworm avoidance of biochar can be mitigated by wetting. Soil Biology
and Biochemistry, 43, 1732 - 1737.
Li, D., et al. (2014). Forming Active Carbon Monoliths from HPO-Loaded Sawdust with Addition
of Peanut Shell Char. Bio Resources, 9(3), 4981-4992. Retrieved from http://
www.ncsu.edu/bioresources/BioRes_09/
BioRes_09_3_4981_Li_TQ_Conversion_Powder_Bio-
char_Highly_Porous_ACM_5657.pdf
Li, D., Niu, S., & Luo, Y. (2012). Global patterns of the dynamics of soil carbon and nitrogen
stocks following afforestation: a meta-analysis. New Phytologist, 195(1), 172-181.
doi:10.1111/j.1469-8137.2012.04150.x
Li, D.-C., et al. (2016). Preparation of high adsorption performance and stable biochar granules
by FeCl3-catalyzed fast pyrolysis. RSC Adv., 6(15), 12226 - 12234. doi:10.1039/
c5ra22870k
Li, F., et al. . (2013). Short-term effects of raw rice straw and its derived biochar on greenhouse
gas emission in five typical soils in China. Soil Science and Plant Nutrition, 59(5),
800-811. Retrieved from http://www.tandfonline.com/doi/pdf/
10.1080/00380768.2013.821391
Li, F., Shen, K., Long, X., Wen, J., Xie, X., Zeng, X., . . . Zhong, R. (2016). Preparation and
Characterization of Biochars from Eichornia crassipes for Cadmium Removal in Aqueous
Solutions. Plos One, 11(2), e0148132. doi:10.1371/journal.pone.0148132.t005
Li, F., & Wang, L. (2015). Activated Carbon Materials Prepared from Pine Branches for
Supercapacitors. Energy and Environment Focus, 4(1), 24 - 27. doi:10.1166/
eef.2015.1134
Li, G., Hartmann, J., Derry, L. A., West, A. J., You, C.-F., Long, X., . . . Chen, J. (2016).
Temperature dependence of basalt weathering. Earth and Planetary Science Letters,
443, 59-69. doi:https://doi.org/10.1016/j.epsl.2016.03.015
Li, G., Shen, B., Li, F., Tian, L., Singh, S., & Wang, F. (2015). Elemental mercury removal using
biochar pyrolyzed from municipal solid waste. Fuel Processing Technology, 133, 43 - 50.
doi:10.1016/j.fuproc.2014.12.042
Li, H., et al. (2014). Selective removal of polycyclic aromatic hydrocarbons (PAHs) from soil
washing effluents using biochars produced at different pyrolytic temperatures.
Bioresource Technology, 163, 193-198. doi:10.1016/j.biortech.2014.04.042
Li, H., Yan, J., & Campana, P. E. (2012). Feasibility of integrating solar energy into a power plant
with amine-based chemical absorption for CO2 capture. International Journal of
Greenhouse Gas Control, 9, 272-280. doi:http://dx.doi.org/10.1016/j.ijggc.2012.04.005
Li, H., Yan, J., Yan, J., & Anheden, M. (2009). Impurity impacts on the purification process in
oxy-fuel combustion based CO2 capture and storage system. Applied Energy, 86(2),
202-213. doi:https://doi.org/10.1016/j.apenergy.2008.05.006
Li, H., Ye, X., Geng, Z., Zhou, H., Guo, X., Zhang, Y., . . . Wang, G. (2016). The influence of
biochar type on long-term stabilization for Cd and Cu in contaminated paddy soils.
Journal of Hazardous Materials, 304, 40 - 48. doi:10.1016/j.jhazmat.2015.10.048
Li, H., Yutong, W., Tianpei, W., & Hongrui, M. (2015). Effect of biochar on organic matter
conservation and metabolic quotient of soil. Environmental Progress & Sustainable
Energy, 34(5), 1467-1472. doi:10.1002/ep.12122
Li, J., et al. (2013). Effectiveness of low-temperature biochar in controlling the release and
leaching of herbicides in soil. Plant and Soil, 370(1), 333-344. Retrieved from https://
link.springer.com/article/10.1007/s11104-013-1639-7
Li, J., et al. (2015). Role of Alumina and Montmorillonite in Changing the Sorption of Herbicides
to Biochars. Journal of Agricultural and Food Chemistry, 63(24), 5740 - 5746.
doi:10.1021/acs.jafc.5b01654
Li, J., Liang, X., & Cockerill, T. (2011). Getting ready for carbon capture and storage through a
‘CCS (Carbon Capture and Storage) Ready Hub’: A case study of Shenzhen city in
Guangdong province, China. Energy, 36(10), 5916-5924. doi:https://doi.org/10.1016/
j.energy.2011.08.030
LI, J., & XU, Y. (2014). Immobilization of Cd in paddy soil using moisture management and
amendment. Environmental Science and Pollution Research, 22(7), 5580-5586.
doi:10.1007/s11356-014-3788-5
Li, J.-h., Lv, G.-h., Bai, W.-b., Liu, Q., Zhang, Y.-c., & Song, J.-q. (2014). Modification and use of
biochar from wheat straw Triticum aestivum for nitrate and phosphate removal from
water. Desalination and Water Treatment, 57(10), 1-13.
doi:10.1080/19443994.2014.994104
Li, K., Zhu, C., Zhang, L., & Zhu, X. (2016). Study on pyrolysis characteristics of lignocellulosic
biomass impregnated with ammonia source. Bioresource Technology, 209, 142 - 147.
doi:10.1016/j.biortech.2016.02.136
Li, L., et al. (2014). Mechanisms and Factors Influencing Adsorption of Microcystin-LR on
Biochars. Water, Air, & Soil Pollution, 225(12), 1-10. doi:10.1007/s11270-014-2220-6
Li, M., et al. (2012). Cu(II) removal from aqueous solution by Spartina alterniflora derived
biochar. Bioresource Technology, 141, 83-88. Retrieved from http://
www.sciencedirect.com/science/article/pii/S0960852412019542
Li, M., et al. (2012). Effects of biochar application on wheat growth and nitrogen balance.
Xinjiang Agricultural Sciences, 49(4), 589-594. Retrieved from https://www.cabdirect.org/
cabdirect/abstract/20123208039
Li, M., et al. (2014). Method To Characterize Acid–Base Behavior of Biochar: Site Modeling and
Theoretical Simulation. ACS Sustainable Chemistry & Engineering, 2(11), 2501 - 2509.
doi:10.1021/sc500432d
Li, M., et al. (2015). Alkali and alkaline earth metallic (AAEM) species leaching and Cu(II)
sorption by biochar. Chemosphere, 119, 778 - 785. doi:10.1016/
j.chemosphere.2014.08.033
Li, M., et al., & i. (2015). Change in water extractable organic carbon and microbial PLFAs of
biochar during incubation with an acidic paddy soil. Soil Research, 53(7), 763-771.
Retrieved from http://www.publish.csiro.au/view/journals/
dsp_journals_pip_abstract_scholar1.cfm?nid=84&pip=SR14259
Li, M., Lu, Y., & Huang, M. (2021). Evolution patterns of bioenergy with carbon capture and
storage (BECCS) from a science mapping perspective. Science of The Total
Environment, 766, 144318. doi:https://doi.org/10.1016/j.scitotenv.2020.144318
Li, Q., Li, X., Liu, G., Li, X., Cai, B., Liu, L.-C., . . . Shi, H. (2017). Application of China's CCUS
Environmental Risk Assessment Technical Guidelines (Exposure Draft) to the Shenhua
CCS Project. Energy Procedia, 114, 4270-4278. doi:https://doi.org/10.1016/
j.egypro.2017.03.1567
Li, Q., Liu, L.-C., Chen, Z.-A., Zhang, X., Jia, L., & Liu, G. (2014). A Survey of Public Perception
of CCUS in China. Energy Procedia, 63, 7019-7023. doi:https://doi.org/10.1016/
j.egypro.2014.11.735
Li, R., Wang, J. J., Zhou, B., Awasthi, M. K., Ali, A., Zhang, Z., . . . Mahar, A. (2016). Recovery of
phosphate from aqueous solution by magnesium oxide decorated magnetic biochar and
its potential as phosphate-based fertilizer substitute. Bioresource Technology, 215, 209 -
214. doi:10.1016/j.biortech.2016.02.125
Li, R., Wang, Q., Zhang, Z., Zhang, G., Li, Z., Wang, L., & Zheng, J. (2014). Nutrient
transformation during aerobic composting of pig manure with biochar prepared at
different temperatures. Environmental Technology, 36(5-8), 1 - 12.
doi:10.1080/09593330.2014.963692
Li, S., et al. (2013). Biochar Based Solid Acid Catalyst Hydrolyze Biomass. Journal of
Environmental Chemical Engineering, 1(4), 1174-1181. Retrieved from http://
www.sciencedirect.com/science/article/pii/S2213343713001693
Li, S., Wang, S., Fan, M., Wu, Y., & Shangguan, Z. (2020). Interactions between biochar and
nitrogen impact soil carbon mineralization and the microbial community. Soil and Tillage
Research, 196, 104437. doi:https://doi.org/10.1016/j.still.2019.104437
Li, S.-L., Calmels, D., Han, G., Gaillardet, J., & Liu, C.-Q. (2008). Sulfuric acid as an agent of
carbonate weathering constrained by δ13CDIC: Examples from Southwest China. Earth
and Planetary Science Letters, 270(3), 189-199. doi:https://doi.org/10.1016/
j.epsl.2008.02.039
Li, T., Han, X., Liang, C., Shohag, M. J. I., & Yang, X. (2014). Sorption of sulfamethoxazole by
the biochars derived from rice straw and alligator flag. Environmental Technology, 36(2),
245-253. doi:10.1080/09593330.2014.943299
Li, W., Ciais, P., Han, M., Zhao, Q., Chang, J., Goll, D. S., . . . Wang, J. (2021). Bioenergy Crops
for Low Warming Targets Require Half of the Present Agricultural Fertilizer Use.
Environmental Science & Technology, 55, 10654–10661. doi:10.1021/acs.est.1c02238
Li, W., Loyola-Licea, C., Crowley, D. E., & Ahmad, Z. (2016). Performance of a two-phase
biotrickling filter packed with biochar chips for treatment of wastewater containing high
nitrogen and phosphorus concentrations. Process Safety and Environmental Protection,
102, 150 - 158. doi:10.1016/j.psep.2016.03.001
Li, X., et al. (2013). Dynamics in leachate chemistry of Cu-Au tailings in response to biochar and
woodchip amendments: a column leaching study. Environmental Sciences Europe, 25,
1-9. Retrieved from http://www.enveurope.com/content/pdf/2190-4715-25-32.pdf
Li, X., et al. . (2013). Functional Groups Determine Biochar Properties (pH and EC) as Studied
by Two-Dimensional 13C NMR Correlation Spectroscopy. Plos One, 8, 1-7. Retrieved
from http://journals.plos.org/plosone/article/file?id=10.1371/
journal.pone.0065949&type=printable
Li, X., Hagaman, E., Tsouris, C., & Lee, J. W. (2003). Removal of Carbon Dioxide from Flue Gas
by Ammonia Carbonation in the Gas Phase. Energy & Fuels, 17(1), 69-74. doi:10.1021/
ef020120n
Li, X., Wei, N., Liu, Y., Fang, Z., Dahowski, R. T., & Davidson, C. L. (2009). CO2 point emission
and geological storage capacity in China. Energy Procedia, 1(1), 2793-2800. doi:https://
doi.org/10.1016/j.egypro.2009.02.051
Li, Y., et al. (2011). In situ preparation of biochar coated silica material from rice husk. Colloids
and Surfaces A: Physicochemical and Engineering Aspects, 395, 157-160. Retrieved
from http://dx.doi.org/10.1016/j.colsurfa.2011.12.023
Li, Y., et al. (2013). Effects of biochar covering on the release of pollutants from sediment. 34(8),
3071-3078.
Li, Y., et al. (2019). Cryo-EM Structures of Atomic Surfaces and Host-Guest Chemistry in Metal-
Organic Frameworks. Matter. Retrieved from https://www.cell.com/matter/fulltext/
S2590-2385(19)30053-0
Li, Y., Chang, S. X., Tian, L., & Zhang, Q. (2018). Conservation agriculture practices increase
soil microbial biomass carbon and nitrogen in agricultural soils: A global meta-analysis.
Soil Biology and Biochemistry, 121, 50-58. doi:https://doi.org/10.1016/
j.soilbio.2018.02.024
Li, Y., Horsman, M., Wu, N., Lan, C. Q., & Dubois-Calero, N. (2008). Biofuels from Microalgae.
Biotechnology Progress, 24(4), 815-820. doi:10.1021/bp070371k
Li, Y., Hu, S., Chen, J., Müller, K., Li, Y., Fu, W., . . . Wang, H. (2017). Effects of biochar
application in forest ecosystems on soil properties and greenhouse gas emissions: a
review. Journal of Soils and Sediments. doi:10.1007/s11368-017-1906-y
Li, Y., Ruan, G., Jalilov, A. S., Tarkunde, Y. R., Fei, H., & Tour, J. M. (2016). Biochar as a
renewable source for high-performance CO2 sorbent. Carbon, 107, 344-351. doi:https://
doi.org/10.1016/j.carbon.2016.06.010
Li, Y., Shao, J., Wang, X., Deng, Y., Yang, H., & Chen, H. (2014). Characterization of modified
biochars derived from bamboo pyrolysis and their utilization for target component
(furfural) adsorption. Energy & Fuels, 28(8), 5119-5127. doi:10.1021/ef500725c
Li, Y., Shen, F., Guo, H., Wang, Z., Yang, G., Wang, L., . . . Deng, S. (2015). Phytotoxicity
assessment on corn stover biochar, derived from fast pyrolysis, based on seed
germination, early growth, and potential plant cell damage. Environmental Science and
Pollution Research, 22(12), 9534-9543. doi:10.1007/s11356-015-4115-5
Li. Feiyue, e. a. (2014). Effects of Mineral Additives on Biochar Formation: Carbon Retention,
Stability, and Properties. Environmental Science & Technology, 48(19), 11211 - 11217.
doi:10.1021/es501885n
Lian, F., et al. . (2014). Physicochemical properties of herb-residue biochar and its sorption to
ionizable antibiotic sulfamethoxazole. Chemical Engineering Journal, 248, 128-134.
Retrieved from http://www.sciencedirect.com/science/article/pii/S1385894714002952
Lian, F., et al. (2015). Effect of humic acid (HA) on sulfonamide sorption by biochars.
Environmental Pollution, 204, 306 - 312. doi:10.1016/j.envpol.2015.05.030
Lian Hui Lim, K. (2015). Switching desalination plants from carbon dioxide source to sink.
Chemistry World, (January 22). Retrieved from https://www.chemistryworld.com/news/
switching-desalination-plants-from-carbon-dioxide-source-to-sink/8170.article
Liang, B., et al. (2006). Black Carbon Increases Cation Exchange Capacity in Soils. Soil
Science Society of America Journal, 70, 1719-1730. Retrieved from http://
citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.182.9795&rep=rep1&type=pdf
Liang, B., et al. . (2008). Stability of Biomass-Derived Black Carbon in Soils. Geochimica Et
Cosmochimica Acta, 72(24), 6078-6096. Retrieved from http://www.sciencedirect.com/
science/article/pii/S0016703708005875
Liang, B., Lehmann, J., Sohi, S. P., Thies, J. E., O’Neill, B., Trujillo, L., . . . Luizão, F. J. (2010).
Black carbon affects the cycling of non-black carbon in soil. Organic Geochemistry,
41(2), 206-213. doi:https://doi.org/10.1016/j.orggeochem.2009.09.007
Liang, C., et al. . (2015). Biochar from pruning residues as a soil amendment: Effects of
pyrolysis temperature and particle size. Soil and Tillage Research, 164, 3-10.
doi:10.1016/j.still.2015.10.002
Liang, C., Zhu, X., Fu, S., Méndez, A., Gascó, G., & Paz-Ferreiro, J. (2014). Biochar alters the
resistance and resilience to drought in a tropical soil. Environmental Research Letters.
Retrieved from http://iopscience.iop.org/1748-9326/9/6/064013
Liang, F., et al. (2014). Crop Yield and Soil Properties in the First 3 Years After Biochar
Application to a Calcareous Soil. Journal of Integrative Agriculture, 13, 525–532.
Liang, J., et al. (2015). Progress on biochar preparation and its assessement methods of
stability. Journal of Agricultural Resources and Environment, 32(5), 423-438. Retrieved
from http://www.cabdirect.org/abstracts/20163033480.html
Liang, N.-K., & Peng, H.-K. (2005). A study of air-lift artificial upwelling. Ocean Engineering,
32(5), 731-745. doi:https://doi.org/10.1016/j.oceaneng.2004.10.011
Liang, S., et al. (2014). Production and characterization of bio-oil and bio-char from pyrolysis of
potato peel wastes. Biomass Conversion and Biorefinery, 5(3), 237-246. Retrieved from
http://link.springer.com/article/10.1007/s13399-014-0130-x
Liang, X.-Q., et al. (2014). A Simple N Balance Assessment for Optimizing the Biochar
Amendment Level in Paddy Soils. Communications in Soil Science and Plant Analysis,
45(9), 1247-1258. Retrieved from http://www.tandfonline.com/doi/abs/
10.1080/00103624.2013.875192
Liang, Y., et al. (2013). Biochar- and phosphate-induced immobilization of heavy metals in
contaminated soil and water: implication on simultaneous remediation of contaminated
soil and groundwater. Environmental Science and Pollution Research, 21(6), 4665-4674.
Retrieved from https://link.springer.com/article/10.1007/s11356-013-2423-1
Liang, Y., et al. . (2014). Phosphorus Release from Dairy Manure, the Manure-Derived Biochar,
and Their Amended Soil: Effects of Phosphorus Nature and Soil Property. Journal of
Environmental Quality, 43(4), 1504-1509. Retrieved from https://dl.sciencesocieties.org/
publications/jeq/abstracts/0/0/jeq2014.01.0021?access=0&view=article
Liang, Z., et al. (2015). Recent progress and new developments in post-combustion carbon-
capture technology with amine based solvents. International Journal of Greenhouse Gas
Control, 40, 26-54. Retrieved from https://ac.els-cdn.com/S1750583615002704/1-s2.0-
S1750583615002704-main.pdf?_tid=8b23eef2-ecd0-11e7-
b004-00000aab0f27&acdnat=1514576789_8fe21bb42855f6592431a968023cc613
Liao, K., et al. (2017). Improving water-alternating-CO2 flooding of heterogeneous, low
permeability oil reservoirs using ensemble optimisation algorithm. International Journal
of Greenhouse Gas Control, 12(2), 242-260. Retrieved from http://
www.inderscience.com/info/inarticle.php?artid=84509
Liao, N., LI, Q., Zhang, W., Zhou, G., Ma, L., Min, W., . . . Hou, Z. (2016). Effects of biochar on
soil microbial community composition and activity in drip-irrigated desert soil. European
Journal of Soil Biology, 72, 27 - 34. doi:10.1016/j.ejsobi.2015.12.008
Liao, R., Gao, B., & Fang, J. (2013). Invasive plants as feedstock for biochar and bioenergy
production. Bioresource Technology, 140, 439-442. Retrieved from http://
www.sciencedirect.com/science/article/pii/S0960852413007505
Liao, S., Pan, B., Li, H., Zhang, D., & Xing, B. (2014). Detecting Free Radicals in Biochars and
Determining Their Ability to Inhibit the Germination and Growth of Corn, Wheat and Rice
Seedlings. Environmental Science & Technology, 48(15), 8581-8587. doi:10.1021/
es404250a
Liaw, S. B. (2015). Leaching of inorganic and organic matter from biomass and biochars under
various conditions: equilibrium, kinetics and implications. Curtin University, Retrieved
from http://espace.library.curtin.edu.au/R?func=dbin-jump-full&object_id=235315
Liaw, S. B., & Wu, H. (2015). Tuning Biochar Properties via Partial Gasification: Facilitating
Inorganic Nutrients Recycling and Altering Organic Matter Leaching. Energy & Fuels,
29(7), 4407 - 4417. doi:10.1021/acs.energyfuels.5b01020
Liberloo, M., et al. (2010). Bio-Energy Retains Its Mitigation Potential Under Elevated CO2. Plos
One, 5(7), 1-7. Retrieved from http://journals.plos.org/plosone/article/file?id=10.1371/
journal.pone.0011648&type=printable
Libra, J. A., et al. (2011). Hydrothermal carbonization of biomass residuals: a comparative
review of the chemistry, processes and applications of wet and dry pyrolysis. Biofuels,
2(1), 89-124. doi:10.4155/bfs.10.81
Libutti, A., Garofalo, P., Rovas, D., Zabaniotou, A., & Monteleone, M. (2015). MANAGEMENT
OF PRUNING RESIDUES FOR BOTH RENEWABLE ENERGY AND SOIL FERTILITY:
A WIN-WIN SOLUTION IN A MEDITERRANEAN OLIVE …. Paper presented at the
22nd European Biomass Conference and Exhibition. http://www.researchgate.net/profile/
Libutti_A/publication/
265139733_MANAGEMENT_OF_PRUNING_RESIDUES_FOR_BOTH_RENEWABLE_
ENERGY_AND_SOIL_FERTILITY_A_WIN-
WIN_SOLUTION_IN_A_MEDITERRANEAN_OLIVE_FARM/links/
54bfd5860cf28a63249fee09.pdf
Licht, J., McLaughlin, H., Burns, C., Eisen-Cuadra, A., & Morzuch, E. (2013). Synopses of
Biochar and Potting Media Research. Retrieved from http://www.botanicalsnursery.com/
biochpotsoil.pdf
Licht, J., McLaughlin, H., Burns, C., & Shields, F. (2014). Can Biochar Come to the Rescue of
Coastal Barren Species? A Controlled Study Reports on the Impact of Biochar
Amendment on Their Survival. BioResources, 9(4), 6214-6226. Retrieved from http://
ojs.cnr.ncsu.edu/index.php/BioRes/article/view/
BioRes_09_4_6214_Licht_Biochar_Rescue_Coastal_Barren_Species
Licht, J., & Mclaughlin, H. S. (2015).
Licht, S. (2009). STEP (Solar Thermal Electrochemical Photo) Generation of Energetic
Molecules: A Solar Chemical Process to End Anthropogenic Global Warming. The
Journal of Physical Chemistry C, 113(36), 16283-16292. doi:10.1021/jp9044644
Liebeck, M., Dörr, T., & Vogel, G. H. (2014). A Sustainable Concept for the Supply of Pure CO2
as a C-Source for Solar Fuels–Synergies of Biochar and Biogas. ChemBioEng Reviews,
1(2), 60-66. Retrieved from http://onlinelibrary.wiley.com/doi/10.1002/cben.201300009/
abstract
Liebeck, M., & Vogel, G. H. (2013). A Sustainable Concept for the Supply of Pure CO2 as a
Carbon Source for Solar Fuels - Synergies of Biochar and Biogas. Chemie Ingenieur
Technik, 85, 618-624.
Liesch, A. M., Weyers, S. L., Gaskin, J. W., & Das, K. C. (2010). Impact of Two Different
Biochars on Earthworm Growth and Survival. Annals of Environmental Science, 4, 1-9.
Retrieved from http://hdl.handle.net/2047/d20000234
Lievens, C., Mourant, D., Gunawan, R., Hu, X., & Wang, Y. (2014). Organic compounds leached
from fast pyrolysis mallee leaf and bark biochars. Chemosphere, 138, 659-664.
doi:10.1016/j.chemosphere.2014.11.009
Lii, D., et al. (2014). Improving Maize Growth by Biochar and Biochar-Based Amendment in
Light Sierozem in Ningxia. Applied Mechanics and Materials, 707, 251 - 254.
doi:10.4028/www.scientific.net/AMM.707.251
Lim, B., & Cachier, H. (1996). Determination of black carbon by chemical oxidation and thermal
treatment in recent marine and lake sediments and cretaceous-tertiary clays. Chemical
Geology, 131(1-4), 143-154. Retrieved from http://www.sciencedirect.com/science/
article/pii/0009254196000319
Lim, C. H., Holder, A. M., Hynes, J. T., & Musgrave, C. B. (2015). Catalytic Reduction of CO2 by
Renewable Organohydrides. J. Phys. Chem. Lett., 6, 5078-5092. Retrieved from https://
pubs.acs.org/doi/10.1021/acs.jpclett.5b01827
Lim, C.-H., Holder, A. M., & Musgrave, C. B. (2013). Mechanism of Homogeneous Reduction of
CO2 by Pyridine: Proton Relay in Aqueous Solvent and Aromatic Stabilization. Journal of
the American Chemical Society, 135(1), 142-154. doi:10.1021/ja3064809
Lim, H. (2018). We Need to Talk About Carbon Removal. Medium. Retrieved from https://
medium.com/@hhlim/we-need-to-talk-about-carbon-removal-40685871429c
Lim, J. E., et al. (2015). Heavy Metal Stabilization in Soils using Waste Resources - A Critical
Review. Journal of Applied Biological Chemistry, 58(2), 157 - 174. doi:10.3839/
jabc.2015.027
Lim, J. E., Lee, S. S., & Ok, Y. S. (2015). Efficiency of Poultry Manure Biochar for Stabilization of
Metals in Contaminated Soil. Journal of Applied Biological Chemistry, 58(1), 39 - 50.
doi:10.3839/jabc.2015.008
Lim, S.-H., Yong, S.-T., Ooi, C.-W., Chai, S.-P., Doshi, V., & Daud, W. R. W. (2014). Pyrolysis of
Palm Waste for the Application of Direct Carbon Fuel Cell. Energy Procedia, 61, 878 -
881. doi:10.1016/j.egypro.2014.11.986
Lim, S.-S., Baah-Acheamfour, M., Choi, W.-J., Arshad, M. A., Fatemi, F., Banerjee, S., . . .
Chang, S. X. (2018). Soil organic carbon stocks in three Canadian agroforestry systems:
From surface organic to deeper mineral soils. Forest Ecology and Management, 417,
103-109. doi:https://doi.org/10.1016/j.foreco.2018.02.050
Lim, T. J., Spokas, K. A., Feyereisen, G., & Novak, J. M. (2015). Predicting the impact of biochar
additions on soil hydraulic properties. Chemosphere. doi:10.1016/
j.chemosphere.2015.06.069
Lim, Y., Kim, J., Jung, J., Lee, C. S., & Han, C. (2013). Modeling and Simulation of CO2 Capture
Process for Coal- based Power Plant Using Amine Solvent in South Korea. Energy
Procedia, 37, 1855-1862. doi:https://doi.org/10.1016/j.egypro.2013.06.065
Lima, H. N., et al. (2002). Pedogenesis and pre-colombian land use of "terra preta
anthrosols" ("indian black earth") of western amazonia. Geoderma, 110(1-2), 1-17.
Lima, I. M., Boateng, A. A., & Klasson, K. T. (2009). Pyrolysis of broiler manure: Char and
product gas characterization. Industrial & Engineering Chemistry Research, 48(3),
1292-1297. Retrieved from http://pubs.acs.org/doi/abs/10.1021/ie800989s
Lima, I. M., Ro, K. S., Boateng, A. A., & Klasson, K. T. (2011). Biochars from agricultural
residuals as adsorbents for environmental remediation.
Lima, L. B. d. (2014). 4 COMPARTIMENTOS DE CARBONO EM SOLOS DE CERRADO SOB
APLICAÇÃO DE BIOCHAR EM LONGO PRAZO (4 MAGAZINES OF CARBON IN
SOILS OF SAVANNA IN APPLICATION OF LONG TERM biochar). Universidade
Federal de Goiás (Federal University of Goiás), Retrieved from http://
repositorio.bc.ufg.br/tede/bitstream/tde/3024/5/Lima,%20Larissa%20Borges%20de%20-
%202014.pdf#page=59
Lima, L. B. d. (2014). Desempenho agronômico da soja, fertilidade e dinâmica da matéria
orgânica em solos sob aplicação de biochar no cerrado brasileiro. Universidade Federal
de Goiás (Federal University of Goiás), Retrieved from http://repositorio.bc.ufg.br/tede/
handle/tde/3024
Lima, M., Skutsch, M., & Costa, G. d. M. (2011). Deforestation and the Social Impacts of Soy for
Biodiesel: Perspectives of Farmers in the South Brazilian Amazon. Ecology and Society,
16(4). doi:10.5751/ES-04366-160404
Lima, S. L., Tamiozzo, S., Palomino, E. C., Petter, F. A., & Marimon-Junior, B. H. (2015).
Interactions of Biochar and Organic Compound for Seedlings Production of Magonia
pubescens A. St.-Hil. Revista Árvore, 39(4), 655 - 661.
doi:10.1590/0100-67622015000400007
Limayem, A., & Ricke, S. C. (2012). Lignocellulosic biomass for bioethanol production: Current
perspectives, potential issues and future prospects. Progress in Energy and Combustion
Science, 38(4), 449-467. doi:http://dx.doi.org/10.1016/j.pecs.2012.03.002
Lin, A. C. (2019). Carbon Dioxide Removal after Paris. Ecology Law Quarterly, 45, 533-582.
Retrieved from https://scholarship.law.berkeley.edu/elq/vol45/iss3/2/
Lin, B.-J., & Chen, W.-H. (2015). Sugarcane bagasse pyrolysis in a carbon dioxide atmosphere
with conventional and microwave-assisted heating. Frontiers in Energy Research, 3, 1-4.
Retrieved from journal.frontiersin.org/Journal/10.3389/fenrg.2015.00004/pdf
Lin, M., Han, L., Singh, M. R., & Xiang, C. (2019). An Experimental- and Simulation-Based
Evaluation of the CO2 Utilization Efficiency of Aqueous-Based Electrochemical CO2
Reduction Reactors with Ion-Selective Membranes. ACS Applied Energy Materials.
doi:10.1021/acsaem.9b00986
Lin, X., Spokas, K., Venterea, R., Zhang, R., Baker, J., & Feyereisen, G. (2014). Assessing
Microbial Contributions to N2O Impacts Following Biochar Additions. Agronomy, 4(4),
478 - 496. doi:10.3390/agronomy4040478
Lin, X. W., Xie, Z. B., Zheng, J. Y., Liu, Q., Bei, Q. C., & Zhu, J. G. (2015). Effects of biochar
application on greenhouse gas emissions, carbon sequestration and crop growth in
coastal saline soil. European Journal of Soil Science, 66(2), 329 - 338. doi:10.1111/
ejss.12225
Lin, Y., et al. (2012). Migration of dissolved organic carbon in biochars and biochar-mineral
complexes. Pesquisa Agropecuária Brasileira, 47.
Lin, Y., et al. (2016). Metal-Organic Frameworks for Carbon Dioxide Capture and Methane
Storage. Advanced Energy Materials, 7(4), 1-29. Retrieved from http://
onlinelibrary.wiley.com/doi/10.1002/aenm.201601296/full
Lin, Y., Munroe, P., Joseph, S., Ziolkowski, A., Van Zwieten, L., Kimber, S., & Rust, J. (2012).
Chemical and structural analysis of enhanced biochars: Thermally treated mixtures of
biochar, chicken litter, clay and minerals. Chemosphere.
Lin, Y.-J., & Hwang, G.-S. (2009). Charcoal from biomass residues of a Cryptomeria plantation
and analysis of its carbon fixation benefit in Taiwan. Biomass and Bioenergy, 33(9),
1289-1294. doi:https://doi.org/10.1016/j.biombioe.2009.05.015
Lin, Z., Liu, Q., Liu, G., Cowie, A. L., Bei, Q., Liu, B., . . . Xie, Z. (2017). Effects of Different
Biochars on Pinus elliottii Growth, N Use Efficiency, Soil N2O and CH4 Emissions and C
Storage in a Subtropical Area of China. Pedosphere, 27(2), 248-261. doi:https://doi.org/
10.1016/S1002-0160(17)60314-X
Lindfeldt, E. G., & Westermark, M. O. (2009). Biofuel production with CCS as a strategy for
creating a CO2 -neutral road transport sector. Energy Procedia, 1(1), 4111-4118.
doi:https://doi.org/10.1016/j.egypro.2009.02.219
Lindley, S. T., & Barber, R. T. (1998). Phytoplankton response to natural and experimental iron
addition. Deep Sea Research Part II: Topical Studies in Oceanography, 45(6),
1135-1150. doi:http://dx.doi.org/10.1016/S0967-0645(98)00014-9
Lindner, M. (2019). Would a large-scale tree restoration effort stop climate change? European
Forest Institute. Retrieved from https://blog.efi.int/would-a-large-scale-tree-restoration-
effort-stop-climate-change/
Lindroos, T. J., Rydén, M., Langørgen, Ø., Pursiheimo, E., & Pikkarainen, T. (2019). Robust
decision making analysis of BECCS (bio-CLC) in a district heating and cooling grid.
Sustainable Energy Technologies and Assessments, 34, 157-172. doi:https://doi.org/
10.1016/j.seta.2019.05.005
Lingaiah, N., J., M. R., A, R., M, S., Rao, B., & R, P. B. N. (2015). Esterification of glycerol over
a solid acid biochar catalyst derived from waste biomass. RSC Adv. doi:10.1039/
c5ra06613a
Lingamdinne, L. P., Roh, H., Choi, Y.-L., Koduru, J. R., Yang, J.-K., & Chang, Y.-Y. (2015).
Influencing factors on sorption of TNT and RDX using rice husk biochar. Journal of
Industrial and Engineering Chemistry. doi:10.1016/j.jiec.2015.08.012
Lipow, G. (2012). Sorry, we still don’t know if biochar can save our asses. Grist. Retrieved from
https://grist.org/climate-energy/sorry-we-still-dont-know-if-biochar-can-save-our-asses/
Lipper, L., Dutilly-Diane, C., & McCarthy, N. (2010). Supplying Carbon Sequestration From West
African Rangelands: Opportunities and Barriers. 63(1 %J Rangeland Ecology and
Management), 155-166, 112. Retrieved from https://doi.org/10.2111/REM-D-09-00009.1
Lippke, B., et al. (2011). Life cycle impacts of forest management and wood utilization on carbon
mitigation : knowns and unknowns. Carbon Management, 2, 303-333. Retrieved from
https://www.fs.usda.gov/treesearch/pubs/38598
Lipponen, J., et al. (2017). The politics of large-scale CCS deployment. Energy Procedia, 114,
7581-7595. Retrieved from https://ac.els-cdn.com/S1876610217320933/1-s2.0-
S1876610217320933-main.pdf?_tid=0d8129fa-
ecd6-11e7-8bd6-00000aab0f6c&acdnat=1514579155_284feedd3aef2c3b286bc13ee6ca
d3ba
Lisabeth, H. P., Zhu, W., Kelemen, P. B., & Ilgen, A. (2017). Experimental evidence for chemo-
mechanical coupling during carbon mineralization in ultramafic rocks. Earth and
Planetary Science Letters, 474(Supplement C), 355-367. doi:https://doi.org/10.1016/
j.epsl.2017.06.045
Lisbona, P., Martínez, A., Lara, Y., & Romeo, L. M. (2010). Integration of Carbonate CO2
Capture Cycle and Coal-Fired Power Plants. A Comparative Study for Different
Sorbents. Energy & Fuels, 24(1), 728-736. doi:10.1021/ef900740p
Liska, A. J., & Cassman, K. G. (2009). Responses to “Comment on ‘Response to Plevin:
Implications for Life Cycle Emissions Regulations’” and “Assessing Corn Ethanol:
Relevance and Responsibility”. Journal of industrial Ecology, 13(6), 994-995.
doi:doi:10.1111/j.1530-9290.2009.00187.x
Liska, A. J., & Heier, C. D. (2013). The limits to complexity: A thermodynamic history of
bioenergy. Biofuels, Bioproducts and Biorefining, 7(5), 573-581. doi:10.1002/bbb.1417
Liska, A. J., Yang, H., Milner, M., Goddard, S., Blanco-Canqui, H., Pelton, M. P., . . . Suyker, A.
E. (2014). Biofuels from crop residue can reduce soil carbon and increase CO2
emissions. Nature Climate Change, 4(5), 398-401. doi:10.1038/nclimate2187
http://www.nature.com/nclimate/journal/v4/n5/abs/nclimate2187.html#supplementary-
information
Liss, P., Chuck, A., Bakker, D., & Turner, S. (2005). Ocean fertilization with iron: effects on
climate and air quality. Tellus B, 57(3), 269-271. doi:10.1111/j.1600-0889.2005.00141.x
Little, J. B. (2017). Can Meadows Rescue thePlanet from CO
2
? Scientific American. Retrieved
from https://www.scientificamerican.com/article/can-meadows-rescue-the-planet-from-
co2/?WT.mc_id=SA_ENGYSUS_20170511
Littlecott, C. (2012). Stakeholder interests and the evolution of UK CCS policy. Energy and
Environment, 23(2), 425-436. doi:10.1260/0958-305X.23.2-3.425
Littlejohn, C. P. (2016). Ecosystem service delivery from bioenergy shelterbelts on dairy farms.
Lincoln University, Retrieved from https://researcharchive.lincoln.ac.nz/handle/
10182/6879
Liu, A., Tian, D., Xiang, Y., & Mo, H. (2016). Effects of biochar on growth of Asian lotus
(Nelumbo nucifera Gaertn.) and cadmium uptake in artificially cadmium-polluted water.
Scientia Horticulturae, 198, 311 - 317. doi:10.1016/j.scienta.2015.11.030
Liu, B., Liu, Q., Wang, X., Bei, Q., Zhang, Y., Lin, Z., . . . Xie, Z. (2020). A fast chemical oxidation
method for predicting the long-term mineralization of biochar in soils. Science of The
Total Environment, 137390. doi:https://doi.org/10.1016/j.scitotenv.2020.137390
Liu, C., et al. . (2015). Biochar increased water holding capacity but accelerated organic carbon
leaching from a sloping farmland soil in China. Environmental Science and Pollution
Research, 23(2), 995-1006. doi:10.1007/s11356-015-4885-9
Liu, C., Gallagher, J. J., Sakimoto, K. K., Nichols, E. M., Chang, C. J., Chang, M. C. Y., & Yang,
P. (2015). Nanowire–Bacteria Hybrids for Unassisted Solar Carbon Dioxide Fixation to
Value-Added Chemicals. Nano Letters, 15(5), 3634-3639. doi:10.1021/
acs.nanolett.5b01254
Liu, C., Lu, M., Cui, J., Li, B., & Fang, C. (2014). Effects of straw carbon input on carbon
dynamics in agricultural soils: a meta-analysis. 20(5), 1366-1381. doi:doi:10.1111/
gcb.12517
Liu, C. C. K., & Jin, Q. (1995). Artificial upwelling in regular and random waves. Ocean
Engineering, 22(4), 337-350. doi:https://doi.org/10.1016/0029-8018(94)00019-4
Liu, C.-M., & Wu, S.-Y. (2016). From biomass waste to biofuels and biomaterial building blocks.
Renewable Energy, 96, Part B, 1056-1062. doi:http://dx.doi.org/10.1016/
j.renene.2015.12.059
Liu, F., Zuo, J., Chi, T., Wang, P., & Yang, B. (2015). Removing phosphorus from aqueous
solutions by using ironmodified corn straw biochar. Frontiers of Environmental Science &
Engineering, 9(6), 1066-1075. doi:10.1007/s11783-015-0769-y
Liu, G., Li, L., Zhang, K., Wang, X., Chang, J., Sheng, Y., . . . Wen, Y. (2016). Facile Preparation
of Water-processable Biochar Based on Pitch Pine and Its Electrochemical Application
for Cadmium Ion Sensing. International Journal of ELECTROCHEMICAL SCIENCE.
Retrieved from http://www.electrochemsci.org/papers/vol11/110201041.pdf
Liu, G., Xie, M., & Zhang, S. (2015). Effect of organic fraction of municipal solid waste
(OFMSW)-based biochar on organic carbon mineralization in a dry land soil. Journal of
Material Cycles and Waste Management. doi:10.1007/s10163-015-0447-y
Liu, G. C., Zheng, H., & Wang, Z. (2014). Analysis of Material Properties with Biochar Improve
Indian Mustard (Brassica juncea) Growth in Acidic Soil in Northern China. Applied
Mechanics and Materials, 540. doi:10.4028/www.scientific.net/AMM.540.239
Liu, G. X., & Yu, Y. S. (2017). Thermal-Electrochemical Co-drive System for Carbon Capture.
Energy Procedia, 114, 25-31. doi:https://doi.org/10.1016/j.egypro.2017.03.1142
Liu, H. J., et al. (2017). Worldwide Status of CCUS Technologies and Their Development and
Challenges in China. Geofluids, 1-25. Retrieved from https://www.hindawi.com/journals/
geofluids/2017/6126505/
Liu, H. Q., Xu, X., Wu, Z. H., Wei, G. X., & Sun, L. (2015). Removal of Heavy Metals from
Aqueous Solution Using Biochar Derived from Biomass and Sewage Sludge. Applied
Mechanics and Materials, 768, 89 - 95. doi:10.4028/www.scientific.net/AMM.768.89
Liu, J., et al. (2012). Short-term effect of biochar and compost on soil fertility and water status of
a Dystric Cambisol in NE Germany under field conditions. Journal of Plant Nutrition and
Soil Science, 175(5), 698-707. doi:10.1002/jpln.201100172
Liu, J., et al. . (2014). Effects of biochar amendment on the net greenhouse gas emission and
greenhouse gas intensity in a Chinese double rice cropping system. European Journal of
Soil Biology, 65, 30 - 39. doi:10.1016/j.ejsobi.2014.09.001
Liu, J., et al. . (2016). Catalytic Pyrolysis of Tar Model Compound with Various Bio-Char
Catalysts to Recycle Char from Biomass Pyrolysis. BioResources, 11(2), 3752-3768.
Retrieved from https://ojs.cnr.ncsu.edu/index.php/BioRes/article/view/
BioRes_11_2_3752_Liu_Catalytic_Pyrolysis_Tar_Model
Liu, J., Meng, J., & Huang, S. (2011). The development and prospect of biochar carbon
sequestration based on agriculture and forestry resources in China. Paper presented at
the 2011 Second International Conference on Mechanic Automation and Control
Engineering (MACE), Inner Mongolia, China.
Liu, J., Shen, J., Li, Y., Su, Y., Ge, T., Jones, D. L., & Wu, J. (2014). Effects of biochar
amendment on the net greenhouse gas emission and greenhouse gas intensity in a
Chinese double rice cropping system. European Journal of Soil Biology, 65(Supplement
C), 30-39. doi:https://doi.org/10.1016/j.ejsobi.2014.09.001
Liu, J., Song, Y., & Qiu, W. (2017). Oleaginous microalgae Nannochloropsis as a new model for
biofuel production: Review & analysis. Renewable and Sustainable Energy Reviews, 72,
154-162. doi:https://doi.org/10.1016/j.rser.2016.12.120
Liu, K., et al. (2015). Effects of Different Biochar Fertilizer Rates on Early and Late Rice Growth
and Yield in Northeast Area of Jiangxi province. CNKI Journal. doi:10.3969/
j.issn.1006-8082.2015.04.020
Liu, K., Yu, B., Luo, K., Liu, X., & Bai, L. (2016). Reduced sulfentrazone phytotoxicity through
increased adsorption and anionic species in biochar-amended soils. Environmental
Science and Pollution Research. doi:10.1007/s11356-016-6212-5
Liu, L., et al. (2014). Effect of Biochar on Nitrous Oxide Emission and Its Potential Mechanisms.
Journal of the Air & Waste Management Association, 64(8), 894-902. Retrieved from
https://www.tandfonline.com/doi/full/10.1080/10962247.2014.899937
Liu, L., Chen, P., Sun, M., Shen, G., & Shang, G. (2014). Effect of biochar amendment on PAH
dissipation and indigenous degradation bacteria in contaminated soil. Journal of Soils
and Sediments. doi:10.1007/s11368-014-1006-1
Liu, N., et al. (2013). Adsorption Characteristics of Ammonium Nitrogen by Biochar from Diverse
Origins in Water. Advanced Materials Research, 664, 305-312. Retrieved from https://
www.scientific.net/AMR.664.305
Liu, N., et al. . (2013). Study on Characteristics of Ammonium Nitrogen Adsorption by Biochar
Prepared in Different Temperature. Advanced Materials Research, 724 - 725, 452-456.
Retrieved from https://www.scientific.net/AMR.724-725.452.pdf
Liu, N., Charrua, A. B., Weng, C.-H., Yuan, X., & Ding, F. (2015). Characterization of biochars
derived from agriculture wastes and their adsorptive removal of atrazine from aqueous
solution: A comparative study. Bioresource Technology, 198, 55 - 62. doi:10.1016/
j.biortech.2015.08.129
Liu, P., et al. (2014). Aqueous Leaching of Organic Acids and Dissolved Organic Carbon from
Various Biochars Prepared at Different Temperatures. In.
Liu, P., et al. (2016). Mechanisms of mercury removal by biochars produced from different
feedstocks determined using X-ray absorption spectroscopy. Journal of Hazardous
Materials, 308, 233-242. doi:10.1016/j.jhazmat.2016.01.007
Liu, P., Yue, M., & Zhang, H. (2016). Adsorptive performance of Ni(II) from aqueous solutions
using biochar made of Phragmites australis by adding ammonium polyphosphate as
flame retardant. In.
Liu, Q., et al. (2015). Carbon footprint of rice production under biochar amendment - a case
study in a Chinese rice cropping system. GCB Bioenergy, 8(1). doi:10.1111/gcbb.12248
Liu, Q., et al. (2018). How does biochar influence soil N cycle? A meta-analysis. Plant and Soil.
Retrieved from https://www.researchgate.net/publication/
323827300_How_does_biochar_influence_soil_N_cycle_A_meta-analysis
Liu, Q.-S., & Li, Y.-J. (2015). Sorption and reduction of hexavalent chromium from aqueous
solutions by surface modified biochars. Separation Science and Technology,
150629134002004. doi:10.1080/01496395.2015.1062026
Liu, Q.-y., Yang, F., Liu, Z.-h., & Li, G. (2014). Preparation of SnO2–Co3O4/C biochar catalyst
as a Lewis acid for corncob hydrolysis into furfural in water medium. Journal of Industrial
and Engineering Chemistry, 26, 46-54. doi:10.1016/j.jiec.2014.11.041
Liu, Q.-y., Yang, F., Sun, X.-f., Liu, Z.-h., & Li, G. (2015). Preparation of biochar catalyst with
saccharide and lignocellulose residues of corncob degradation for corncob hydrolysis
into furfural. Journal of Material Cycles and Waste Management, 19(1), 134-143.
doi:10.1007/s10163-015-0392-9
Liu, S., Tang, W., Yang, F., Meng, J., Chen, W. F., & Li, X. (2016). Influence of biochar
application on potassium-solubilising Bacillus mucilaginosus as potential biofertilizer.
Preparative Biochemistry and Biotechnology, 47(1), 32-37.
doi:10.1080/10826068.2016.1155062
Liu, S., Yan, C., He, W., Chen, B., Zhang, Y., Liu, Q., & Liu, E. (2015). Effects of different tillage
practices on soil water-stable aggregation and organic carbon distribution in dryland
farming in Northern China. Acta Ecologica Sinica, 35(4), 65-69. doi:https://doi.org/
10.1016/j.chnaes.2015.06.005
Liu, S., Zhang, Y., Zong, Y., Hu, Z., Wu, S., Zhou, J., . . . Zou, J. (2015). Response of soil carbon
dioxide fluxes, soil organic carbon and microbial biomass carbon to biochar amendment:
a meta-analysis. GCB Bioenergy, 8(2), 392-406. doi:10.1111/gcbb.12265
Liu, S.-b., Tan, X.-f., Liu, Y.-g., Gu, Y.-l., Zeng, G.-m., Hu, X.-j., . . . Zhao, B.-b. (2016).
Production of biochars from Ca impregnated ramie biomass (Boehmeria nivea (L.)
Gaud.) and their phosphate removal potential. RSC Adv., 6(7), 5871 - 5880. doi:10.1039/
c5ra22142k
Liu, S.-C., et al. (2014). Effect of holding time on fuel properties of biochars prepared from the
torrefaction of coffee residue. Biomass Conversion and Biorefinery, 5(2), 209-214.
doi:10.1007/s13399-014-0139-1
Liu, S.-C., & Tsai, W.-T. (2015). Thermochemical Characteristics of Dairy Manure and its
Derived Biochars from a Fixed-Bed Pyrolysis. International Journal of Green Energy,
13(10), 963-968. doi:10.1080/15435075.2015.1087851
Liu, S.-H. (2019). Chapter 16 - Waste-Derived Biochar for CO2 Sequestration. In Y. S. Ok, D. C.
W. Tsang, N. Bolan, & J. M. Novak (Eds.), Biochar from Biomass and Waste (pp.
295-304): Elsevier.
Liu, T., et al. (2016). Biochar-supported carbon nanotube and graphene oxide nanocomposites
for Pb(II) and Cd(II) removal. RSC Adv., 6(29), 24314-24319. doi:10.1039/c6ra01895e
Liu, T., Liu, B., & Zhang, W. (2014). Nutrients and Heavy Metals in Biochar Produced by
Sewage Sludge Pyrolysis: Its Application in Soil Amendment. Pol. J. Environ. Stud., 23,
271-275. Retrieved from http://www.pjoes.com/pdf/23.1/
Pol.J.Environ.Stud.Vol.23.No.1.271-275.pdf
Liu, W., et al. . (2015). Response of CaCl2-extractable heavy metals, polychlorinated biphenyls,
and microbial communities to biochar amendment in naturally contaminated soils.
Journal of Soils and Sediments, 16(2), 476-485. doi:10.1007/s11368-015-1218-z
Liu, W., Teng, L., Rohani, S., Qin, Z., Zhao, B., Xu, C. C., . . . Liang, B. (2021). CO2 mineral
carbonation using industrial solid wastes: A review of recent developments. Chemical
Engineering Journal, 416, 129093. doi:https://doi.org/10.1016/j.cej.2021.129093
Liu, X., et al. (2014). Sustainable biochar effects for low carbon crop production: A 5-crop
season field experiment on a low fertility soil from Central China. Agricultural Systems,
129, 22-29. doi:10.1016/j.agsy.2014.05.008
Liu, X., et al. (2016). Biochar has no effect on soil respiration across Chinese agricultural soils.
Science of The Total Environment, 554-555, 259 - 265. doi:10.1016/
j.scitotenv.2016.02.179
Liu, X., et al. , Li, L., Bian, R., Chen, D., Qu, J., Kibue, G. W., . . . Zheng, J. (2013). Effect of
biochar amendment on soil-silicon availability and rice uptake. Journal of Plant Nutrition
and Soil Science, 177(1), 91-96. Retrieved from http://onlinelibrary.wiley.com/doi/
10.1002/jpln.201200582/abstract
Liu, X., Li, Z., Zhang, Y., Feng, R., & Mahmood, I. B. (2014). Characterization of human manure-
derived biochar and energy-balance analysis of slow pyrolysis process. Waste
Management, 34(9), 1619-1626. doi:10.1016/j.wasman.2014.05.027
Liu, X., Mao, P., Li, L., & Ma, J. (2019). Impact of biochar application on yield-scaled
greenhouse gas intensity: A meta-analysis. Science of The Total Environment, 656,
969-976. doi:https://doi.org/10.1016/j.scitotenv.2018.11.396
Liu, X., Miao, R., Lindberg, P., & Lindblad, P. (2019). Modular engineering for efficient
photosynthetic biosynthesis of 1-butanol from CO2 in cyanobacteria. Energy &
Environmental Science. doi:10.1039/C9EE01214A
Liu, X., Saydah, B., Eranki, P., Colosi, L. M., Greg Mitchell, B., Rhodes, J., & Clarens, A. F.
(2013). Pilot-scale data provide enhanced estimates of the life cycle energy and
emissions profile of algae biofuels produced via hydrothermal liquefaction. Bioresource
Technology, 148, 163-171. doi:https://doi.org/10.1016/j.biortech.2013.08.112
Liu, X., Yu, Y., & Chen, J. (2017). Upgrading the integration of supercritical coal-fired power
plant with post-combustion CO2 capture process through process simulation.
International Journal of Global Warming, 12(2), 149-163. Retrieved from http://
www.inderscience.com/info/inarticle.php?artid=84512
Liu, X., Zhang, Y., Li, Z., Feng, R., & Zhang, Y. (2014). Characterization of corncob-derived
biochar and pyrolysis kinetics in comparison with corn stalk and sawdust. Bioresource
Technology, 170, 76 - 82. doi:10.1016/j.biortech.2014.07.077
Liu, X. H., & Zhang, X. C. (2012). Effect of Biochar on pH of Alkaline Soils in the Loess Plateau:
Results from Incubation Experiments. International Journal of Agriculture & Biology I, 14,
745–750. Retrieved from http://www.fspublishers.org/ijab/past-issues/
IJABVOL_14_NO_5/10.pdf
Liu Xu, L. (2015). Development of new substrates based on biochar and compost for the
propagation and production of Rosmarinus officinalis L. in professional nursery
(translated from Spanish). Universitat Politècnica de València (Polytechnic University of
Valencia), Retrieved from https://riunet.upv.es/handle/10251/54191
Liu, X.-y., et al. (2012). Can biochar amendment be an ecological engineering technology to
depress N2O emission in rice paddies?—A cross site field experiment from South China.
Ecological Engineering, 42, 168–173. Retrieved from http://www.sciencedirect.com/
science/article/pii/S0925857412000389
Liu, Y., et al. . (2011). Reducing CH4 and CO2 emissions from waterlogged paddy soil with
biochar. Journal of Soils and Sediments, SOILS, SEC 2 • GLOBAL CHANGE, ENVIRON
RISK ASSESS, SUSTAINABLE LAND USE. doi:10.1007/s11368-011-0376-x
Liu, Y., Chen, J., Chen, M., Zhang, B., Wu, D., & Cheng, Q. (2015). Adsorption characteristics
and mechanism of sewage sludge-derived adsorbent for removing sulfonated methyl
phenol resin in wastewater. RSC Adv., 5(93), 76160 - 76169. doi:10.1039/c5ra17125c
Liu, Y., He, Z., & Uchimiya, M. (2015). Comparison of Biochar Formation from Various
Agricultural By-Products Using FTIR Spectroscopy. Modern Applied Science, 9(4),
246-253. doi:10.5539/mas.v9n4p246!
Liu, Y., Piao, S., Gasser, T., Ciais, P., Yang, H., Wang, H., . . . Wang, T. (2019). Field-experiment
constraints on the enhancement of the terrestrial carbon sink by CO2 fertilization. Nature
Geoscience. doi:10.1038/s41561-019-0436-1
Liu, Y., & Wilcox, J. (2013). Molecular Simulation Studies of CO2 Adsorption by Carbon Model
Compounds for Carbon Capture and Sequestration Applications. Environmental Science
& Technology, 47(1), 95-101. doi:10.1021/es3012029
Liu, Y., Yang, M., Wu, Y., Wang, H., Chen, Y., Wu, W. J. J. o. S., & Sediments. (2011). Reducing
CH4 and CO2 emissions from waterlogged paddy soil with biochar. 11(6), 930-939.
doi:10.1007/s11368-011-0376-x
Liu, Y., Ye, H.-Z., Diederichsen, K. M., Van Voorhis, T., & Hatton, T. A. (2020). Electrochemically
mediated carbon dioxide separation with quinone chemistry in salt-concentrated
aqueous media. Nature Communications, 11(1), 2278. doi:10.1038/s41467-020-16150-7
Liu, Y. J., Zhao, L., & Huang, L. (2014). Arsenic bioavailability regulated by magnetite in copper
tailings: As mobilization into pore water and plant uptake. In One Century of the
Discovery of Arsenicosis in Latin America.
Liu, Y.-x., Lyu, H.-h., Shi, Y., Wang, Y.-f., Zhong, Z.-k., & Yang, S.-m. (2015). Effects of biochar
on soil nutrients leaching and potential mechanisms: A review. Ying yong sheng tai xue
bao = The journal of applied ecology / Zhongguo sheng tai xue xue hui, Zhongguo ke
xue yuan Shenyang ying yong sheng tai yan jiu suo zhu ban, 26(1), 304-310. Retrieved
from http://europepmc.org/abstract/med/25985683
Liu, Z., et al. (2012). Production of solid biochar fuel from waste biomass by hydrothermal
carbonization. Fuel, 103, 943-949. Retrieved from http://www.sciencedirect.com/science/
article/pii/S0016236112006308
Liu, Z., et al. (2015). Improvement of fuel qualities of solid fuel biochars by washing treatment.
Fuel Processing Technology, 134, 130-135. doi:10.1016/j.fuproc.2015.01.025
Liu, Z., & Balasubramanian, R. (2013). A comparative study of nitrogen conversion during
pyrolysis of coconut fiber, its corresponding biochar and their blends with lignite.
Bioresource Technology, 151, 85-90. Retrieved from https://www.ncbi.nlm.nih.gov/
pubmed/24211487
Liu, Z., & Balasubramanian, R. (2013). A comparison of thermal behaviors of raw biomass,
pyrolytic biochar and their blends with lignite. Bioresource Technology, 146, 371-378.
Retrieved from http://www.sciencedirect.com/science/article/pii/S0960852413011401
Liu, Z., Chen, X., Jing, Y., Li, Q., Zhang, J., & Huang, Q. (2014). Effects of biochar amendment
on rapeseed and sweet potato yields and water stable aggregate in upland red soil.
CATENA, 123, 45-51. doi:10.1016/j.catena.2014.07.005
Liu, Z., Demisie, W., & Zhang, M. (2013). Simulated degradation of biochar and its potential
environmental implications. Environmental Pollution, 179, 146–152. Retrieved from
http://www.sciencedirect.com/science/article/pii/S0269749113002315
Liu, Z., Dugan, B., Masiello, C. A., Barnes, R. T., Gallagher, M. E., & Gonnermann, H. (2016).
Impacts of biochar concentration and particle size on hydraulic conductivity and DOC
leaching of biochar–sand mixtures. Journal of Hydrology, 533, 461 - 472. doi:10.1016/
j.jhydrol.2015.12.007
Liu, Z., & Han, G. (2015). Production of solid fuel biochar from waste biomass by low
temperature pyrolysis. Fuel, 158, 159 - 165. doi:10.1016/j.fuel.2015.05.032
Liu, Z., Han, Y., Jing, M., & Chen, J. (2015). Sorption and transport of sulfonamides in soils
amended with wheat straw-derived biochar: effects of water pH, coexistence copper ion,
and dissolved organic matter. Journal of Soils and Sediments, 17(3), 771-779.
doi:10.1007/s11368-015-1319-8
Liu, Z., Macpherson, G. L., Groves, C., Martin, J. B., Yuan, D., & Zeng, S. (2018). Large and
active CO2 uptake by coupled carbonate weathering. Earth-Science Reviews, 182,
42-49. doi:https://doi.org/10.1016/j.earscirev.2018.05.007
Liu, Z., Mi, B., Wei, P., Jiang, Z., Fei, B., & Liu, X. e. (2015). Combustion characteristics of moso
bamboo (Phyllostachys pubescens). European Journal of Wood and Wood Products,
74(2), 255-259. doi:10.1007/s00107-015-0997-7
Liu, Z., Xue, Y., Gao, F., Cheng, X., & Yang, K. (2016). Removal of ammonium from aqueous
solutions using alkali-modified biochars. Chemical Speciation & Bioavailability, 28(1-4),
26 - 32. doi:10.1080/09542299.2016.1142833
Lively, R. P., Sharma, P., McCool, B. A., Beaudry-Losique, J., Luo, D., Thomas, V. M., . . .
Chance, R. R. (2015). Anthropogenic CO2 as a feedstock for the production of algal-
based biofuels. Biofuels, Bioproducts and Biorefining, 9(1), 72-81. doi:10.1002/bbb.1505
LLP, C. B. (2021). Finding the Common Ground for Forests. Retrieved from https://
www.lexology.com/library/detail.aspx?g=ae07a220-ee65-47b8-a86a-c9dde087d48b
Lobo, F. L., Wang, H., Huggins, T., Rosenblum, J., Linden, K. G., & Ren, Z. J. (2016). Low-
energy hydraulic fracturing wastewater treatment via AC powered electrocoagulation
with biochar. Journal of Hazardous Materials, 309, 180 - 184. doi:10.1016/
j.jhazmat.2016.02.020
Locatelli, B. (2015). Tropical reforestation and climate change: beyond carbon. Restoration
Ecology, 23(4), 337-343. doi:doi:10.1111/rec.12209
Lock, H. (2021). Why Tree Planting Is so Important in the Fight Against Climate Change. Global
Citizen. Retrieved from https://www.globalcitizen.org/en/content/why-planting-trees-
helps-fight-climate-change/?template=next
Lock, S. J., Smallman, M., Lee, M., & Rydin, Y. (2014). “Nuclear energy sounded wonderful 40
years ago”: UK citizen views on CCS. Energy Policy, 66, 428-435. doi:https://doi.org/
10.1016/j.enpol.2013.11.024
Lockley, A. (2020). Compilation of Geoengineering You Tube videos, including many with CDR
themes. Retrieved from https://www.youtube.com/playlist?list=PLF8369A27273314D8
A comparative energy and costs assessment and optimization for direct air capture
technologies. (2021). Lockley, A. [Mobile application software]. Retrieved from https://
open.spotify.com/episode/3z2ymEOatfuiypM3aMDNka
The influence of particle size on the potential of enhanced basalt weathering for carbon dioxide
removal - Insights from a regional assessment. (2021). Lockley, A. [Mobile application
software]. Retrieved from https://open.spotify.com/episode/
5ZBTd1Fov5BWAy8Op5wUgx
Lockley, A., & Coffman, D. M. (2018). Carbon dioxide removal and tradeable put options at
scale. Environmental Research Letters, 13(5), 054034. doi:10.1088/1748-9326/aabe96
Lockley, A., Mi, Z., & Coffman, D. M. (2019). Geoengineering and the blockchain: Coordinating
Carbon Dioxide Removal and Solar Radiation Management to tackle future emissions.
Frontiers of Engineering Management, 6(1), 38-51. doi:10.1007/s42524-019-0010-y
Lockley, A., & von Hippel, T. (2020). The carbon dioxide removal potential of Liquid Air Energy
Storage: A high-level technical and economic appraisal. Frontiers of Engineering
Management. doi:10.1007/s42524-020-0102-8
Lockley, A. J., & Coffman, D. M. D. (2018). Carbon dioxide removal and tradeable put options at
scale. Environmental Research Letters, 13(8). Retrieved from http://iopscience.iop.org/
10.1088/1748-9326/aabe96
Lockwood, T. (2017). Public outreach approaches for carbon capture and storage projects.
Retrieved from
Loftus, R. (2020). This start-up is turning the tide on climate change. Secure Futures by
Kaspersky. Retrieved from https://usa.kaspersky.com/blog/secure-futures-magazine/
project-vesta-interview/21699/
Lohwasser, R., & Madlener, R. (2013). Relating R&D and investment policies to CCS market
diffusion through two-factor learning. Energy Policy, 52, 439-452. doi:https://doi.org/
10.1016/j.enpol.2012.09.061
Lomax, G. (2016). Chapter 3.2 - The Value of Land Restoration as a Response to Climate
Change A2 - Chabay, Ilan. In M. Frick & J. Helgeson (Eds.), Land Restoration (pp.
235-245). Boston: Academic Press.
Lomax, G., Lenton, T. M., Adeosun, A., & Workman, M. (2015). COMMENTARY: Investing in
negative emissions. Nature Climate Change, 5(6), 498-500. Retrieved from <Go to
ISI>://WOS:000356814800015
Lomax, G., Workman, M., Lenton, T., & Shah, N. (2015). Reframing the policy approach to
greenhouse gas removal technologies. Energy Policy, 78, 125-136. doi:http://dx.doi.org/
10.1016/j.enpol.2014.10.002
Lonappan, L., Rouissi, T., Das, R. K., Brar, S. K., Ramirez, A. A., Verma, M., . . . Valero, J. R.
(2016). Adsorption of methylene blue on biochar microparticles derived from different
waste materials. Waste Management, 49, 537-544. doi:10.1016/j.wasman.2016.01.015
Lone, A. H., et al. (2015). Biochar for Sustainable Soil Health: A Review of Prospects and
Concerns. Pedosphere, 25(5), 639 - 653. doi:10.1016/s1002-0160(15)30045-x
Long, C., & Ken, C. (2010). Atmospheric carbon dioxide removal: long-term consequences and
commitment. Environmental Research Letters, 5(2), 024011. Retrieved from http://
stacks.iop.org/1748-9326/5/i=2/a=024011
Long, N. V. D., Lee, D. Y., Kwag, C., Lee, Y. M., Lee, S. W., Hessel, V., & Lee, M. (2021).
Improvement of marine carbon capture onboard diesel fueled ships. Chemical
Engineering and Processing - Process Intensification, 108535. doi:https://doi.org/
10.1016/j.cep.2021.108535
Longhurst, A. R. (2007). Chapter 5 - NUTRIENT LIMITATION: THE EXAMPLE OF IRON. In A.
R. Longhurst (Ed.), Ecological Geography of the Sea (Second Edition) (pp. 71-87).
Burlington: Academic Press.
Lopes, J. V. M., Bresciani, A. E., Carvalho, K. M., Kulay, L. A., & Alves, R. M. B. (2021). Multi-
criteria decision approach to select carbon dioxide and hydrogen sources as potential
raw materials for the production of chemicals. Renewable and Sustainable Energy
Reviews, 151, 111542. doi:https://doi.org/10.1016/j.rser.2021.111542
López Barreiro, D., Bauer, M., Hornung, U., Posten, C., Kruse, A., & Prins, W. (2015).
Cultivation of microalgae with recovered nutrients after hydrothermal liquefaction. Algal
Research, 9, 99-106. doi:https://doi.org/10.1016/j.algal.2015.03.007
López, R., Díaz, M. J., & González-Pérez, J. A. (2018). Extra CO
2
sequestration following
reutilization of biomass ash. Science of The Total Environment, 625, 1013-1020.
doi:https://doi.org/10.1016/j.scitotenv.2017.12.263
Lopez, V., & Ghezzehei, T. A. (2015). Effect of almond shell biochar addition on the hydro-
physical properties of an arable Central Valley soil. American Geophysical Union, Fall
Meeting. Retrieved from http://adsabs.harvard.edu/abs/2014AGUFM.B41A0006L
Lopez, V. D. (2015). Biochar as a soil amendment: Impact on hydraulic and physical properties
of an arable loamy sand soil. University of California, Retrieved from http://
gradworks.umi.com/15/84/1584222.html
López-Cano, I., Roig, A., Cayuela, M. L., Alburquerque, J. A., & Sánchez-Monedero, M. A.
(2016). Biochar improves N cycling during composting of olive mill wastes and sheep
manure. Waste Management, 49, 553-559. doi:10.1016/j.wasman.2015.12.031
Lopez-Capel, E., et al. . (2016). Biochar properties. In Biochar in European Soils and
Agriculture: Science and Practice.
L'Orange Seigo, S., et al. (2014). Predictors of risk and benefit perception of carbon capture and
storage (CCS) in regions with different stages of deployment. International Journal of
Greenhouse Gas Control, 25, 23-32. Retrieved from https://www.researchgate.net/
publication/
261674577_Predictors_of_risk_and_benefit_perception_of_carbon_capture_and_storag
e_CCS_in_regions_with_different_stages_of_deployment
L'Orange Seigo, S., Dohle, S., & Siegrist, M. (2014). Public perception of carbon capture and
storage (CCS): A review. Renewable and Sustainable Energy Reviews, 38, 848-863.
Retrieved from https://www.researchgate.net/publication/
278078108_Public_perception_of_carbon_capture_and_storage_CCS_A_review
Lorenz, K., & Lal, R. (2014). Biochar application to soil for climate change mitigation by soil
organic carbon sequestration. Journal of Plant Nutrition and Soil Science, 177(5), 651 -
670. doi:10.1002/jpln.201400058
Lorenz, K., & Lal, R. (2014). Soil organic carbon sequestration in agroforestry systems. A
review. Agronomy for Sustainable Development, 34(2), 443-454. doi:10.1007/
s13593-014-0212-y
Loria, P., & Bright, M. B. H. (2021). Lessons captured from 50 years of CCS projects. The
Electricity Journal, 34(7), 106998. doi:https://doi.org/10.1016/j.tej.2021.106998
Lorwood, A. (2021). How a Small California Farm and Tribal Nation are Working Together to
Become Part of the Solution to Climate Change. Retrieved from https://foodtank.com/
news/2021/07/how-a-small-california-farm-and-tribal-nation-are-working-together/
Lotter, D., Hunter, N., Straub, M., & Msola, D. (2015). Microgasification cookstoves and pellet
fuels from waste biomass: A cost and performance comparison with charcoal and natural
gas in Tanzania. In.
Lotze-Campen, H., et al. (2010). Scenarios of global bioenergy production: The trade-offs
between agricultural expansion, intensification and trade. Ecological Modelling, 221,
2188-2196. Retrieved from http://s3.amazonaws.com/academia.edu.documents/
45693634/j.ecolmodel.2009.10.00220160517-26672-1q6r9pl.pdf?
AWSAccessKeyId=AKIAIWOWYYGZ2Y53UL3A&Expires=1489788949&Signature=AMx
Bq8UMjUXDY%2BeatFufvCPv6xI%3D&response-content-
disposition=inline%3B%20filename%3DScenarios_of_global_bioenergy_production.pdf
Lotze-Campen, H., von Lampe, M., Kyle, P., Fujimori, S., Havlik, P., van Meijl, H., . . . Wise, M.
(2014). Impacts of increased bioenergy demand on global food markets: an AgMIP
economic model intercomparison. Agricultural Economics, 45(1), 103-116. doi:10.1111/
agec.12092
Lou, L., Liu, F., Yu, Q., Chen, F., Yang, Q., Hu, B., & Chen, Y. (2013). Influence of humic acid on
the sorption of pentachlorophenol by aged sediment amended with rice-straw biochar.
Applied Geochemistry, 33, 76-83. Retrieved from http://www.sciencedirect.com/science/
article/pii/S0883292713000267
Lou, L., Wu, B., Wang, L., Luo, L., Xu, X., Hou, J., . . . Chen, Y. (2010). Sorption and ecotoxicity
of pentachlorophenol polluted sediment amended with rice-straw derived biochar.
Bioresource Technology, 102(5), 4036-4041. doi:10.1016/j.biortech.2010.12.010
Lou, L., Yao, L., Cheng, G., Wang, L., He, Y., & Hu, B. (2015). Application of Rice-Straw Biochar
and Microorganisms in Nonylphenol Remediation: Adsorption-Biodegradation Coupling
Relationship and Mechanism. Plos One, 10(9). doi:10.1371/journal.pone.0137467.s002
Lou, Y., et al. (2015). Water Extract from Straw Biochar Used for Plant Growth Promotion: An
Initial Test. BioResources, 11(1), 249-266. Retrieved from http://ojs.cnr.ncsu.edu/
index.php/BioRes/article/view/
BioRes_11_1_249_Lou_Water_Extract_Straw_Biochar_Plant_Growth
Lovelock, C. E., & Reef, R. (2020). Variable Impacts of Climate Change on Blue Carbon. One
Earth, 3(2), 195-211. doi:https://doi.org/10.1016/j.oneear.2020.07.010
Lovelock, C. E., Ruess, R. W., & Feller, I. C. (2011). CO2 Efflux from Cleared Mangrove Peat.
Plos One, 6(1), 1-4.
Lovelock, J. E., & Rapley, C. G. (2007). Ocean pipes could help the Earth to cure itself. Nature,
449(7161), 403-403. Retrieved from http://dx.doi.org/10.1038/449403a
Low, S., & Boettcher, M. (2020). Delaying decarbonization: Climate governmentalities and
sociotechnical strategies from Copenhagen to Paris. Earth System Governance, 5,
100073. doi:https://doi.org/10.1016/j.esg.2020.100073
Low, S., & Buck, H. J. (2020). The practice of responsible research and innovation in “climate
engineering”. WIREs Climate Change, 11(3), 1-17. doi:10.1002/wcc.644
Low, S., & Honegger, M. (2020). A Precautionary Assessment of Systemic Projections and
Promises From Sunlight Reflection and Carbon Removal Modeling. Risk Analysis, n/a(n/
a). doi:10.1111/risa.13565
Low, S., & Schäfer, S. (2020). Is bio-energy carbon capture and storage (BECCS) feasible? The
contested authority of integrated assessment modeling. Energy Research & Social
Science, 60, 101326. doi:https://doi.org/10.1016/j.erss.2019.101326
Lowe, J. (2016). Guest post: Do we need BECCS to avoid dangerous climate change?
CarbonBrief. Retrieved from http://www.carbonbrief.org/guest-post-do-we-need-beccs-
to-avoid-dangerous-climate-change
Lozano, E. M., Petersen, S. B., Paulsen, M. M., Rosendahl, L. A., & Pedersen, T. H. (2021).
Techno-economic evaluation of carbon capture via physical absorption from HTL gas
phase derived from woody biomass and sewage sludge. Energy Conversion and
Management: X, 11, 100089. doi:https://doi.org/10.1016/j.ecmx.2021.100089
Lü, F., et al. (2016). Biochar alleviates combined stress of ammonium and acids by firstly
enriching Methanosaeta and then Methanosarcina. Water Research, 90, 34 - 43.
doi:10.1016/j.watres.2015.12.029
LU, F., WANG, X., HAN, B., OUYANG, Z., DUAN, X., ZHENG, H., & MIAO, H. (2009). Soil
carbon sequestrations by nitrogen fertilizer application, straw return and no-tillage in
China's cropland. 15(2), 281-305. doi:doi:10.1111/j.1365-2486.2008.01743.x
Lu, H., et al. (2011). Relative distribution of Pb2+ sorption mechanisms by sludge-derived
biochar. Water Research, 48(3), 854-862. doi:10.1016/j.watres.2011.11.058
Lu, H., et al. (2015). Changes in soil microbial community structure and enzyme activity with
amendment of biochar-manure compost and pyroligneous solution in a saline soil from
Central China. European Journal of Soil Biology, 70, 67 - 76. doi:10.1016/
j.ejsobi.2015.07.005
Lu, H., et al. . (2015). Combining phytoextraction and biochar addition improves soil biochemical
properties in a soil contaminated with Cd. Chemosphere, 119, 209 - 216. doi:10.1016/
j.chemosphere.2014.06.024
Lu, H., Hu, X., & Liu, H. (2013). Influence of pyrolysis conditions on stability of biochar.
Environmental Science & Technology (China), 36, 11-14.
Lu, H., Li, Z., Fu, S., Méndez, A., Gascó, G., & Paz-Ferreiro, J. (2015). Effect of Biochar in
Cadmium Availability and Soil Biological Activity in an Anthrosol Following Acid Rain
Deposition and Aging. Water, Air, & Soil Pollution, 226(5). doi:10.1007/s11270-015-2401-
y
Lu, H. e. a. (2014). Can Biochar and Phytoextractors Be Jointly Used for Cadmium
Remediation? Plos One, 9(4), e95218. Retrieved from http://www.plosone.org/article/
info%3Adoi%2F10.1371%2Fjournal.pone.0095218
Lu, J., et al. (2012). Using Rice Straw Biochar Simultaneously as the Sustained Release Carrier
of Herbicides and Soil Amendment for Their Reduced Leaching. Journal of Agriculture
and Food Chemistry, 60(26), 6463-6470. doi:10.1021/jf3009734
Lu, K., Yang, X., Shen, J., Robinson, B., Huang, H., Liu, D., . . . Wang, H. (2014). Effect of
bamboo and rice straw biochars on the bioavailability of Cd, Cu, Pb and Zn to Sedum
plumbizincicola. Agriculture, Ecosystems & Environment, 191, 124-132. doi:http://
dx.doi.org/10.1016/j.agee.2014.04.010
Lu, L., et al. (2018). Wastewater treatment for carbon capture and utilization. Nature
Sustainability, 1, 750-758. Retrieved from https://www.nature.com/articles/
s41893-018-0187-9.epdf?
author_access_token=jE1cDdPhW80MEB4P0Yp-7dRgN0jAjWel9jnR3ZoTv0MI9dfBew-
n2U3AxOPRibsgS5pyl0Ei5ZESPB73SpLIqmsVp9ndk2gprkHwwGb2KuQAwQBcSxh0fG
GwnWFGBRCLST9tLkBuUL3W-MS-m7kvpQ%3D%3D
Lu Lu, e. a. (2015). Microbial Electrolytic Carbon Capture for Carbon Negative and Energy
Positive Wastewater Treatment. Environmental Science & Technology, 49, 8193-8201.
Retrieved from http://pubs.acs.org/doi/abs/10.1021/acs.est.5b00875
Lu, N., et al. (2014). The effect of biochar on soil respiration in the maize growing season after 5
years of consecutive application. Soil Research, 52(5), 505-512. Retrieved from http://
www.publish.csiro.au/sr/SR13239
Lu, S. G., Sun, F. F., & Zong, Y. T. (2014). Effect of rice husk biochar and coal fly ash on some
physical properties of expansive clayey soil (Vertisol). CATENA, 114, 37–44.
Lu, T., et al. . (2012). On the Pyrolysis of Sewage Sludge: The Influence of Pyrolysis
Temperature on Biochar, Liquid and Gas Fractions. Journal Advanced Materials
Research, 518-523, 3412-3420. doi:10.4028/www.scientific.net/AMR.518-523.3412
Lu, T., et al. (2015). Characteristic of heavy metals in biochar derived from sewage sludge.
Journal of Material Cycles and Waste Management, 18(4), 725-733. doi:10.1007/
s10163-015-0366-y
Lu, W., et al. (2014). Biochar suppressed the decomposition of organic carbon in a cultivated
sandy loam soil: A negative priming effect. Soil Biology and Biochemistry, 76, 12-21.
doi:10.1016/j.soilbio.2014.04.029
Lu, W., et al. (2015). Nitrogen Amendment Stimulated Decomposition of Maize Straw-Derived
Biochar in a Sandy Loam Soil: A Short-Term Study. Plos One, 10(7), e0133131.
doi:10.1371/journal.pone.0133131.t002
Lu, W., Kang, C., Wang, Y., & Xie, Z. (2015). Influence of Biochar on the Moisture of Dark Brown
Soil and Yield of Maize in Northern China. INTERNATIONAL JOURNAL OF
AGRICULTURE & BIOLOGY. Retrieved from http://web.a.ebscohost.com/abstract?
direct=true&profile=ehost&scope=site&authtype=crawler&jrnl=15608530&AN=10993123
3&h=ArE%2bumjRhSqi%2fcNNFxdSM8xMjVVTMj4XkFQj101DkGLN%2ffLoXXqRMWkl
3Er20UO5UWsLpFLDJJQZE01cW3MRcw%3d%3d&crl=c&resultNs=AdminWebAuth&re
sultLoc
Lu, W., & Zhang, H. (2015). Response of biochar induced carbon mineralization priming effects
to additional nitrogen in a sandy loam soil. Applied Soil Ecology, 96, 165 - 171.
doi:10.1016/j.apsoil.2015.08.002
Lu, W. G., Sculley, J. P., Yuan, D. Q., Krishna, R., & Zhou, H. C. (2013). Carbon Dioxide
Capture from Air Using Amine-Grafted Porous Polymer Networks. Journal of Physical
Chemistry C, 117(8), 4057-4061. doi:10.1021/jp311512q
Lu, X., Cao, L., Wang, H., Peng, W., Xing, J., Wang, S., . . . McElroy, M. B. (2019). Gasification
of coal and biomass as a net carbon-negative power source for environment-friendly
electricity generation in China. 116(17), 8206-8213. doi:10.1073/pnas.1812239116 %J
Proceedings of the National Academy of Sciences
Lu, X., Li, Y., Wang, H., Singh, B. P., Hu, S., Luo, Y., . . . Li, Y. (2019). Responses of soil
greenhouse gas emissions to different application rates of biochar in a subtropical
Chinese chestnut plantation. Agricultural and Forest Meteorology, 271, 168-179.
doi:https://doi.org/10.1016/j.agrformet.2019.03.001
Lu, X., Withers, M. R., Seifkar, N., Field, R. P., Barrett, S. R. H., & Herzog, H. J. (2015).
Biomass logistics analysis for large scale biofuel production: Case study of loblolly pine
and switchgrass. Bioresource Technology, 183, 1-9. doi:https://doi.org/10.1016/
j.biortech.2015.02.032
Lubber, M. (2021). The Critical—and Limited—Role That Natural Climate Solutions Play In
Getting To Net Zero. Forbes. Retrieved from https://www-forbes-
com.cdn.ampproject.org/c/s/www.forbes.com/sites/mindylubber/2021/05/24/the-critical-
and-limited-role-that-natural-climate-solutions-play-in-getting-to-net-zero/amp/
Lucander, K. A. O. (2015). Biokolets påverkan på markens organiska material - Kan gödsling
med biokol bidra till en kolinlagring i marken? (Bio coal effect on soil organic matter -
Can fertilization with biochar contribute to carbon storage in the soil?). In.
Lucchini, P., et al. (2014). Does biochar application alter heavy metal dynamics in agricultural
soil? Agriculture, Ecosystems & Environment, 184, 149–157. Retrieved from http://
www.sciencedirect.com/science/article/pii/S016788091300412X
Lucchini, P., Quilliam, R. S., DeLuca, T. H., Vamerali, T., & Jones, D. L. (2014). Increased
bioavailability of metals in two contrasting agricultural soils treated with waste wood-
derived biochar and ash. Environmental Science and Pollution Research, 21(5), 3230 -
3240. doi:10.1007/s11356-013-2272-y
Luckow, P., Wise, M. A., Dooley, J. J., & Kim, S. H. (2010). Large-scale utilization of biomass
energy and carbon dioxide capture and storage in the transport and electricity sectors
under stringent CO2 concentration limit scenarios. International Journal of Greenhouse
Gas Control, 4(5), 865-877. doi:10.1016/j.ijggc.2010.06.002
Luderer, G., Vrontisi, Z., Bertram, C., Edelenbosch, O. Y., Pietzcker, R. C., Rogelj, J., . . .
Kriegler, E. (2018). Residual fossil CO2 emissions in 1.5–2°C pathways. Nature Climate
Change, 8(7), 626-633. doi:10.1038/s41558-018-0198-6
Luedeling, E., Börner, J., Amelung, W., Schiffers, K., Shepherd, K., & Rosenstock, T. (2019).
Forest restoration: Overlooked constraints. Science, 366(6463), 315-315. doi:10.1126/
science.aay7988
Luedeling, E., Kindt, R., Huth, N. I., & Koenig, K. (2014). Agroforestry systems in a changing
climate—challenges in projecting future performance. Current Opinion in Environmental
Sustainability, 6, 1-7. doi:https://doi.org/10.1016/j.cosust.2013.07.013
Luehrs, D. R. (2015). Reducing PM Concentrations in Simulated High Temperature Gas
Streams. Texas A & M University, Retrieved from http://oaktrust.tamu.edu/handle/
1969.1/153308?show=full
Lugato, E., Leip, A., & Jones, A. (2018). Mitigation potential of soil carbon management
overestimated by neglecting N2O emissions. Nature Climate Change, 8(3), 219-223.
doi:10.1038/s41558-018-0087-z
Lugato, E., Vaccari, F. P., Genesio, L., Baronti, S., Pozzi, A., Rack, M., . . . Miglietta, F. (2013).
An energy-biochar chain involving biomass gasification and rice cultivation in Northern
Italy. GCB Bioenergy, 5(2), 192-201. doi:10.1111/gcbb.12028
Luhmann, A. J., Tutolo, B. M., Tan, C., Moskowitz, B. M., Saar, M. O., & Seyfried, W. E. (2017).
Whole rock basalt alteration from CO2-rich brine during flow-through experiments at
150°C and 150bar. Chemical Geology, 453, 92-110. doi:https://doi.org/10.1016/
j.chemgeo.2017.02.002
Luis, P. (2016). Use of monoethanolamine (MEA) for CO2 capture in a global scenario:
Consequences and alternatives. Desalination, 380, 93-99. doi:https://doi.org/10.1016/
j.desal.2015.08.004
Lum, K. K., Kim, J., & Lei, X. G. (2013). Dual potential of microalgae as a sustainable biofuel
feedstock and animal feed. Journal of Animal Science and Biotechnology, 4(1), 53.
doi:10.1186/2049-1891-4-53
Lun, L. W., Zainab, H., Assoc Prof Dr Othman, H., & Assoc Prof Dr Ainatul Alia, A. (2015).
Biochar : A green product from biomass waste to boost crop growth. Paper presented at
the International Engineering Invention & Innovation Exhibition. http://
dspace.unimap.edu.my/xmlui/handle/123456789/40410
Lund, H., & Mathiesen, B. V. (2012). The role of Carbon Capture and Storage in a future
sustainable energy system. Energy, 44(1), 469-476. doi:https://doi.org/10.1016/
j.energy.2012.06.002
Luo, C., et al. (2015). Application of eco-compatible biochar in anaerobic digestion to relieve
acid stress and promote the selective colonization of functional microbes. Water
Research, 68, 710 - 718. doi:10.1016/j.watres.2014.10.052
Luo, D., Hu, Z., Choi, D. G., Thomas, V. M., Realff, M. J., & Chance, R. R. (2010). Life Cycle
Energy and Greenhouse Gas Emissions for an Ethanol Production Process Based on
Blue-Green Algae. Environmental Science & Technology, 44(22), 8670-8677.
doi:10.1021/es1007577
Luo, L., Xu, C., Chen, Z., & Zhang, S. (2015). Properties of biomass-derived biochars:
Combined effects of operating conditions and biomass types. Bioresource Technology,
192, 83 - 89. doi:10.1016/j.biortech.2015.05.054
Luo, X., Liu, G. C., Xia, Y., Chen, L., Jiang, Z., Zheng, H., & Wang, Z. (2016). Use of biochar-
compost to improve properties and productivity of the degraded coastal soil in the Yellow
River Delta, China. Journal of Soils and Sediments. doi:10.1007/s11368-016-1361-1
Luo, Y., Durenkamp, M., Nobili, M. D., Lin, Q., & Brookes, P. C. (2011). Short term soil priming
effects and the mineralisation of biochar following its incorporation to soils of different
pH. Soil Biology and Biochemistry, 43(11), 2304-2314. doi:10.1016/j.soilbio.2011.07.020
Luo, Z., Feng, W., Luo, Y., Baldock, J., & Wang, E. (2017). Soil organic carbon dynamics jointly
controlled by climate, carbon inputs, soil properties and soil carbon fractions. 23(10),
4430-4439. doi:doi:10.1111/gcb.13767
Luo, Z., Wang, E., & Sun, O. J. (2010). Can no-tillage stimulate carbon sequestration in
agricultural soils? A meta-analysis of paired experiments. Agriculture, Ecosystems &
Environment, 139(1), 224-231. doi:https://doi.org/10.1016/j.agee.2010.08.006
Lupión, M., & J. Herzog, H. (2013). NER300: Lessons learnt in attempting to secure CCS
projects in Europe (Vol. 19).
Luque-Moreno, L. C. (2015). Pyrolysis Based Biorefineries for the Production of Fermentable
Substrates. University of Western Ontario, Retrieved from http://ir.lib.uwo.ca/etd/3357/
Lustgarten, A. (2018). Palm Oil Was Supposed to Help Save the Planet. Instead It Unleashed a
Catastrophe. New York Times Magazine. Retrieved from https://www.nytimes.com/
2018/11/20/magazine/palm-oil-borneo-climate-catastrophe.html?nl=top-
stories&nlid=23306988ries&ref=cta
Luth, F., & Setiyono, H. (2019). The Ability of Carbon Agroforestry System to Store Carbon
Stock. Journal of Forestry and Environment, 1(02), 6-10. Retrieved from https://
journal.uniku.ac.id/index.php/forestry-and-environment/article/view/1671/1300
Lutz, S. (2019). Whales are a trillion-dollar climate change fix! UN Environment GRID
ARENDAL. Retrieved from https://news.grida.no/whales-are-a-trilliondollar-climate-
change-fix
Lutz, S. J. e. a. (2019). Assessment of Oceanic Blue Carbon in the UAE: Policy Options. 1-37.
Retrieved from https://agedi.org/oceanic-blue-carbon-policy-survey-results-now-
available/
Lutz, S. J. e. a. (2019). Fish Carbon: Exploring Marine Vertebrate Carbon Services. Retrieved
from https://gridarendal-website-live.s3.amazonaws.com/production/
documents/:s_document/163/original/Fish-Carbon-2014.pdf?1484140288
Luyen, P. T., Khang, D. N., & Preston, T. (2012). Effects of biochar from gasifier stove and
effluent from biodigester on growth of maize in acid and fertile soils. Livestock Research
for Rural Development, 24(5). Retrieved from http://www.lrrd.org/lrrd24/5/luye24075.htm
Luyssaert, S., Marie, G., Valade, A., Chen, Y.-Y., Njakou Djomo, S., Ryder, J., . . . McGrath, M.
J. (2018). Trade-offs in using European forests to meet climate objectives. Nature,
562(7726), 259-262. doi:10.1038/s41586-018-0577-1
Ly, P., Vu, Q. D., Jensen, L. S., Pandey, A., & de Neergaard, A. (2014). Effects of rice straw,
biochar and mineral fertiliser on methane (CH4) and nitrous oxide (N2O) emissions from
rice (Oryza sativa L.) grown in a rain-fed lowland rice soil of Cambodia: a pot
experiment. Paddy and Water Environment, 13(4), 465-475. doi:10.1007/
s10333-014-0464-9
Lychuk, T. (2014). Evaluation of Biochar Applications and Irrigation as Climate Change
Adaptation Options for Agricultural Systems. University of Maryland, Retrieved from
http://drum.lib.umd.edu/handle/1903/15342
Lychuk, T. E., et al. . (2014). Biochar as a global change adaptation: predicting biochar impacts
on crop productivity and soil quality for a tropical soil with the Environmental Policy
Integrated Climate (EPIC) model. Mitigation and Adaptation Strategies for Global
Change, 20(8), 1437-1458. Retrieved from https://link.springer.com/article/10.1007/
s11027-014-9554-7
Lynd, L. R. (1996). Overview and Evaluation of Fuel Ethanol from Cellulosic Biomass:
Technology, Economics, the Environment, and Policy. Annual Review of Chemical and
Biomolecular Engineering, 21, 403-465. Retrieved from http://www.annualreviews.org/
doi/10.1146/annurev.energy.21.1.403
Lynd, L. R., et al. (2011). A global conversation about energy from biomass: the continental
conventions of the global sustainable bioenergy project. Interface Focus, 1, 271-279.
Retrieved from http://rsfs.royalsocietypublishing.org/content/royfocus/1/2/271.full.pdf
Lyngfelt, A., Johansson, D. J. A., & Lindeberg, E. (2019). Negative CO2 emissions - An analysis
of the retention times required with respect to possible carbon leakage. International
Journal of Greenhouse Gas Control, 87, 27-33. doi:https://doi.org/10.1016/
j.ijggc.2019.04.022
Lyons, K., & Westoby, P. (2014). Carbon colonialism and the new land grab: Plantation forestry
in Uganda and its livelihood impacts. Journal of Rural Studies, 36, 13-21. doi:https://
doi.org/10.1016/j.jrurstud.2014.06.002
Ma, C., Li, W., Zu, Y., Yang, L., & Li, J. (2014). Antioxidant Properties of Pyroligneous Acid
Obtained by Thermochemical Conversion of Schisandra chinensis Baill. Molecules,
19(12), 20821 - 20838. doi:10.3390/molecules191220821
Ma, C., Wang, N., Chen, Y., Khokarale, S. G., Bui, T. Q., Weiland, F., . . . Ji, X. (2020). Towards
negative carbon emissions: Carbon capture in bio-syngas from gasification by aqueous
pentaethylenehexamine. Applied Energy, 279, 115877. doi:https://doi.org/10.1016/
j.apenergy.2020.115877
Ma, F., et al. (2016). Adsorption of cadmium by biochar produced from pyrolysis of corn stalk in
aqueous solution. Water Science & Technology, 74(6), 1336-1345. Retrieved from http://
wst.iwaponline.com/content/ppiwawst/74/6/1335.full.pdf
Ma, F.-f., Zhao, B.-w., Diao, J.-r., Zhong, J.-k., & Li, A.-b. (2015). Ammonium Adsorption
Characteristics in Aqueous Solution by Dairy Manure Biochar. Huan jing ke xue=
Huanjing kexue / [bian ji, Zhongguo ke xue yuan huan jing ke xue wei yuan hui "Huan
jing ke xue" bian ji wei yuan hui.], 36(5), 1678-1685. Retrieved from http://
europepmc.org/abstract/med/26314116
Ma, J., Wilson, K., Zhao, Q., Yorgey, G., & Frear, C. (2013). Odor in Commercial Scale
Compost: Literature Review and Critical Analysis. Retrieved from https://fortress.wa.gov/
ecy/publications/publications/1307066.pdf
Ma, J. F. (2004). Role of silicon in enhancing the resistance of plants to biotic and abiotic
stresses. Soil Science and Plant Nutrition, 50(1), 11-18.
doi:10.1080/00380768.2004.10408447
Ma, L. Q. (2009). Biochar Serves As A Long-Term Soil Carbon Pool. 地学前缘 (Earth Science
Frontiers). Retrieved from http://www.sciencemeta.com/index.php/DXQY/article/view/
219670
Ma, R., Shen, J., Wu, J., Tang, Z., Shen, Q., & Zhao, F.-J. (2014). Impact of agronomic practices
on arsenic accumulation and speciation in rice grain. Environmental Pollution, 194, 217 -
223. doi:10.1016/j.envpol.2014.08.004
Ma, X., Zhou, B., Budai, A., Jeng, A., Hao, X., Wei, D., . . . Rasse, D. (2016). Study of Biochar
Properties by Scanning Electron Microscope – Energy Dispersive X-Ray Spectroscopy
(SEM-EDX). Communications in Soil Science and Plant Analysis, 47(5), 593 - 601.
doi:10.1080/00103624.2016.1146742
Ma, Y., Liu, W.-J., Zhang, N., Li, Y.-S., Jiang, H., & Sheng, G.-P. (2014). Polyethyleneimine
modified biochar adsorbent for hexavalent chromium removal from the aqueous solution.
Bioresource Technology. doi:10.1016/j.biortech.2014.07.014
Ma, Y., Wang, Q., Sun, X., & Wang, X. (2014). A novel magnetic biochar from spent shiitake
substrate: characterization and analysis of pyrolysis process. Biomass Conversion and
Biorefinery. doi:10.1007/s13399-014-0147-1
Ma, Y. L., & Matsunaka, T. (2013). Biochar derived from dairy cattle carcasses as an alternative
source of phosphorus and amendment for soil acidity. Soil Science and Plant Nutrition,
59(4), 628-641. Retrieved from http://www.tandfonline.com/doi/pdf/
10.1080/00380768.2013.806205?needAccess=true
Mabon, L., & Littlecott, C. (2016). Stakeholder and public perceptions of CO2-EOR in the
context of CCS – Results from UK focus groups and implications for policy. International
Journal of Greenhouse Gas Control, 49, 128-137. doi:https://doi.org/10.1016/
j.ijggc.2016.02.031
Mabon, L., & Shackley, S. (2015). Meeting the targets or re-imagining society? An empirical
study into the ethical landscape of carbon dioxide capture and storage in Scotland.
Environmental Values, 24(4), 465-482. doi:10.3197/096327115X14345368709907
Mabon, L., Shackley, S., Blackford, J. C., Stahl, H., & Miller, A. (2015). Local perceptions of the
QICS experimental offshore CO2 release: Results from social science research.
International Journal of Greenhouse Gas Control, 38, 18-25. doi:http://dx.doi.org/
10.1016/j.ijggc.2014.10.022
Mabon, L., Shackley, S., & Bower-Bir, N. (2014). Perceptions of sub-seabed carbon dioxide
storage in Scotland and implications for policy: A qualitative study. Marine Policy, 45,
9-15. doi:https://doi.org/10.1016/j.marpol.2013.11.011
Mabon, L., Vercelli, S., Shackley, S., Anderlucci, J., Battisti, N., Franzese, C., & Boot, K. (2013).
‘Tell me what you Think about the Geological Storage of Carbon Dioxide’: Towards a
Fuller Understanding of Public Perceptions of CCS. Energy Procedia, 37, 7444-7453.
doi:https://doi.org/10.1016/j.egypro.2013.06.687
Mac Dowell, N., & Fajardy, M. (2017). Inefficient power generation as an optimal route to
negative emissions via BECCS? Environmental Research Letters, 12(4), 045004.
Retrieved from http://stacks.iop.org/1748-9326/12/i=4/a=045004
Mac Dowell, N., Fennell, P. S., Shah, N., & Maitland, G. C. (2017). The role of CO2 capture and
utilization in mitigating climate change. Nature Climate Change, 7, 243. doi:10.1038/
nclimate3231
Macaulay-Turner, C. (2021). Q&A: Rock-based Negative Emissions Technologies with Corey
Myers, Assistant Professor and Researcher at Waseda University, Japan. Retrieved from
https://thefutureforestcompany.com/2021/08/06/rock-based-negative-emissions-
technologies/
Macdonald, C. A., Delgado-Baquerizo, M., Reay, D. S., Hicks, L. C., & Singh, B. K. (2018).
Chapter 6 - Soil Nutrients and Soil Carbon Storage: Modulators and Mechanisms. In B.
K. Singh (Ed.), Soil Carbon Storage (pp. 167-205): Academic Press.
Macdonald, L. M., et al. (2015). SSSA Special PublicationAgricultural and Environmental
Applications of Biochar: Advances and BarriersRegional Considerations for Targeted
Use of Biochar in Agriculture and Remediation in Australia: Soil Science Society of
America, Inc.
Macdonald, L. M., Williams, M., Oliver, D., & Kookana, R. (2015). Biochar and hydrochar as low-
cost sorbents for removing contaminants from water. Journal of the Australian Water
Association, 42(2), 142-147. Retrieved from http://search.informit.com.au/
documentSummary;dn=269604591550627;res=IELAPA
MacDougall, A. H. (2013). Reversing climate warming by artificial atmospheric carbon-dioxide
removal: Can a Holocene-like climate be restored? Geophysical Research Letters,
40(20), 5480-5485. doi:doi:10.1002/2013GL057467
Mace, M. J., et al. (2018). Governing large-scale carbon dioxide removal: are we ready?
Retrieved from https://www.c2g2.net/wp-content/uploads/C2G2-2018-CDR-
Governance-1.pdf
Mace, M. J., Fyson, C. L., Schaeffer, M., & Hare, W. L. (2021). Large-Scale Carbon Dioxide
Removal to Meet the 1.5°C Limit: Key Governance Gaps, Challenges and Priority
Responses. Global Policy, 12(S1), 67-81. doi:https://doi.org/10.1111/1758-5899.12921
Macedo, J., et al. (2015). Enhancing Productivity and Livelihoods among Smallholder Irrigators
through Biochar and Fertilizer Amendments at Ekxang Village, Vientiane Province, Lao
PDR. Paper presented at the Climate-Smart Agriculture Conference.
www.researchgate.net/profile/Jenkins_Macedo/publication/
268076126_Enhancing_Productivity_and_Livelihoods_among_Smallholder_Irrigators_th
rough_Biochar_and_Fertilizer_Amendments_at_Ekxang_Village_Vientiane_Province_La
o_PDR/links/5460dd2a0cf2c1a63bff749b.pdf
Machdar, I., Firmansyah, Faisal, M., Fatanah, U., & Hamdani. (2014). PENGEMBANGAN
REAKTOR FAST PYROLYSIS KONTINYU PENGHASIL BIO-OIL DARI LIMBAH
BIOMASSA INDUSTRI SAWIT (CONTINUOUS PYROLSIS FAST REACTOR
DEVELOPMENT PRODUCER OF BIO-OIL PALM INDUSTRY BIOMASS WASTE).
Paper presented at the UR-Proceedings: University of Riau.
Macias, F., & Camps Arbestain, M. (2010). Soil carbon sequestration in a changing global
environment. Mitigation Adapt. Strat. Global Change, 15, 511-529.
Macias-Fauria, M., et al. (2020). Pleistocene Arctic megafaunal ecological engineering as a
natural climate solution? Phil. Trans. R. Soc. B, 375, 1-13. Retrieved from https://doi.org/
10.1098/rstb.2019.0122
MacKenzie, K. (2021). Big Oil’s Net-Zero Plans Show the Hard Limits of Carbon Offsets.
Bloomberg Green. Retrieved from https://www.bloomberg.com/news/articles/
2021-03-01/big-oil-s-net-zero-plans-show-the-hard-limits-of-carbon-offsets
Mackenzie, K. (2021). Messy Carbon Offsets Show Markets Aren’t Always the Answer.
Bloomberg Green. Retrieved from https://www.bloomberg.com/news/articles/
2021-01-29/messy-carbon-offsets-show-markets-aren-t-always-the-answer?s=03
Mackenzie, K. (2021). Too Many Companies Are Banking on Carbon Capture to Reach Net
Zero. Bloomberg Green. Retrieved from https://www.bloomberg.com/amp/news/articles/
2021-01-15/too-many-companies-are-banking-on-carbon-capture-to-reach-net-zero
MacKenzie, M. D., & DeLuca, T. H. (2006). Charcoal and shrubs modify soil processes in
ponderosa pine forests of western montana. Plant and Soil, 287(1-2), 257-266.
Retrieved from https://link.springer.com/article/10.1007/s11104-006-9074-7
Mackey, B., Prentice, I. C., Steffen, W., House, J. I., Lindenmayer, D., Keith, H., & Berry, S.
(2013). Untangling the confusion around land carbon science and climate change
mitigation policy. Nature Climate Change, 3(6), 552-557. doi:10.1038/nclimate1804
Mackie, K. A., Marhan, S., Ditterich, F., Schmidt, H. P., & Kandeler, E. (2015). The effects of
biochar and compost amendments on copper immobilization and soil microorganisms in
a temperate vineyard. Agriculture, Ecosystems & Environment, 201, 58 - 69.
doi:10.1016/j.agee.2014.12.001
Mackler, S., et al. (2020). Investing in Climate Innovation: The Environmental Case for Direct Air
Capture of Carbon Dioxide. Retrieved from https://bipartisanpolicy.org/report/investing-
in-climate-innovation-the-environmental-case-for-direct-air-capture-of-carbon-dioxide/
Mackler, S. (2020). Testimony on the Development and Deployment of Large-Scale Carbon
Dioxide Management Technologies, United States Senate Committee on Energy and
Natural Resources. Retrieved from https://bipartisanpolicy.org/letter/testimony-on-the-
development-and-deployment-of-large-scale-carbon-dioxide-management-technologies/
Mackler, S., et al. (2021). The Case for Federal Support to Advance Direct Air Capture.
Retrieved from https://bipartisanpolicy.org/wp-content/uploads/2021/06/
BPC_FederalCaseForDAC-final.pdf
Mackler, S., et al. (2021). The Commercial Case for Direct Air Capture of Carbon Dioxide.
Retrieved from https://bipartisanpolicy.org/report/the-commercial-case-for-dac/
Mackler, S., Fishman, X., & Broberg, D. (2021). A policy agenda for gigaton-scale carbon
management. The Electricity Journal, 34(7), 106999. doi:https://doi.org/10.1016/
j.tej.2021.106999
Macreadie, P. I., et al. (2014). Quantifying and modelling the carbon sequestration capacity of
seagrass meadows--a critical assessment. Marine Pollution Bulletin, 83(2), 430-439.
Retrieved from https://www.ncbi.nlm.nih.gov/pubmed/23948090
Macreadie, P. I., et al. (2017). Can we manage coastal ecosystems to sequester more blue
carbon? Frontiers in Ecology and the Environment, 15(4), 206-213. doi:doi:10.1002/
fee.1484
Macreadie, P. I., Anton, A., Raven, J. A., Beaumont, N., Connolly, R. M., Friess, D. A., . . .
Duarte, C. M. (2019). The future of Blue Carbon science. Nature Communications,
10(1), 3998. doi:10.1038/s41467-019-11693-w
Madari, B. E., Lima, L. B., Silva, M. A. S., Novotny, E. H., Alcântara, F. A., Carvalho, M. T. M., &
Petter, F. A. (2013). Carbon Distribution in Humic Substance Fractions Extracted from
Soils Treated with Charcoal (Biochar). Paper presented at the Functions of Natural
Organic Matter in Changing Environment. https://link.springer.com/chapter/
10.1007/978-94-007-5634-2_185
Madden, D., & Curtin, T. (2016). Carbon dioxide capture with amino-functionalised zeolite-β: A
temperature programmed desorption study under dry and humid conditions. Microporous
and Mesoporous Materials, 228, 310-317. doi:http://dx.doi.org/10.1016/
j.micromeso.2016.03.041
Madden, D. G., Scott, H. S., Kumar, A., Chen, K.-J., Sanii, R., Bajpai, A., . . . Zaworotko, M. J.
(2017). Flue-gas and direct-air capture of CO
2
by porous metal–organic materials.
Philosophical Transactions of the Royal Society A: Mathematical,
Physical and Engineering Sciences, 375(2084). doi:10.1098/rsta.2016.0025
Madiba, O. F., Solaiman, Z. M., Carson, J. K., & Murphy, D. V. (2016). Biochar increases
availability and uptake of phosphorus to wheat under leaching conditions. Biology and
Fertility of Soils, 52(4), 439 - 446. doi:10.1007/s00374-016-1099-3
Madrigal, A. (2008). New Geoengineering Scheme Tackles Ocean Acidification, Too. July 22.
Retrieved from https://www.wired.com/2008/07/new-geoengineer/
Maestrini, B., Nannipieri, P., & Abiven, S. (2015). A meta-analysis on pyrogenic organic matter
induced priming effect. 7(4), 577-590. doi:10.1111/gcbb.12194
Maftu'ah, E. (2015). Prosiding Seminar Nasional Masyarakat Biodiversitas IndonesiaPotensi
berbagai bahan organik rawa sebagai sumber biochar. Paper presented at the Seminar
Nasional Masyarakat Biodiversitas Indonesia. http://biodiversitas.mipa.uns.ac.id/M/
M0104/M010417.pdf
Magar, L. B. (2018). Total Biomass Carbon Sequestration Ability Under the Changing Climatic
Condition by Paulownia tomentosa Steud. International Journal of Applied Sciences and
Biotechnology, 6(3), 220-226. Retrieved from https://www.nepjol.info/index.php/IJASBT/
article/view/20772
Magee, E., et al. . (2013). The Effect of Biochar Application in Microalgal Culture on the Biomass
Yield and Cellular Lipids of Chlorella vulgaris. Retrieved from http://
www.conference.net.au/chemeca2013/papers/30442.pdf
Magill, B. (2013). Study Shows Carbon Sequestration Can Cause Quakes. Climate Central.
Retrieved from https://www.climatecentral.org/news/study-shows-carbon-sequestration-
could-cause-earthquakes-16698
Magill, B. (2016). Scientists Turn Carbon Dioxide Emissions into Stone. Scientific American.
Retrieved from https://www.scientificamerican.com/article/scientists-turn-carbon-dioxide-
emissions-into-stone-video/
Magill, B. (2016). Scientists Warn Negative Emissions Are a ‘Moral Hazard’. Climate Central.
Retrieved from http://www.climatecentral.org/news/scientists-warn-negative-emissions-
moral-hazard-20785
Magill, B. (2017). Budget Guts U.S. Carbon Capture, Storage Research. Climate Central.
Retrieved from http://www.climatecentral.org/news/budget-guts-us-carbon-capture-
storage-research-21478?
utm_source=Sailthru&utm_medium=email&utm_campaign=Issue:
%202017-05-26%20Utility%20Dive%20Newsletter%20%5Bissue:10500%5D&utm_term
=Utility%20Dive
Magill, B. (2017). World’s First Commercial CO2 Capture Plant Goes Live. Climate Central.
Retrieved from http://www.climatecentral.org/news/first-commercial-co2-capture-plant-
live-21494
Magill, B. (2018). Carbon Removal Firms See Opportunity in U.N. Climate Report. Bloomberg
News. Retrieved from https://www.bna.com/carbon-removal-firms-n73014483159/
Magill, B. (2020). Military Researching Ways to Suck Carbon From Air to Make Fuel. Bloomberg
Environment. Retrieved from https://news.bloombergenvironment.com/environment-and-
energy/military-researching-ways-to-suck-carbon-from-air-to-make-fuel
Maginn, E. J. (2010). Molecular Design of High Capacity, Low Viscosity, Chemically Tunable
Ionic Liquids for CO2 Capture. J. Phys. Chem. Lett., 1(24), 3494-3499. Retrieved from
https://pubs.acs.org/doi/abs/10.1021/jz101533k
Magnusson, A. (2015). Improving small-scale agriculture and countering deforestation: the case
of biochar and biochar producing stoves in Embu County, Kenya. In.
Magrini-Bair, K. A., et al. (2009). Biomass Derived, Carbon Sequestering, Designed Fertilizers.
Annals of Environmental Science, 3, 217-225. Retrieved from http://
openjournals.neu.edu/aes/journal/article/view/v3art7
Magwood, C. (2019). Opportunities for Carbon Dioxide Removal and Storage in Building
Materials. (M.A.). Trent University, Retrieved from https://www.chrismagwood.ca/
uploads/1/5/9/3/15931000/
magwood_opportunities_for_co2_capture_and_storage_in_building_materials_copy.pdf
Mahar, A., et al. (2015). Immobilization of lead and cadmium in contaminated soil using
amendments: A review. Pedosphere, 25(4), 555-568. Retrieved from http://
pedosphere.issas.ac.cn/trqen/ch/reader/view_abstract.aspx?file_no=20150407&flag=1
Mahdi, Z., et al. . (2015). Date Palm (Phoenix Dactylifera L.) Seed Characterization for Biochar
Preparation. In.
Maher, B. (2018). Why Policymakers Should View Carbon Capture and Storage as a Stepping
stone to Carbon Dioxide Removal. Global Policy, 9(1).
Maher, D. T., Call, M., Santos, I. R., & Sanders, C. J. (2018). Beyond burial: lateral exchange is
a significant atmospheric carbon sink in mangrove forests. Biology Letters, 14(7).
doi:10.1098/rsbl.2018.0200
Maher, K., et al. (2016). A spatially resolved surface kinetic model for forsterite dissolution.
Geochimica Et Cosmochimica Acta, 174, 313-334. Retrieved from http://
www.sciencedirect.com/science/article/pii/S0016703715006535?via%3Dihub
Maher, K., & Chamberlain, C. P. (2014). Hydrologic Regulation of Chemical Weathering and the
Geologic Carbon Cycle. Science, 343(6178), 1502-1504. doi:10.1126/science.1250770
Mahinpey, N., Murugan, P., Mani, T., & Raina, R. (2009). Analysis of Bio-Oil, Biogas, and
Biochar from Pressurized Pyrolysis of Wheat Straw Using a Tubular Reactor. Energy
Fuels, 23(5), 2736–2742. Retrieved from http://pubs.acs.org/doi/abs/10.1021/ef8010959
Mahmood, W. M. F. W., et al. (2015). Characterisation and potential use of biochar from gasified
oil palm wastes. Journal of Engineering Science and Technology(June), 45-64.
Retrieved from http://jestec.taylors.edu.my/Special%20Issue%20UKM_ITC%202014/
JESTEC-%20UKMITC_6_2015_045_054.pdf
Mahmoudkhani, M., Heidel, K. R., Ferreira, J. C., Keith, D. W., & Cherry, R. S. (2009). Low
energy packed tower and caustic recovery for direct capture of CO2 from air. Energy
Procedia, 1(1), 1535-1542. doi:https://doi.org/10.1016/j.egypro.2009.01.201
Mahmoudkhani, M., & Keith, D. W. (2009). Low-energy sodium hydroxide recovery for CO2
capture from atmospheric air—Thermodynamic analysis. International Journal of
Greenhouse Gas Control, 3(4), 376-384. doi:http://dx.doi.org/10.1016/
j.ijggc.2009.02.003
Mahowald, N. M., et al. (2005). Atmospheric global dust cycle and iron inputs to the ocean.
Global Biogeochemical Cycles, 19(4), 1-15. Retrieved from http://onlinelibrary.wiley.com/
doi/10.1029/2004GB002402/abstract
Mahutga, R. R., Gent, S. P., & Twedt, M. P. (2014). Developing a Model to Predict the
Torrefaction of Biomass. Paper presented at the ASME 2014 8th International
Conference on Energy Sustainability collocated with the ASME 2014 12th International
Conference on Fuel Cell Science, Engineering and Technology, Boston, Massachusetts,
USA. http://proceedings.asmedigitalcollection.asme.org/proceeding.aspx?
articleid=1920665
Maia, C. B. F., Madari, B., & Novotny, E. H. (2011). Advances in Biochar Research in Brazil. In
Dynamic Soil, Dynamic Plant.
Maity, J. P., Bundschuh, J., Chen, C.-Y., & Bhattacharya, P. (2014). Microalgae for third
generation biofuel production, mitigation of!greenhouse gas emissions and wastewater
treatment: Present and!future perspectives – A mini review. Energy, 78, 104-113.
doi:https://doi.org/10.1016/j.energy.2014.04.003
Majendie, A., & Parija, P. (2019). How to Halt Global Warming for $300 Billion. Bloomberg.
Retrieved from https://www.bloomberg.com/news/articles/2019-10-23/how-to-halt-global-
warming-for-300-billion
Major, J., . et al. (2005). Influence of market orientation on food plant diversity of farms located
on amazonian dark earth in the region of Manaus, Amazonas, Brazil. Economic Botany,
59(1), 77-86. Retrieved from https://link.springer.com/article/
10.1663/0013-0001(2005)059[0077:IOMOOF]2.0.CO;2
Major, J., et al. (2005). Weed Composition and Cover After Three Years of Soil Fertility
Management in the Central Brazilian Amazon: Compost, Fertilizer, Manure and Charcoal
Applications. Weed Biology and Management, 5(2), 69-76. Retrieved from http://
onlinelibrary.wiley.com/doi/10.1111/j.1445-6664.2005.00159.x/abstract
Major, J., et al. (2005). Weed Dynamics on Amazonian Dark Earth and Adjacent Soils of Brazil.
Agriculture, Ecosystems and Environment, 111(1-4), 1-12. Retrieved from http://
www.sciencedirect.com/science/article/pii/S0167880905002343
Major, J., et al. (2009). Biochar Effects on Nutrient Leaching. In Biochar for Environmental
Management: Science and Technology (pp. 271-288). London, UK: Earthscan.
Major, J., et al. (2010). Fate of soil-applied black carbon: downward migration, leaching and soil
respiration. Global Change Biology, 16(4), 1366-1379. Retrieved from http://
onlinelibrary.wiley.com/doi/10.1111/j.1365-2486.2009.02044.x/abstract
Major, J., et al. . (2010). Maize yield and nutrition during 4 years after biochar application to a
Colombian savanna oxisol. Plant and Soil, 333(1), 117-128. doi:10.1007/
s11104-010-0327-0
Major, J. (2011). Biochar: a new soil management tool for farmers and gardeners. Retrieved
from http://www.biochar-international.org/sites/default/files/
ASD%20Guide%20to%20Biochar%283%29.pdf
Major, J., et al. (2012). Nutrient Leaching in a Colombian Savanna Oxisol Amended with
Biochar. Journal of Environmental Quality, 41(4), 1076-1086. doi:10.2134/jeq2011.0128
Major, J., & Hoppe, r. B. (2010). Biochar for Soil Reclamation and More! In (pp. 42 - 45).
Major, J., Rondon, M., Molina, D., Riha, S. J., & Lehmann, J. (2010). Maize yield and nutrition
during 4Â years after biochar application to a Colombian savanna oxisol. Plant and Soil,
333. doi:10.1007/s11104-010-0327-0
Majumdar, A., & Deutch, J. (2018). Research Opportunities for CO2 Utilization and Negative
Emissions at the Gigatonne Scale. Joule, 2(5), 805-809. doi:10.1016/j.joule.2018.04.018
Makarfi, S. M. a. (2015). The biochemical impact of biochar in soil environments. Newcastle
University, Retrieved from https://theses.ncl.ac.uk/dspace/handle/10443/2676
Mäkelä, A. (2015). Negative Emissions: The future promises and policy challenges of Carbon
Dioxide Removal technologies. (Bachelor of Arts with Honors Dissertation). University of
Lancaster, Retrieved from https://www.academia.edu/24491007/
Negative_Emissions_The_future_promises_and_policy_challenges_of_Carbon_Dioxide
_Removal_technologies?email_work_card=title
Makoto, K., et al. (2010). Buried charcoal layer and ectomycorrhizae cooperatively promote the
growth of Larix gmelinii seedlings. Plant and Soil, 327(1), 143-152. Retrieved from
https://link.springer.com/article/10.1007/s11104-009-0040-z
Malatak, J. (2015). Energetic use of solid products of pyrolysis technology. Agricultural
Engineering International: CIGR Journal(May), 208-217. Retrieved from http://
www.cigrjournal.org/index.php/Ejounral/article/view/3078
Malca, J., & Freeire, F. (2010). Uncertainty Analysis in Biofuel Systems: An Application to the
Life Cycle of Rapeseed Oil. Journal of industrial Ecology, 14(2), 322-334.
Malca, J., & Freire, F. (2006). Renewability and life-cycle energy efficiency of bioethanol and
bio-ethyl tertiary butyl ether (bioETBE): Assessing the implications of allocation. Energy,
31, 3362-3380. Retrieved from https://eg.sib.uc.pt/bitstream/10316/4215/1/
file4488b9aae1b34370b38cb3c54fc14bb2.pdf
Malca, J., & Freire, F. (2011). Life-cycle studies of biodiesel in Europe: a review addressing the
variability of results and modeling issues. Renewable and Sustainable Energy Reviews,
15(1), 338-351. Retrieved from http://www.sciencedirect.com/science/article/pii/
S136403211000300X
Malghani, S., Gleixner, G., & Trumbore, S. E. (2013). Chars produced by slow pyrolysis and
hydrothermal carbonization vary in carbon sequestration potential and greenhouse
gases emissions. Soil Biology and Biochemistry, 62(Supplement C), 137-146. doi:https://
doi.org/10.1016/j.soilbio.2013.03.013
Malhi, Y., Meir, P., & Brown, S. (2002). Forests, carbon and global climate. Philosophical
Transactions of the Royal Society A, 360(1797), 1567-1591. Retrieved from http://
rsta.royalsocietypublishing.org/content/roypta/360/1797/1567.full.pdf
Malhotra, A., & Schmidt, T. S. (2020). Accelerating Low-Carbon Innovation. Joule. doi:10.1016/
j.joule.2020.09.004
Malińska, K., Zabochnicka-Świątek, M., Cáceres, R., & Marfà, O. (2016). The effect of
precomposted sewage sludge mixture amended with biochar on the growth and
reproduction of Eisenia fetida during laboratory vermicomposting. Ecological
Engineering, 90, 35 - 41. doi:10.1016/j.ecoleng.2016.01.042
Malińska, K., Zabochnicka-Świątek, M., & Dach, J. (2014). Effects of biochar amendment on
ammonia emission during composting of sewage sludge. Ecological Engineering, 71,
474 - 478. doi:10.1016/j.ecoleng.2014.07.012
Malm, A., et al. (2021). Seize the Means of Carbon Removal: The Political Economy of Direct
Air Capture. Historical Materialism, 1-46.
Malone, E. J., Dooley, J. J., & Bradbury, J. A. (2010). Moving from misinformation derived from
public attitude surveys on carbon dioxide capture and storage towards realistic
stakeholder involvement. International Journal of Greenhouse Gas Control, 4, 419-425.
Retrieved from https://www.researchgate.net/publication/
223501901_Moving_from_misinformation_derived_from_public_attitude_surveys_on_ca
rbon_dioxide_capture_and_storage_towards_realistic_stakeholder_involvement
Malone, E. L., Bradbury, J. A., & Dooley, J. J. (2009). Keeping CCS stakeholder involvement in
perspective. Energy Procedia, 1(1), 4789-4794. doi:https://doi.org/10.1016/
j.egypro.2009.02.305
Manariotis, I. D., Fotopoulou, K. N., & Karapanagioti, H. K. (2015). Preparation and
Characterization of Biochar Sorbents Produced from Malt Spent Rootlets. Industrial &
Engineering Chemistry Research, 54(39), 9577 - 9584. doi:10.1021/acs.iecr.5b02698
Mandal, S., et al. (2013). Biochar: An innovative soil ameliorant for climate change mitigation in
NE India. Current Science, 105(5), 568-569. Retrieved from https://
www.researchgate.net/publication/
269688584_Biochar_An_innovative_soil_ameliorant_for_climate_change_mitigation_in_
NE_India/link/5497ffb80cf2c5a7e342814a/download
Mandal, S., et al. (2013). Characteristics of Weed Biomass-derived Biochar and Their Effect on
Properties of Beehive Briquettes. Indian Journal of Hill Farming, 26, 8-12. Retrieved from
http://www.kiran.nic.in/pdf/IJHF/Vol26_1/hillfarming26-1.pdf#page=8
Mandal, S., Bolan, N. S., Sarkar, B., & Naidu, R. (2015). PREPARATION AND SURFACE
MODIFICATION OF BIOCHAR FOR ENVIRONMENTAL REMEDIATION. In.
Mandal, S., Thangarajan, R., Bolan, N. S., Sarkar, B., Khan, N., Ok, Y. S., & Naidu, R. (2015).
Biochar-induced concomitant decrease in ammonia volatilization and increase in
nitrogen use efficiency by wheat. Chemosphere. doi:10.1016/
j.chemosphere.2015.04.086
Mandal, S. H. (2019). Transforming Atmospheric CO2 into Alternative Fuels: a Metal-Free
Approach under Ambient Conditions. Chem. Sci. Retrieved from https://pubs.rsc.org/en/
content/articlehtml/2019/sc/c8sc03581d
Mander, S., Anderson, K., Larkin, A., Gough, C., & Vaughan, N. (2017). The Role of Bio-energy
with Carbon Capture and Storage in Meeting the Climate Mitigation Challenge: A Whole
System Perspective. Energy Procedia, 114, 6036-6043. doi:https://doi.org/10.1016/
j.egypro.2017.03.1739
Mander, S., Wood, R., & Gough, C. (2009). Exploring the media framing of carbon capture and
storage and its influence on public perceptions. IOP Conference Series: Earth and
Environmental Science, 6(53), 532014. Retrieved from http://stacks.iop.org/1755-1315/6/
i=53/a=532014
Mangal, S., Priya, S. S., Lewis, N. L., & Jonnalagadda, S. (2018). Synthesis and
characterization of metal organic framework-based photocatalyst and membrane for
carbon dioxide conversion. Materials Today: Proceedings, 5(8, Part 3), 16378-16389.
doi:https://doi.org/10.1016/j.matpr.2018.05.134
Mangalassery, S., Mooney, S. J., Sparkes, D. L., Fraser, W. T., & Sjögersten, S. (2015). Impacts
of zero tillage on soil enzyme activities, microbial characteristics and organic matter
functional chemistry in temperate soils. European Journal of Soil Biology, 68, 9-17.
doi:https://doi.org/10.1016/j.ejsobi.2015.03.001
Mangrich, A. S., Angelo, L. C., & Mantovani, K. M. (2013). Biochar Produced from Chemical
Oxidation of Charcoal. Functions of Natural Organic Matter in Changing Environment,
997-1001.
Mangrich, A. S., & Cardoso, E. M. C. (2015). ACS Symposium SeriesWater Challenges and
Solutions on a Global ScaleImproving the Water Holding Capacity of Soils of Northeast
Brazil by Biochar Augmentation (Vol. 1206). Washington, DC: American Chemical
Society.
Manickam, T., Cornelissen, G., Bachmann, R., Ibrahim, I., Mulder, J., & Hale, S. (2015). Biochar
Application in Malaysian Sandy and Acid Sulfate Soils: Soil Amelioration Effects and
Improved Crop Production over Two Cropping Seasons. Sustainability, 7(12), 16756 -
16770. doi:10.3390/su71215842
Manikandan, A., & Subramanian, K. S. (2013). Urea Intercalated Biochar–a Slow Release
Fertilizer Production and Characterisation. Indian Journal of Science and Technology,
6(12), 5579–5584.
Manikandan, A., Subramanian, K. S., & Pandian, K. (2015). Effect of high energy ball milling on
particle size and surface area of adsorbents for efficient loading of fertilizer. An Asian
Journal of Soil Science, 8(2), 249-254. Retrieved from http://www.researchgate.net/
profile/Angamuthu_Manikandan/publication/
267567591_Effect_of_High_Energy_Ball_Milling_on_Particle_Size_and_Surface_Area_
of_Adsorbents_for_Efficient_Loading_of_Fertilizer/links/55febdc408aec948c4f3cf67.pdf
Manivanh, N., & Preston, T. (2015). Protein-enriched cassava root meal improves the growth
performance of Moo Lat pigs fed ensiled taro (Colocacia esculenta) foliage and banana
stem. Livestock Research for Rural Development 27. Retrieved from http://
lrrd.cipav.org.co/lrrd27/3/noup27044.html
Mankasingh, U., Choi, P.-C., & Ragnarsdottir, V. (2009). Biochar application in Tamil Nadu and
the global food crisis. Geochimica Et Cosmochimica Acta, 73, A828-A828.
Mankasingh, U., Choi, P.-C., & Ragnarsdottir, V. (2011). Biochar application in a tropical,
agricultural region: a plot scale study in Tamil Nadu, India. Applied Geochemistry,
26(Supplement), S218-S221. doi:10.1016/j.apgeochem.2011.03.108
Manna, S., & Singh, N. (2015). Effect of wheat and rice straw biochars on pyrazosulfuron-ethyl
sorption and persistence in a sandy loam soil. Journal of Environmental Science and
Health, Part B, 50(7), 463 - 472. doi:10.1080/03601234.2015.1018757
Manning, D. A. C. (2008). Biological enhancement of soil carbonate precipitation: passive
removal of atmospheric CO2. In Mineralogical Magazine (Vol. 72, pp. 639).
Manning, D. A. C., & Lopez-Capel, E. (2009). Test Procedures for Determining the Quantity of
Biochar within Soils. In L. Johannes & J. Stephen (Eds.), Biochar for Environmental
Management: Science and Technology (pp. 301-316). London, UK: Earthscan.
Manning, D. A. C., & Renforth, P. (2013). Passive Sequestration of Atmospheric CO2 through
Coupled Plant-Mineral Reactions in Urban soils. Environmental Science & Technology,
47(1), 135-141. Retrieved from http://pubs.acs.org/doi/abs/10.1021/es301250j
Manning, D. A. C., Renforth, P., Lopez-Capel, E., Robertson, S., & Ghazireh, N. (2013).
Carbonate precipitation in artificial soils produced from basaltic quarry fines and
composts: An opportunity for passive carbon sequestration. International Journal of
Greenhouse Gas Control, 17, 309-317. doi:http://dx.doi.org/10.1016/j.ijggc.2013.05.012
Manning, L. (2021). Brief: Biden’s climate plan includes ‘carbon bank’ for farmers who adopt
regen practices. Retrieved from https://agfundernews.com/carbon-bank-bidens-climate-
plan-includes-aimed-at-farmers-who-adopt-regen-practices.html
Manning, P., Taylor, G., & E. Hanley, M. (2015). Bioenergy, Food Production and Biodiversity –
An Unlikely Alliance? , 7(4), 570-576. doi:10.1111/gcbb.12173
Manoussi, V., Shayegh, S., & Tavoni, M. (2017). Optimal Carbon Dioxide Removal in Face of
Ocean Carbon Sink Feedback. Retrieved from http://ageconsearch.umn.edu/record/
266288/files/NDL2017-057.pdf
Manrique, S. M., & Franco, J. (2020). Tree cover increase mitigation strategy: implications of the
“replacement approach” in carbon storage of a subtropical ecosystem. Mitigation and
Adaptation Strategies for Global Change. doi:10.1007/s11027-020-09930-5
Mantripragada, H. C., & Rubin, E. S. (2013). Chemical Looping for Pre-combustion CO2
Capture — Performance and Cost Analysis. Energy Procedia, 37, 618-625. doi:http://
dx.doi.org/10.1016/j.egypro.2013.05.149
Mantripragada, H. C., & Rubin, E. S. (2014). Calcium Looping Cycle for CO2 Capture:
Performance, Cost And Feasibility Analysis. Energy Procedia, 63, 2199-2206. doi:http://
dx.doi.org/10.1016/j.egypro.2014.11.239
Manuilova, A., Koiwanit, J., Piewkhaow, L., Wilson, M., Chan, C. W., & Tontiwachwuthikul, P.
(2014). Life Cycle Assessment of Post-combustion CO2 Capture and CO2-Enhanced Oil
Recovery Based on the Boundary Dam Integrated Carbon Capture and Storage
Demonstration Project in Saskatchewan. Energy Procedia, 63, 7398-7407. doi:https://
doi.org/10.1016/j.egypro.2014.11.776
Manyà, J. J. (2012). Pyrolysis for biochar purposes: a review to establish current knowledge
gaps and research needs. Environmental Science & Technology, 46(15), 7939-7954.
doi:10.1021/es301029g
Manyà, J. J., et al. (2013). Study on the Biochar Yield and Heat Required during Pyrolysis of
Two-Phase Olive Mill Waste. Energy Fuels, 27(10), 5931-5939. Retrieved from http://
pubs.acs.org/doi/abs/10.1021/ef4012388
Manyà, J. J., et al. (2014). Biochar from Slow Pyrolysis of Two-Phase Olive Mill Waste: Effect of
Pressure and Peak Temperature on its Potential Stability. Energy Fuels, 28(5),
3271-3280. Retrieved from http://pubs.acs.org/doi/abs/10.1021/ef500654t
Manyà, J. J., et al. . (2014). Experimental study on the effect of pyrolysis pressure, peak
temperature, and particle size on the potential stability of vine shoots-derived biochar.
Fuel, 133, 163-172. doi:10.1016/j.fuel.2014.05.019
Manyà, J. J., Roca, F. X., & Perales, J. F. (2012). TGA study examining the effect of pressure
and peak temperature on biochar yield during pyrolysis of two-phase olive mill waste.
Journal of Analytical and Applied Pyrolysis, 103, 86-95. Retrieved from http://
www.sciencedirect.com/science/article/pii/S0165237012001878
Manzolini, G., Sanchez Fernandez, E., Rezvani, S., Macchi, E., Goetheer, E. L. V., & Vlugt, T. J.
H. (2015). Economic assessment of novel amine based CO2 capture technologies
integrated in power plants based on European Benchmarking Task Force methodology.
Appl. Energy, 138, 546-558. Retrieved from https://www.sciencedirect.com/science/
article/abs/pii/S030626191400419X e.
Mao, J. D., Johnson, R. L., Lehmann, J., Olk, D. C., Neves, E. G., Thompson, M. L., & Schmidt-
Rohr, K. (2012). Abundant and Stable Char Residues in Soils: Implications for Soil
Fertility and Carbon Sequestration. Environmental Science & Technology, 46(17),
9571-9576. doi:10.1021/es301107c
Maraseni, T. N. (2010). Biochar: maximising the benefits. International Journal of Environmental
Studies, 67(3), 319-327. Retrieved from http://www.tandfonline.com/doi/abs/
10.1080/00207231003612225
Maraseni, T. N., Chen, G., & Guangren, Q. (2010). Towards a faster and broader application of
biochar: appropriate marketing mechanisms. International Journal of Environmental
Studies, 67(6), 851-860. Retrieved from http://www.tandfonline.com/doi/full/
10.1080/00207233.2010.533892
Marazza, D., Macrelli, S., D'Angeli, M., Righi, S., Hornung, A., & Contin, A. (2019). Greenhouse
gas savings and energy balance of sewage sludge treated through an enhanced
intermediate pyrolysis screw reactor combined with a reforming process. Waste
Management, 91, 42-53. doi:https://doi.org/10.1016/j.wasman.2019.04.054
Marba, N. (2015). Impact of seagrass loss and subsequent revegetation on carbon
sequestration and stocks. 103, 2(296-302). Retrieved from http://onlinelibrary.wiley.com/
doi/10.1111/1365-2745.12370/abstract
Marchal, G., et al. . (2012). Comparing the desorption and biodegradation of low concentrations
of phenanthrene sorbed to activated carbon, biochar and compost. Chemosphere, 90(6),
1767-1778. Retrieved from http://www.sciencedirect.com/science/article/pii/
S0045653512009794
Marchal, G., et al. . (2013). Impact of activated carbon, biochar and compost on the desorption
and mineralization of phenanthrene in soil. Environmental Pollution, 181, 200–210.
Retrieved from http://www.sciencedirect.com/science/article/pii/S0269749113003503
Marchese, M., Buffo, G., Santarelli, M., & Lanzini, A. (2021). CO2 from direct air capture as
carbon feedstock for Fischer-Tropsch chemicals and fuels: Energy and economic
analysis. Journal of CO2 Utilization, 46, 101487. doi:https://doi.org/10.1016/
j.jcou.2021.101487
Marchett, R., & Castelli, F. (2013). Biochar from Swine Solids and Digestate Influence Nutrient
Dynamics and Carbon Dioxide Release in Soil. Journal of Environmental Quality, 42(3),
893-901. Retrieved from https://www.ncbi.nlm.nih.gov/pubmed/23673957
Marchetti, A., Juneau, P., Whitney, F. A., Wong, C.-S., & Harrison, P. J. (2006). Phytoplankton
processes during a mesoscale iron enrichment in the NE subarctic Pacific: Part II—
Nutrient utilization. Deep Sea Research Part II: Topical Studies in Oceanography, 53(20–
22), 2114-2130. doi:http://dx.doi.org/10.1016/j.dsr2.2006.05.031
Marchetti, C. (1977). On geoengineering and the CO
2
problem. Climatic Change, 1(1), 59-68.
Retrieved from https://link.springer.com/article/10.1007/BF00162777
Marchetti, R., et al. (2012). Biochar from swine manure solids: influence on carbon
sequestration and Olsen phosphorus and mineral nitrogen dynamics in soil with and
without digestate incorporation. Italian Journal of Agronomy, 7:(e26), 189-195. Retrieved
from http://agronomy.it/index.php/agro/article/viewFile/ija.2012.e26/407
Marcucci, A., Kypreos, S., & Panos, E. (2017). The road to achieving the long-term Paris
targets: energy transition and the role of direct air capture. Climatic Change, 144(2),
181-193. doi:10.1007/s10584-017-2051-8
MAREX. (2019). Researchers: Recycle CO2 in Floating Methanol Power Plants. The Maritime
Executive. Retrieved from https://www.maritime-executive.com/article/researchers-
recycle-co2-in-floating-methanol-power-plants
Marieni, C., Henstock, T. J., & Teagle, D. A. H. (2013). Geological storage of CO2 within the
oceanic crust by gravitational trapping. Geophysical Research Letters, 40(23),
6219-6224. doi:10.1002/2013GL058220
Maries, A., et al. (2017). Sequestration of CO2 emissions from cement manufacture.
Proceedings of the 37th Cement and Concrete Science Conference. Retrieved from
http://www.ucl.ac.uk/aim/conference-info/37ccs
Marinov, I., et al. (2008). How does ocean biology affect atmospheric pCO2? Theory and
models. Journal of Geophysical Research, 113, 1-20. Retrieved from http://
ocean.mit.edu/~mick/Papers/Marinov-etal-JGR2008.pdf
Marin-Spiotta, E., & Sharma, S. (2013). Carbon storage in successional and plantation forest
soils: a tropical analysis. Global Ecology and Biogeography, 22(1), 105-117. Retrieved
from http://onlinelibrary.wiley.com/doi/10.1111/j.1466-8238.2012.00788.x/full
Marion Suiseeya, K. R. (2017). Contesting Justice in Global Forest Governance: The Promises
and Pitfalls of REDD+. Conservation & Society, 15(2), 189-200. Retrieved from https://
www.jstor.org/stable/26393286?seq=1#metadata_info_tab_contents
Markets, T. o. S. V. C. (2020). Consultation Doocument. Retrieved from https://www.iif.com/
Portals/1/Files/TSVCM_Consultation_Document.pdf
Markewitz, P., Kuckshinrichs, W., Leitner, W., Linssen, J., Zapp, P., Bongartz, R., . . . Müller, T.
E. (2012). Worldwide innovations in the development of carbon capture technologies
and the utilization of CO2. Energy & Environmental Science, 5(6), 7281-7305.
doi:10.1039/C2EE03403D
Marks, E. A. N., Alcañiz, J. M., & Domene, X. (2014). Unintended effects of biochars on short-
term plant growth in a calcareous soil. Plant and Soil. doi:10.1007/s11104-014-2198-2
Marks, E. A. N., Mattana, S., Alcañiz, J. M., Pérez-Herrero, E., & Domene, X. (2016). Gasifier
biochar effects on nutrient availability, organic matter mineralization, and soil fauna
activity in a multi-year Mediterranean trial. Agriculture, Ecosystems & Environment, 215,
30 - 39. doi:10.1016/j.agee.2015.09.004
Markus, T., & Ginzky, H. (2011). Regulating Climate Engineering: Paradigmatic Aspects of the
Regulation of Ocean Fertilization. Carbon & Climate Law Review, 5(4), 477-490.
Retrieved from http://www.jstor.org/stable/24324072
Markusson, N., et al. (2020). Social Science Sequestered. Frontiers in Climate, 2(2), 1-6.
Retrieved from https://www.frontiersin.org/articles/10.3389/fclim.2020.00002/full?
utm_source=F-
NTF&utm_medium=EMLX&utm_campaign=PRD_FEOPS_20170000_ARTICLE
Markusson, N., & Haszeldine, S. (2009). ‘Capture readiness’–lock-in problems for CCS
governance. Energy Procedia, 1(1), 4625-4632. doi:https://doi.org/10.1016/
j.egypro.2009.02.284
Markusson, N., Ishii, A., & Stephens, J. C. (2011). The social and political complexities of
learning in carbon capture and storage demonstration projects. Global Environmental
Change, 21, 293-302. Retrieved from http://www.uvm.edu/giee/pubpdfs/
Markusson_2011_Global_Environmental_Change.pdf
Markusson, N., McLaren, D., & Tyfield, D. (2018). Towards a cultural political economy of
mitigation deterrence by Greenhouse Gas Removal (GGR) techniques. Retrieved from
http://wp.lancs.ac.uk/amdeg/files/2018/03/AMDEG-Working-Paper-1.pdf
Markusson, N., McLaren, D., & Tyfield, D. (2018). Towards a cultural political economy of
mitigation deterrence by negative emissions technologies (NETs). Global Sustainability,
1, e10. doi:10.1017/sus.2018.10
Marland, G., & Marland, S. (1992). Should we store carbon in trees? Water, Air, and Soil
Pollution, 64(1), 181-195. doi:10.1007/BF00477101
Marland, G., West, T. O., Schlamadinger, B., & Canella, L. (2003). Managing soil organic carbon
in agriculture: the net effect on greenhouse gas emissions. Tellus B: Chemical and
Physical Meteorology, 55(2), 613-621. doi:10.3402/tellusb.v55i2.17042
Marleena, H., Olli-Pekka, P., Tiilikkala, K., & Heikki, S. (2013). The effects of biochar, wood
vinegar and plants on glyphosate leaching and degradation. European Journal of Soil
Biology.
Maroto-Valer, M. M., Fauth, D. J., Kuchta, M. E., Zhang, Y., & Andrésen, J. M. (2005). Activation
of magnesium rich minerals as carbonation feedstock materials for CO2 sequestration.
Fuel Processing Technology, 86(14), 1627-1645. doi:https://doi.org/10.1016/
j.fuproc.2005.01.017
Maroušek, J., et al. . (2014). Processing of residues from biogas plants for energy purposes.
Clean Technologies and Environmental Policy, 17(3), 797-801. doi:10.1007/
s10098-014-0866-9
Maroušek, J. (2014). Significant breakthrough in biochar cost reduction. Clean Technologies
and Environmental Policy, 16(8), 1821-1825. Retrieved from http://link.springer.com/
article/10.1007/s10098-014-0730-y
Maroušek, J., et al. . (2015). Managerial Preferences in Relation to Financial Indicators
Regarding the Mitigation of Global Change. Science and Engineering Ethics, 21(1), 203
- 207. doi:10.1007/s11948-014-9531-2
Maroušek, J., et al. . (2015). Techno-economic assessment of processing the cellulose casings
waste. Clean Technologies and Environmental Policy, 17(8), 2441-2446. doi:10.1007/
s10098-015-0941-x
Maroušek, J., Maroušková, A., Myšková, K., Váchal, J., Vochozka, M., & Žák, J. (2015). Techno-
economic assessment of collagen casings waste management. International Journal of
Environmental Science and Technology, 12(10), 3385 - 3390. doi:10.1007/
s13762-015-0840-z
Marquart, W., Claeys, M., & Fischer, N. (2021). Conversion of CO2 and small alkanes to
platform chemicals over Mo2C-based catalysts. Faraday Discussions, 230(0), 68-86.
doi:10.1039/D0FD00138D
Marris, E. (2006). Black is the New Green. In (Vol. 442, pp. 624 - 626).
Marro, R., et al. (2015). In this work, torrefied as well as hydrothermal carbonised biomass have
been examined. To evaluate the torrefaction process, grindability, ash melting behaviour
and fuel as well as ash composition of untreated and torrefied woods were analysed. For
that p. In.
Marsala, V., Butera, G., Conte, P., & Alonzo, G. (2015). Effect of texture on the dynamics of a
water saturated biochar. Paper presented at the 2nd Mediterranean biochar symposium
Environmental impact of biochar and its role in green remediation.
Marsala, V., Cimò, G., Caporale, A., De Pasquale, C., Pigna, M., & Conte, P. (2015). Effect of
Metals on the Dynamics of Water at the Biochar Solid-Liquid Interface. Paper presented
at the 2nd Mediterranean Biochar Symposium Environmental impact of biochar and its
role in green remediation.
Marshall, M. (2012). Geoengineering with iron might work after all. New Scientist, 215(2874),
15. doi:http://dx.doi.org/10.1016/S0262-4079(12)61852-1
Marshall, M. (2020). Planting trees doesn’t always help with climate change. BBC Future Planet.
Retrieved from https://www.bbc.com/future/article/20200521-planting-trees-doesnt-
always-help-with-climate-change
Martens, J. A., et al. (2017). The Chemical Route to a Carbon Dioxide Neutral World.
ChemSusChem, 10(6), 1039-1055. doi:doi:10.1002/cssc.201601051
Martin, C. (2017). Exxon Mobil's Futuristic FuelCell Carbon Capture Just Might Work.
Bloomberg Technology. Retrieved from https://www.bloomberg.com/news/articles/
2017-09-19/exxon-mobil-s-futuristic-fuelcell-carbon-capture-just-might-work
Martin, D., et al. . (2017). Carbon Dioxide Removal Options: A Literature Review
Identifying Carbon Removal Potentials and Costs. (MSc.). University of Michigan,
Retrieved from https://deepblue.lib.umich.edu/bitstream/handle/
2027.42/136610/315_CarbonDioxideRemovalOptions.pdf?sequence=1&isAllowed=y
Martin, J. H. (1990). Glacial-interglacial CO2 change: The Iron Hypothesis. Paleoceanography,
5(1), 1-13. doi:doi:10.1029/PA005i001p00001
Martin, J. H. (1991). Iron, Liebig's law, and the greenhouse. Oceanography, 4, 52-55. Retrieved
from http://tos.org/oceanography/assets/docs/4-2_martin.pdf
Martin, J. H., Coale, K. H., Johnson, K. S., Fitzwater, S. E., Gordon, R. M., Tanner, S. J., . . .
Tindale, N. W. (1994). Testing the iron hypothesis in ecosystems of the equatorial Pacific
Ocean. Nature, 371, 123. doi:10.1038/371123a0
Martin, J. H., Gordon, M., & Fitzwater, S. E. (1991). The case for iron. Limnology and
Oceanography, 36(8), 1793-1802. doi:doi:10.4319/lo.1991.36.8.1793
Martin, J. H., Gordon, R. M., Fitzwater, S., & Broenkow, W. W. (1989). Vertex: phytoplankton/
iron studies in the Gulf of Alaska. Deep Sea Research Part A. Oceanographic Research
Papers, 36(5), 649-680. doi:https://doi.org/10.1016/0198-0149(89)90144-1
Martin, J. H., Gordon, R. M., & Fitzwater, S. E. (1990). Iron in Antarctic waters. Nature,
345(6271), 156-158. Retrieved from http://dx.doi.org/10.1038/345156a0
Martin, J. M. (1990). A new iron age, or a ferric fantasy. U.S. JGOFS Newsletter, 1(4), 5, 11.
Martín, N., Aurora, Guerrero, G., Gabriel, Ferreiro, P., Jorge, . . . Méndez, A. (2016). Efecto de
la adición de restos de poda y biochar en las propiedades de una turba parda como
sustrato de cultivo (Effect of addition of prunings and biochar in the properties of a brown
peat as growth substrate). Paper presented at the XIII Reunión del Grupo Español del
Carbón (XIII Meeting of the Spanish Group Coal). http://oa.upm.es/35121/
Martin, P., van der Loeff, M. R., Cassar, N., Vandromme, P., d'Ovidio, F., Stemmann, L., . . .
Naqvi, S. W. A. (2013). Iron fertilization enhanced net community production but not
downward particle flux during the Southern Ocean iron fertilization experiment
LOHAFEX. Global Biogeochemical Cycles, 27(3), 871-881. doi:10.1002/gbc.20077
Martin, R. (2016). The Dubious Promise of Bioenergy Plus Carbon Capture. MIT Technology
Review. Retrieved from https://www.technologyreview.com/s/544736/the-dubious-
promise-of-bioenergy-plus-carbon-capture/
Martin, S. L., Clarke, M. L., Othman, M., Ramsden, S. J., & West, H. M. (2015). Biochar-
mediated reductions in greenhouse gas emissions from soil amended with anaerobic
digestates. Biomass and Bioenergy, 79, 39-49. doi:10.1016/j.biombioe.2015.04.030
Martindale, A., et al. . (2013). Construction and Implementation of a Pyrolysis Unit for the
Production of Biochar in a Sustainable Greenhouse Heating System. Retrieved from
https://valley25x25.org/sites/default/files/IMCE/pdf/Greenhouse-Heat-BioChar-
Report.pdf
Martínez, A., Lara, Y., Lisbona, P., & Romeo, L. M. (2014). Operation of a mixing seal valve in
calcium looping for CO2 capture. Energy and Fuels, 28(3), 2059-2068. doi:10.1021/
ef402487e
Martinez, A., & Maier, D. E. (2014). Quantification of Biomass Feedstock Availability to a
Biorefinery Based on Multi-Crop Rotation Cropping Systems Using a GIS-Based
Method. Biological Engineering Transactions, 7(1), 3-16. Retrieved from http://
elibrary.asabe.org/abstract.asp?aid=45086&t=1&redir=&redirType=
Martínez Arranz, A. (2016). Hype among low-carbon technologies: Carbon capture and storage
in comparison. Global Environmental Change, 41, 124-141. doi:http://doi.org/10.1016/
j.gloenvcha.2016.09.001
Martínez Arranz, A. (2016). Hype among low-carbon technologies: Carbon capture and storage
in comparison. Global Environmental Change, 41, 124-141. doi:https://doi.org/10.1016/
j.gloenvcha.2016.09.001
Martínez, I., Murillo, R., Grasa, G., Rodríguez, N., & Abanades, J. C. (2011). Conceptual design
of a three fluidised beds combustion system capturing CO2 with CaO. International
Journal of Greenhouse Gas Control, 5(3), 498-504. doi:https://doi.org/10.1016/
j.ijggc.2010.04.017
Martinez, J. G. (2017). Artificial Leaf Turns Carbon Dioxide Into Liquid Fuel. Scientific
American(June 26). Retrieved from https://www.scientificamerican.com/article/liquid-
fuels-from-sunshine/
Martínez-García, A., Sigman, D. M., Ren, H., Anderson, R. F., Straub, M., Hodell, D. A., . . .
Haug, G. H. (2014). Iron Fertilization of the Subantarctic Ocean During the Last Ice Age.
Science, 343(6177), 1347-1350. doi:10.1126/science.1246848
Martinko, K. (2021). Canada Is About to Get Its First Carbon-Negative Brewery. Treehugger.
Retrieved from https://www.treehugger.com/canada-first-carbon-negative-
brewery-5094835
Martinsen, V., et al. . (2014). Farmer-led maize biochar trials: Effect on crop yield and soil
nutrients under conservation farming. Journal of Plant Nutrition and Soil Science, 177(5),
681 - 695. doi:10.1002/jpln.201300590
Martinsen, V., Alling, V., Nurida, N., Mulder, J., Hale, S. E., Ritz, C., . . . Cornelissen, G. (2015).
pH effects of the addition of three biochars to acidic Indonesian mineral soils. Soil
Science and Plant Nutrition, 1 - 14. doi:10.1080/00380768.2015.1052985
Maruyama, S., et al. (2003). Artificial Upwelling of Deep Seawater Using the Perpetual Salt
Fountain for Cultivation of Ocean Desert. Journal of Oceanography, 60, 563-568.
Retrieved from https://www.terrapub.co.jp/journals/JO/pdf/6003/60030563.pdf
Maruyama, S., Yabuki, T., Sato, T., Tsubaki, K., Komiya, A., Watanabe, M., . . . Tsukamoto, K.
(2011). Evidences of increasing primary production in the ocean by Stommel's perpetual
salt fountain. Deep Sea Research Part I: Oceanographic Research Papers, 58(5),
567-574. doi:https://doi.org/10.1016/j.dsr.2011.02.012
Marx, S., Chiyanzu, I., & Piyo, N. (2014). Influence of reaction atmosphere and solvent on
biochar yield and characteristics. Bioresource Technology, 164, 177-183. doi:10.1016/
j.biortech.2014.04.067
Mas Haris, M. R. H., et al. (2011). The sorption of cadmium(II) ions on mercerized rice husk and
activated carbon. Turkish Journal of Chemistry, 35(6), 1-12. doi:10.3906/kim-1103-62
Masek, O., et al. (2012). Microwave and Slow Pyrolysis Biochar – Comparison of Physical and
Functional Properties. Journal of Analytical and Applied Pyrolysis, 100, 41-48. Retrieved
from http://www.sciencedirect.com/science/article/pii/S0165237012002367
Mašek, O., Buss, W., Brownsort, P., Rovere, M., Tagliaferro, A., Zhao, L., . . . Xu, G. (2019).
Potassium doping increases biochar carbon sequestration potential by 45%, facilitating
decoupling of carbon sequestration from soil improvement. Scientific Reports, 9(1),
5514-5514. doi:10.1038/s41598-019-41953-0
Masek, O., . et al., & i. (2011). Influence of production conditions on the yield and environmental
stability of biochar. Fuel, 103(Janaury), 151-155. doi:10.1016/j.fuel.2011.08.044
Mašek, O., Ronsse, F., & Dickinson, D. (2016). Biochar production and feedstock. In Biochar in
European Soils and Agriculture: Science and Practice.
Masera, O. R., et al. . (2015). Environmental Burden of Traditional Bioenergy Use. Annual
Review of Environment and Resources, 40(1), 121-150. doi:10.1146/annurev-
environ-102014-021318
Masera, O. R., Garza-Caligaris, J. F., Kanninen, M., Karjalainen, T., Liski, J., Nabuurs, G. J., . . .
Mohren, G. M. J. (2003). Modeling carbon sequestration in afforestation, agroforestry
and forest management projects: the CO2FIX V.2 approach. Ecological Modelling,
164(2), 177-199. doi:https://doi.org/10.1016/S0304-3800(02)00419-2
Masiello, C. A. (2004). New directions in black carbon organic geochemistry. Marine Chemistry,
92(1-4), 201-213.
Masiello, C. A., Chen, Y., Gao, X., Liu, S., Cheng, H.-Y., Bennett, M. R., . . . Silberg, J. J. (2013).
Biochar and Microbial Signaling: Production Conditions Determine Effects on Microbial
Communication. Environmental Science & Technology, 47(20), 11496-11503.
doi:10.1021/es401458s
Masiello, C. A., & Druffel, E. R. M. (1998). Black carbon in deep-sea sediments. Science,
280(5371), 1911-1913. Retrieved from http://science.sciencemag.org/content/
280/5371/1911
Masiello, C. A., Mitra, S., Gustafsson, O., Louchouarn, P., Houel, S., Elmquist, M., . . . Nguyen,
T. H. (2007). Comparison of quantification methods to measure fire-derived (black/
elemental) carbon in soils and sediments using reference materials from soil, water,
sediment and the atmosphere. Global Biogeochemical Cycles, 21(3), 1-18. Retrieved
from http://onlinelibrary.wiley.com/doi/10.1029/2006GB002914/epdf
Maslin, M., & Lewis, S. (2019). Reforesting an area the size of the US needed to help avert
climate breakdown, say researchers – are they right? The Conversation. Retrieved from
https://theconversation.com/reforesting-an-area-the-size-of-the-us-needed-to-help-avert-
climate-breakdown-say-researchers-are-they-right-119842?
fbclid=IwAR2KZMrYKa3bcGnyJLToaFaZKLzcvAZepkEyMzC0bI7Vw-ERDV168dWK9T8
Mason, J. (2013). Understanding the long-term carbon cycle : weathering of rocks - a vitally
important carbon-sink. SkepticalScience. Retrieved from https://
www.skepticalscience.com/weathering.html
Mason, R. (2019). The 1,000 Year Ouch. Age of Awareness. Retrieved from https://
medium.com/age-of-awareness/the-1-000-year-ouch-3c8dfaf7ad82
Mastali, M., Abdollahnejad, Z., & Pacheco-Torgal, F. (2018). Carbon dioxide sequestration of fly
ash alkaline-based mortars containing recycled aggregates and reinforced by hemp
fibres. Construction and Building Materials, 160, 48-56. doi:https://doi.org/10.1016/
j.conbuildmat.2017.11.044
Mastali, M., Abdollahnejad, Z., & Pacheco-Torgal, F. (2018). Performance of waste based
alkaline mortars submitted to accelerated carbon dioxide curing. Resources,
Conservation and Recycling, 129, 12-19. doi:https://doi.org/10.1016/
j.resconrec.2017.10.017
Masto, R. E., et al. . (2013). Biochar from water hyacinth (Eichornia crassipes) and its impact on
soil biological activity. CATENA, 111, 64-71. Retrieved from http://
www.sciencedirect.com/science/article/pii/S0341816213001641
Masto, R. E., et al. . (2013). Co-application of biochar and lignite fly ash on soil nutrients and
biological parameters at different crop growth stages of Zea mays. Ecological
Engineering, 58, 314–322. Retrieved from http://www.sciencedirect.com/science/article/
pii/S0925857413002619
Masud, M. M., LI, J.-Y., & Xu, R.-K. (2014). Use of Alkaline Slag and Crop Residue Biochars to
Promote Base Saturation and Reduce Acidity of an Acidic Ultisol. Pedosphere, 24(6),
791 - 798. doi:10.1016/s1002-0160(14)60066-7
Masulili, A., et al. . (2010). Rice Husk Biochar for Rice Based Cropping System in Acid Soil 1.
The Characteristics of Rice Husk Biochar and Its Influence on the Properties of Acid
Sulfate Soils and Rice Growth in West Kalimantan, Indonesia. Journal of Agricultural
Science, 2(1), 39-47. Retrieved from http://citeseerx.ist.psu.edu/viewdoc/download?
doi=10.1.1.667.2928&rep=rep1&type=pdf
Mata, T. M., Martins, A. A., & Caetano, N. S. (2010). Microalgae for biodiesel production and
other applications: A review. Renewable and Sustainable Energy Reviews, 14(1),
217-232. doi:https://doi.org/10.1016/j.rser.2009.07.020
Matear, R. J., & Elliot, B. (2005). Enhancement of oceanic uptake of anthropogenic CO2 by
macronutrient fertilization. Journal of Geophysical Research, 109, 1-14. Retrieved from
http://onlinelibrary.wiley.com/doi/10.1029/2000JC000321/epdf
Mathesius, S., Hofmann, M., Caldeira, K., & Schellnhuber, H. J. (2015). Long-term response of
oceans to CO2 removal from the atmosphere. Nature Climate Change, 5(12),
1107-1113. doi:10.1038/nclimate2729
Mathews, J. A. (2008). Carbon-negative biofuels. Energy Policy, 36(3), 940-945. doi:http://
dx.doi.org/10.1016/j.enpol.2007.11.029
Mathews, J. A. (2009). From the petroeconomy to the bioeconomy: Integrating bioenergy
production with agricultural demands. Biofuels, Bioproducts, and Biorefining, 3, 613 -
632.
Mathis, W., & Rathi, A. (2021). Netherlands Pledges $2.6 Billion Subsidy to Bury CO Under the
Sea. Bloomberg Green. Retrieved from https://www.bloomberg.com/news/articles/
2021-05-12/netherlands-pledges-2-6-billion-subsidy-to-bury-co-under-the-sea
Mathisen, A., & Skagestad, R. (2017). Utilization of CO2 from Emitters in Poland for CO2-EOR.
Energy Procedia, 114, 6721-6729. doi:https://doi.org/10.1016/j.egypro.2017.03.1802
Matich, B. (2021). Australian scientists achieve breakthrough with renewably powered carbon
capture. PV Magazine. Retrieved from https://www.pv-magazine.com/2021/03/30/
australian-scientists-remarkable-renewably-powered-carbon-capture-breakthrough/
Matocha, J., et al. (2012). Climate Change Mitigation: A Low-Hanging Fruit of Agroforestry.
In P. K. R. Nair & D. Garrity (Eds.), Agroforestry - The Future of Global Land Use (pp.
105-126).
Matondi, P., et al. (2010). Biofuels, land grabbing and food security in Africa. Retrieved from
https://www.diva-portal.org/smash/get/diva2:387049/FULLTEXT01.pdf
Matos, J. (2015). Eco-Friendly Heterogeneous Photocatalysis on Biochar-Based Materials
Under Solar Irradiation. Topics in Catalysis. doi:10.1007/s11244-015-0434-5
Matos, J. (2015). Photocatalytic Activity of ZnO-Biochar Hybrid Composites. In.
Matovic, D. (2011). Biochar as a viable carbon sequestration option: Global and Canadian
perspective. Energy, 36(4), 2011-2016. Retrieved from http://www.sciencedirect.com/
science/article/pii/S0360544210005104
Matsubara, Y., Hasegawa, N., & Fukui, H. (2002). Incidence of Fusarium root rot in asparagus
seedlings infected with arbuscular mycorrhizal fungus as affected by several soil
amendments. Journal of the Japanese Society for Horticultural Science, 71(3), 370-374.
Retrieved from https://www.researchgate.net/publication/
240978005_Incidence_of_Fusarium_Root_Rot_in_Asparagus_Seedlings_Infected_with
_Arbuscular_Mycorrhizal_Fungus_as_Affected_by_Several_Soil_Amendments
Matsumoto, K. (2006). Model simulations of carbon sequestration in the northwest Pacific by
patch fertilization. Journal of Oceanography, 62(6), 887-902. doi:10.1007/
s10872-006-0106-y
Matt, C. P. (2015). An assessment of biochar amended soilless media for nursery propagation
of northern Rocky Mountain native plants. The University Of Montana, Retrieved from
http://scholarworks.umt.edu/etd/4420/
Matter, J., Broecker, W. S., Gislason, S., Gunnlaugsson, E., Oelkers, E., Stute, M., . . .
Sigfusson, B. (2011). The CarbFix Pilot Project - Storing Carbon Dioxide in Basalt.
Energy Procedia, 4, 5579-5585. doi:10.1016/j.egypro.2011.02.546
Matter, J. M., Broecker, W. S., Stute, M., Gislason, S. R., Oelkers, E. H., Stefánsson, A., . . .
Björnsson, G. (2009). Permanent Carbon Dioxide Storage into Basalt: The CarbFix Pilot
Project, Iceland. Energy Procedia, 1(1), 3641-3646. doi:https://doi.org/10.1016/
j.egypro.2009.02.160
Matter, J. M., & Kelemen, P. B. (2009). Permanent storage of carbon dioxide in geological
reservoirs by mineral carbonation. Nature Geoscience, 2, 837. doi:10.1038/ngeo683
Matter, J. M., Stute, M., Hall, J., Mesfin, K., Snæbjörnsdóttir, S. Ó., Gislason, S. R., . . .
Broecker, W. S. (2014). Monitoring permanent CO2 storage by in situ mineral
carbonation using a reactive tracer technique. Energy Procedia, 63, 4180-4185.
doi:https://doi.org/10.1016/j.egypro.2014.11.450
Matter, J. M., Stute, M., Snæbjörnsdottir, S. Ó., Oelkers, E. H., Gislason, S. R., Aradottir, E.
S., . . . Broecker, W. S. (2016). Rapid carbon mineralization for permanent disposal of
anthropogenic carbon dioxide emissions. Science, 352(6291), 1312-1314. doi:10.1126/
science.aad8132
Matter, J. M., Stute, M., Snæbjörnsdottir, S. Ó., Oelkers, E. H., Gislason, S. R., Aradottir, E.
S., . . . Broecker, W. S. (2016). Rapid carbon mineralization for permanent disposal of
anthropogenic carbon dioxide emissions. Science, 352, 1312-1314. Retrieved from
https://science.sciencemag.org/content/352/6291/1312
Matter, J. M., Takahashi, T., & Goldberg, D. (2007). Experimental evaluation of in situ CO2-
water-rock reactionsduring CO2injection in basaltic rocks: Implications forgeological
CO2sequestration. Geochemistry, Geophysics, Geosystems, 8(2), 1-19.
doi:10.1029/2006GC001427
Matthew, E. B.-H., Nick, F., & Paul, S. F. (2016). Investigations into the effects of volatile
biomass tar on the performance of Fe-based CLC oxygen carrier materials.
Environmental Research Letters, 11(11), 115001. Retrieved from http://stacks.iop.org/
1748-9326/11/i=11/a=115001
Matthews, H. D., & Caldeira, K. (2008). Stabilizing climate requires near-zero emissions.
Geophysical Research Letters, 35(4), 1-5. Retrieved from http://onlinelibrary.wiley.com/
doi/10.1029/2007GL032388/abstract
Mattila, T., Grönroos, J., Judl, J., & Korhonen, M.-R. (2012). Is biochar or straw-bale
construction a better carbon storage from a life cycle perspective? Process Safety and
Environmental Protection, 90(6), 452-458. doi:http://dx.doi.org/10.1016/
j.psep.2012.10.006
Mattox, E. M., Knox, J. C., & Bardot, D. M. (2013). Carbon dioxide removal system for closed
loop atmosphere revitalization, candidate sorbents screening and test results. Acta
Astronautica, 86, 39-46. doi:https://doi.org/10.1016/j.actaastro.2012.09.019
Matuszewski, M. S., & Detweiler, I. (2020). Chapter 15 New Technology Development for
Carbon Capture. In Carbon Capture and Storage (pp. 512-535): The Royal Society of
Chemistry.
Maucieri, C., Zhang, Y., McDaniel, M. D., Borin, M., & Adams, M. A. (2017). Short-term effects of
biochar and salinity on soil greenhouse gas emissions from a semi-arid Australian soil
after re-wetting. Geoderma, 307(Supplement C), 267-276. doi:https://doi.org/10.1016/
j.geoderma.2017.07.028
Maung, T. A., et al. (2013). Economics of Biomass Feedstocks and Biofuels. In B. P. Singh (Ed.),
Biofuel Food Sustainability (pp. 407-429).
Maung, Y. M., et al., Win, T. T., & Oo, A. T. (2015). Preparation and Characterization of Bagasse
Ash. International Journal of Technical Research and Applications, 3(1), 84-87.
Retrieved from www.ijtra.com/download.php?paper=316
Mauri, M., Farina, M., Patriarca, G., Simonutti, R., Klasson, K. T., & Cheng, H. N. (2014). 129 Xe
NMR Studies of Pecan Shell-Based Biochar and Structure-Process Correlations.
International Journal of Polymer Analysis and Characterization, 29(2), 119-129.
doi:10.1080/1023666x.2015.979038
Maxwell, S. L., Evans, T., Watson, J. E. M., Morel, A., Grantham, H., Duncan, A., . . . Malhi, Y.
(2019). Degradation and forgone removals increase the carbon impact of intact forest
loss by 626%. Science Advances, 5(10), eaax2546. doi:10.1126/sciadv.aax2546
May, M. M., & Rehfeld, K. (2019). ESD Ideas: Photoelectrochemical carbon removal as negative
emission technology. Earth Systems Dynamics, 10(1), 1-7. doi:10.5194/esd-10-1-2019
Mayakaduwa, S. S., Kumarathilaka, P., Herath, I., Ahmad, M., Al-Wabel, M., Ok, Y. S., . . .
Vithanage, M. (2015). Equilibrium and kinetic mechanisms of woody biochar on aqueous
glyphosate removal. Chemosphere. doi:10.1016/j.chemosphere.2015.07.080
Mayakaduwa, S. S., Vithanage, M., Karunarathne, A., & Mohan, D. (2015). Use of Biochar
Produced from Residue to Remove Carbofuran from Water. University of Peradeniya ,
Sri Lanka, Retrieved from http://www.dlib.pdn.ac.lk/archive/handle/1/4574
Mayer, A., Hausfather, Z., Jones, A. D., & Silver, W. L. (2018). The potential of agricultural land
management to contribute to lower global surface temperatures. Science Advances,
4(8). doi:10.1126/sciadv.aaq0932
Mayer, B. (2019). Bioenergy with Carbon Capture and Storage: Existing and emerging legal
principles. Retrieved from http://benoitmayer.com/wp-content/uploads/2019/09/
BECCS_principles.pdf
Mayer, B. (2019). Bioenergy with Carbon Capture and Storage: Existing and Emerging Legal
Principles. Carbon & Climate Law Review, 13(2), 113-121. Retrieved from https://
cclr.lexxion.eu/article/CCLR/2019/2/6
Mayer, P., Hilber, I., Gouliarmou, V., Hale, S. E., Cornelissen, G., & Bucheli, T. D. (2016). How to
Determine the Environmental Exposure of PAHs Originating from Biochar.
Environmental Science & Technology, 50(4), 1941 - 1948. doi:10.1021/acs.est.5b05603
Mayer, Z. (2012). Pyrolysis of contaminated energy crops and the characterisation of the gained
biochar. (Doctorate). Aston University, Retrieved from http://eprints.aston.ac.uk/19249/1/
Studentthesis-2013.pdf
Mayer, Z. A., et al. . (2013). Characterization of engineered biochar for soil management.
Environmental Progress & Sustainable Energy, 33(2), 490-496. Retrieved from http://
onlinelibrary.wiley.com/doi/10.1002/ep.11788/abstract
Mayer, Z. A., Apfelbacher, A., & Hornung, A. (2011). Nitrogen Cycle of effluent irrigated energy
crop plantations: From Wastewater treatment to thermo-chemical conversion processes.
Journal of Scientific and Industrial Research. Retrieved from http://eprints.aston.ac.uk/
16172/1/Nitrogen_cycle_of_effluent_irrigated_energy_crop_plantations.pdf
Mayer, Z. A., Apfelbacher, A., & Hornung, A. (2012). A comparative study on the pyrolysis of
metal- and ash-enriched wood and the combustion properties of the gained char. Journal
of Analytical and Applied Pyrolysis, 96, 196–202.
Mayers, J. (2014). Pyrolysis and Activation of an Invasive Species. The Florida State University,
Retrieved from http://diginole.lib.fsu.edu/etd/8841/
Mayes, W. M., Riley, A. L., Gomes, H. I., Brabham, P., Hamlyn, J., Pullin, H., & Renforth, P.
(2018). Atmospheric CO2 sequestration in iron and steel slag: Consett, Co. Durham, UK.
Environmental Science & Technology. doi:10.1021/acs.est.8b01883
Maynard, E. (2014). Midwest Vegetable Trial Report for 2014.$Fruit-Veg Trials. Retrieved from
http://docs.lib.purdue.edu/fvtrials/61/
Mayoral, R., & Guillermo, J. (2015). Producción de biochar a partir de viñas agotadas mediante
pirólisis en reactor a escala piloto y en reactor móvil energéticamente sostenible.
Unibersidad de Leon, Retrieved from http://buleria.unileon.es/xmlui/handle/10612/4246
Mayo-Ramsay, J. (2010). Environmental, legal and social implications of ocean urea fertilization:
Sulu sea example. Marine Policy, 34(5), 831-835. doi:http://dx.doi.org/10.1016/
j.marpol.2010.01.004
Mazari, S. A., et al. (2015). An overview of solvent management and emissions of amine-based
CO2 capture technology. International Journal of Greenhouse Gas Control, 34, 129-140.
Retrieved from https://www.sciencedirect.com/science/article/pii/S175058361400396X
Mazlan, M. A. F., Uemura, Y., Osman, N. B., & Yusup, S. (2015). Characterizations of Bio-char
from Fast Pyrolysis of Meranti Wood Sawdust. Journal of Physics: Conference Series,
622(1), 1-8. doi:10.1088/1742-6596/622/1/012054
Mazlan, M. A. F., Uemura, Y., Osman, N. B., & Yusup, S. (2015). Fast pyrolysis of hardwood
residues using a fixed bed drop-type pyrolyzer. Energy Conversion and Management,
98, 208 - 214. doi:10.1016/j.enconman.2015.03.102
Mazurek, J., & Menon, S. (2018). 2050 Priorities for Climate Action: Carbon Dioxide Removal is
a Necessary Complement to Deep Decarbonization. Retrieved from https://
www.climateworks.org/blog/carbon-dioxide-removal/
Mazza, P. (2010). Building the Biocarbon Economy: How the Northwest Can Lead. Retrieved
from http://climatesolutions.org/solutions/reports/biocarbon-briefs/building-the-biocarbon-
economy-how-the-northwest-can
Mazzella, A., Errico, M., & Spiga, D. (2016). CO2 uptake capacity of coal fly ash: Influence of
pressure and temperature on direct gas-solid carbonation. Journal of Environmental
Chemical Engineering, 4(4, Part A), 4120-4128. doi:https://doi.org/10.1016/
j.jece.2016.09.020
Mazzocchi, M. G., et al. (2009). A non-diatom plankton bloom controlled by copepod grazing
and amphipod predation: Preliminary results from the LOHAFEX iron-fertilisation
experiment. Globec International Newsletter, (October), 1-4. Retrieved from http://
drs.nio.org/drs/bitstream/handle/2264/3437/
Globec_Int_%20Newslett_15_3.pdf;jsessionid=38F8EEA1A7722E339900FD312B93C2
EC?sequence=1
Mazzotti, M. (2018). Mineral carbonation and industrial uses of carbon dioxide. In Carbon
Dioxide Capture and Storage (pp. 319-338): IPCC.
Mazzotti, M., Baciocchi, R., Desmond, M. J., & Socolow, R. H. (2013). Direct air capture of CO2
with chemicals: optimization of a two-loop hydroxide carbonate system using a
countercurrent air-liquid contactor. Climatic Change, 118(1), 119-135. doi:10.1007/
s10584-012-0679-y
McBeath, A. V., et al. (2013). The influence of feedstock and production temperature on biochar
carbon chemistry: A solid-state 13C NMR study. Biomass and Bioenergy, 60, 121-129.
Retrieved from http://www.sciencedirect.com/science/article/pii/S0961953413004637
McBeath, A. V., & Smernik, R. J. (2009). Variation in the degree of aromatic condensation of
chars. Organic Geochemistry, 40, 1161-1168.
McBeath, A. V., Smernik, R. J., Schneider, M. P. W., Schmidt, M. W. I., & Plant, E. L. (2011).
Determination of the aromaticity and the degree of condensed aromatic condensation of
a thermosequence of wood charcoal using NMR. Organic Geochemistry, 42, 1194-1202.
McBeath, A. V., Wurster, C. M., & Bird, M. I. (2015). Influence of feedstock properties and
pyrolysis conditions on biochar carbon stability as determined by hydrogen pyrolysis.
Biomass and Bioenergy, 73, 155 - 173. doi:10.1016/j.biombioe.2014.12.022
McCalmont, J. P., Hastings, A., McNamara, N. P., Richter, G. M., Robson, P., Donnison, I. S., &
Clifton-Brown, J. (2017). Environmental costs and benefits of growing Miscanthus for
bioenergy in the UK. GCB Bioenergy, 9(3), 489-507. doi:10.1111/gcbb.12294
McCarl, B. A., Peacoke, C., Chrisman, R., Kung, C.-C., & Sands, R. D. (2009). Economics of
biochar production, utilization and greenhouse gas offsets. In J. Lehmann & S. Joseph
(Eds.), Biochar for environmental management science and technology. Washington
D.C.: Earthscan, London.
McCarthy, S. (2021). Are corporations getting trapped in net zero? Corporate Knights. Retrieved
from https://www.corporateknights.com/channels/climate-and-carbon/are-corporations-
getting-trapped-in-net-zero-16249640/
Mcchesney, I. (2016).
McClimans, T. A., Handå, A., Fredheim, A., Lien, E., & Reitan, K. I. (2010). Controlled artificial
upwelling in a fjord to stimulate non-toxic algae. Aquacultural Engineering, 42(3),
140-147. doi:https://doi.org/10.1016/j.aquaeng.2010.02.002
McCord, S., Armstrong, K., & Styring, P. (2021). Developing a triple helix approach for CO2
utilisation assessment. Faraday Discussions, 230(0), 247-270. doi:10.1039/
D1FD00002K
McCormack, P. C., et al. (2020). Governance of Land-based Negative-emission Technologies to
Promote Biodiversity Conservation: Lessons from Australia. Climate Law, 10(2),
123-150. Retrieved from https://brill.com/view/journals/clla/10/2/article-p123_123.xml
McCormack, S. A., et al. (2013). Biochar in bioenergy cropping systems: impacts on soil faunal
communities and linked ecosystem processes. GCB Bioenergy, 5(2), 81-95. Retrieved
from http://onlinelibrary.wiley.com/doi/10.1111/gcbb.12046/abstract
McCoy, S. T., & Rubin, E. S. (2009). The effect of high oil prices on EOR project economics.
Energy Procedia, 1(1), 4143-4150. doi:https://doi.org/10.1016/j.egypro.2009.02.223
McCulloch, S., et al. (2020). Energy Technology Perspectives: Special Report on Carbon
Capture Utilisation and Storage. Retrieved from https://www.iea.org/reports/ccus-in-
clean-energy-transitions
McCusker, P. (2017). Could Consett slag heaps have an unlikely role to play in combating
climate change? Retrieved from http://www.chroniclelive.co.uk/business/business-news/
could-consett-slag-heaps-unlikely-13287751
McDaniel, A. H., Miller, E. C., Arifin, D., Ambrosini, A., Coker, E. N., O’Hayre, R., . . . Tong, J.
(2013). Sr-and Mn-doped LaAlO3-δ for solar thermochemical H2 and CO production.
Energy Environ. Sci., 6, 2424.
McDermott, S. M., Howarth, R. B., & Lutz, D. A. (2015). Biomass Energy and Climate Neutrality:
The Case of the Northern Forest. Land Economics, 91(2), 197-210. doi:10.3368/
le.91.2.197
McDonald, A. (2019). Can you make climate change with technologies that undo? View.
Retrieved from https://www.kxan36news.com/can-you-make-climate-change-with-
technologies-that-undo-view
McDonald, T. M. (2016). Synthesis and Characterization of Alkylamine-Functionalized Metal-
Organic Frameworks as Adsorbents for Carbon Dioxide. (Ph.D.). University of California-
Berkeley, Retrieved from https://search.proquest.com/docview/1780015582?
accountid=14496
McDonald, T. M., Lee, W. R., Mason, J. A., Wiers, B. M., Hong, C. S., & Long, J. R. (2012).
Capture of Carbon Dioxide from Air and Flue Gas in the Alkylamine-Appended Metal–
Organic Framework mmen-Mg2(dobpdc). Journal of the American Chemical Society,
134(16), 7056-7065. doi:10.1021/ja300034j
McDougall, A. H., et al. (2015). Reversing climate warming by artificial atmospheric carbon
dioxide removal: Can a Holocenelike climate be restored? Geophysical Research
Letters, 40(20), 5480-5485. Retrieved from http://onlinelibrary.wiley.com/doi/
10.1002/2013GL057467/abstract
McElligott, K., Page-Dumroese, D., & Coleman, M. (2011). Bioenergy Production Systems and
Biochar Application in Forests: Potential for Renewable Energy, Soil Enhancement, and
Carbon Sequestration. Retrieved from http://www.fs.fed.us/rm/pubs/rmrs_rn046.pdf
McElligott, K., Page-Dumroese, D., & Coleman, M. (2011). Bioenergy production systems and
biochar application in forests: potential for renewable energy, soil enhancement, and
carbon sequestration. RN-46. Fort Collins: USDA Rocky Mountain Research Station.
McElligott, K. M. (2011). Biochar Amendments to Forest Soils: Effects on Soil Properties and
Tree Growth. University of Idaho, Retrieved from http://forest.moscowfsl.wsu.edu/smp/
solo/documents/GTs/McElligott-Kristin_Thesis.pdf
McGee, J., Brent, K., & Burns, W. (2018). Geoengineering the oceans: an emerging frontier in
international climate change governance. Australian Journal of Maritime & Ocean Affairs,
10(1), 67-80. doi:10.1080/18366503.2017.1400899
McGeever, A. H., Price, P., McMullin, B., & Jones, M. B. (2019). Assessing the terrestrial
capacity for Negative Emission Technologies in Ireland. Carbon Management, 10(1),
1-10. doi:10.1080/17583004.2018.1537516
Mcglade, C., et al. (2018). Commentary: Whatever happened to enhanced oil recovery?
(November 28). Retrieved from https://www.iea.org/newsroom/news/2018/november/
whatever-happened-to-enhanced-oil-recovery.html
McGlade, C. (2019). Commentary: Can CO2-EOR really provide carbon-negative oil? (April 11).
Retrieved from https://www.iea.org/newsroom/news/2019/april/can-co2-eor-really-
provide-carbon-negative-oil.html
McGlashan, N., et al. (2012). Negative Emissions Technologies. Retrieved from https://
www.imperial.ac.uk/media/imperial-college/grantham-institute/public/publications/
briefing-papers/Negative-Emissions-Technologies---Grantham-BP-8.pdf
McGlashan, N., Shah, N., Caldecott, B., & Workman, M. (2012). High-level techno-economic
assessment of negative emissions technologies. Process Safety and Environmental
Protection, 90(6), 501-510. doi:http://dx.doi.org/10.1016/j.psep.2012.10.004
McGlynn, E. (2021). To meet Biden’s new climate goal, forests and farms must sequester a lot
more carbon. Canary Media. Retrieved from https://www.canarymedia.com/articles/to-
meet-bidens-new-climate-goal-we-need-forests-and-farms-to-sequester-a-lot-more-
carbon/
McGrail, B. P., Freeman, C. J., Brown, C. F., Sullivan, E. C., White, S. K., Reddy, S., . . .
Steffensen, E. J. (2012). Overcoming business model uncertainty in a carbon dioxide
capture and sequestration project: Case study at the Boise White Paper Mill.
International Journal of Greenhouse Gas Control, 9, 91-102. doi:https://doi.org/10.1016/
j.ijggc.2012.03.009
McGrail, B. P., Schaef, H. T., Ho, A. M., Chien, Y.-J., Dooley, J. J., & Davidson, C. L. (2006).
Potential for carbon dioxide sequestration in flood basalts. Journal of Geophysical
Research: Solid Earth, 111(B12), 1-13. doi:10.1029/2005JB004169
McGrail, B. P., Schaef, H. T., Spane, F. A., Cliff, J. B., Qafoku, O., Horner, J. A., . . . Sullivan, C.
E. (2017). Field Validation of Supercritical CO2 Reactivity with Basalts. Environmental
Science & Technology Letters, 4(1), 6-10. doi:10.1021/acs.estlett.6b00387
McGrail, B. P., Schaef, H. T., Spane, F. A., Horner, J. A., Owen, A. T., Cliff, J. B., . . . Sullivan, E.
C. (2017). Wallula Basalt Pilot Demonstration Project: Post-injection Results and
Conclusions. Energy Procedia, 114, 5783-5790. doi:https://doi.org/10.1016/
j.egypro.2017.03.1716
McGrail, B. P., Spane, F. A., Amonette, J. E., Thompson, C. R., & Brown, C. F. (2014). Injection
and Monitoring at the Wallula Basalt Pilot Project. Energy Procedia, 63, 2939-2948.
doi:https://doi.org/10.1016/j.egypro.2014.11.316
McGrail, B. P., Spane, F. A., Sullivan, E. C., Bacon, D. H., & Hund, G. (2011). The Wallula basalt
sequestration pilot project. Energy Procedia, 4, 5653-5660. doi:https://doi.org/10.1016/
j.egypro.2011.02.557
McGrath, M. (2016). 'Wrong type of trees' in Europe increased global warming. BBC News.
Retrieved from https://www.bbc.com/news/science-environment-35496350
McGrath, M. (2017). Climate's magic rabbit: Pulling CO2 out of thin air. BBC News. Retrieved
from http://www.bbc.com/news/science-environment-41816332
McGreevy, S. R., & Shibata, A. (2010). A Rural Revitalization Scheme in Japan Utilizing Biochar
and Eco-Branding: The Carbon Minus Project, Kameoka City. Annals of Environmental
Science, 4. Retrieved from http://iris.lib.neu.edu/aes/vol4/iss1/2/
McGreevy, S. R., & Shibata, A. (2015). Mobilizing Biochar: A Multistakeholder Scheme for
Climate-Friendly Foods and Rural Sustainable Development. In.
McGurty, J. (2021). AMERICAS REFINING NET ZERO TRACKER: Valero furthers its
commitment with CCS pipeline. S&P Global Platts.
McHenry, M. P. (2009). Agricultural bio-char production, renewable energy generation and farm
carbon sequestration in Western Australia: Certainty, uncertainty and risk. Agriculture,
Ecosystems & Environment, 129(1–3), 1-7. doi:http://dx.doi.org/10.1016/
j.agee.2008.08.006
McHenry, M. P. (2010). Carbon-based stock feed additives: a research methodology that
explores ecologically delivered C biosequestration, alongside live weights, feed use
efficiency, soil nutrient retention, and perennial fodder plantations. Journal of the Science
of Food and Agriculture, 90(2), 183-187. Retrieved from https://www.ncbi.nlm.nih.gov/
pubmed/20355029
McHenry, M. P. (2012). Sensitive variables for applying biochar as a fertiliser substitute and a
method to sequester carbon in soils: a wheat crop scenario. In B. J. Ryan & D. E.
Anderson (Eds.), Carbon Sequestration: Technology, Measurement Technologies and
Environmental Effects (pp. 89-108).
McHenry, M. P. (2014). Bioenergy Research: Advances and ApplicationsBiochar Processing for
Sustainable Development in Current and Future Bioenergy Research: Elsevier.
McHenry, M. P. (2014). Chapter 26 - Biochar Processing for Sustainable Development in
Current and Future Bioenergy Research. In V. K. Gupta, M. G. Tuohy, C. P. Kubicek, J.
Saddler, & F. Xu (Eds.), Bioenergy Research: Advances and Applications (pp. 447-456).
Amsterdam: Elsevier.
McKechnie, J., et al. (2011). Forest Bioenergy or Forest Carbon? Assessing Trade-Offs in
Greenhouse Gas Mitigation with Wood-Based Fuels. Environmental Science and
Technology, 45, 789-795. Retrieved from http://www.pfpi.net/wp-content/uploads/
2011/05/McKechnie-et-al-EST-2010.pdf
McKelvy, M. J., et al. (2004). Exploration of the Role of Heat Activation in Enhancing Serpentine
Carbon Sequestration Reactions. Environmental Science and Technology, 38(24),
6897-6903. Retrieved from https://pubs.acs.org/doi/abs/10.1021/es049473m
McKendry, P. (2002). Energy production from biomass (part 1): overview of biomass.
Bioresource Technology, 83(1), 37-46. doi:http://dx.doi.org/10.1016/
S0960-8524(01)00118-3
McKenney, D. W., Yemshanov, D., Fox, G., & Ramlal, E. (2006). Using bioeconomic models to
assess research priorities: a case study on afforestation as a carbon sequestration tool.
Canadian Journal of Forest Research, 36(4), 886-900. doi:10.1139/x05-297
McKenzie, J. (2018). Carbon farming isn’t worth it for farmers. Two blockchain companies want
to change that. The New Food Economy. Retrieved from https://newfoodeconomy.org/
carbon-farming-blockchain-climate-change-regenerative-agriculture/
McKey, D., et al. . (2007). Pre-Columbian agricultural landscapes, ecosystem engineers, and
self-organized patchiness in Amazonia. Phil. Trans. R. Soc. B, 107(17), 7823-7828.
Retrieved from http://www.pnas.org/content/107/17/7823
Mckim, C. (2020). Wyoming Doubles Down On Its Long Support For Carbon Capture. Retrieved
from https://www.npr.org/2020/09/15/912996942/wyoming-doubles-down-on-its-long-
support-for-carbon-capture
Mckim, C. (2021). Wyoming Ready To Take Advantage Of Massive Federal Carbon Capture
Support Retrieved from https://www.wyomingpublicmedia.org/post/wyoming-ready-take-
advantage-massive-federal-carbon-capture-support#stream/0
McKinley, D. C., Ryan, M. G., Birdsey, R. A., Giardina, C. P., Harmon, M. E., Heath, L. S., . . .
Skog, K. E. (2011). A synthesis of current knowledge on forests and carbon storage in
the United States. Ecological Applications, 21(6), 1902-1924. doi:doi:10.1890/10-0697.1
McKone, T. E., Nazaroff, W. W., Berck, P., Auffhammer, M., Lipman, T., Torn, M. S., . . . Horvath,
A. (2011). Grand Challenges for Life-Cycle Assessment of Biofuels. Environmental
Science & Technology, 45(5), 1751-1756. doi:10.1021/es103579c
McLaren, D. (2011). Negatonnes - An Initial Assessment of the Potential for Negative Emissions
Techniques to Contribute Safely and Fairly to Meeting Carbon Budgets in the 21st
Century. Retrieved from https://www.foe.co.uk/sites/default/files/downloads/
negatonnes.pdf
McLaren, D. (2012). A comparative global assessment of potential negative emissions
technologies. Process Safety and Environmental Protection, 90(6), 489-500. doi:http://
dx.doi.org/10.1016/j.psep.2012.10.005
McLaren, D. (2014). Capturing the Imagination: Prospects for Direct Air Capture as a Climate
Measure. Ethics, Politics and Governance: Case Study, 1-8.
McLaren, D. (2017). Mirror, mirror: fairness and justice in climate geoengineering. (Ph.D.).
Lancaster University, Retrieved from http://www.research.lancs.ac.uk/portal/en/
publications/mirror-mirror-fairness-and-justice-in-climate-
geoengineering(20537798-00be-423d-b191-c42085637fdb).html
McLaren, D. (2019). Exaggerating how much CO can be absorbed by tree planting risks
deterring crucial climate action. The Conversation. Retrieved from https://
theconversation.com/exaggerating-how-much-co-can-be-absorbed-by-tree-planting-
risks-deterring-crucial-climate-action-120170
McLaren, D., & Burns, W. (2021). It Would Be Irresponsible, Unethical, and Unlawful to Rely on
NETs at Large Scale Instead of Mitigation. In A. Zahar & B. Mayer (Eds.), Debating
Climate Law (pp. 241-256). Cambridge: Cambridge University Press.
McLaren, D., & Jarvis, A. (2018). Quantifying the Potential Scale of Mitigation Deterrence from
Greenhouse Gas Removal Techniques. Retrieved from http://wp.lancs.ac.uk/amdeg/
files/2018/12/AMDEG-Working-Paper-2-Quantifying-MD-GGR.pdf
McLaren, D., Krieger, K., & Bickerstaff, K. (2013). Justice in energy system transitions: the case
of carbon capture and storage. In K. Bickerstaff, G. Walker, & H. Bulkeley (Eds.), Energy
Justice in a Changing Climate: Social Equity and Low-Carobn Energy (pp. 158-181).
McLaren, D. A., Butler, K. L., & Bonilla, J. (2014). Effects of pine oil, sugar and covers on
germination of serrated tussock and kangaroo grass in a pot trial. Paper presented at the
Nineteenth Australasian Weeds Conference. http://www.caws.org.au/awc/2014/
awc201412391.pdf
McLaren, D. P. (2012). A Comparative Global Assessment of Potential Negative Emissions
Technologies. Process Safety and Environmental Protection, 90(6), 489-500. Retrieved
from http://www.sciencedirect.com/science/article/pii/S0957582012001176
McLaren, D. P. (2012). Procedural Justice in Carbon Capture and Storage. Energy &
Environment, 23(2 & 3), 345-365. Retrieved from http://journals.sagepub.com/doi/pdf/
10.1260/0958-305X.23.2-3.345
McLaren, D. P., Tyfield, D. P., Willis, R., Szerszynski, B., & Markusson, N. O. (2019). Beyond
“Net-Zero”: A Case for Separate Targets for Emissions Reduction and Negative
Emissions. Frontiers in Climate, 1(4). doi:10.3389/fclim.2019.00004
McLaughlin, H., et al. (2009). All Biochars are not Created Equal and How to Tell them Apart.
Paper presented at the North American Biochar, Boulder, CO.
McLaughlin, H., & Clayton, D. (2012). The “Jolly Roger Ovens” family of Biochar-making
devices. Retrieved from http://www.biochar-international.org/sites/default/files/J-
RO%27s%20-final%20-%20Jan%208%202012.doc
McLaughlin, S. B., & Adams Kszos, L. (2005). Development of switchgrass (Panicum virgatum)
as a bioenergy feedstock in the United States. Biomass and Bioenergy, 28(6), 515-535.
doi:http://dx.doi.org/10.1016/j.biombioe.2004.05.006
McLaughlin, S. B., & Walsh, M. E. (1998). Evaluating environmental consequences of producing
herbaceous crops for bioenergy. Biomass & Bioenergy, 14, 317-324. Retrieved from
https://www.researchgate.net/publication/
222479081_Evaluating_environmental_consequences_of_producing_herbaceous_crops
_for_bioenergy
McLeod, E., Chmura, G. L., Bouillon, S., Salm, R., Björk, M., Duarte, C. M., . . . Silliman, B. R.
(2011). A blueprint for blue carbon: toward an improved understanding of the role of
vegetated coastal habitats in sequestering CO2. Frontiers in Ecology and the
Environment, 9(10), 552-560. doi:10.1890/110004
McLeod, M., Slavich, P., & Harden, S. (2012). Soil and pasture responses to poultry litter
biochar combined with nitrogen fertiliser on a degraded red Vertosol in Tamworth, NSW
Australia. 16 Australian Agronomy Conference, 2012. Retrieved from http://
www.regional.org.au/au/asa/2012/climate-change/8004_mcleodmk.htm
McMahon, J. (2017). The World Needs Carbon Capture, IEA Warns, And It's Not Happening.
Forbes.
McNeil, L. A., Mutch, G. A., Iacoviello, F., Bailey, J. J., Triantafyllou, G., Neagu, D., . . . Metcalfe,
I. S. (2020). Dendritic silver self-assembly in molten-carbonate membranes for efficient
carbon dioxide capture. Energy & Environmental Science. doi:10.1039/C9EE03497H
McQueen, N., Kelemen, P., Dipple, G., Renforth, P., & Wilcox, J. (2020). Ambient weathering of
magnesium oxide for CO2 removal from air. Nature Communications, 11(1), 3299.
doi:10.1038/s41467-020-16510-3
McQueen, N., Psarras, P., Pilorgé, H., Liguori, S., He, J., Yuan, M., . . . Wilcox, J. (2020). Cost
Analysis of Direct Air Capture and Sequestration Coupled to Low-Carbon Thermal
Energy in the United States. Environmental Science & Technology. doi:10.1021/
acs.est.0c00476
McQueen, N., Woodall, C. M., Psarras, P., & Wilcox, J. (2020). Chapter 11 CCS in the Iron and
Steel Industry. In Carbon Capture and Storage (pp. 353-391): The Royal Society of
Chemistry.
McWilliams, G. (2021). Energy firms seize on carbon tech, environmental goals to build new
businesses. Yahoo! Finance. Retrieved from https://finance.yahoo.com/news/energy-
firms-seize-carbon-tech-201716753.html?
guccounter=1&guce_referrer=aHR0cHM6Ly93d3cuZ29vZ2xlLmNvbS8&guce_referrer_si
g=AQAAAF3UCt3no1tySWzLyNIgM8xSB0C-92ysuye-aJ-
AYV7lWWcMSWjRpGzzIpz6WarshBPJdCuEiXJt6tEgh1JNb8Mv3_SsPKgH0gR-
MSDsmATd2ydTDxBiypnrr7KL84aXNdMKArs-y-VR3y877h5Nrw9wPmjeRIFkJ2tL-
aqmppqc
Md Som, A., Wang, Z., & Al-Tabba, A. (2013). Palm frond biochar production and
characterisation. Earth and Environmental Science Transactions of the Royal Society of
Edinburgh, 103(1), 39-50. Retrieved from https://www.cambridge.org/core/journals/earth-
and-environmental-science-transactions-of-royal-society-of-edinburgh/article/div-
classtitlepalm-frond-biochar-production-and-characterisationdiv/
52B98A488FDBD5D0CBC5C739F933B54D
Meador, R. (2018). Croplands can suck lots of CO2 from air if treated with crushed rock.
MinnPost. Retrieved from https://www.minnpost.com/earth-journal/2018/02/croplands-
can-suck-lots-co2-air-if-treated-crushed-rock
Meadowcroft, J. (Ed.) (2009). Caching the Carbon: The Politics and Policy of Carbon Capture
and Storage.
Meadowcroft, J. (2013). Exploring negative territory Carbon dioxide removal and climate policy
initiatives. Climatic Change, 118(1), 137-149. doi:10.1007/s10584-012-0684-1
Meadowcroft, J., & Langhelle, O. (Eds.). (2009). Caching the Carbon The Politics and Policy of
Carbon Capture and Storage.
Meckling, J., & Biber, E. (2021). A policy roadmap for negative emissions using direct air
capture. Nature Communications, 12(1), 2051. doi:10.1038/s41467-021-22347-1
Medina, J. (2020). Section 45Q Carbon Capture Credits Guidance – Update Retrieved from
https://www.pillsburylaw.com/en/news-and-insights/section-45q-carbon-capture-credits-
guidance-update.html
Medlock, K. B., et al. (2020). BCarbon: A New Standard for a Soil Carbon Storage Market in the
CO2 Mitigation Portfolio. Retrieved from https://www.bakerinstitute.org/research/
bcarbon-new-soil-carbon-storage-standard/
Meena, V. D., Dotaniya, M. L., Coumar, V., Rajendiran, S., Ajay, Kundu, S., & Subba Rao, A.
(2014). A Case for Silicon Fertilization to Improve Crop Yields in Tropical Soils.
Proceedings of the National Academy of Sciences, India Section B: Biological Sciences,
84(3), 505-518. doi:10.1007/s40011-013-0270-y
Meharg, C., & Meharg, A. A. (2015). Silicon, the silver bullet for mitigating biotic and abiotic
stress, and improving grain quality, in rice? Environmental and Experimental Botany,
120, 8-17. doi:https://doi.org/10.1016/j.envexpbot.2015.07.001
Mehari, Z. H., Elad, Y., Rav-David, D., Graber, E. R., & Harel, Y. M. (2015). Induced systemic
resistance in tomato (Solanum lycopersicum) against Botrytis cinerea by biochar
amendment involves jasmonic acid signaling. Plant and Soil. doi:10.1007/
s11104-015-2445-1
Mehmood, K., LI, J.-Y., Jiang, J., MASUD, M. M., & Xu, R.-K. (2015). Effect of low energy-
consuming biochars in combination with nitrate fertilizer on soil acidity amelioration and
maize growth. Journal of Soils and Sediments. doi:10.1007/s11368-015-1219-y
Mehmood, M. A., Ibrahim, M., Rashid, U., Nawaz, M., Ali, S., Hussain, A., & Gull, M. (2017).
Biomass production for bioenergy using marginal lands. Sustainable Production and
Consumption, 9, 3-21. doi:https://doi.org/10.1016/j.spc.2016.08.003
Mehta, A. (2019). Biomass carbon capture pilot points to a new sector whose time has come.
Chemistry World. Retrieved from https://www.chemistryworld.com/news/biomass-
carbon-capture-pilot-points-to-a-new-sector-whose-time-has-come/3010037.article
Meier, S., et al. (2015). Effects of biochar on copper immobilization and soil microbial
communities in a metal-contaminated soil. Journal of Soils and Sediments, 1-14.
doi:10.1007/s11368-015-1224-1
Meinshausen, M., Meinshausen, N., Hare, W., Raper, S. C. B., Frieler, K., Knutti, R., . . . Allen,
M. R. (2009). Greenhouse-gas emission targets for limiting global warming to 2°C.
Nature, 458, 1158. Retrieved from https://www.nature.com/articles/nature08017
Meissner, K. J., McNeil, B. I., Eby, M., & Wiebe, E. C. (2012). The importance of the terrestrial
weathering feedback for multimillennial coral reef habitat recovery. Global
Biogeochemical Cycles, 26(3), 1-20. doi:10.1029/2011GB004098
Mekuria, W., et al. (2014). Organic and Clay-Based Soil Amendments Increase Maize Yield,
Total Nutrient Uptake and Soil Properties in Lao PDR. Agroecology and Sustainable
Food Systems, 38(8), 936-961. doi:10.1080/21683565.2014.917144
Mekuria, W., et al. (2015). Soil management for raising crop water productivity in rainfed
production systems in Lao PDR. Archives of Agronomy and Soil Science, 62(1), 53-68.
doi:10.1080/03650340.2015.1037297
Mekuria, W., Noble, A., Hoanh, C. T., McCartney, M., Sengtaheuanghoung, O., Sipaseuth,
N., . . . Getnet, K. (2014). The potential role of soil amendments in increasing agricultural
productivity and improving the livelihood of smallholders in Lao PDR. International Water
Management Institute. Retrieved from https://cgspace.cgiar.org/handle/10568/67615
Melanson, D. (2020). CAER Receives U.S. DOE Grant to Develop Next-Generation Carbon
Dioxide Capture Technology [Press release]. Retrieved from http://uknow.uky.edu/
research/caer-receives-us-doe-grant-develop-next-generation-carbon-dioxide-capture-
technology
Melara, A. J., Singh, U., & Colosi, L. M. (2020). Is aquatic bioenergy with carbon capture and
storage a sustainable negative emission technology? Insights from a spatially explicit
environmental life-cycle assessment. Energy Conversion and Management, 224,
113300. doi:https://doi.org/10.1016/j.enconman.2020.113300
Melas, G. B. (2014). Interactions between different types of biochar and soil microbial activity:
the effects on the dynamics of labile organic matter and the behaviour of some
pesticides. Universitat Autònoma de Barcelona (Autonomous University of Barcelona),
Retrieved from http://www.tdx.cat/handle/10803/283891
Melas, G. B. (2014). WOULD THE ADDITION OF BIOCHAR MODULATE ADVERSE EFFECTS
OF SOME PESTICIDES ON SOIL MICROORGANISMS? Universitat Autònoma de
Barcelona (Autonomous University of Barcelona), Retrieved from http://www.tdx.cat/
bitstream/handle/10803/283891/gbm1de1.pdf?sequence=1#page=108
Melias, D. S. (2015). A Study of Catalytic Carbon Dioxide Methanation Leading to the
Development of Dual Function Materials for Carbon Capture and Utilization. Columbia
University, Retrieved from http://search.proquest.com/socialsciences/docview/
1695272841/abstract/57D2EBFFD9D647ACPQ/6?accountid=14496 (3706744)
Melillo, J. M., Reilly, J. M., Kicklighter, D. W., Gurgel, A. C., Cronin, T. W., Paltsev, S., . . .
Schlosser, C. A. (2009). Indirect Emissions from Biofuels: How Important? Science,
326(5958), 1397-1399. doi:10.1126/science.1180251
Meller-Harel, Y., et al. (2012). Biochar mediates systemic response of strawberry to foliar fungal
pathogens. Plant and Soil, 357(1), 245-257. doi:10.1007/s11104-012-1129-3
Melo, L. C. A., et al. (2013). Influence of Pyrolysis Tempurature on Cadmium and Zinc Sorption
Capacity of Sugar Cane Straw-Derived Biochar. BioResources, 8(4), 4992-5004.
Retrieved from http://ojs.cnr.ncsu.edu/index.php/BioRes/article/view/
BioRes_08_4_Melo_Pyrolysis_Cadmium_Zinc_Sorption
Melo, L. C. A., Puga, A. P., Coscione, A. R., Beesley, L., Abreu, C. A., & Camargo, O. A. (2015).
Sorption and desorption of cadmium and zinc in two tropical soils amended with
sugarcane-straw-derived biochar. Journal of Soils and Sediments, 16(1), 226-234.
doi:10.1007/s11368-015-1199-y
Melton, B. (2019). The 45Q Carbon Sequestration Tax Credits: First Steps or Moral Hazard?
Climate Discovery.
Melzer, L. S. (2012). Carbon Dioxide Enhanced Oil Recovery (CO2 EOR): Factors Involved in
Adding Carbon Capture, Utilization and Storage (CCUS) to Enhanced Oil Recovery.
Retrieved from http://carboncapturecoalition.org/wp-content/uploads/2018/01/
Melzer_CO2EOR_CCUS_Feb2012.pdf
Mendelevitch, R. (2014). The role of CO2-EOR for the development of a CCTS infrastructure in
the North Sea Region: A techno-economic model and applications. International Journal
of Greenhouse Gas Control, 20, 132-159. doi:https://doi.org/10.1016/j.ijggc.2013.11.007
Mendelsohn, R., Litan, R. E., & Fleming, J. (2021). A framework to ensure that voluntary carbon
markets will truly help combat climate change. Retrieved from https://
www.brookings.edu/research/a-framework-to-ensure-that-voluntary-carbon-markets-will-
truly-help-combat-climate-change/
Mendes, G. d. O., et al. (2014). Biochar enhances Aspergillus niger rock phosphate
solubilization by increasing organic acid production and alleviating fluoride toxicity.
Applied and Environmental Microbiology, 80(10), 3081-3085. Retrieved from https://
www.ncbi.nlm.nih.gov/pmc/articles/PMC4018927/
Méndez, A., et al. (2012). Effects of sewage sludge biochar on plant metal availability after
application to a Mediterranean soil. Chemosphere, 89(11), 1354-1359.
Méndez, A., et al. (2015). The effect of paper sludge and biochar addition on brown peat and
coir based growing media properties. Scientia Horticulturae, 193, 225 - 230. doi:10.1016/
j.scienta.2015.07.032
Méndez, A., Paz-Ferreiro, J., Araujo, F., & Gascó, G. (2014). Biochar from pyrolysis of deinking
paper sludge and its use in the treatment of a nickel polluted soil. Journal of Analytical
and Applied Pyrolysis, 107, 46-52. Retrieved from https://www.sciencedirect.com/
science/article/pii/S0165237014000254
Méndez, A., Tarquis, A. M., Saa-Requejo, A., Guerrero, F., & Gascó, G. (2013). Influence of
pyrolysis temperature on composted sewage sludge biochar priming effect in a loamy
soil. Chemosphere.
Méndez, A., Terradillos, M., & Gascó, G. (2013). Physicochemical And Agronomic Properties Of
Biochar From Sewage Sludge Pyrolysed At Different Temperatures. Journal of Analytical
and Applied Pyrolysis.
Mendhe, V. A., Kamble, A. D., Bannerjee, M., Mishra, S., & Sutay, T. (2017). Coalbed Methane:
Present Status and Scope of Enhanced Recovery Through CO2 Sequestration in India.
In M. Goel & M. Sudhakar (Eds.), Carbon Utilization: Applications for the Energy Industry
(pp. 183-203). Singapore: Springer Singapore.
Mendiara, T., Gayán, P., García-Labiano, F., de Diego, L. F., Pérez-Astray, A., Izquierdo, M.
T., . . . Adánez, J. (2017). Chemical Looping Combustion of Biomass: An Approach to
BECCS. Energy Procedia, 114, 6021-6029. doi:https://doi.org/10.1016/
j.egypro.2017.03.1737
Mendiara, T., Pérez-Astray, A., Izquierdo, M. T., Abad, A., de Diego, L. F., García-Labiano,
F., . . . Adánez, J. (2018). Chemical Looping Combustion of different types of biomass in
a 0.5kWth unit. Fuel, 211, 868-875. doi:https://doi.org/10.1016/j.fuel.2017.09.113
Mendiluce, M. (2021). Your Company Pledged to Reduce Its Carbon Footprint. Now What? .
Harvard Business Review. Retrieved from https://hbr.org/2021/06/your-company-
pledged-to-reduce-its-carbon-footprint-now-what
Menetrez, M. Y. (2012). An Overview of Algae Biofuel Production and Potential Environmental
Impact. Environmental Science & Technology, 46(13), 7073-7085. doi:10.1021/
es300917r
Meng, A., Zhang, Y., Zhuo, J., Li, Q., & Qin, L. (2014). Investigation on pyrolysis and
carbonization of Eupatorium adenophorum Spreng and tobacco stem. Journal of the
Energy Institute. doi:10.1016/j.joei.2014.10.003
Meng, C. P., Hanif, A. H. M., Wahid, S. A., & Abdullah, L. C. (2014). Short-Term Field
Decomposition and Physico-Chemical Transformation of Jatropha Pod Biochar in Acidic
Mineral Soil. Open Journal of Soil Science, 04(07), 226 - 234. doi:10.4236/
ojss.2014.47025
Meng, J., et al. . (2013). Physicochemical properties of biochar produced from aerobically
composted swine manure and its potential use as an environmental amendment.
Bioresource Technology.
Meng, Q., Wang, C., Chen, Y., & Chen, J. (2013). A simplified CFD model for air-lift artificial
upwelling. Ocean Engineering, 72, 267-276. doi:https://doi.org/10.1016/
j.oceaneng.2013.07.006
Meng, X., & Yuan, W. (2014). Can Biochar Couple with Algae to Deal with Desertification?
Journal of Sustainable Bioenergy Systems, 04(03), 194 - 198. doi:10.4236/
jsbs.2014.43018
Menichetti, E., & Otto, M. (2009). Energy Balance & Greenhouse Gas Emissions of Biofuels
from a Life-Cycle Perspective. Paper presented at the Proceedings of the Scientific
Committee on Problems of the Environment (SCOPE) International Biofuels Project
Rapid Assessment. https://cip.cornell.edu/DPubS/Repository/1.0/Disseminate?
view=body&id=pdf_1&handle=scope/1245782005
Menn, J. (2020). Stripe picks $1 million in carbon-removal projects to spur industry. Reuters.
Retrieved from https://www.reuters.com/article/us-climate-change-stripe/stripe-picks-1-
million-in-carbon-removal-projects-to-spur-industry-idUSKBN22U1YK
Menyailo, O. V., Lehmann, J., Cravo, M. S., & Zech, W. (2003). Soil Microbial Activities in Tree-
Based Systems and Natural Forests of the Central Amazon, Brazil. Biology and Fertility
of Soils, 38(1), 1-9. Retrieved from https://link.springer.com/article/10.1007/
s00374-003-0631-4
Mercedes Maroto-Valer, M., Lu, Z., Zhang, Y., & Tang, Z. (2008). Sorbents for CO2 capture from
high carbon fly ashes. Waste Management, 28(11), 2320-2328. doi:https://doi.org/
10.1016/j.wasman.2007.10.012
Merchant, N. i. (2021). The Fatal Design Flaw in Most Carbon Offsets. The Carbon Curve.
Retrieved from https://carboncurve.substack.com/p/offsets
Merchant, N. i. (2021). Making the Shift from Traditional Offsets to Permanent Carbon Removal
- Three Pathways. The Carbon Curve. Retrieved from https://carboncurve.substack.com/
p/making-the-shift-from-traditional
Merchant, N. i. (2021). Six Questions to Ask Before Buying Another Carbon Offset. The Carbon
Curve. Retrieved from https://carboncurve.substack.com/p/mobile
Merk, C., Klaus, G., Pohlers, J., Ernst, A., Ott, K., & Rehdanz, K. (2019). Public perceptions of
climate engineering: Laypersons' acceptance at different levels of knowledge and
intensities of deliberation. GAIA - Ecological Perspectives for Science and Society, 28(4),
348-355. doi:10.14512/gaia.28.4.6
Merk, C., Pönitzsch, G., & Rehdanz, K. (2018). Do climate engineering experts display moral-
hazard behaviour? Climate Policy, 1-13. doi:10.1080/14693062.2018.1494534
Mernit, J. L. (2020). The Scary Politics of Capturing Carbon from Coal. Capital & Main.
Retrieved from https://capitalandmain.com/scary-politics-of-capturing-carbon-from-
coal-0827
Mervine, E. M., Wilson, S. A., Power, I. M., Dipple, G. M., Turvey, C. C., Hamilton, J. L., . . .
Southam, G. (2018). Potential for offsetting diamond mine carbon emissions through
mineral carbonation of processed kimberlite: an assessment of De Beers mine sites in
South Africa and Canada. Mineralogy and Petrology, 112(2), 755-765. doi:10.1007/
s00710-018-0589-4
Merzouk, A., Levasseur, M., Scarratt, M. G., Michaud, S., Rivkin, R. B., Hale, M. S., . . . Li, W. K.
W. (2006). DMSP and DMS dynamics during a mesoscale iron fertilization experiment in
the Northeast Pacific–Part II: Biological cycling. Deep Sea Research Part II: Topical
Studies in Oceanography, 53(20–22), 2370-2383. doi:http://dx.doi.org/10.1016/
j.dsr2.2006.05.022
Meskhidze, N., Chameides, W. L., & Nenes, A. (2005). Dust and pollution: a recipe for
enhanced ocean fertizilation? Journal of Geophysical Research: Atmospheres, 110(D3),
1-23. Retrieved from http://onlinelibrary.wiley.com/doi/10.1029/2004JD005082/abstract
Messenger, S. P. (2009). A Cost Benefit Analysis of the Application of Biochar in the Scottish
Whisky Industry.
Messina, L. G., Bonelli, P. R., & Cukierman, A. L. (2016). Effect of mineral matter removal on
pyrolysis of wood sawdust from an invasive species. Energy Sources, Part A: Recovery,
Utilization, and Environmental Effects, 38(4), 542 - 548.
doi:10.1080/15567036.2013.799616
Mészáros, E., et al. (2007). Do All Carbonized Charcoals Have the Same Chemical Structure?
Implications of Thermogravimetry-Mass Spectrometry Measurements. Industrial and
Engineering Chemistry Research, 46(18), 5943-5953. Retrieved from http://
pubs.acs.org/doi/abs/10.1021/ie0615842
Mete, F. Z., et al. (2015). Synergistic Effects of Biochar and NPK Fertilizer on Soybean Yield in
an Alkaline Soil. Pedosphere, 25(5), 713 - 719. doi:10.1016/s1002-0160(15)30052-7
Metting, F. B., Smith, J. L., Amthor, J. S., & Izaurralde, R. C. (2001). Science Needs and New
Technology for Increasing Soil Carbon Sequestration. Climatic Change, 51(1), 11-34.
doi:10.1023/a:1017509224801
Metzger, R. A., & Benford, G. (2001). Sequestering of Atmospheric Carbon through Permanent
Disposal of Crop Residue. Climatic Change, 49(1), 11-19. doi:10.1023/
a:1010765013104
Metzger, R. A., Benford, G., & Hoffert, M. I. (2002). To Bury or to Burn: Optimum Use of Crop
Residues to Reduce Atmospheric CO2. Climatic Change, 54(3), 369-374. doi:10.1023/
a:1016136202309
Meyer, K., & Newman, P. (2020). A Planetary Quota for Carbon Dioxide. In Planetary
Accounting: Quantifying How to Live Within Planetary Limits at Different Scales of
Human Activity (pp. 121-136). Singapore: Springer Singapore.
Meyer, N. A., Vögeli, J. U., Becker, M., Broadhurst, J. L., Reid, D. L., & Franzidis, J. P. (2014).
Mineral carbonation of PGM mine tailings for CO2 storage in South Africa: A case study.
Minerals Engineering, 59, 45-51. doi:https://doi.org/10.1016/j.mineng.2013.10.014
Meyer, R. (2019). The Green New Deal Hits Its First Major Snag. The Atlantic, (January 18).
Retrieved from https://www.theatlantic.com/science/archive/2019/01/first-fight-about-
democrats-climate-green-new-deal/580543/
Meyer, R. (2020). A Start-Up’s Unusual Plan to Suck Carbon Out of the Sky. The Atlantic.
Retrieved from https://www.theatlantic.com/science/archive/2020/11/stripe-climate-
carbon-removal/617201/
Meyer, R. (2021). The Weekly Planet: Why a Political Philosopher Is Thinking About Carbon
Removal. The Atlantic. Retrieved from https://www.theatlantic.com/science/archive/
2021/03/why-political-philosopher-thinking-about-carbon-removal/618195/
Meyer, S., Bright, R. M., Fischer, D., Schultz, H., & Glaser, B. (2014). Albedo Impact on the
Suitability of Biochar Systems To Mitigate Global Warming. Environmental Science &
Technology, 46, 12726-12734. Retrieved from http://adsabs.harvard.edu/abs/
2012EnST...4612726M
Meyer, S., Genesio, L., Vogel, I., Schmidt, H.-P., Soja, G., Someus, E., . . . Glaser, B. (2017).
Biochar standardization and legislation harmonization. Journal of Environmental
Engineering and Landscape Management, 25(2), 175-191.
doi:10.3846/16486897.2016.1254640
Meyer, S., Glaser, B., & Quicker, P. (2011). Technical, Economical, and Climate-Related Aspects
of Biochar Production Technologies: A Literature Review. Environmental Science &
Technology, 45(22), 9473-9483. doi:10.1021/es201792c
Meyer-Kohlstock, D., Schmitz, T., & Kraft, E. (2015). Organic Waste for Compost and Biochar in
the EU: Mobilizing the Potential. In.
Meyer-Ohlendorf, N. (2020). EU Framework for CO2 Removals – Targets and Commitments.
Retrieved from https://www.ecologic.eu/17666
Meylan, F. D., Moreau, V., & Erkman, S. (2015). CO2 utilization in the perspective of industrial
ecology, an overview. Journal of CO2 Utilization, 12, 101-108. doi:http://dx.doi.org/
10.1016/j.jcou.2015.05.003
Meynet, P., et al. (2013). Predicting the effects of biochar on volatile petroleum hydrocarbon
biodegradation and emanation from soil: A bacterial community finger-print analysis
inferred modelling approach. Soil Biology and Biochemistry, 68, 20-30. Retrieved from
http://www.sciencedirect.com/science/article/pii/S0038071713003167
Meysman, F. J. R., & Montserrat, F. (2017). Negative CO2 emissions via enhanced silicate
weathering in coastal environments. Biology Letters, 13(4). doi:10.1098/rsbl.2016.0905
Mia, S., et al. (2014). Biochar application rate affects biological nitrogen fixation in red clover
conditional on potassium availability. Agriculture, Ecosystems & Environment, 191,
83-91. Retrieved from http://www.sciencedirect.com/science/article/pii/
S0167880914001303
Mia, S., et al. (2015). Production of Biochar for Soil Application: A Comparative Study of Three
Kiln Models. Pedosphere, 25(5), 696 - 702. doi:10.1016/s1002-0160(15)30050-3
Mia, S., Dijkstra, F. A., & Singh, B. (2017). Chapter One - Long-Term Aging of Biochar: A
Molecular Understanding With Agricultural and Environmental Implications. In D. L.
Sparks (Ed.), Advances in Agronomy (Vol. 141, pp. 1-51): Academic Press.
Mia, S., van Groenigen, J. W., van de Voorde, T. F. J., Oram, N. J., Bezemer, T. M., Mommer, L.,
& Jeffery, S. (2014). Biochar application rate affects biological nitrogen fixation in red
clover conditional on potassium availability. Agriculture, Ecosystems & Environment,
191, 83-91. doi:http://dx.doi.org/10.1016/j.agee.2014.03.011
Micellia, C. (2020). Earning Potential Towards a new business model for carbon farming.
Carbon Mechanisms Review, 9(2), 44-50. Retrieved from https://www.carbon-
mechanisms.de/en/publications/details/cmr-02-2021
Michael Jerry Antal, J., & Grønli, M. (2003). The Art, Science, and Technology of Charcoal
Production. Industrial and Engineering Chemistry Research, 42. Retrieved from http://
pubs.acs.org/doi/abs/10.1021/ie0207919
Michael, K., Arnot, M., Cook, P., Ennis-King, J., Funnell, R., Kaldi, J., . . . Paterson, L. (2009).
CO2 storage in saline aquifers I—Current state of scientific knowledge. Energy
Procedia, 1(1), 3197-3204. doi:https://doi.org/10.1016/j.egypro.2009.02.103
Michael, K., Golab, A., Shulakova, V., Ennis-King, J., Allinson, G., Sharma, S., & Aiken, T.
(2010). Geological storage of CO2 in saline aquifers—A review of the experience from
existing storage operations. International Journal of Greenhouse Gas Control, 4(4),
659-667. doi:https://doi.org/10.1016/j.ijggc.2009.12.011
Michel, K., Terhoeven-Urselmans, T., Nitschke, R., Steffan, P., & Ludwig, B. (2008). Use of near-
and mid-infrared spectroscopy to distinguish carbon and nitrogen originating from char
and forest-floor material in soils. Journal of Plant Nutrition and Soil Science-Zeitschrift
Fur Pflanzenernahrung Und Bodenkunde, 172(1), 63-70.
Michiki, H. (1995). Biological CO2 fixation and utilization project. Energy Conversion and
Management, 36(6), 701-705. doi:https://doi.org/10.1016/0196-8904(95)00102-J
Michinori, N. (1998). Microbial Fertilizers in Japan. Retrieved from Ibaraki, Japan:
Microsoft. (2021). Microsoft's FY21 Carbon Removal Portfolio. Retrieved from https://
app.powerbi.com/view?
r=eyJrIjoiOGM2MGFlNGYtMGNlNy00YzY5LWEyMTAtOTA0ODEyNzEzYTczIiwidCI6Im
MxMzZlZWMwLWZlOTItNDVlMC1iZWFlLTQ2OTg0OTczZTIzMiIsImMiOjF9
Middelburg, J. J., Soetaert, K., & Hagens, M. (2020). Ocean Alkalinity, Buffering and
Biogeochemical Processes. Reviews of Geophysics, 58(3), e2019RG000681.
doi:10.1029/2019rg000681
Middleton, R. S. (2013). A new optimization approach to energy network modeling:
anthropogenic CO2 capture coupled with enhanced oil recovery. International Journal of
Energy Research, 37(14), 1794-1810. doi:10.1002/er.2993
Middleton, R. S., Levine, J. S., Bielicki, J. M., Viswanathan, H. S., Carey, J. W., & Stauffer, P. H.
(2015). Jumpstarting commercial-scale CO2 capture and storage with ethylene
production and enhanced oil recovery in the US Gulf. Greenhouse Gases: Science and
Technology, 5(3), 241-253. doi:doi:10.1002/ghg.1490
Miguel Rodríguez, T. (2010). Biochar as a Strategy for Sustainable Land Management, Poverty
Reduction, and Climate Change Mitigation/Adaptation? (MSc Environment and
Resource Management). Vrije Universiteit, Amsterdam. Retrieved from http://
www.biochar-international.org/sites/default/files/Miguel_Rodriguez.pdf
Mika, A. M., & Keeton, W. S. (2013). Factors contributing to carbon fluxes from bioenergy
harvests in the U.S. Northeast: an analysis using field data. GCB Bioenergy, 5(3),
290-305. doi:10.1111/j.1757-1707.2012.01183.x
Mikajlo, I., et al. (2014). Microbial transformation of nitrogen in soil after the biochar addition.
Retrieved from http://mnet.mendelu.cz/mendelnet2014/articles/52_mikajlo_1076.pdf
Mikajlo, I., et al. (2015). Effect of PGPB Inoculation, Addition of Biochar, and Mineral N
Fertilization on Mycorrhizal Colonization. International Journal of Biological,
Biomolecular, Agricultural, Food and Biotechnological Engineering, 9(12), 1189-1192.
Retrieved from http://www.waset.org/publications/10003031
Mikajlo, I., et al. (2015). Effect of Plant Growth Promoting Bacteria Inoculation, Addition of
Biochar, and Mineral N Fertilization on Mycorrhizal Colonization. International Journal of
Biological, Biomolecular, Agricultural, Food and Biotechnological Engineering, 9(12),
1235-1238. Retrieved from http://www.waset.org/publications/10003135
Mikkelsen, M., Jorgensen, M., & Krebs, F. C. (2010). The teraton challenge. A review of fixation
and transformation of carbon dioxide. Energy Environ. Sci., 3, 43-81. Retrieved from
https://pubs.rsc.org/lv/content/articlehtml/2010/ee/b912904a?
casa_token=nBOBoCNNBTYAAAAA:9H_AzDKLCbpXxIND4v3ZBwnStbO-
sGQIYnQuSku3qs707g2CVVS1LRSwsvIAwUniFZ4SAeLGaSzkMx0
Mikkelsen, M., Jørgensen, M., & Krebs, F. C. (2010). The teraton challenge. A review of fixation
and transformation of carbon dioxide. Energy & Environmental Science, 3(1), 43-81.
doi:10.1039/B912904A
Mikkelsen, M., Jørgensen, M., & Krebs, F. C. (2010). The teraton challenge. A review of fixation
and transformation of carbon dioxide. Energy & Environmental Science, 3(1), 43-81.
doi:10.1039/B912904A
Mikulčić, H., Ridjan Skov, I., Dominković, D. F., Wan Alwi, S. R., Manan, Z. A., Tan, R., . . .
Wang, X. (2019). Flexible Carbon Capture and Utilization technologies in future energy
systems and the utilization pathways of captured CO2. Renewable and Sustainable
Energy Reviews, 114, 109338. doi:https://doi.org/10.1016/j.rser.2019.109338
Mikulka, J. (2019). Stanford Study Says Renewable Power Eliminates Argument for Using
Carbon Capture with Fossil Fuels. Desmog. Retrieved from https://
www.desmogblog.com/2019/11/21/jacobson-stanford-carbon-capture-fossil-fuels-
renewables
Mikulka, J. (2021). Fossil Fuel Tax Programs to Cut Emissions Lead to Lots of Industry Profit,
Little Climate Action. Desmog. Retrieved from https://www.desmog.com/2021/04/04/
fossil-fuel-tax-programs-emissions-climate/
Mikunda, T., Brunner, L., Skylogianni, E., Monteiro, J., Rycroft, L., & Kemper, J. (2021). Carbon
capture and storage and the sustainable development goals. International Journal of
Greenhouse Gas Control, 108, 103318. doi:https://doi.org/10.1016/j.ijggc.2021.103318
Mikunda, T., & Feenstra, Y. (2009). Effective communication strategies to engage the public and
stakeholders around CCS projects: a review of country experiences. Retrieved from
http://www.globalccsinstitute.com/sites/www.globalccsinstitute.com/files/
Effective_communications_strategy_CCS_Brussels_10112010_Wksp_Rep_ECN.pdf
Milano, J., Ong, H. C., Masjuki, H. H., Chong, W. T., Lam, M. K., Loh, P. K., & Vellayan, V.
(2016). Microalgae biofuels as an alternative to fossil fuel for power generation.
Renewable and Sustainable Energy Reviews, 58, 180-197. doi:http://doi.org/10.1016/
j.rser.2015.12.150
Milér, T., Hollan, J., & Svobodová, J. (2014). Biochar Hands-on Education. Paper presented at
the 10th International Conference on Hands-on Science.
Milla, O., & Huang, W. (2013). Identifying the Advantages of Using MSW Bottom Ash in
Combination with Rice Husk and Bamboo Biochar Mixtures as Soil Modifiers:
Enhancement of the Release of Polyphenols from a Carbon Matrix. J. Hazard. Toxic
Radioact. Waste.
Milla, O., Wang, H., & Huang, W. F. (2013). Feasibility Study using Municipal Solid Waste
Incineration Bottom Ash and Biochar from Binary Mixtures of Organic Waste as
Agronomic Materials. J. Hazard. Toxic Radioact. Waste.
Milla, O. V., et al. (2014). Effects of Pyrolization Temperature of Bamboo Biochars on the
Germination and Growth Rates of Zea Maize L. and Brassica Rapa. Journal of
Technology, 29(4), 239-250. Retrieved from http://jot.ntust.edu.tw/index.php/jot/article/
view/191
Millar, R. J., & Allen, M. R. (2020). Chapter 2 Understanding the Role of CCS Deployment in
Meeting Ambitious Climate Goals. In Carbon Capture and Storage (pp. 8-35): The Royal
Society of Chemistry.
Miller, A. Z., Rosa, J. M. D. l., Paneque, M., & Knicker, H. (2016). Development of fugal strains
in biochar amended soils. Geophysical Research Abstracts. Retrieved from http://
meetingorganizer.copernicus.org/EGU2016/EGU2016-6564.pdf
Miller, B. (2015). 8 - Greenhouse gas – carbon dioxide emissions reduction technologies. In
Fossil Fuel Emissions Control Technologies (pp. 367-438): Butterworth-Heinemann.
Miller, S., Essen, M., Anderson, N., Page-Dumroese, D., McCollum, D., Bergman, R., & Elder, T.
(2015). Burgeoning biomass: Creating efficient and sustainable forest biomass supply
chains in the Rockies, Part II. Science You Can Use Bulletin, 1-11. Retrieved from http://
www.treesearch.fs.fed.us/pubs/50111
Miller-Robbie, L., Ulrich, B. A., Ramey, D. F., Spencer, K. S., Herzog, S. P., Cath, T. Y., . . .
Higgins, C. P. (2014). Life cycle energy and greenhouse gas assessment of the co-
production of biosolids and biochar for land application. Journal of Cleaner Production.
doi:10.1016/j.jclepro.2014.12.050
Miltner, B. C., & Coomes, O. T. (2014). Indigenous innovation incorporates biochar into
swidden-fallow agroforestry systems in Amazonian Peru. Agroforestry Systems.
doi:10.1007/s10457-014-9775-5
Mimmo, T., et al. (2014). Effect of pyrolysis temperature on miscanthus (Miscanthus ×
giganteus) biochar physical, chemical and functional properties. Biomass and Bioenergy,
62, 149-157. Retrieved from http://www.sciencedirect.com/science/article/pii/
S0961953414000051
Min, D., et al. (2015). Phosphate adsorption characteristics of La-containing biochar. Journal of
Ecology and Rural Environment, 31(3), 372-379. Retrieved from http://
www.cabdirect.org/abstracts/
20153237691.html;jsessionid=A73C5738283169E150513DC4B40250ED
Minang, P. A., Duguma, L. A., Bernard, F., Mertz, O., & van Noordwijk, M. (2014). Prospects for
agroforestry in REDD+ landscapes in Africa. Current Opinion in Environmental
Sustainability, 6, 78-82. doi:https://doi.org/10.1016/j.cosust.2013.10.015
Minang, P. A., van Noordwijk, M., & Swallow, B. M. (2012). High-Carbon-Stock Rural-
Development Pathways in Asia and Africa: Improved Land Management for Climate
Change Mitigation. In P. K. R. Nair & D. Garrity (Eds.), Agroforestry - The Future of
Global Land Use (pp. 127-143).
Minasny, B., Arrouays, D., McBratney, A. B., Angers, D. A., Chambers, A., Chaplot, V., . . .
Winowiecki, L. (2018). Rejoinder to Comments on Minasny et al., 2017 Soil carbon 4 per
mille Geoderma 292, 59–86. Geoderma, 309, 124-129. doi:https://doi.org/10.1016/
j.geoderma.2017.05.026
Minasny, B., Malone, B. P., McBratney, A. B., Angers, D. A., Arrouays, D., Chambers, A., . . .
Winowiecki, L. (2017). Soil carbon 4 per mille. Geoderma, 292, 59-86. doi:https://doi.org/
10.1016/j.geoderma.2017.01.002
(2020, September 3 ). Air Miners [Retrieved from https://www.youtube.com/watch?
v=SRVnitJIr2c&list=PLF8369A27273314D8&index=3
(2020). Deep Dive on 45Q Tax Credits [Retrieved from https://www.youtube.com/watch?
v=G2YAQKoLiAI&feature=youtu.be
Ming, J., et al. (2014). Geochemistry,Ore Deposits and Petrology: A Study on Cr() Migration
and Locking in Biochar-amended Soil. Geoscience, 28(6), 1194-1201. Retrieved from
http://www.geoscience.net.cn/EN/abstract/abstract13569.shtml
Ming, T., de_Richter, R., Shen, S., & Caillol, S. (2016). Fighting global warming by greenhouse
gas removal: destroying atmospheric nitrous oxide thanks to synergies between two
breakthrough technologies. Environmental Science and Pollution Research, 23(7),
6119-6138. doi:10.1007/s11356-016-6103-9
Ming, T., Richter, R. d., Dietrich Oeste, F., Tulip, R., & Caillol, S. (2021). A nature-based negative
emissions technology able to remove atmospheric methane and other greenhouse
gases. Atmospheric Pollution Research, 12(5). doi:https://doi.org/10.1016/
j.apr.2021.02.017
Ming, T., Richter, R. d., Dietrich Oeste, F., Tulip, R., & Caillol, S. (2021). A nature-based negative
emissions technology able to remove atmospheric methane and other greenhouse
gases. Atmospheric Pollution Research, 12(5), 101035. doi:https://doi.org/10.1016/
j.apr.2021.02.017
Mintenig, J., Khabbazan, M. M., & Held, H. (2017). The Role of Bioenergy and Carbon Capture
and Storage (BECCS) in the Case of Delayed Climate Policy – Insights from Cost-Risk
Analysis. Earth System Dynamics Disscusion Paper, 2017, 1-30. doi:10.5194/
esd-2017-117
Minx, J., Fuss, S., & Nemet, G. F. (2018). Guest post: Seven key things to know about ‘negative
emissions’. CarbonBrief. Retrieved from https://www.carbonbrief.org/guest-post-seven-
key-things-to-know-about-negative-emissions
Minx, J. C., et al. (2018). Negative emissions—Part 1: Research landscape and synthesis.
Environmental Research Letters, 13(6), 063001. Retrieved from http://stacks.iop.org/
1748-9326/13/i=6/a=063001
Minx, J. C., & Colell, A. (2020). The Plan for a Circular Carbon Economy
The market for captured CO2 products could be worth $1 trillion. Retrieved from https://
www.berggruen.org/the-worldpost/articles/the-plan-for-a-circular-carbon-economy/
Minx, J. C., Lamb, W. F., Callaghan, M. W., Bornmann, L., & Fuss, S. (2017). Fast growing
research on negative emissions. Environmental Research Letters, 12(3), 1-10. Retrieved
from http://iopscience.iop.org/article/10.1088/1748-9326/aa5ee5/pdf
Mishra, S., Hawkins, J., Barclay, T. H., & Harley, M. (2014). Estimating CO2-EOR Potential and
Co-sequestration Capacity in Ohio's Depleted Oil Fields. Energy Procedia, 63,
7785-7795. doi:https://doi.org/10.1016/j.egypro.2014.11.813
Mishra, S., Roy, M., & Mohanty, K. (2019). Microalgal bioenergy production under zero-waste
biorefinery approach: Recent advances and future perspectives. Bioresource
Technology, 122008. doi:https://doi.org/10.1016/j.biortech.2019.122008
Mishra, V. (2015). Bamboo and Its Connectivity to the Different Fields of Economics: A Potential
Resource of Modern India. International Journal of Innovative Research and
Development, 4(2), 140-145. Retrieved from http://www.ijird.com/index.php/ijird/article/
view/60391/47256
MIT. (2020). Seeding oceans with iron may not impact climate change. Science Daily. Retrieved
from https://www.sciencedaily.com/releases/2020/02/200217162348.htm
Mitchell, B. G., Brody, E. A., Holm-Hansen, O., McClain, C., & Bishop, J. (1991). Light limitation
of phytoplankton biomass and macronutrient utilization in the Southern Ocean.
Limnology and Oceanography, 36(8), 1662-1677. doi:10.4319/lo.1991.36.8.1662
Mitchell, C. E., Santos-Carballal, D., Beale, A. M., Jones, W., Morgan, D. J., Sankar, M., & de
Leeuw, N. H. (2021). The role of surface oxidation and Fe–Ni synergy in Fe–Ni–S
catalysts for CO2 hydrogenation. Faraday Discussions, 230(0), 30-51. doi:10.1039/
D0FD00137F
Mitchell, D., Allen, M. R., Hall, J. W., Muller, B., Rajamani, L., & Le Quéré, C. (2018). The myriad
challenges of the Paris Agreement. Philosophical Transactions of the Royal Society A:
Mathematical, Physical and Engineering Sciences, 376(2119).
doi:10.1098/rsta.2018.0066
Mitchell, K. A. (2015). The effect of biochar on the growth of agricultural weed species.
PURDUE UNIVERSITY, Retrieved from http://gradworks.umi.com/15/98/1598059.html
Mitchell, P. J., Simpson, A. J., Soong, R., & Simpson, M. J. (2015). Shifts in microbial
community and water-extractable organic matter composition with biochar amendment in
a temperate forest soil. Soil Biology and Biochemistry, 81, 244 - 254. doi:10.1016/
j.soilbio.2014.11.017
Mitchell, S. M., Subbiah, M., Ullman, J. L., Frear, C., & Call, D. R. (2015). Evaluation of 27
different biochars for potential sequestration of antibiotic residues in food animal
production environments. Journal of Environmental Chemical Engineering, 3(1), 162 -
169. doi:10.1016/j.jece.2014.11.012
Mitchell, S. R., Harmon, M. E., & O'Connell, K. E. B. (2012). Carbon debt and carbon
sequestration parity in forest bioenergy production. GCB Bioenergy, 4(6), 818-827.
doi:doi:10.1111/j.1757-1707.2012.01173.x
Mitchell-Larson, E. (2020). Right topics, wrong emphasis: the Carney Taskforce on carbon
offsetting misses the mark. Retrieved from https://www.smithschool.ox.ac.uk/news/
articles/201211-right-topics-wrong-emphasis.html
Mitra, A., Sundaresan, J., Ali, K. S., Pal, N., Datta, U., Mitra, A., . . . Zaman, S. (2017). Baseline
Data of Stored Carbon in Spinifex littoreus from Kadmath Island, Lakshadweep. In M.
Goel & M. Sudhakar (Eds.), Carbon Utilization: Applications for the Energy Industry (pp.
81-87). Singapore: Springer Singapore.
Mitra, A., & Zaman, S. (2014). Carbon Sequestration by Coastal Floral Community: A ground
zero observation on blue carbon: TERI.
Mitra, S., Bianchi, T. S., McKee, B. A., & Sutula, M. (2002). Black carbon from the Mississippi
river: Quantities, sources, and potential implications for the global carbon cycle.
Environmental Science & Technology, 36(11), 2296-2302. Retrieved from http://
pubs.acs.org/doi/abs/10.1021/es015834b
Mitra, S., Singh, P., Manzoor, S., Bhattacharyya, P., Bera, T., Kumar Patra, A., . . . Borah, P.
(2015). Can rice and wheat biochar amendment protect the carbon loss from tropical
soils-An experimental study. Environmental Progress & Sustainable Energy, 35(1),
183-188. doi:10.1002/ep.12193
Mitterpach, J., Adam, C., & Samešová, D. (2014). Aspects of Ecodesign when Designing a
Retort with Decreased Emissions in the Production of Biochar. Advanced Materials
Research, 1001, 3-14. doi:10.4028/www.scientific.net/AMR.1001.3
Miyajima, T., et al. (2018). Carbon Sequestration in Sediment as an Ecosystem Function of
Seagrass Meadows. In T. Kuwae & M. Hori (Eds.), Blue Carbon in Shallow Coastal
Ecosystems: Carbon Dynamics, Policy, and Implementation (pp. 33-71).
Miyake, S., et al. (2012). Land-use and environmental pressures resulting from current and
future bioenergy crop expansion: a review. Journal of Rural Studies, 28(4), 650-658.
Retrieved from http://www.sciencedirect.com/science/article/pii/S0743016712000770
Mo, J.-L., & Zhu, L. (2014). Using Floor Price Mechanisms to Promote Carbon Capture and
Storage (Ccs) Investment and Co2 Abatement. 25(3-4), 687-707.
doi:10.1260/0958-305x.25.3-4.687
Moe, E., & S. Røttereng, J.-K. (2018). The post-carbon society: Rethinking the international
governance of negative emissions. Energy Research & Social Science, 44, 199-208.
doi:https://doi.org/10.1016/j.erss.2018.04.031
Moebius-Clune, B. N., van Es, H. M., Idowu, O. J., Schindelbeck, R. R., Moebius-Clune, D. J., &
Wolfe, D. W. (2008). Long-term effects of harvesting maize stover and tillage on soil
quality. Soil Science Society of America Journal, 72(4), 960-969.
Moens, J. (2020). Biochar Traps Water and Fixes Carbon in Soil, Helping the Climate. But It’s
Expensive. Inside Climate News.
Moges, M. E., Eregno, F. E., & Heistad, A. (2015). Performance of biochar and filtralite as
polishing step for on-site greywater treatment plant. In.
Moghanloo, R. G., Yan, X., Law, G., Roshani, S., Babb, G., & Herron, W. (2017). Challenges
Associated with CO2 Sequestration and Hydrocarbon Recovery. In Y. Yun (Ed.), Recent
Advances in Carbon Capture and Storage (pp. Ch. 10). Rijeka: InTech.
Mohamed, B. A., Kim, C. S., Ellis, N., & Bi, X. (2016). Microwave-assisted catalytic pyrolysis of
switchgrass for improving bio-oil and biochar properties. Bioresource Technology, 201,
121 - 132. doi:10.1016/j.biortech.2015.10.096
Mohamed, I., Zhang, G.-s., Li, Z.-g., Liu, Y., Chen, F., & Dai, K. (2015). Ecological restoration of
an acidic Cd contaminated soil using bamboo biochar application. Ecological
Engineering, 84, 67 - 76. doi:10.1016/j.ecoleng.2015.07.009
Mohamed, M. H., Wilson, L. D., Shah, J. R., Bailey, J., Peru, K. M., & Headley, J. V. (2015). A
novel solid-state fractionation of naphthenic acid fraction components from oil sands
process-affected water. Chemosphere, 136, 252 - 258. doi:10.1016/
j.chemosphere.2015.05.029
Mohammad, H., Shamim, M., Sultan, A., Md., A., & Purnendu, B. (2015). EFFECT OF
BIOCHAR, POULTRY LITTER, COW DUNG AND VERMICOMPOST ON YIELD OF
LENTIL. THE BANGLADESH JOURNAL OF SCIENTIFIC RESEARCH. Retrieved from
http://www.researchgate.net/profile/Shamim_Mia3/publication/
281237921_EFFECT_OF_BIOCHAR_POULTRY_LITTER_COW_DUNG_AND_VERMI
COMPOST_ON_YIELD_OF_LENTIL/links/55dc58f108aed6a199ad7cce.pdf
Mohammad Hariz, A. R., et al. (2015). Local practices for production of rice husk biochar and
coconut shell biochar: Production methods, product characteristics, nutrient and field
water holding capacity. Journal of Tropical Agriculture and Food Science, 43(1), 91-101.
Retrieved from http://rac1.mardi.gov.my/jtafs/43-1/biochar.pdf
Mohammadi, A., Cowie, A., Mai, T. L. A., de la Rosa, R. A., Brandão, M., Kristiansen, P., &
Joseph, S. (2016). Quantifying the Greenhouse Gas Reduction Benefits of Utilising
Straw Biochar and Enriched Biochar. Energy Procedia, 97, 254-261. doi:https://doi.org/
10.1016/j.egypro.2016.10.069
Mohammadi, A., Cowie, A., Mai, T. L. A., de la Rosa, R. A., Kristiansen, P., Brandão, M., &
Joseph, S. (2015). Biochar use for climate-change mitigation in rice cropping systems.
Journal of Cleaner Production. doi:10.1016/j.jclepro.2015.12.083
Mohammed, I. Y., et al. . (2015). Pyrolysis of Napier Grass in a Fixed Bed Reactor: Effect of
Operating Conditions on Product Yields and Characteristics. BioResources, 10(4),
6457-6478. Retrieved from http://152.1.0.246/index.php/BioRes/article/view/
BioRes_10_4_6457_Mohammed_Pyrolysis_Napier_Grass_Fixed_Bed
Mohan, D., et al. (2011). Modeling and evaluation of chromium remediation from water using
low cost bio-char, a green adsorbent. Journal of Hazardous Materials, 188(1-3),
319-333. Retrieved from http://www.sciencedirect.com/science/article/pii/
S0304389411001762
Mohan, D., et al. (2012). Fluoride Removal from Water using Bio-Char, a Green Waste, Low-
Cost Adsorbent: Equilibrium Uptake and Sorption Dynamics Modeling. Industrial and
Engineering Chemistry Research (ACS), 51, 900–914.
Mohan, D., Abhishek, K., Sarswat, A., Patel, M., Singh, P., & Pittman, C. U. (2018). Biochar
production and applications in soil fertility and carbon sequestration – a sustainable
solution to crop-residue burning in India. RSC Advances, 8(1), 508-520. doi:10.1039/
C7RA10353K
Mohan, D., Kumar, A., & Pittman, C. U. (2016). Geostatistical and Geospatial Approaches for
the Characterization of Natural Resources in the EnvironmentSustainable Biochar - A
Tool for Climate Change Mitigation, Soil Management and Water and Wastewater
Treatment. Cham: Springer International Publishing.
Mohan, D., Kumar, S., & Srivastava, A. (2014). Fluoride removal from ground water using
magnetic and nonmagnetic corn stover biochars. Ecological Engineering, 73, 798 - 808.
doi:10.1016/j.ecoleng.2014.08.017
Mohan, D., Jr., Pittman, C. U., Bricka, M., Smith, F., Yancey, B., & Mohammad, J. (2007).
Sorption of arsenic, cadmium, and lead by chars produced from fast pyrolysis of wood
and bark during bio-oil production. Journal of Colloid and Interface Science, 310(1),
57-73.
Mohan, D., Sarswat, A., Ok, Y. S., & U., P. J. m. C. (2014). Organic and Inorganic Contaminants
Removal from Water with Biochar, a Renewable, Low Cost and Sustainable Adsorbent-
a Critical Review. Bioresource Technology.
Mohan, D., Singh, P., Sarswat, A., Steele, P. H., & Pittman, C. U. (2014). Lead sorptive removal
using magnetic and nonmagnetic fast pyrolysis energy cane biochars. Journal of Colloid
and Interface Science, 448, 238-250. doi:10.1016/j.jcis.2014.12.030
Mohan, S. V., & Karthikeyan, J. (1997). Removal of lignin and tannin colour from aqueous
solution by adsorption onto activated charcoal. Environmental Pollution, 97(1-2),
183-187. Retrieved from http://www.sciencedirect.com/science/article/pii/
S0269749197000250
Mohanty, A., Vivekanandhan, S., Anstey, A., & Misra, M. (2015). SUSTAINABLE COMPOSITES
FROM RENEWABLE BIOCHAR AND ENGINEERING PLASTIC. Paper presented at the
20th International Conference on Composite Materials. http://www.researchgate.net/
profile/Manjusri_Misra/publication/
280308180_SUSTAINABLE_COMPOSITES_FROM_RENEWABLE_BIOCHAR_AND_E
NGINEERING_PLASTIC/links/55ce024708aee19936f9e5d5.pdf
Mohanty, S. K., et al. (2014). Efficacy of biochar to remove Escherichia coli from stormwater
under steady and intermittent flow. Water Research, 61, 288-296. doi:10.1016/
j.watres.2014.05.026
Mohanty, S. K., & Boehm, A. B. (2014). Escherichia coli removal in biochar-augmented biofilter:
effect of infiltration rate, initial bacterial concentration, biochar particle size and presence
of compost. Environmental Science & Technology, 48(19), 11535 - 11542. doi:10.1021/
es5033162
Mohanty, S. K., & Boehm, A. B. (2015). Effect of weathering on mobilization of biochar particles
and bacterial removal in a stormwater biofilter. Water Research, 85, 208-215.
doi:10.1016/j.watres.2015.08.026
Mohd, A., Ghani, W., Resitanim, N. Z., & Sanyang, L. (2013). A Review: Carbon Dioxide
Capture: Biomass-Derived-Biochar and Its Applications. Journal of Dispersion Science
and Technology, 34(7), 974-984. doi:10.1080/01932691.2012.704753
Mohd Salleh, M. A., Nsamba, H. K., Yusuf, H. M., Idris, A., & Ghani, W. A. W. A. K. (2015). Effect
of Equivalence Ratio and Particle Size on EFB Char Gasification. Energy Sources, Part
A: Recovery, Utilization, and Environmental Effects, 37(15), 1647 - 1662.
doi:10.1080/15567036.2011.555440
Moioli, S., & Pellegrini, L. A. (2020). Fixed and Capture Level Reduction operating modes for
carbon dioxide removal in a Natural Gas Combined Cycle power plant. Journal of
Cleaner Production, 120016. doi:https://doi.org/10.1016/j.jclepro.2020.120016
Moioli, S., Pellegrini, L. A., Ho, M. T., & Wiley, D. E. (2019). A comparison between amino acid
based solvent and traditional amine solvent processes for CO2 removal. Chemical
Engineering Research and Design. doi:https://doi.org/10.1016/j.cherd.2019.04.035
Moldenhauer, P., Linderholm, C., Rydén, M., Lyngfelt, A. J. M., & Change, A. S. f. G. (2019).
Avoiding CO2 capture effort and cost for negative CO2 emissions using industrial waste
in chemical-looping combustion/gasification of biomass. doi:10.1007/s11027-019-9843-2
Molina, M., Ramanathan, V., Kaniaru, D., Zaelke, D., Sarma, M., & Andersen, S. O. (2009).
Reducing abrupt climate change risk using the Montreal Protocol and other regulatory
actions to complement cuts in CO2 emissions. Proceedings of the National Academy of
Sciences (PNAS). Retrieved from http://www.pnas.org/content/early/
2009/10/19/0902568106.full.pdf
Moline, E. F. d. V., Falcão, N. P. d. S., Pereira da Silva, D., Clement, C. R., & Júnior, J. L.
(2015). Efeito da aplicação de biocarvão, cama de frango e formulado NPK no estado
nutricional de laranjeira em Terra Mulata (Effect of biochar, poultry litter and NPK on the
nutritional status of orange on Terra Mulata). Web of Science. Retrieved from http://
repositorio.unesp.br/handle/11449/129160?show=full
Molinés Cintora, F., & Ruiz Gómez, N. (2016). Producción de biochar a partir de purines
(Biochar production from liquid manure). Universidad de Zaragoza, Retrieved from
https://zaguan.unizar.es/record/48087#
Molla, R. (2014). Can Organic Farming Counteract Carbon Emissions? The Wall Street Journal.
Retrieved from http://blogs.wsj.com/numbers/can-organic-farming-counteract-carbon-
emissions-1373/
Moller, G., & Strawn, D. (2015).
Möller, I. (2020). Political Perspectives on Geoengineering: Navigating Problem Definition and
Institutional Fit. Global Enbvironmental Politics, 20(20), 57-82. Retrieved from https://
www.mitpressjournals.org/doi/abs/10.1162/glep_a_00547?
casa_token=InIEkERNgAcAAAAA%3AVsO_xti-
EAZBq8c6K3XDW_Cywwl27Q38bea4NF4fEVhwXk2TvgRDlco4XnlObX128ecvj8jYfjM&j
ournalCode=glep&
Möllersten, K., Gao, L., & Yan, J. (2006). CO2 Capture in Pulp and Paper Mills: CO2 Balances
and Preliminary Cost Assessment. Mitigation and Adaptation Strategies for Global
Change, 11(5), 1129-1150. doi:10.1007/s11027-006-9026-9
Möllersten, K., Gao, L., Yan, J., & Obersteiner, M. (2004). Efficient energy systems with CO2
capture and storage from renewable biomass in pulp and paper mills. Renewable
Energy, 29(9), 1583-1598. doi:https://doi.org/10.1016/j.renene.2004.01.003
Möllersten, K., Yan, J., & R. Moreira, J. (2003). Potential market niches for biomass energy with
CO2 capture and storage—Opportunities for energy supply with negative CO2
emissions. Biomass and Bioenergy, 25(3), 273-285. doi:https://doi.org/10.1016/
S0961-9534(03)00013-8
Möllersten, K., Yan, J., & Westermark, M. (2003). Potential and cost-effectiveness of CO2
reductions through energy measures in Swedish pulp and paper mills. Energy, 28(7),
691-710. doi:https://doi.org/10.1016/S0360-5442(03)00002-1
Möllersten, K., Yan, J. Y., & Moreira, J. R. (2003). Potential market niches for biomass energy
with CO2 capture and storage - Opportunities for energy supply with negative CO2
emissions. Biomass & Bioenergy, 25(3), 273-285. doi:10.1016/s0961-9534(03)00013-8
Möllersten K, Y. J. (2001). Economic evaluation of biomass-based energy systems with CO2
capture and sequestration in kraft pulp mills -The influence of the price of CO2 emission
quota. World Resource Review, 13(4), 509-525.
Möllersten K., e. a. (2007). Negative emission biomass technologies in an uncertain climate
future. In S. F. Warnmer (Ed.), Progress in Biomass and Bioenergy (pp. 53-100).
Mollinedo, J., Schumacher, T. E., & Chintala, R. (2015). Influence of feedstocks and pyrolysis on
biochar’s capacity to modify soil water retention characteristics. Journal of Analytical and
Applied Pyrolysis, 114, 100-108. doi:10.1016/j.jaap.2015.05.006
Mollinedo, J., Thomas E Schumacher, & Chintala, R. (2015). Biochar effects on phenotypic
characteristics of “wild” and “sickle” Medicago truncatula genotypes. Plant and Soil.
doi:10.1007/s11104-015-2708-x
Molnár, M., Vaszita, E., Farkas, É., Ujaczki, É., Fekete-Kertész, I., Tolner, M., . . . Feigl, V.
(2016). Acidic sandy soil improvement with biochar — A microcosm study. Science of
The Total Environment, 563-564, 855-865. doi:10.1016/j.scitotenv.2016.01.091
Monastersky, R. (1995). Iron versus the Greenhouse. Science News, 148(14), 220-222.
Retrieved from https://www.jstor.org/stable/pdf/4018225.pdf
Moncada B, J., Aristizábal M, V., & Cardona A, C. A. (2016). Design strategies for sustainable
biorefineries. Biochemical Engineering Journal, 116, 122-134. doi:https://doi.org/
10.1016/j.bej.2016.06.009
Mondal, B. (2015). Influence of biochar in combination with different rates of Nitrogen on the
bioavailability of phosphorus, potassium and sulfur in Bajoa soil series. Khulna
University, Retrieved from http://www.researchgate.net/profile/Md_Sadiqul_Amin/
publication/
272788127_Influence_of_biochar_in_combination_with_different_rates_of_Nitrogen_on
_the_bioavailability_of_phosphorus_potassium_and_sulfur_in_Bajoa_soil_series/links/
54ee057d0cf2e2830863deff.pd
Mondal, S., Aikat, K., & Halder, G. (2016). Ranitidine hydrochloride sorption onto superheated
steam activated biochar derived from mung bean husk in fixed bed column. Journal of
Environmental Chemical Engineering, 4(1), 488 - 497. doi:10.1016/j.jece.2015.12.005
Mondini, C., & Sequi, P. (2008). Implication of soil C sequestration on sustainable agriculture
and environment. Waste Management, 28(4), 678-684. doi:http://dx.doi.org/10.1016/
j.wasman.2007.09.026
Monge, J. J., Bryant, H. L., Gan, J., & Richardson, J. W. (2016). Land use and general
equilibrium implications of a forest-based carbon sequestration policy in the United
States. Ecological Economics, 127, 102-120. doi:https://doi.org/10.1016/
j.ecolecon.2016.03.015
Monger, H. C., et al. (2015). Sequestration of inorganic carbon in soil and groundwater.
Geology, 43(5), 375-378. doi:10.1130/G36449.1
Mongin, M., Molina, E., & Trull, T. W. (2008). Seasonality and scale of the Kerguelen plateau
phytoplankton bloom: A remote sensing and modeling analysis of the influence of natural
iron fertilization in the Southern Ocean. Deep Sea Research Part II: Topical Studies in
Oceanography, 55(5), 880-892. doi:https://doi.org/10.1016/j.dsr2.2007.12.039
Monitor, G. (2018). Biochar. Geoengineering Technology Briefing. Retrieved from http://
www.geoengineeringmonitor.org/wp-content/uploads/2018/05/Geoengineering-factsheet-
BioChar.pdf
Monitor, G. (2018). Bioenergy with Carbon Capture and Storage. Geoengineering Technology
Briefing. Retrieved from http://www.geoengineeringmonitor.org/wp-content/uploads/
2018/05/Geoengineering-factsheet-BECCS.pdf
Monitor, G. (2018). Carbon Capture Use and Storage. Geoengineering Technology Briefing.
Retrieved from http://www.geoengineeringmonitor.org/wp-content/uploads/2018/05/
Geoengineering-factsheet-CCUS.pdf
Monitor, G. (2018). Direct Air Capture. Geoengineering Technology Briefing. Retrieved from
http://www.geoengineeringmonitor.org/wp-content/uploads/2018/05/Geoengineering-
factsheet-DirectAirCapture.pdf
Monitor, G. (2018). Ocean Iron Fertilization. Geoengineering Technology Briefing. Retrieved
from http://www.geoengineeringmonitor.org/wp-content/uploads/2018/05/
Geoengineering-factsheet-OceanFertilization.pdf
Monitor, G. (2019). GEOENGINEERING DEVELOPMENTS: CARBON CAPTURE, VENTURE
CAPITAL AND WOULD-BE MEGAPROJECTS. Retrieved from http://
www.geoengineeringmonitor.org/2019/05/geoengineering-developments-carbon-
capture-venture-capital-and-would-be-megaprojects/
Moniz, E. J. (2019). Innovating a Green Real Deal. 364(6445), 1013-1013. doi:10.1126/
science.aay3140 %J Science
Monkman, S., & MacDonald, M. (2015). Case Studies of CO2 Utilization in Concrete. Special
Publication, 303, 33-44.
Monkman, S., & MacDonald, M. (2017). On carbon dioxide utilization as a means to improve the
sustainability of ready-mixed concrete. Journal of Cleaner Production, 167(Supplement
C), 365-375. doi:https://doi.org/10.1016/j.jclepro.2017.08.194
Monlau, F., Francavilla, M., Sambusiti, C., Antoniou, N., Solhy, A., Libutti, A., . . . Monteleone, M.
(2016). Toward a functional integration of anaerobic digestion and pyrolysis for a
sustainable resource management. Comparison between solid-digestate and its derived
pyrochar as soil amendment. Applied Energy, 169, 652 - 662. doi:10.1016/
j.apenergy.2016.02.084
Montagnini, F., & Nair, P. K. R. (2004). Carbon sequestration: An underexploited environmental
benefit of agroforestry systems. Agroforestry Systems, 61(1), 281-295. doi:10.1023/
b:Agfo.0000029005.92691.79
Montanarella, L., & Lugato, E. (2013). The Application of Biochar in the EU: Challenges and
Opportunities. Agronomy, 3(2), 462-473. Retrieved from http://www.mdpi.com/
2073-4395/3/2/462/htm
Monterumici, C., Rosso, D., Montoneri, E., Ginepro, M., Baglieri, A., Novotny, E., . . . Negre, M.
(2015). Processed vs. Non-Processed Biowastes for Agriculture: Effects of Post-Harvest
Tomato Plants and Biochar on Radish Growth, Chlorophyll Content and Protein
Production. International Journal of Molecular Sciences, 16(4), 8826 - 8843.
doi:10.3390/ijms16048826
Montes-Hernandez, G., Pérez-López, R., Renard, F., Nieto, J. M., & Charlet, L. (2009). Mineral
sequestration of CO2 by aqueous carbonation of coal combustion fly-ash. Journal of
Hazardous Materials, 161(2), 1347-1354. doi:https://doi.org/10.1016/
j.jhazmat.2008.04.104
Montserrat, F., Renforth, P., Hartmann, J., Leermakers, M., Knops, P., & Meysman, F. J. R.
(2017). Olivine Dissolution in Seawater: Implications for CO2 Sequestration through
Enhanced Weathering in Coastal Environments. Environmental Science & Technology,
51(7), 3960–3972. doi:10.1021/acs.est.6b05942
Moomaw, B. (2018). The EPA says burning wood to generate power is ‘carbon-neutral.’ Is that
true? The Conversation. Retrieved from https://theconversation.com/the-epa-says-
burning-wood-to-generate-power-is-carbon-neutral-is-that-true-95727
Moomaw, W. R., Masino, S. A., & Faison, E. K. (2019). Intact Forests in the United States:
Proforestation Mitigates Climate Change and Serves the Greatest Good. Frontiers in
Forests and Global Change, 2(27). doi:10.3389/ffgc.2019.00027
Moon, H., Yoo, H., Seo, H., Park, Y.-K., & Cho, H. H. (2015). Thermal design of heat-
exchangeable reactors using a dry-sorbent CO2 capture multi-step process. Energy,
84(Supplement C), 704-713. doi:https://doi.org/10.1016/j.energy.2015.03.034
Moon. Deok Hyun, e. a. (2013). Immobilization of lead in contaminated firing range soil using
biochar. Environmental Science and Pollution Research, 20(12), 8464-8471. Retrieved
from https://link.springer.com/article/10.1007/s11356-013-1964-7
Mooney, C. (2016). The suddenly urgent quest to remove carbon dioxide from the air.
Washington Post. Retrieved from https://www.washingtonpost.com/news/energy-
environment/wp/2016/02/26/weve-reached-the-point-where-we-need-these-bizarre-
technologies-to-stop-climate-change/?utm_term=.04b62ad21432
Mooney, C. (2017). The quest to capture and store carbon – and slow climate change — just
reached a new milestone. Washington Post. Retrieved from https://
www.washingtonpost.com/news/energy-environment/wp/2017/04/10/the-quest-to-
capture-and-store-carbon-and-slow-climate-change-just-reached-a-new-milestone/?
utm_term=.5eaa2266f674
Mooney, C., & Dennis, B. (2020). The giant accounting problem that could hamper the world’s
push to cut emissions. The Washington Post. Retrieved from https://
www.washingtonpost.com/climate-environment/2021/04/26/greenhouse-accounting-
problem/
Moonilall, N. I. (2015). Impact of Amendments on Soil Properties and Agronomic Productivity in
Guyana. The Ohio State University, Retrieved from https://etd.ohiolink.edu/!
etd.send_file?accession=osu1430925071&disposition=inline
Moore, C. M., Mills, M. M., Arrigo, K. R., Berman-Frank, I., Bopp, L., Boyd, P. W., . . . Ulloa, O.
(2013). Processes and patterns of oceanic nutrient limitation. Nature Geoscience, 6(9),
701-710. doi:10.1038/ngeo1765
Moore, J. C., Jevrejeva, S., & Grinsted, A. (2010). Efficacy of geoengineering to limit 21st
century sea-level rise.
Moore, J. K., Doney, S. C., Glover, D. M., & Fung, I. Y. (2001). Iron cycling and nutrient-limitation
patterns in surface waters of the World Ocean. Deep Sea Research Part II: Topical
Studies in Oceanography, 49(1), 463-507. doi:https://doi.org/10.1016/
S0967-0645(01)00109-6
Moore, R. M., & Wang, L. (2006). The influence of iron fertilization on the fluxes of methyl
halides and isoprene from ocean to atmosphere in the SERIES experiment. Deep Sea
Research Part II: Topical Studies in Oceanography, 53(20–22), 2398-2409. doi:http://
dx.doi.org/10.1016/j.dsr2.2006.05.025
Moore, T. O., Gagnon, A. A., & Partin, J. B. (2015). Community Scale Development of Manure
Based Biochars for the Removal of Copper and Lead from Drinking Waters in
Developing Countries. International Journal of Engineering Research and Technology,
3(9), 526-530. Retrieved from http://www.ijert.org/view-pdf/11132/community-scale-
development-of-manure-based-biochars-for-the-removal-of-copper-and-lead-from-
drinking-waters-in-developing-countries
Moosdorf, N., Renforth, P., & Hartmann, J. (2014). Carbon Dioxide Efficiency of Terrestrial
Enhanced Weathering. Environmental Science & Technology, 48(9), 4809-4816.
doi:10.1021/es4052022
Morales, M. M., et al. . (2013). Sorption and desorption of phosphate on biochar and biochar–
soil mixtures. Soil Use and Management, 29(3), 306-314. Retrieved from http://
onlinelibrary.wiley.com/doi/10.1111/sum.12047/abstract
Morales, V. L., Pérez-Reche, F. J., Hapca, S. M., Hanley, K. L., Lehmann, J., & Zhang, W.
(2015). Reverse engineering of biochar. Bioresource Technology, 183, 163 - 174.
doi:10.1016/j.biortech.2015.02.043
Morales-Flórez, V., Santos, A., Lemus, A., & Esquivias, L. (2011). Artificial weathering pools of
calcium-rich industrial waste for CO2 sequestration. Chemical Engineering Journal,
166(1), 132-137. doi:https://doi.org/10.1016/j.cej.2010.10.039
Moralı, U., & Şensöz, S. (2015). Pyrolysis of hornbeam shell (Carpinus betulus L.) in a fixed bed
reactor: Characterization of bio-oil and bio-char. Fuel, 150, 672 - 678. doi:10.1016/
j.fuel.2015.02.095
Morán-Ordóñez, A., Whitehead, A. L., Luck, G. W., Cook, G. D., Maggini, R., Fitzsimons, J. A., &
Wintle, B. A. (2017). Analysis of Trade-Offs Between Biodiversity, Carbon Farming and
Agricultural Development in Northern Australia Reveals the Benefits of Strategic
Planning. Conservation Letters, 10(1), 94-104. doi:https://doi.org/10.1111/conl.12255
Moreira, D., & Pires, J. C. M. (2016). Atmospheric CO
2
capture by algae: Negative carbon
dioxide emission path. Bioresource Technology, 215, 371-379. doi:http://dx.doi.org/
10.1016/j.biortech.2016.03.060
Moreira, J. R., Romeiro, V., Fuss, S., Kraxner, F., & Pacca, S. A. (2016). BECCS potential in
Brazil: Achieving negative emissions in ethanol and electricity production based on sugar
cane bagasse and other residues. Applied Energy, 179, 55-63. doi:10.1016/
j.apenergy.2016.06.044
Moreno Barriga, F., Díaz López, V., Méndez, A., José, F., Faz Cano, Á., Belmonte, Z., & Group,
R. R. (2016). Influencia de la temperatura y del tiempo de pirólisis en la hidrofobicidad
de biocarbón obtenido a partir de purín porcino (Influence of temperature and time
pyrolysis biochar hydrophobicity obtained from pig slurry). In.
Moreno-Garcia, L., Adjallé, K., Barnabé, S., & Raghavan, G. S. V. (2017). Microalgae biomass
production for a biorefinery system: Recent advances and the way towards
sustainability. Renewable and Sustainable Energy Reviews, 76, 493-506. doi:https://
doi.org/10.1016/j.rser.2017.03.024
Moreno-Jiménez, E., et al. . (2016). Availability and transfer to grain of As, Cd, Cu, Ni, Pb and
Zn in a barley agri-system: Impact of biochar, organic and mineral fertilizers. Agriculture,
Ecosystems & Environment, 219, 171 - 178. doi:10.1016/j.agee.2015.12.001
Mores, P., Rodríguez, N., Scenna, N., & Mussati, S. (2012). CO2 capture in power plants:
Minimization of the investment and operating cost of the post-combustion process using
MEA aqueous solution. International Journal of Greenhouse Gas Control, 10, 148-163.
doi:https://doi.org/10.1016/j.ijggc.2012.06.002
Morgan, S. (2020). Norway’s 2.1bn carbon-capture mega-project gets approval. Euractiv.
Retrieved from https://www.euractiv.com/section/energy/news/norways-e2-1bn-carbon-
capture-mega-project-gets-approval/
Morgan, S. (2020). World’s first ‘carbon-capture at sea’ set for shipping trials. Euractiv.
Retrieved from https://www.euractiv.com/section/shipping/news/worlds-first-carbon-
capture-at-sea-set-for-shipping-trials/
Moriarty, P., & Honnery, D. (2010). A human needs approach to reducing atmospheric carbon.
Energy Policy, 38(2), 695-700. doi:http://dx.doi.org/10.1016/j.enpol.2009.10.043
Moriarty, P., & Honnery, D. (2019). Chapter 14 - Bioenergy with carbon capture and storage in a
future world. In J. C. Magalhães Pires & A. L. D. Cunha Gonçalves (Eds.), Bioenergy
with Carbon Capture and Storage (pp. 273-287): Academic Press.
Moro, C., Francioso, V., & Velay-Lizancos, M. (2021). Modification of CO2 capture and pore
structure of hardened cement paste made with nano-TiO2 addition: Influence of water-
to-cement ratio and CO2 exposure age. Construction and Building Materials, 275,
122131. doi:https://doi.org/10.1016/j.conbuildmat.2020.122131
Morris, P. J., & Charette, M. A. (2013). A synthesis of upper ocean carbon and dissolved iron
budgets for Southern Ocean natural iron fertilisation studies. Deep Sea Research Part II:
Topical Studies in Oceanography, 90, 147-157. doi:http://dx.doi.org/10.1016/
j.dsr2.2013.02.001
Morris, S., Bohm, S., Haile-Mariam, S., & Paul, E. A. (2007). Evaluation of carbon accrual in
afforested agricultural soils. Global Change Biology, 13(6), 1145-1156. Retrieved from
http://onlinelibrary.wiley.com/doi/10.1111/j.1365-2486.2007.01359.x/abstract
Morrow, D., & Thompson, M. (2021). Why Orca matters: long-term climate policy and
Climeworks’ new direct air capture facility in Iceland.
Morrow, D., & Thompson, M. (2021). Why Orca matters: long-term climate policy and
Climeworks’ new direct air capture facility in Iceland. Retrieved from https://
research.american.edu/carbonremoval/2021/09/10/why-orca-matters-the-point-of-
climeworks-new-direct-air-capture-facility-in-iceland/
Morrow, D., & Thompson, M. S. (2020). Reduce, Remove, Recycle: Clarifying the Overlap
between Carbon Removal and CCUS. Retrieved from http://research.american.edu/
carbonremoval/wp-content/uploads/sites/3/2020/12/reduce-remove-recycle_final.pdf
Morrow, D. R., et al. (2018). Why Talk About Carbon Removal? Retrieved from https://
www.american.edu/sis/centers/carbon-removal/upload/
CRBP001_why_talk_about_carbon_removal_ICRLP.pdf
Morrow, D. R. (2020). Integrated Assessment Modeling of Carbon Removal at ICRLP. Retrieved
from https://research.american.edu/carbonremoval/2020/09/08/integrated-assessment-
modeling-of-carbon-removal-at-icrlp/
Morrow, D. R., Thompson, M. S., Anderson, A., Batres, M., Buck, H. J., Dooley, K., . . . Wilcox,
J. (2020). Principles for Thinking about Carbon Dioxide Removal in Just Climate Policy.
One Earth, 3(2), 150-153. doi:10.1016/j.oneear.2020.07.015
Morrow, P. R. (2013). Biochar : saturated hydraulic conductivity and methylene blue sorption
characteristics as applied to storm water treatment. Oregon State University,
Mortensen, G. M., Bergmo, P. E. S., & Emmel, B. U. (2016). Characterization and Estimation of
CO2 Storage Capacity for the Most Prospective Aquifers in Sweden. Energy Procedia,
86, 352-360. doi:https://doi.org/10.1016/j.egypro.2016.01.036
Morton, A. (2021). A shocking failure’: Chevron criticised for missing carbon capture target at
WA gas project. The Guardian. Retrieved from https://amp.theguardian.com/
environment/2021/jul/20/a-shocking-failure-chevron-criticised-for-missing-carbon-
capture-target-at-wa-gas-project
Morton, E. (2021). Ensuring Good Governance of Carbon Dioxide Removal. Retrieved from
https://www.dayoneproject.org/post/ensuring-good-governance-of-carbon-dioxide-
removal
Morton, E. V. (2020). Reframing the Climate Change Problem: Evaluating the Political,
Technological, and Ethical Management of Carbon Dioxide Emissions in the United
States. (Ph.D.). Arizona State University, Retrieved from https://drive.google.com/file/d/
1VIrHd7YQ_KUL_dqst_aLFYveTS8iknBS/view
Mosa, A., El-Banna, M. F., & Gao, B. (2016). Biochar filters reduced the toxic effects of nickel on
tomato (Lycopersicon esculentum L.) grown in nutrient film technique hydroponic
system. Chemosphere, 149, 254 - 262. doi:10.1016/j.chemosphere.2016.01.104
Moser, P., Wiechers, G., Schmidt, S., Monteiro, J. G. M.-S., Goetheer, E., Charalambous,
C., . . . Garcia, S. (2021). ALIGN-CCUS: Results of the 18-month test with aqueous
AMP/PZ solvent at the pilot plant at Niederaussem – solvent management, emissions
and dynamic behavior. International Journal of Greenhouse Gas Control, 109, 103381.
doi:https://doi.org/10.1016/j.ijggc.2021.103381
Mosley, L. M., Willson, P., Hamilton, B., Butler, G., & Seaman, R. (2015). The capacity of
biochar made from common reeds to neutralise pH and remove dissolved metals in acid
drainage. Environmental Science and Pollution Research, 22(19), 15113-15122.
doi:10.1007/s11356-015-4735-9
Mosquera-Losada, M. R., Freese, D., & Rigueiro-Rodríguez, A. (2011). Carbon Sequestration in
European Agroforestry Systems. In B. Kumar, et al. (Ed.), Carbon Sequestration
Potential of Agroforestry Systems. Advances in Agroforestry, (Vol. 8, pp. 43-59).
Mosquera-Losada, M. R., Santiago-Freijanes, J. J., Rois-Díaz, M., Moreno, G., den Herder, M.,
Aldrey-Vázquez, J. A., . . . Rigueiro-Rodríguez, A. (2018). Agroforestry in Europe: A land
management policy tool to combat climate change. Land Use Policy, 78, 603-613.
doi:https://doi.org/10.1016/j.landusepol.2018.06.052
Moussa, M., Bader, N., Querejeta, N., Durán, I., Pevida, C., & Ouederni, A. (2017). Toward
sustainable hydrogen storage and carbon dioxide capture in post-combustion conditions.
Journal of Environmental Chemical Engineering, 5(2), 1628-1637. doi:https://doi.org/
10.1016/j.jece.2017.03.003
Moussavi, G., & Khosravi, R. (2012). Preparation and characterization of a biochar from
pistachio hull biomass and its catalytic potential for ozonation of water recalcitrant
contaminants. Bioresource Technology, 119, 66-71. Retrieved from http://dx.doi.org/
10.1016/j.biortech.2012.05.101
Movagharnejad, K., Emamgholivand, A., Mousavi, H., & Kordkheili, M. S. (2012). Preliminary
countryscale assessment of carbon dioxide storage potential in Iran. Greenhouse
Gases: Science and Technology, 2(3), 151-161. doi:doi:10.1002/ghg.1288
Moyo, M., Lindiwe, S. T., Sebata, E., Nyamunda, B. C., & Guyo, U. (2015). Equilibrium, kinetic,
and thermodynamic studies on biosorption of Cd(II) from aqueous solution by biochar.
Research on Chemical Intermediates. doi:10.1007/s11164-015-2089-z
Mozzetti Monterumici, C., Rosso, D., Montoneri, E., Ginepro, M., Baglieri, A., Novotny, E. H., . . .
Negre, M. (2015). Processed vs. non-processed biowastes for agriculture: effects of
post-harvest tomato plants and biochar on radish growth, chlorophyll content and protein
production. Chemical & Environmental Science. Retrieved from http://ulir.ul.ie/handle/
10344/4505?show=full
MP, M. (2011). Soil Organic Carbon, Biochar, and Applicable Research Results for Increasing
Farm Productivity under Australian Agricultural Conditions. Communications in Soil
Science and Plant Analysis, 42, 1187-1199.
Mu, D., Min, M., Krohn, B., Mullins, K. A., Ruan, R., & Hill, J. (2014). Life Cycle Environmental
Impacts of Wastewater-Based Algal Biofuels. Environmental Science & Technology,
48(19), 11696-11704. doi:10.1021/es5027689
Mu, D., Ruan, R., Addy, M., Mack, S., Chen, P., & Zhou, Y. (2017). Life cycle assessment and
nutrient analysis of various processing pathways in algal biofuel production. Bioresource
Technology, 230, 33-42. doi:https://doi.org/10.1016/j.biortech.2016.12.108
Mubarak, N. M., et al. (2013). Statistical optimization and kinetic studies on removal of Zn2+
using functionalized carbon nanotubes and magnetic biochar. Journal of Environmental
Chemical Engineering, 1(3), 486-495. Retrieved from http://www.sciencedirect.com/
science/article/pii/S2213343713000730
Mubarak, N. M., et al. . (2014). Statistical Optimization of Zinc Removal Using Activated Carbon
and Magnetic Biochar. Advances in Environmental Biology, 8(3), 686-691. Retrieved
from http://web.a.ebscohost.com/abstract?
direct=true&profile=ehost&scope=site&authtype=crawler&jrnl=19950756&AN=95655234
&h=9ScNMW%2fuG79cGLLIu6aHdnHQd1Kmmyq8xD03QkjorKGy18mn0aAngKCFMnB
FCuX47rLjLfAErj1RiXQLKi3xcg%3d%3d&crl=c
Mubarak, N. M., et al. . (2015). Removal of methylene blue and orange-G from waste water
using magnetic biochar. International Journal of Nanoscience, 14(4), 150125201131009.
doi:10.1142/s0219581x1550009x
Mubarik, S., Saeed, A., Athar, M. M., & Iqbal, M. (2016). Characterization and mechanism of the
adsorptive removal of 2,4,6-trichlorophenol by biochar prepared from sugarcane
baggase. Journal of Industrial and Engineering Chemistry, 33, 115 - 121. doi:10.1016/
j.jiec.2015.09.029
Muffett, C., & Feit, S. (2019). Fuel to the Fire: How Geoengineering Threatens to Entrench
Fossil Fuels and Accelerate the Climate Crisis. Retrieved from https://www.ciel.org/wp-
content/uploads/2019/02/CIEL_FUEL-TO-THE-FIRE_How-Geoengineering-Threatens-
to-Entrench-Fossil-Fuels-and-Accelerate-the-Climate-Crisis_February-2019.pdf
Mufson, S. (2020). A climate change solution slowly gains ground. Washington Post. Retrieved
from https://www.washingtonpost.com/climate-environment/2019/04/19/climate-change-
solution-slowly-gains-ground/?arc404=true
Mugford, I., et al. (2015). Anthropogenic Charcoal Deposits: A Tool to Assess the Carbon
Sequestration Potential of Biochar in Soils? In.
Mugford, I., et al. (2015). Can Meilers Predict the Long-Term Carbon Sequestration Potential of
Biochar? In.
Mugford, I., et al. (2015). Potential of Anthropogenic Charcoal Deposits for Assessing the Fate
of!Biochar!in European Soils. In.
Mugo, S. M., & Rusin, C. J. (2014). Application of biosorbents for the adsorption of cadmium in
water. Paper presented at the Proceedings of the 2014 International Annual Conference
on Sustainable Research and Innovation.
Muhammad, H. A., Sultan, H., Lee, B., Imran, M., Baek, I. H., Baik, Y.-J., & Nam, S. C. (2020).
Energy minimization of carbon capture and storage by means of a novel process
configuration. Energy Conversion and Management, 215, 112871. doi:https://doi.org/
10.1016/j.enconman.2020.112871
Muhammad Hisyamuddin, S. (2014). Pyrolysis of Palm Pressed Fibre (PPF) toward maximizing
bio-oil yield in a fixed bed reactor. In.
Muhammad Ijaz, A. S., Sattar, A., Hassan, W., & Naeem, M. (2015). Cumulative Effect of
Biochar, Microbes and Herbicide on the Growth and Yield of Wheat (Triticum aestivum
L.). Pakistan Journal of Life and Social Sciences, 13(2), 73. Retrieved from http://
www.pjlss.edu.pk/pdf_files/Online/375-PJLSS-15.pdf
Muhammad, N., Brookes, P. C., & Wu, J. (2016). Addition impact of biochar from different
feedstocks on microbial community and available concentrations of elements in a
Psammaquent and a Plinthudult. Journal of Soil Science and Plant Nutrition, 16(1),
137-153. doi:10.4067/s0718-95162016005000010
Mukherjee, A., & Lal, R. (2013). Biochar Impacts on Soil Physical Properties and Greenhouse
Gas Emissions. Agronomy, 3(2), 313-339. doi:10.3390/agronomy3020313
Mukherjee, A., & Lal, R. (2014). The biochar dilemma. Retrieved from
Mukherjee, A., Lal, R., & Zimmerman, A. R. (2014). Effects of biochar and other amendments on
the physical properties and greenhouse gas emissions of an artificially degraded soil.
Science of The Total Environment, 487, 26–36. Retrieved from http://
www.sciencedirect.com/science/article/pii/S0048969714004938
Mukherjee, A., Lal, R., & Zimmerman, A. R. (2014). Impacts of 1.5-Year Field Aging on Biochar,
Humic Acid, and Water Treatment Residual Amended Soil. Soil Science, 179(7),
333-339. doi:10.1097/ss.0000000000000076
Mukherjee, A., Lal, R., & Zimmerman, A. R. (2014). Impacts of biochar and other amendments
on soil-carbon and 10 nitrogen stability: A laboratory column study. Soil Science Society
of America Journal, 78(4), 1258-1266. Retrieved from https://www.researchgate.net/
publication/261286742_Impacts_of_Biochar_and_Other_Amendments_on_Soil-
Carbon_and_Nitrogen_Stability_A_Laboratory_Column_Study
Mukherjee, A., Zimmerman, A., & Harris, W. (2011). Surface chemistry variations among a
series of laboratory-produced biochars. Geoderma, 163(3-4), 247-255. doi:10.1016/
j.geoderma.2011.04.021
Mukherjee, A., & Zimmerman, A. R. (2013). Organic carbon and nutrient release from a range of
laboratory-produced biochars and biochar–soil mixtures. Geoderma, 193–194, 122–130.
Retrieved from http://www.sciencedirect.com/science/article/pii/S0016706112003382
Mukherjee, A., Zimmerman, A. R., Hamdan, R., & Cooper, W. T. (2014). Physicochemical
changes in pyrogenic organic matter (biochar) after 15 months field-aging. Solid Earth D,
6, 693-704. Retrieved from http://www.solid-earth-discuss.net/6/731/2014/
sed-6-731-2014.pdf
Mukherjee, I. (2009). Effect of Organic Amendments on Degradation of Atrazine. Bulletin of
Environmental Contamination and Toxicology, 83(6), 832-835. Retrieved from https://
link.springer.com/article/10.1007/s00128-009-9849-7
Mukherjee, S., & Halder, G. (2016). Assessment of fluoride uptake performance of raw biomass
and activated biochar of Colocasia esculenta Stem: Optimization through response
surface methodology. Environmental Progress & Sustainable Energy, 35(5), 1305-1316.
doi:10.1002/ep.12346
Mukherjee, S., Tappe, W., Weihermueller, L., Hofmann, D., Köppchen, S., Laabs, V., . . .
Burauel, P. (2016). Dissipation of bentazone, pyrimethanil and boscalid in biochar and
digestate based soil mixtures for biopurification systems. Science of The Total
Environment, 544, 192 - 202. doi:10.1016/j.scitotenv.2015.11.111
Mukherjee, S., Weihermueller, L., Tappe, W., Vereecken, H., & Burauel, P. (2015). Microbial
respiration of biochar- and digestate-based mixtures. Biology and Fertility of Soils, 52(2),
151-164. doi:10.1007/s00374-015-1060-x
Mukome, F. N. D., et al. (2013). Use of chemical and physical characteristics to investigate
trends in biochar feedstocks. Journal of Agricultural and Food Chemistry, 61(9),
2196-2204. Retrieved from http://pubs.acs.org/doi/abs/10.1021/jf3049142
Mukome, F. N. D., & Parikh, S. J. (2015). Chemical, Physical, and Surface Characterization of
Biochar. In Biochar: Production, Characterization, and Applications.
Mukome, F. N. D., Six, J., & Parikh, S. J. (2013). The effects of walnut shell and wood feedstock
biochar amendments on greenhouse gas emissions from a fertile soil. Geoderma, 200–
201, 90–98. Retrieved from http://www.sciencedirect.com/science/article/pii/
S0016706113000475
Muktham, R., Ball, A. S., Bhargava, S. K., & Bankupalli, S. (2016). Study of thermal behavior of
deoiled karanja seed cake biomass: thermogravimetric analysis and pyrolysis kinetics.
Energy Science & Engineering, n/a - n/a. doi:10.1002/ese3.109
Mulcahy, D. N., Mulcahy, D. L., & Dietz, D. (2012). Biochar soil amendment increases tomato
seedling resistance to drought in sandy soils. Journal of Arid Environments, 88, 222–
225.
Mullen, C. A., Boateng, A. A., & Goldberg, N. M. (2014).
Mullen, C. A., Boateng, A. A., Goldberg, N. M., Lima, I. M., Laird, D. A., & Hicks, K. B. (2010).
Bio-oil and bio-char production from corn cobs and stover by fast pyrolysis. Biomass &
Bioenergy, 34, 67-74.
Mullen, C. A., Boateng, A. A., Hicks, K. B., Goldberg, N. M., & Moreau, R. A. (2010). Analysis
and Comparison of Bio-Oil Produced by Fast Pyrolysis from Three Barley Biomass/
Byproduct Streams. Energy & Fuels, 24, 699-706.
Muller, A. (2009). Sustainable agriculture and the production of biomass for energy use. Climatic
Change, 94(3), 319-331. doi:10.1007/s10584-008-9501-2
Müller, A., Schmidhuber, J., Hoogeveen, J., & Steduto, P. (2008). Some insights in the effect of
growing bio-energy demand on global food security and natural resources. Water Policy,
10(S1), 83-94. doi:10.2166/wp.2008.053
Müller, P., Bucior, B., Tuci, G., Luconi, L., Getzschmann, J., Kaskel, S., . . . Rossin, A. (2019).
Computational screening, synthesis and testing of metal–organic frameworks with a
bithiazole linker for carbon dioxide capture and its green conversion into cyclic
carbonates. Molecular Systems Design & Engineering. doi:10.1039/C9ME00062C
Müller-Stöver, D. S., Jensen, L. S., Grønlund, M., Jakobsen, I., Hauggaard-Nielsen, H., &
Ahrenfeldt, J. (2015). Return of phosphorus in agricultural residues and urban sewage
sludge to soil using biochar from low-temperature gasification as fertilizer product. Paper
presented at the International Biochar Symposium. http://www.forskningsdatabasen.dk/
en/catalog/2291868843
Mulligan, J., et al. (2018). Carbon Removal in Forests and Farms the United States. Retrieved
from https://wriorg.s3.amazonaws.com/s3fs-public/carbon-removal-forests-farms-united-
states.pdf
Mulligan, J., et al. (2018). Technological Carbon Removal in the United States. Retrieved from
https://wriorg.s3.amazonaws.com/s3fs-public/technological-carbon-removal-united-
states.pdf
Mulligan, J. (2020). CarbonShot: Federal Policy Options for Carbon Removal in the United
States. Retrieved from https://www.wri.org/publication/carbonshot-federal-policy-options-
for-carbon-removal-in-the-united-states
Mulligan, J., Ellison, G., & Levin, K. (2018). Foundational Questions on Carbon Removal in the
United States. Retrieved from https://wriorg.s3.amazonaws.com/s3fs-public/
foundational-questions-carbon-removal-united-states.pdf
Mulligan, J., & Lashof, D. (2019). A CO2 Direct Air Capture Plant Will Help Extract Oil in Texas.
Could This Actually Be Good for the Climate? Retrieved from https://www.wri.org/blog/
2019/07/co2-direct-air-capture-plant-will-help-extract-oil-texas-could-actually-be-good-
climate
Mullins, K. A., et al. (2014). Regional allocation of biomass to U.S. energy demands under a
portfolio of policy scenarios. Environmental Science & Technology, 48(5), 2561-2568.
Retrieved from https://www.ncbi.nlm.nih.gov/pubmed/24512511
Mulyasari, F., Harahap, A. K., Rio, A. O., Sule, R., & Kadir, W. G. A. (2021). Potentials of the
public engagement strategy for public acceptance and social license to operate: Case
study of Carbon Capture, Utilisation, and Storage Gundih Pilot Project in Indonesia.
International Journal of Greenhouse Gas Control, 108, 103312. doi:https://doi.org/
10.1016/j.ijggc.2021.103312
Mumme, J., et al. . (2014). Use of biochars in anaerobic digestion. Bioresource Technology, 164,
189-197. doi:dx.doi.org/10.1016/j.biortech.2014.05.008
Mumme, J., Eckervogt, L., Pielert, J., Diakité, M., Rupp, F., & Kern, J. (2011). Hydrothermal
carbonization of anaerobically digested maize silage. Bioresource Technology, 102, 9255
- 9260.
Mun, M., & Cho, H. (2013). Mineral Carbonation for Carbon Sequestration with Industrial Waste.
Energy Procedia, 37, 6999-7005. doi:https://doi.org/10.1016/j.egypro.2013.06.633
Munda, S., et al. . (2015). Combined application of rice husk biochar and fly ash improved the
yield of low land rice. Soil, Land Care & Environmental Research, 54(4), 1-9. Retrieved
from http://www.publish.csiro.au/view/journals/dsp_journals_pip_abstract_scholar1.cfm?
nid=84&pip=SR15295
Muñoz, C., Quilodrán, C., & Navia, R. (2014). Evaluation of Biochar-Plant Extracts Complexes
on Soil Nitrogen Dynamics. Journal of Biobased Materials and Bioenergy, 8(3), 377 -
385. doi:10.1166/jbmb.2014.1448
Munoz, L. C. V. (2014). Spreading The Char: The Importance of Local Compatibility in the
Diffusion of Biochar Systems to the Smallholder Agriculture Community Context.
Retrieved from http://scholarship.claremont.edu/pomona_theses/102
Munson, R. (2017). Negative CO2 Emissions: Making it Real. The Energy Collective. Retrieved
from http://www.theenergycollective.com/munson/2404503/negative-co2-emissions-
making-real?
utm_source=feedburner&utm_medium=email&utm_campaign=The+Energy+Collective+
%28all+posts%29
Muppaneni, T. (2016). Hydrothermal liquefaction of algae for the production of biofuels. NEW
MEXICO STATE UNIVERSITY, Retrieved from http://gradworks.umi.com/
36/64/3664655.html
Muraca, B., & Neuber, F. (2018). Viable and convivial technologies: Considerations on Climate
Engineering from a degrowth perspective. Journal of Cleaner Production, 197(2),
1810-1829. doi:https://doi.org/10.1016/j.jclepro.2017.04.159
Murad, E. (2014). Applying the CHAB concept at horticultural tunnel greenhouses heated with
biomass. In.
Muradov, N. (2014). Industrial Utilization of CO2: A Win–Win Solution. In Liberating Energy from
Carbon: Introduction to Decarbonization (pp. 325-383). New York, NY: Springer New
York.
Murali, S., Shrivastava, R., & Morchale, R. K. (2015). Agricultural Residue-Based Power
Generation: A Viable Option in India. In Energy Security and Development (pp. 393-410).
Muraoka, D. (2004). Seaweed resources as a source of carbon fixation. Bulletin of Fisheries
Research Agency, 1, 59-63. Retrieved from http://tuna.fra.affrc.go.jp/bulletin/bull/bull-
b1/09.pdf
Muratori, M., et al. (2016). Global economic consequences of deploying bioenergy with carbon
capture and storage (BECCS). Environmental Research Letters, 11(9), 1-9. Retrieved
from http://stacks.iop.org/1748-9326/11/i=9/a=095004
Muratori, M., Bauer, N., Rose, S. K., Wise, M., Daioglou, V., Cui, Y., . . . Weyant, J. (2020).
EMF-33 insights on bioenergy with carbon capture and storage (BECCS). Climatic
Change. doi:10.1007/s10584-020-02784-5
Muratori, M., Kheshgi, H., Mignone, B., Clarke, L., McJeon, H., & Edmonds, J. (2017). Carbon
capture and storage across fuels and sectors in energy system transformation pathways.
International Journal of Greenhouse Gas Control, 57, 34-41. doi:http://dx.doi.org/
10.1016/j.ijggc.2016.11.026
Muratori, M., Kheshgi, H., Mignone, B., McJeon, H., & Clarke, L. (2017). The Future Role of
CCS in Electricity and Liquid Fuel Supply. Energy Procedia, 114, 7606-7614. doi:https://
doi.org/10.1016/j.egypro.2017.03.1893
Muri, H. (2018). The role of large—scale BECCS in the pursuit of the 1.5°C target: an Earth
system model perspective. Environmental Research Letters, 13(4), 044010. Retrieved
from http://stacks.iop.org/1748-9326/13/i=4/a=044010
Murillo, J. D. (2014). A multi-scale environmental and kinetics study on the pyrolysis of
sustainable biomass feedstock. TENNESSEE TECHNOLOGICAL UNIVERSITY,
Retrieved from http://gradworks.umi.com/36/16/3616061.html
Murphy, C. W., & Kendall, A. (2015). Life cycle analysis of biochemical cellulosic ethanol under
multiple scenarios. GCB Bioenergy, 7(5), 1019-1033. doi:10.1111/gcbb.12204
Murray, B. C., McCarl, B. A., & Lee, H.-C. (2004). Estimating Leakage from Forest Carbon
Sequestration Programs. Land Economics, 80(1), 109-124. Retrieved from http://
www.jstor.org/stable/3147147?seq=1#page_scan_tab_contents
Murray, E. G., & DiGiorgio, A. L. (2021). Will Individual Actions Do the Trick? Comparing Climate
Change Mitigation through Geoengineering versus Reduced Vehicle Emissions. Earth's
Future, 9(3), 1-14. doi:https://doi.org/10.1029/2020EF001734
Murray, J., Keith, A., & Singh, B. (2015). The stability of low- and high-ash biochars in acidic
soils of contrasting mineralogy. Soil Biology and Biochemistry, 89, 217 - 225.
doi:10.1016/j.soilbio.2015.07.014
Murray, J. S. (2021). In defence of net zero. Business Green. Retrieved from https://
www.businessgreen.com/blog-post/4030676/defence-net-zero
Murthy, J. K., et al. (2013). Carbon sequestration potential of agroforestry systems in India. 4,
Journal of Earth Science & Climatic Change, 1-7. Retrieved from https://
www.omicsonline.org/carbon-sequestration-potential-of-agroforestry-systems-in-
india-2157-7617.1000131.pdf
Mussgnug, J. H., et al. (2007). Engineering photosynthetic light capture: impacts on improved
solar energy to biomass conversion. Plant Biotechnology Journal, 5(6), 802-814.
Retrieved from https://www.ncbi.nlm.nih.gov/pubmed/17764518
Mutch, G. A., Anderson, J. A., & Vega-Maza, D. (2017). Surface and bulk carbonate formation in
calcium oxide during CO2 capture. Applied Energy, 202, 365-376. doi:10.1016/
j.apenergy.2017.05.130
Mutch, M. (2020). Drax statement after Extinction Rebellion stage protest at power station. Hull
Daily Mail. Retrieved from https://www.hulldailymail.co.uk/news/hull-east-yorkshire-news/
drax-extinction-rebellion-protest-lights-4465954
Muter, O., Berzins, A., Strikauska, S., Pugajeva, I., Bartkevics, V., Dobele, G., . . . Steiner, C.
(2014). The effects of woodchip- and straw-derived biochars on the persistence of the
herbicide 4-chloro-2-methylphenoxyacetic acid (MCPA) in soils. Ecotoxicology and
Environmental Safety, 109, 93 - 100. doi:10.1016/j.ecoenv.2014.08.012
Muter, O., Lebedeva, G., & Telysheva, G. (2014). Evaluation of the changes induced by
gasification biochar in a peat-sand substrateAbstract. International Agrophysics, 28(4).
doi:10.2478/intag-2014-0037
Muth, D. J., & Bryden, K. M. (2013). An integrated model for assessment of sustainable
agricultural residue removal limits for bioenergy systems. Environmental Modelling &
Software, 39, 50-69. doi:https://doi.org/10.1016/j.envsoft.2012.04.006
Myers, C., & Nakagaki, T. (2020). Direct mineralization of atmospheric CO2 using natural rocks
in Japan. Environmental Research Letters, 15(12), 124018. doi:10.1088/1748-9326/
abc217
Myers, C., & Nakagaki, T. (2021, March 15-18). Negative emissions using Mg sourced from
desalination brine or natural evaporite deposits. Paper presented at the Proceedings of
the 15th Greenhouse Gas Control Technologies Conference.
Myers, K. (2021). New tools help quantify the sustainable development benefits of carbon offset
projects Retrieved from https://www.ecosystemmarketplace.com/articles/whats-in-a-
carbon-credit-new-tools-help-quantify-the-sustainable-development-benefits-of-carbon-
offset-projects/
Mykleby, P. M., Snyder, P. K., & Twine, T. E. (2017). Quantifying the trade-off between carbon
sequestration and albedo in midlatitude and high-latitude North American forests. 44(5),
2493-2501. doi:10.1002/2016gl071459
Myoung-Jin, K., & Dami, K. (2018). Maximization of CO2 storage for various solvent types in
indirect carbonation using paper sludge ash. Environmental Science and Pollution
Research International, 25(30), 30101-30109. doi:http://dx.doi.org/10.1007/
s11356-018-2970-6
N‘Yeurt, A. d. R., Chynoweth, D. P., Capron, M. E., Stewart, J. R., & Hasan, M. A. (2012).
Negative carbon via Ocean Afforestation. Process Safety and Environmental Protection,
90(6), 467-474. doi:http://dx.doi.org/10.1016/j.psep.2012.10.008
Nabavinia, F., Emami, H., Astaraee, A., & Lakzian, A. (2015). Effect of tannery wastes and
biochar on soil chemical and physicochemical properties and growth traits of
radishAbstract. International Agrophysics, 29(3). doi:10.1515/intag-2015-0040
Nabuurs, G.-J., Delacote, P., Ellison, D., Hanewinkel, M., Hetemäki, L., & Lindner, M. (2017). By
2050 the Mitigation Effects of EU Forests Could Nearly Double through Climate Smart
Forestry. Forests, 8(12), 484. Retrieved from https://www.mdpi.com/1999-4907/8/12/484
Nackley, L. L. (2015). Bioenergy and biological invasions: ecological, agronomic and policy
perspectives on minimising riskGood intentions vs good ideas: evaluating bioenergy
projects that utilize invasive plant feedstocks. Wallingford: CABI.
Nadal Talavera, M. (2015). Effect of the addition of biochar to the soil and stress abiòitic
emerging organic contaminants present in irrigation water in the production of biomass
Lactuca sativa (translated from Catalan language). Universitat Politecnica De Catalunya
(Polytechnic University of Catalonia), Retrieved from http://upcommons.upc.edu/handle/
2117/78334
Nadell, S. (2016). Researchers Propose New Biochar Technique to Scrub Atmospheric Carbon
Dioxide. The Cornell Daily Sun. Retrieved from https://cornellsun.com/2016/11/28/
researchers-propose-new-biochar-technique-to-scrub-atmospheric-carbon-dioxide/
Naeem, M. A., Khalid, M., Ahmad, Z., & Naveed, M. (2015). Low Pyrolysis Temperature Biochar
Improve Growth and Nutrient Availability of Maize on Typic Calciargid. Communications
in Soil Science and Plant Analysis. doi:10.1080/00103624.2015.1104340
Nag, S. K., et al. (2011). Poor efficacy of herbicides in biochar-amended soils as affected by
their chemistry and mode of action. Chemosphere, 84(11), 1572-1577. doi:10.1016/
j.chemosphere.2011.05.052
Nagabhushan, D. (2016). The Emission Reduction Benefits of Carbon Capture Utilization and
Storage Using CO2 Enhanced Oil Recovery. 1-6.
Nagabhushan, D. (2019). CCS Could Reduce 49 Million Tonnes of CO2 Emissions From Coal &
Gas Power Plants. Clean Air Task Force. Retrieved from https://www.catf.us/2019/02/
ccs-reduce-49-million-tonnes-co2-emissions/
Nagabhushan, D., Russell, R. H., Waltzer, K., Thompson, J., Beck, L., & Jaruzel, M. (2021).
Carbon capture: Prospects and policy agenda for CO2-neutral power generation. The
Electricity Journal, 34(7), 106997. doi:https://doi.org/10.1016/j.tej.2021.106997
Nagabhushan, D., & Thompson, J. (2019). Carbon Capture & Storage in The United States
Power Sector: The Impact of 45Q Federal Tax Credits. Retrieved from https://
www.catf.us/wp-content/uploads/2019/02/CATF_CCS_United_States_Power_Sector.pdf
Nagao, I., Hashimoto, S., Suzuki, K., Toda, S., Narita, Y., Tsuda, A., . . . Uematsu, M. (2009).
Responses of DMS in the seawater and atmosphere to iron enrichment in the subarctic
western North Pacific (SEEDS-II). Deep Sea Research Part II: Topical Studies in
Oceanography, 56(26), 2899-2917. doi:https://doi.org/10.1016/j.dsr2.2009.07.001
Nagarajan, S., Chou, S. K., Cao, S., Wu, C., & Zhou, Z. (2013). An updated comprehensive
techno-economic analysis of algae biodiesel. Bioresource Technology, 145, 150-156.
doi:https://doi.org/10.1016/j.biortech.2012.11.108
Nagor, G. P. i. (2012). Biochar – An Effective Substitute for P-Fertilizers. In (Vol. 5).
Naims, H. (2016). Economics of carbon dioxide capture and utilization—a supply and demand
perspective. Environmental Science and Pollution Research, 23(22), 22226-22241.
doi:10.1007/s11356-016-6810-2
Nair, A., Kruse, R., Tillman, J., & Lawson, V. (2013). Biochar Application in Potato Production.
Retrieved from http://lib.dr.iastate.edu/cgi/viewcontent.cgi?
article=3021&context=farms_reports&sei-
redir=1&referer=http%3A%2F%2Fscholar.google.com%2Fscholar_url%3Fhl%3Den%26
q%3Dhttp%3A%2F%2Flib.dr.iastate.edu%2Fcgi%2Fviewcontent.cgi%253Farticle%253D
3021%2526context%253
Nair, P. K. R. (2012). Carbon sequestration studies in agroforestry systems: a reality-check.
Agroforestry Systems, 86(2), 243-253. doi:10.1007/s10457-011-9434-z
Nair, P. K. R. (2012). Climate Change Mitigation: A Low-Hanging Fruit of Agroforestry. In P.
K. R. Nair & D. Garrity (Eds.), Agroforestry - The Future of Global Land Use (pp. 31-67).
Nair, P. K. R., Nair, V. D., Kumar, B. M., & Haile, S. G. (2009). Soil carbon sequestration in
tropical agroforestry systems: a feasibility appraisal. Environmental Science & Policy,
12(8), 1099-1111. doi:https://doi.org/10.1016/j.envsci.2009.01.010
Nair, R., Mehta, C. R., & Sharma, S. (2015). Carbon sequestration in soils-A Review.
Agricultural Reviews, 36(2), 81. doi:10.5958/0976-0741.2015.00011.2
Naisse, C., et al. . (2013). Can biochar and hydrochar stability be assessed with chemical
methods? Organic Geochemistry, 60, 40-44. Retrieved from https://
www.sciencedirect.com/science/article/pii/S0146638013000946
Naisse, C., et al. . (2014). Effect of biochar addition on C mineralisation and soil organic matter
priming in two subsoil horizons. Journal of Soils and Sediments, 15, 825-832.
doi:10.1007/s11368-014-1002-5
Naisse, C. (2015). Potentiel de séquestration de carbone des biochars et hydrochars, et impact
après plusieurs siècles sur le fonctionnement du sol (Carbon sequestration potential of
biochar and hydrochars and after several centuries impact on the functioning of the soil).
Université Pierre et Marie Curie (Pierre and Marie Curie University), Retrieved from
https://tel.archives-ouvertes.fr/tel-01130038/
Najafi, G., Ghobadian, B., & Yusaf, T. F. (2011). Algae as a sustainable energy source for biofuel
production in Iran: A case study. Renewable and Sustainable Energy Reviews, 15(8),
3870-3876. doi:https://doi.org/10.1016/j.rser.2011.07.010
Nakabayashi, K., Matsuo, Y., Isomoto, K., Teshima, K., Ayukawa, T., Shimanoe, H., . . . Yoon,
S.-H. (2020). Establishment of innovative carbon nanofiber synthesis technology utilizing
carbon dioxide. ACS Sustainable Chemistry & Engineering. doi:10.1021/
acssuschemeng.9b07253
Nakamura, F. M., Germano, M. G., & Tsai, S. M. (2014). Capacity of Aromatic Compound
Degradation by Bacteria from Amazon Dark Earth. Diversity, 6(2), 339-353. Retrieved
from http://www.mdpi.com/1424-2818/6/2/339/htm
Nam, H., Capareda, S. C., Ashwath, N., & Kongkasawan, J. (2015). Experimental investigation
of pyrolysis of rice straw using bench-scale auger, batch and fluidized bed reactors.
Energy, 93, 2384 - 2394. doi:10.1016/j.energy.2015.10.028
Namgay, T., Singh, B., & Singh, B. P. (2010). Influence of biochar application to soil on the
availability of As, Cd, Cu, Pb, and Zn to maize (Zea mays L.). Australian Journal of Soil
Research, 48, 638-647.
Namsaraev, Z. B., Gotovtsev, P. M., Komova, A. V., & Vasilov, R. G. (2018). Current status and
potential of bioenergy in the Russian Federation. Renewable and Sustainable Energy
Reviews, 81, 625-634. doi:https://doi.org/10.1016/j.rser.2017.08.045
Nan, N., DeVallance, D. B., Xie, X., & Wang, J. (2015). The effect of bio-carbon addition on the
electrical, mechanical, and thermal properties of polyvinyl alcohol/biochar composites.
Journal of Composite Materials. doi:10.1177/0021998315589770
Nan, Q., Wang, C., Wang, H., Yi, Q., Liang, B., Xu, J., & Wu, W. (2019). Biochar drives
microbially-mediated rice production by increasing soil carbon. Journal of Hazardous
Materials, 121680. doi:https://doi.org/10.1016/j.jhazmat.2019.121680
Nanda, S., Dalai, A. K., Berruti, F., & Kozinski, J. A. (2015). Biochar as an Exceptional
Bioresource for Energy, Agronomy, Carbon Sequestration, Activated Carbon and
Specialty Materials. Waste and Biomass Valorization, 7(2), 201-235. doi:10.1007/
s12649-015-9459-z
Nanda, S., Mohanty, P., Kozinski, J. A., & Dalai, A. K. (2014). Physico-Chemical Properties of
Bio-Oils from Pyrolysis of Lignocellulosic Biomass with High and Slow Heating Rate.
Energy and Environment Research, 4(3), 21-32. doi:10.5539/eer.v4n3p21
Nandakumar, N. T. (2019). Soon, algae might absorb carbon dioxide emissions before they
even leave the factory. Massive Science. Retrieved from https://massivesci.com/notes/
carbon-capture-by-algae-biofuels-bioreactor/?
fbclid=IwAR2WyBdnFChI8saKa3sdXu7vYadjvSPoO9pEuXjXDMoWvsfoxR_Mi4wbevs
Nansubuga, I., Banadda, N., Ronsse, F., Verstraete, W., & Rabaey, K. (2015). Digestion of high
rate activated sludge coupled to biochar formation for soil improvement in the tropics.
Water Research, 81, 216-222. doi:10.1016/j.watres.2015.05.047
Nansubuga, I. G. (2015). Optimal recovery of resources from wastewater treatment: aspects of
the developing world. Ghent University, Retrieved from https://biblio.ugent.be/
publication/6938827
Nantongo, M. G. (2017). Legitimacy of local REDD+ processes. A comparative analysis of pilot
projects in Brazil and Tanzania. Environmental Science & Policy, 78, 81-88. doi:https://
doi.org/10.1016/j.envsci.2017.09.005
Naqvi, S. R., Uemura, Y., Osman, N., & Yusup, S. (2015). Production and Evaluation of
Physicochemical Characteristics of Paddy Husk Bio-char for its C Sequestration
Applications. BioEnergy Research, 8(4), 1800-1809. doi:10.1007/s12155-015-9634-x
Naraharisetti, P. K., Yeo, T. Y., & Bu, J. (2019). New classification of CO2 mineralization
processes and economic evaluation. Renewable and Sustainable Energy Reviews, 99,
220-233. doi:https://doi.org/10.1016/j.rser.2018.10.008
Nargi, L. (2017). New Study Shows Organic Farming Traps Carbon in Soil to Combat Climate
Change. Civil Eats. Retrieved from http://civileats.com/2017/09/11/new-study-shows-
organic-farming-traps-carbon-in-soil-to-combat-climate-change/
Narita, D., & Klepper, G. (2015). Economic incentives for carbon storage under uncertainty: A
real options analysis. Retrieved from https://www.econstor.eu/bitstream/
10419/110974/1/827503377.pdf
Nartey, O. D., & Zhao, B. (2014). Biochar Preparation, Characterization, and Adsorptive
Capacity and Its Effect on Bioavailability of Contaminants: An Overview. Advances in
Materials Science and Engineering, 201(1420), 1 - 12. doi:10.1155/2014/715398
Narzari, R., et al. (2015). Biochar: An Overview on its Production, Properties and Potential
Benefits. In H. Choudhury (Ed.), Biology, Biotechnology and Sustainable Development
(pp. 13-40).
Naser, H., et al. (2016). Simulation of CO2 Injection in Asmari Reservoir for EOR and
Sequestration, and Investigation of Effective Operational Parameters: Case Study.
Petroleum Research, 25(85-2), 4-14.
National Academies of Science, U. S. (2015). Climate Intervention: Carbon Dioxide Removal
and Reliable Sequestration. Retrieved from https://www.nap.edu/login.php?
record_id=18805&page=https%3A%2F%2Fwww.nap.edu%2Fdownload%2F18805
National Academies of Science, U. S. (2018). Negative Emissions Technologies and Reliable
Sequestration: A Research Agenda. Retrieved from https://download.nap.edu/cart/
download.cgi?record_id=25259
National Academies of Science, U. S. (2019). Gaseous Carbon Waste Streams Utilization:
Status and Research Needs. Retrieved from https://www.nap.edu/download/25232
National Academies of Sciences, E., & Medicine. (2017). Coastal Blue Carbon Approaches for
Carbon Dioxide Removal and Reliable Sequestration: Proceedings of a Workshop—in
Brief. Washington, DC: The National Academies Press.
Naudts, K., et al. (2016). Europe’s forest management did not mitigate climate warming.
Science, 351(6273), 597-600. Retrieved from http://science.sciencemag.org/content/
351/6273/597
Navarre-Sitchler, A., & Brantley, S. (2007). Basalt weathering across scales. Earth and
Planetary Science Letters, 261(1), 321-334. doi:https://doi.org/10.1016/
j.epsl.2007.07.010
Nave, L. E., Domke, G. M., Hofmeister, K. L., Mishra, U., Perry, C. H., Walters, B. F., &
Swanston, C. W. (2018). Reforestation can sequester two petagrams of carbon in US
topsoils in a century. Proceedings of the National Academy of Sciences, 115(11),
2776-2781. doi:10.1073/pnas.1719685115
Navia, R., & Crowley, D. E. (2010). Closing the loop on organic waste management: biochar for
agricultural land application and climate change mitigation. Waste Management &
Research, 28(6), 479-480. Retrieved from https://www.ncbi.nlm.nih.gov/pubmed/
20507863
Nayak, D., Saetnan, E., Cheng, K., Wang, W., Koslowski, F., Cheng, Y.-F., . . . Smith, P. (2015).
Management opportunities to mitigate greenhouse gas emissions from Chinese
agriculture. Agriculture, Ecosystems & Environment, 209, 108-124. doi:10.1016/
j.agee.2015.04.035
Nazeri, M., Maroto-Valer, M. M., & Jukes, E. (2016). Performance of Coriolis flowmeters in CO2
pipelines with pre-combustion, post-combustion and oxyfuel gas mixtures in carbon
capture and storage. International Journal of Greenhouse Gas Control, 54(Part 1),
297-308. doi:https://doi.org/10.1016/j.ijggc.2016.09.013
Ndindeng, S. A., Mbassi, J. E. G., Mbacham, W. F., Manful, J., Graham-Acquaah, S., Moreira,
J., . . . Futakuchi, K. (2015). Quality optimization in briquettes made from rice milling by-
products. Energy for Sustainable Development, 29, 24 - 31. doi:10.1016/
j.esd.2015.09.003
Ndong, R., et al. (2009). Life cycle assessment of biofuels from Jatropha curcas in West Africa:
a field study. GCB Bioenergy, 1(3), 197-210. Retrieved from http://
onlinelibrary.wiley.com/doi/10.1111/j.1757-1707.2009.01014.x/abstract
Ndor, E., Amana, S., & Asadu, C. (2015). Effect of Biochar on Soil Properties and Organic
Carbon Sink in Degraded Soil of Southern Guinea Savanna Zone, Nigeria. International
Journal of Plant & Soil Science, 4(3), 252 - 258. doi:10.9734/ijpss/2015/12376
Ndor, E., Jayeoba, O., & Asadu, C. (2015). Effect of Biochar Soil Amendment on Soil Properties
and Yield of Sesame Varieties in Lafia, Nigeria. American Journal of Experimental
Agriculture, 9(4), 1 - 8. doi:10.9734/ajea/2015/19637
Needoba, J. A., Marchetti, A., Henry, M. F., Harrison, P. J., Wong, C.-S., Keith Johnson, W., &
Pedersen, T. F. (2006). Stable nitrogen isotope dynamics of a mesoscale iron
enrichment experiment in the NE Subarctic Pacific. Deep Sea Research Part II: Topical
Studies in Oceanography, 53(20–22), 2214-2230. doi:http://dx.doi.org/10.1016/
j.dsr2.2006.05.021
Negash, M., & Kanninen, M. (2015). Modeling biomass and soil carbon sequestration of
indigenous agroforestry systems using CO2FIX approach. Agriculture, Ecosystems &
Environment, 203(Supplement C), 147-155. doi:https://doi.org/10.1016/
j.agee.2015.02.004
NEGEM. (2020). The NEGEM project – Assessing the realistic potential of carbon dioxide
removal and
its contribution to achieving climate neutrality [Press release]. Retrieved from https://
www.negemproject.eu/wp-content/uploads/2020/07/
NEGEM_PRESS_RELEASE_20200701.pdf
Negri, V., Galán-Martín, Á., Pozo, C., Fajardy, M., Reiner, D. M., Mac Dowell, N., & Guillén-
Gosálbez, G. (2021). Life cycle optimization of BECCS supply chains in the European
Union. Applied Energy, 298, 117252. doi:https://doi.org/10.1016/j.apenergy.2021.117252
Neimark, B. (2018). Greenwashing: corporate tree planting generates goodwill but may
sometimes harm the planet. The Conversation. Retrieved from https://
theconversation.com/greenwashing-corporate-tree-planting-generates-goodwill-but-may-
sometimes-harm-the-planet-103457
Neimark, B. D. (2016). Biofuel imaginaries: The emerging politics surrounding ‘inclusive’ private
sector development in Madagascar. Journal of Rural Studies, 45, 146-156. doi:https://
doi.org/10.1016/j.jrurstud.2016.03.012
Nelissen, V. (2013). Effects of biochar on soil processes, soil functions and crop growth. Ghent
University,
Nelissen, V., et al. . (2014). Effect of different biochar and fertilizer types on N2O and NO
emissions. Soil Biology and Biochemistry, 70, 244-255. Retrieved from http://
www.sciencedirect.com/science/article/pii/S0038071713004707
Nelissen, V., et al. (2014). Impact of a woody biochar on properties of a sandy loam soil and
spring barley during a two-year field experiment. European Journal of Agronomy, 62,
65-78. doi:10.1016/j.eja.2014.09.006
Nelissen, V., et al. (2014). Short-Term Effect of Feedstock and Pyrolysis Temperature on
Biochar Characteristics, Soil and Crop Response in Temperate Soils. Agronomy, 4(1),
52-73. Retrieved from http://www.mdpi.com/2073-4395/4/1/52
Nelissen, V., et al. (2014). Temporal evolution of the impact of a woody biochar on soil nitrogen
processes: a 15N tracing study. Paper presented at the 18th Nitrogen workshop: The
nitrogen challenge : building a blueprint for nitrogen use efficiency and food security.
https://biblio.ugent.be/publication/5871963
Nelissen, V., Saha, B. K., Ruysschaert, G., & Boeckx, P. (2014). Effect of different biochar and
fertilizer types on N2O and NO emissions. Soil Biology and Biochemistry, 70, 244-255.
doi:https://doi.org/10.1016/j.soilbio.2013.12.026
Nellemann, C. (2009). Blue carbon. A UNEP rapid response assessment.
Nellemann, C., et al. (2009). Blue Carbon: The role of health oceans in binding carbon.
Retrieved from https://grid.cld.bz/Blue-Carbon
Nelson, G. (2013). Ocean Carbon Sequestration: Solution to Climate Change or Policy
Distraction? SAIS Review, XXXIII(2), 155-162.
Nelson, N. O., Agudelo, S. C., Yuan, W., & Gan, J. (2011). Nitrogen and Phosphorus Availability
in Biochar-Amended Soils. Soil Science, 176(5), 218-226. doi:10.1097/
SS.0b013e3182171eac
Nemati, M. R., Simard, F., Fortin, J.-P., & Beaudoin, J. (2014). Potential Use of Biochar in
Growing Media. Vadose Zone Journal. doi:10.2136/vzj2014.06.0074
Nemet, G. F., et al. (2018). Negative emissions—Part 3: Innovation and upscaling.
Environmental Research Letters, 13(6), 063003. Retrieved from http://stacks.iop.org/
1748-9326/13/i=6/a=063003
Nemet, G. F., & Brandt, A. R. (2012). Willingness to Pay for a Climate Backstop: Liquid Fuel
Producers and Direct CO2 Air Capture. Energy Journal, 33, 53-81. Retrieved from http://
www.iaee.org/en/publications/ejarticle.aspx?id=2467
Nerome, M., Toyota, K., Islam, T. M. D., Nishijima, T., Matsuoka, T., Sato, K., & Yamaguchi, Y.
(2005). Suppression of bacterial wilt of tomato by incorporation of municipal biowaste
charcoal into soil. Soil Microorganisms, 59, 9-14.
Nesci, F. S., & Iellamo, N. M. (2014). A Correct Valorisation of Farming and Agro-Industrial
Waste. Advanced Engineering Forum. Retrieved from http://www.scientific.net/AEF.11.64
Neto, C. J. D., Letti, L. A. J., Karp, S. G., Vítola, F. M. D., & Soccol, C. R. (2019). Chapter 18 -
Production of biofuels from algae biomass by fast pyrolysis. In A. Pandey, J.-S. Chang,
C. R. Soccol, D.-J. Lee, & Y. Chisti (Eds.), Biofuels from Algae (Second Edition) (pp.
461-473): Elsevier.
Netto, A. L. A., Câmara, G., Rocha, E., Silva, A. L., Andrade, J. C. S., Peyerl, D., & Rocha, P.
(2020). A first look at social factors driving CCS perception in Brazil: A case study in the
Recôncavo Basin. International Journal of Greenhouse Gas Control, 98, 103053.
doi:https://doi.org/10.1016/j.ijggc.2020.103053
Network, A. B., Biofuelwatch, & Foundation, G. (2009). Biochar Land Grabbing: the impacts on
Africa. Retrieved from http://www.biofuelwatch.org.uk/docs/biochar_africa_briefing.pdf
Network, C. A. (2021). Position: Carbon Capture, Storage and Utilisation. Retrieved from http://
www.climatenetwork.org/sites/default/files/
can_position_carbon_capture_storage_and_utilisation_january_2021.pdf
Neuhauser, A. (2019). Carbon Capture: Boon or Boondoggle? U.S. News & World Report.
Retrieved from https://www.usnews.com/news/the-report/articles/2019-07-26/a-startup-
says-it-can-suck-co2-from-the-air-experts-arent-so-sure
Neves, R., et al. . (2015). Comparative study of two standalone thermochemical routes for the
production of electricity from sugarcane bagasse. Paper presented at the Symposium on
Biotechnology for Fuels and Chemicals. https://sim.confex.com/sim/37th/webprogram/
Paper29492.html
Neville, T. (2020). Here's What a Carbon Offset Actually Looks Like. Outside. Retrieved from
https://www.outsideonline.com/2418122/how-carbon-offsets-work
Newmark, R. L., Friedmann, S. J., & Carroll, S. A. (2010). Water Challenges for Geologic
Carbon Capture and Sequestration. Environmental Management, 45, 651-661.
Retrieved from http://download.springer.com/static/pdf/823/
art%253A10.1007%252Fs00267-010-9434-1.pdf?
originUrl=http%3A%2F%2Flink.springer.com%2Farticle%2F10.1007%2Fs00267-010-94
34-1&token2=exp=1485135921~acl=%2Fstatic%2Fpdf%2F823%2Fart%25253A10.1007
%25252Fs00267-010-9434-1.pdf%3ForiginUrl%3Dhttp%253A%252F%252Flink.springer
.com%252Farticle%252F10.1007%252Fs00267-010-9434-1*~hmac=b2356e896a434aa
e18efca21b2eee9c5241f046d4ada2143d75fba33ab117745
News, A. (2021). US government approves routes for Wyoming CO2 pipelines. Retrieved from
https://abcnews.go.com/Technology/wireStory/us-government-approves-routes-
wyoming-co2-pipelines-75408458
Newstaff, K. (2021). Giant Eagle Announces Net Zero Carbon Emissions Goal For 2040.
Retrieved from https://pittsburgh.cbslocal.com/2021/06/29/giant-eagle-announces-net-
zero-carbon-emissions-goal-for-2040/
Ney, R. A., & Schnoor, J. L. (2002). Incremental life cycle analysis: using uncertainty analysis to
frame greenhouse gas balances from bioenergy systems for emission trading. Biomass
and Bioenergy, 22(4), 257-269. doi:https://doi.org/10.1016/S0961-9534(02)00004-1
Ng, E. L., et al. (2014). Functional stoichiometry of soil microbial communities after amendment
with stabilised organic matter. Soil Biology and Biochemistry, 76, 170-178. doi:10.1016/
j.soilbio.2014.05.016
Ng, E. L., & Cavagnaro, T. R. (2016). Chapter 3 - Biochar Effects on Ecosystems: Insights From
Lipid-Based Analysis. In Biochar Application (pp. 55-77): Elsevier.
Ng, T. L., Eheart, J. W., Cai, X., & Miguez, F. (2010). Modeling Miscanthus in the Soil and Water
Assessment Tool (SWAT) to Simulate Its Water Quality Effects As a Bioenergy Crop.
Environmental Science & Technology, 44(18), 7138-7144. doi:10.1021/es9039677
Ng, W. Y., Low, C. X., Putra, Z. A., Aviso, K. B., Promentilla, M. A. B., & Tan, R. R. (2020).
Ranking negative emissions technologies under uncertainty. Heliyon, 6(12), e05730.
doi:https://doi.org/10.1016/j.heliyon.2020.e05730
Nghĩa, N. K., Sang, Đ. H., Oanh, N. T. K., Quyên, N. T. T., Lăng, L. T., & Vin, D. M. (2015).
HIU QU PHÂN HY SINH HC HOT CHT PROPOXUR TRONG ĐẤT BI DÒNG
VI KHUN PHÂN LP Paracoccus SP. P23-7 C ĐỊNH TRONG BIOCHAR
(Biodegradation of the Pesticide Propuxur in soil by Paracoccus sp. P23-7 Immobilized
on Biochar). In.
Ngo, P.-T., et al.i (2013). Biological and chemical reactivity and phosphorus forms of buffalo
manure compost, vermicompost and their mixture with biochar. Bioresource Technology,
148, 401-407. Retrieved from http://www.sciencedirect.com/science/article/pii/
S0960852413013497
Ngo, P.-T., et al. (2013). Long-term impact of organic amendments (compost, vermicompost and
biochar) on soil organic matter quality.
Ngo, P.-T., et al. (2014). Use of organic substrates for increasing soil organic matter quality and
carbon sequestration of tropical degraded soil: a 3-year mesocosms experiment. Carbon
Management, 5(2), 155 - 168. doi:10.1080/17583004.2014.912868
Ngo, T. P. (2014). Effects of exogenous organic amendments on the composition of organic
matter and carbon storage of a degraded by erosion in northern Vietnam soil (translated
from French). Retrieved from http://www.theses.fr/2014PA066152
Ngoma, H., Pelletier, J., Mulenga, B. P., & Subakanya, M. (2021). Climate-smart agriculture,
cropland expansion and deforestation in Zambia: Linkages, processes and drivers. Land
Use Policy, 107, 105482. doi:https://doi.org/10.1016/j.landusepol.2021.105482
Nguyen, B., et al. . (2008). Long-Term Black Carbon Dynamics in Cultivated Soil.
Biogeochemistry, 89, 295-308.
Nguyen, B. T., et al. . (2014). Turnover of Soil Carbon following Addition of Switchgrass-Derived
Biochar to Four Soils. Soil Science Society of America Journal, 78, 531-537. Retrieved
from file:///C:/Users/Gateway/Downloads/sssaj-78-2-531.pdf
Nguyen, B. T., & Lehmann, J. (2009). Black carbon decomposition under varying water regimes.
Organic Geochemistry, 40(8), 846-853. Retrieved from http://www.sciencedirect.com/
science/article/pii/S014663800900117X
Nguyen, D. H., Biala, J., Grace, P. R., Scheer, C., & Rowlings, D. W. (2013). Effects of rice husk
biochar and sugar-mill by-products on methane consumption from two different soils. In
Proc Aust Soc Sugar Cane Technol.
Nguyen, D. H., Biala, J., Grace, P. R., Scheer, C., & Rowlings, D. W. (2014). Greenhouse gas
emissions from sub-tropical agricultural soils after addition of organic by-products.
SpringerPlus, 3, 1-14. doi:10.1186/2193-1801-3-491
Nguyen, D. H., Scheer, C., Rowlings, D. W., & Grace, P. R. (2016). Rice husk biochar and crop
residue amendment in subtropical cropping soils: effect on biomass production, nitrogen
use efficiency and greenhouse gas emissions. Biology and Fertility of Soils, 52(2),
261-270. doi:10.1007/s00374-015-1074-4
Nguyen, H., Graeme, B., & Guppy, C. (2012). Effect of rice husk biochar and nitrification
inhibitor treated urea on N and other macronutrient uptake by maize. 16 Australian
Agronomy Conference. Retrieved from http://www.regional.org.au/au/asa/2012/nutrition/
7895_blair.htm
Nguyen, H. T. (2015). A Systems Model for Short-Rotation Coppices: A Case Study of the
Whitecourt, Alberta, Trial Site. University of Alberta, Retrieved from https://
era.library.ualberta.ca/public/view/item/uuid:fb7201d1-8d9e-4c2e-9a68-ef0ab817106f/
DS1/Nguyen_Huy_T_201409_MSc.pdf
Nguyen, M.-V., & Lee, B.-K. (2012). Improvement of Yields and Surface Areas of Biochar from
Chicken Manure. Journal of Biobased Materials and Bioenergy, 6, 714-716.
Nguyen, M.-V., & Lee, B.-K. (2015). Removal of Dimethyl Sulfide from Aqueous Solution Using
Cost-Effective Modified Chicken Manure Biochar Produced from Slow Pyrolysis.
Sustainability, 7(11), 15057 - 15072. doi:10.3390/su71115057
Nguyen, T. (2017). Going Negative. Vice News. Retrieved from https://news.vice.com/story/this-
factory-will-suck-carbon-out-of-the-air-and-feed-it-to-plants
Nguyen, T., Tong, Y., Luc, N., & Liu, C. (2016). Effects of Biochar on Chemical Properties of
Three Types of Soil and Nutrient Uptake of Maize under Drought Stress. Advance
Journal of Food Science and Technology, 9. Retrieved from http://www.airitilibrary.com/
Publication/alDetailedMesh?
docid=20424876-201509-201510160012-201510160012-539-545
Nguyen, T. H., Brown, R. A., & Ball, W. P. (2004). An evaluation of thermal resistance as a
measure of black carbon content in diesel soot, wood char, and sediment. Organic
Geochemistry, 35(3), 217-234. Retrieved from http://www.sciencedirect.com/science/
article/pii/S0146638003002171
Nguyen, T. H., Kim, S., Yoon, M., & Bae, T. H. (2016). ChemSusChem, 9, 455.
Nguyen, T.-H., Tong, Y.-A., Luc, N.-T., & Liu, C. (2015). Effects of Different Ways to Return
Biomass on Soil and Crop Nutrient Contents. Nature Environment and Pollution
Technology, 14(3), 733-738. Retrieved from http://search.proquest.com/openview/
7cdf7dd07dbe11e64db5e440e5d62bc7/1?pq-origsite=gscholar
Nguyen, T. T. N., Xu, C.-Y., Tahmasbian, I., Che, R., Xu, Z., Zhou, X., . . . Bai, S. H. (2017).
Effects of biochar on soil available inorganic nitrogen: A review and meta-analysis.
Geoderma, 288, 79-96. doi:https://doi.org/10.1016/j.geoderma.2016.11.004
Ni, J., et al. (2011). Adsorption of Aromatic Carboxylate Ions to Black Carbon (Biochar) Is
Accompanied by Proton Exchange with Water. Environmental Science & Technology,
45(21), 9240-9248. doi:10.1021/es201859j
Nicholson, S. (2021). Carbon Removal and the Dangers of Extractivism. In J. Shapiro & J.-A.
McNeish (Eds.), Our Extractive Age (pp. 189-203).
Nicholson, S., Burns, W., & Morrow, D. R. (2020). United Airlines is Investing in Direct Air
Capture, What Does That Mean? Retrieved from https://research.american.edu/
carbonremoval/2020/12/11/united-airlines-is-investing-in-direct-air-capture-what-does-
that-mean/
Nickelsburg, M. (2021). Climate solution or corporate greenwashing? Tech taps farmers to help
offset carbon footprint. Geek Wire. Retrieved from https://www.geekwire.com/2021/
climate-solution-corporate-greenwashing-tech-taps-farmers-help-offset-carbon-footprint/
Nicot, J.-P., Sun, A. Y., Gao, R. S., & Lashgari, H. (2017). Identification of a Minimum Dataset for
CO2-EOR Monitoring at Weyburn, Canada. Energy Procedia, 114, 7033-7041.
doi:https://doi.org/10.1016/j.egypro.2017.03.1844
Nielsen, H. H., et al. . (2015). Potential use of low-temperature gasification biochar as nutrient
provider and soil improver – field evaluation. In.
Nielsen, M. (2019). The impact of direct air carbon capture on climate change. Cognitive
Medium. Retrieved from http://cognitivemedium.com/dac-notes
Nielsen, S., et al. (2014). Comparative analysis of the microbial communities in agricultural soil
amended with enhanced biochars or traditional fertilisers. Agriculture, Ecosystems &
Environment, 191, 73-83. doi:dx.doi.org/10.1016/j.agee.2014.04.006
Nielsen, S., Minchin, T., Kimber, S., van Zwieten, L., Gilbert, J., Munroe, P., . . . Thomas, T.
(2014). Comparative analysis of the microbial communities in agricultural soil amended
with enhanced biochars or traditional fertilisers. Agriculture, Ecosystems & Environment,
191, 73-82. doi:http://dx.doi.org/10.1016/j.agee.2014.04.006
Niemi, R. M., Heiskanen, I., & Saarnio, S. (2015). Weak effects of biochar amendment on soil
enzyme activities in mesocosms in bare or Phleum pratense soil. Boreal Environment
Research. Retrieved from http://web.a.ebscohost.com/abstract?
direct=true&profile=ehost&scope=site&authtype=crawler&jrnl=12396095&AN=10329776
6&h=xmTIyBZpREN0UqN3%2bIUILvxPzi0ayjGGLo1zjyWOvoS27t9qnj1MxvrqsjHiVUpIy
%2bvyAyBmlSXiY0JrURpGaQ%3d%3d&crl=c&resultNs=AdminWebAuth&resultLocal
Nieto, A., Gascó, G., Paz-Ferreiro, J., Fernández, J. M., Plaza, C., & Méndez, A. (2016). The
effect of pruning waste and biochar addition on brown peat based growing media
properties. Scientia Horticulturae, 199, 142 - 148. doi:10.1016/j.scienta.2015.12.012
Nieto Martín, A. (2015). Fabricación, caracterización y utilización de biochar como sustituto de
la turba en la preparación de sustratos de cultivo (Fabrication, characterization and use
of biochar as a substitute for peat in the preparation of growing media). Retrieved from
http://oa.upm.es/37192/
Niggli, C., & Schmidt, H. P. (2012). Biochar in European Viticulture: Results of the Season 2011.
Ithaka Journal, 1/2012, 250–261. Retrieved from http://www.ithaka-journal.net/
druckversionen/e022012-bc-viticulture.pdf
Nigussie, A., et al. . (2012). Effect of Biochar Application on Soil Properties and Nutrient Uptake
of Lettuces (Lactuca sativa) Grown in Chromium Polluted Soils. American-Eurasian J.
Agric. & Environ. Sci., 12(3), 369-376. Retrieved from http://idosi.org/aejaes/
jaes12(3)12/14.pdf
Niiler, E. (2020). Could Carbon Dioxide Be Turned Into Jet Fuel? Wired. Retrieved from https://
www.wired.com/story/could-carbon-dioxide-be-turned-into-jet-fuel/
Nijhuis, N. (2019). Article 210 LOSC and the Global Rules on Dumping at Sea - The London
Convention, London Protocol and the Rules on Geo-engineering -. (Public International
Law - Environmental and Law of the Sea Masters). Universiteit UtrechtNijhuis, Retrieved
from https://www.academia.edu/download/61727103/
Ninian_Nijhuis_Article_210_LOSC_and_the_Global_Rules_on_Dumping_at_Sea202001
09-8072-636o1w.pdf
Nijnik, M., Pajot, G., Moffat, A. J., & Slee, B. (2013). An economic analysis of the establishment
of forest plantations in the United Kingdom to mitigate climatic change. Forest Policy and
Economics, 26, 34-42. doi:https://doi.org/10.1016/j.forpol.2012.10.002
Nijsen, M., Smeets, E., Stehfest, E., & van Vuuren, D. P. (2011). An evaluation of the global
potential of bioenergy production on degraded lands. GCB Bioenergy, 4(2), 130-147.
Retrieved from http://onlinelibrary.wiley.com/doi/10.1111/j.1757-1707.2011.01121.x/full
Nikbakht, A. M., avidi, H., & Rahmati, H. (2014). Design and Fabrication of a Reactor for
Producing Bio-Char from Agricultural Wood Residues. Paper presented at the
International Conference on Food, Agriculture and Biology (FAB-2014) June 11-12, 2014
Kuala Lumpur (Malaysia). http://iicbe.org/siteadmin/upload/2886C614503.pdf
Nikokavoura, A., & Trapalis, C. (2017). Alternative photocatalysts to TiO2 for the photocatalytic
reduction of CO2. Applied Surface Science, 391, Part B, 149-174. doi:http://dx.doi.org/
10.1016/j.apsusc.2016.06.172
Nikulshina, V., et al. (2006). CO2 capture from air and co-production of H2 via the Ca(OH)2–
CaCO3 cycle using concentrated solar power. Energy, 31(12), 1715-1725. Retrieved
from http://e-citations.ethbib.ethz.ch/view/pub:10056?lang=en
Nikulshina, V., et al. (2008). Feasibility of Na-based thermochemical cycles for the capture of
CO2 from air. Chemical Engineering Journal, 140(1-3), 62-70. Retrieved from http://e-
citations.ethbib.ethz.ch/view/pub:24928?lang=en
Nikulshina, V., Galvez, A., & Steinfeld, A. (2007). Kinetic analysis of the carbonation reactions
for the capture of CO2 from air via the Ca(OH)2-CaCO3-CaO solar thermochemical
cycle. Chemical Engineering Journal, 129(1-3), 75-83. Retrieved from http://e-
citations.ethbib.ethz.ch/view/pub:19875?lang=en
Nikulshina, V., Gebald, C., & Steinfeld, A. (2009). CO2 capture from atmospheric air via
consecutive CaO-carbonation and CaCO3-calcination cycles in a fluidized-bed solar
reactor. Chemical Engineering Journal, 146(2), 244-248. doi:http://dx.doi.org/10.1016/
j.cej.2008.06.005
Nikulshina, V., Hirsch, D., Mazzotti, M., & Steinfeld, A. (2006). CO2 capture from air and co-
production of H2 via the Ca(OH)2–CaCO3 cycle using concentrated solar power–
Thermodynamic analysis. Energy, 31(12), 1715-1725. doi:https://doi.org/10.1016/
j.energy.2005.09.014
Nikulshina, V., & Steinfeld, A. (2009). CO2 capture from air via CaO-carbonation using a solar-
driven fluidized bed reactor. Chemical Engineering Journal, 155(3), 867-873. Retrieved
from http://e-citations.ethbib.ethz.ch/view/pub:36792?lang=en
Nilsson, S., & Schopfhauser, W. (1995). The carbon-sequestration potential of a global
afforestation program. Climatic Change, 30(3), 267-293. doi:10.1007/bf01091928
Ningbo, G., Baoling, L., Aimin, L., & Juanjuan, L. (2015). Continuous pyrolysis of pine sawdust
at different pyrolysis temperatures and solid residence times. Journal of Analytical and
Applied Pyrolysis. doi:10.1016/j.jaap.2015.05.011
Nion, Y. A., et al. . (2015). Pengaruh Suhu, Lama, Dan Ukuran Mesh Dalam Pembuatan Biochar
Plus Tandan Kosong Kelapa Sawit Terhadap Retensi Tanah Gambut Dan Podsolik
Merah Kuning (EFFECT OF TEMPERATURE, OLD, AND MESH SIZE IN MAKING
BIOCHAR PLUS EMPTY PALM BUNCH OF SOIL PEAT AND RETENTION). Paper
presented at the Simposium dan Seminar Nasional Perhimpunan Agronomi Indonesiadi
Universitas Sebelas Mare. https://www.academia.edu/23977119/
Pengaruh_Suhu_Lama_Dan_Ukuran_Mesh_Dalam_Pembuatan_Biochar_Plus_Tandan
_Kosong_Kelapa_Sawit_Terhadap_Retensi_Tanah_Gambut_Dan_Podsolik_Merah_Kun
ing
Nisbet, M. (2019). Sciences, Publics, Politics: Carbon Removal Is No Quick Fix. Issues in
Science and Technology. Retrieved from https://issues.org/sciences-publics-politics-
carbon-removal/
Nishio, M. (1996). Microbial fertilizers in Japan. Retrieved from Ibaraki, Japan:
Nishioka, J., Takeda, S., de Baar, H. J. W., Croot, P. L., Boye, M., Laan, P., & Timmermans, K.
R. (2005). Changes in the concentration of iron in different size fractions during an iron
enrichment experiment in the open Southern Ocean. Marine Chemistry, 95(1–2), 51-63.
doi:https://doi.org/10.1016/j.marchem.2004.06.040
Nishioka, J., Takeda, S., Kondo, Y., Obata, H., Doi, T., Tsumune, D., . . . Tsuda, A. (2009).
Changes in iron concentrations and bio-availability during an open-ocean mesoscale
iron enrichment in the western subarctic Pacific, SEEDS II. Deep Sea Research Part II:
Topical Studies in Oceanography, 56(26), 2796-2809. doi:https://doi.org/10.1016/
j.dsr2.2009.06.006
Niswati, A. (2016). Application of biochar produces changes in some soil properties. In Biochar
for future food security: learning from experiences and identifying research priorities.
Niu, L.-q., Jia, P., Li, S.-p., Kuang, J.-l., He, X.-x., Zhou, W.-h., . . . Li, J.-t. (2015). Slash-and-
char: An ancient agricultural technique holds new promise for management of soils
contaminated by Cd, Pb and Zn. Environmental Pollution, 205, 333 - 339. doi:10.1016/
j.envpol.2015.06.017
Niu, Y., et al. (2015). Effects of Different Biochar Dosages and Types on Growth, Yield and
Output Value of Flue-cured Tobacco in Hanzhong Area. Agricultural Science &
Technology, 16(11), 2476-2480. Retrieved from http://web.a.ebscohost.com/abstract?
direct=true&profile=ehost&scope=site&authtype=crawler&jrnl=10094229&AN=11145926
6&h=L3x6mN5N2OMOZWfLZRNRKUJcAkkm3L%2fPs04fkaRMN6FK4zvmmdUeqhLaS
T%2frGw3nSgJOmsiNMcHxfWP0Q0aawA%3d%3d&crl=c&resultNs=AdminWebAuth&re
sultLocal
Niu, Y., Cai, Y., Chen, Z., Luo, J., Di, H. J., Yu, H., . . . Ding, W. (2019). No-tillage did not
increase organic carbon storage but stimulated N2O emissions in an intensively
cultivated sandy loam soil: A negative climate effect. Soil and Tillage Research, 195,
104419. doi:https://doi.org/10.1016/j.still.2019.104419
Niu, Y., Tan, H., & Hui, S. e. (2016). Ash-related issues during biomass combustion: Alkali-
induced slagging, silicate melt-induced slagging (ash fusion), agglomeration, corrosion,
ash utilization, and related countermeasures. Progress in Energy and Combustion
Science, 52, 1-61. doi:https://doi.org/10.1016/j.pecs.2015.09.003
Niu, Z., Li, Q., Wei, X., Li, X., & Li, X. (2017). Numerical Simulation of a Hidden Fault at Different
Stages of Evolution in a Carbon Dioxide-Enhanced Saline Water Recovery Site. Journal
of Petroleum Science and Engineering, 154, 367-381. doi:https://doi.org/10.1016/
j.petrol.2017.04.039
Njoku, C., Uguru, B. N., & Chibuike, C. C. (2016). Use of Biochar to Improve Selected Soil
Chemical Properties, Carbon Storage and Maize Yield in an Ultisol in Abakaliki Ebonyi
State, Nigeria. International Journal of Environmental & Agriculture Research, 2(1),
15-22. Retrieved from http://ijoear.com/Paper-January-2016/IJOEAR-JAN-2016-4.pdf
NOAA, O. o. G. C. Carbon Capture and Storage in Sub-Seabed Geological Formations
Retrieved from https://www.gc.noaa.gov/gcil_carbon_capture_storage.html
Nobutoki, M., Yoshihara, S., & Kuwae, T. (2018). Carbon Offset Utilizing Coastal Waters:
Yokohama Blue Carbon Project. In T. Kuwae & M. Hori (Eds.), Blue Carbon in Shallow
Coastal Ecosystems: Carbon Dynamics, Policy, and Implementation (pp. 321-346).
Singapore: Springer Singapore.
Nocera, D. G. (2012). The artificial leaf. Acc. Chem. Res., 45(5), 767.
Nocito, F., & Dibenedetto, A. (2020). Atmospheric CO2 mitigation technologies: carbon capture
utilization and storage. Current Opinion in Green and Sustainable Chemistry, 21, 34-43.
doi:https://doi.org/10.1016/j.cogsc.2019.10.002
Nodder, S. D., Charette, M. A., Waite, A. M., Trull, T. W., Boyd, P. W., Zeldis, J., & Buesseler, K.
O. (2001). Particle transformations and export flux during an in situ iron-stimulated algal
bloom in the Southern Ocean. Geophysical Research Letters, 28(12), 2409-2412.
doi:10.1029/2001GL013008
Nodder, S. D., & Waite, A. M. (2001). Is Southern Ocean organic carbon and biogenic silica
export enhanced by iron-stimulated increases in biological production? Sediment trap
results from SOIREE. Deep Sea Research Part II: Topical Studies in Oceanography,
48(11–12), 2681-2701. doi:http://dx.doi.org/10.1016/S0967-0645(01)00014-5
Nogrady, B. (2017). Negative emissions tech: can more trees, carbon capture or biochar solve
our CO2 problem? The Guardian. Retrieved from https://www.theguardian.com/
sustainable-business/2017/may/05/negative-emissions-tech-can-more-trees-carbon-
capture-or-biochar-solve-our-co2-problem
Noguera, D., et al. . (2010). Contrasted effect of biochar and earthworms on rice growth and
resource allocation in different soils. Soil Biology and Biochemistry, 42(7), 1017-1027.
Retrieved from http://www.sciencedirect.com/science/article/pii/S0038071710000866
Noguera, D., et al. (2012). Biochar but not earthworms enhances rice growth through increased
protein turnover. Soil Biology and Biochemistry, 52, 13-20. Retrieved from http://
www.sciencedirect.com/science/article/pii/S003807171200140X
Noiri, Y., Kudo, I., Kiyosawa, H., Nishioka, J., & Tsuda, A. (2005). Influence of iron and
temperature on growth, nutrient utilization ratios and phytoplankton species composition
in the western subarctic Pacific Ocean during the SEEDS experiment. Progress in
Oceanography, 64(2), 149-166. doi:https://doi.org/10.1016/j.pocean.2005.02.006
Nooker, E. (2014). Impact of management practices on Minnesota's specialty crop production:
from biochar to tillage practices. University of Minnesota, Retrieved from http://
conservancy.umn.edu/handle/11299/167302
Noor, N. M., Shariff, A., & Abdullah, N. (2012). Slow Pyrolysis of Cassava Wastes for Biochar
Production and Characterization. Iranica Journal of Energy & Environment, Special
Issue on Environmental Technology, 60-65. Retrieved from https://idosi.org/ijee/
3(S)12/10.pdf
(2017, December 17). Dr. David Goldberg, Lamont Research Professor Columbia University:
Ocean Carbon Sequestration (storing carbon in basalt formations) [Retrieved from
https://nori.eco/podcast/4-dr-david-goldberg-lamont-research-professor-at-columbia-
university
(2017). Jeremy Kaufman and Ethan Steinberg of Propagate Ventures (Afforestation) [Retrieved
from https://nori.eco/podcast/3-jeremy-kaufman-and-ethan-steinberg-of-propagate-
ventures
(2018, January 3). Jane Flegal of UC Berkeley, and Dr. Andrew Maynard of Arizona State
University (Netative emissions Technologies models and [Retrieved from https://nori.eco/
podcast/5-jane-flegal-of-uc-berkeley-and-dr-andrew-maynard-of-arizona-state-university
Nori (Producer). (2018, July 12). Nori Kickoff Webinar: Reversing Climate Change. Retrieved
from https://www.youtube.com/watch?v=d12-JVlXRU4
Nori. (2019). Indigo Ag announces The Terraton Initiative for soil carbon sequestration.
Retrieved from http://carbonremovalnewsroom.libsyn.com/indigo-ag-announces-the-
terraton-initiative-for-soil-carbon-sequestration
(2020, December 1). Climeworks & European carbon removal—w/ Christoph Beuttler, CDR
Manager at Climeworks [Retrieved from https://nori.com/podcasts/reversing-climate-
change/S2E41-Climeworks--European-carbon-removalw-Christoph-Beuttler--CDR-
Manager-at-Climeworks-en63vq?
utm_medium=email&_hsmi=101536068&_hsenc=p2ANqtz-8F3oePcN43Br4TLk3XMFD
Y5-
beNaK4vC7WYfw5_6P38YGCOkrleRPfmrUIZEgUuIHZj83Mpqgd56sbL9QUJw65Qo9Ea
w&utm_content=101536068&utm_source=hs_email
Norman, A. L., & Wadleigh, M. A. (2007). Dimethyl sulphide (DMS) and its oxidation to sulphur
dioxide downwind of an ocean iron fertilization study, SERIES: A model for DMS flux
(Vol. 17).
Northrup, D. L., Basso, B., Wang, M. Q., Morgan, C. L. S., & Benfey, P. N. (2021). Novel
technologies for emission reduction complement conservation agriculture to achieve
negative emissions from row-crop production. Proceedings of the National Academy of
Sciences, 118(28), e2022666118. doi:10.1073/pnas.2022666118
Northup, J. (2013). Biochar as a replacement for perlite in greenhouse soilless substrates.
(Master of Science). Iowa State University, Retrieved from http://lib.dr.iastate.edu/etd/
13399
Notoya, M. (2011). Production of Biofuel by Macroalgae with Preservation of Marine Resources
and Environment. In A. Israel (Ed.), Seaweeds and their Role in Globally Changing
Environments (pp. 219-228).
Nouha, K., Kumari, A., Yan, S., Tyagi, R. D., Surampalli, R. Y., & Zhang, T. C. (2014). Carbon
Immobilization by Enhanced Photosynthesis of Plants. In Carbon Capture and Storage.
Novak, J., Sigua, G., Watts, D., Cantrell, K., Shumaker, P., Szogi, A., . . . Spokas, K. (2015).
Biochars impact on water infiltration and water quality through a compacted subsoil
layer. Chemosphere. doi:10.1016/j.chemosphere.2015.06.038
Novak, J. M., et al. (2009). Characterization of Designer Biochar Produced at Different
Temperatures and Their Effects on a Loamy Sand. Annals of Environmental Science, 3,
195-206. Retrieved from https://www.ars.usda.gov/ARSUserFiles/60820000/
Manuscripts/2009/Man822.pdf
Novak, J. M., et al. (2009). Impact of Biochar Amendment on Fertility of a Southeastern Coastal
Plain Soil. Soil Science, 174(2), 105-112. Retrieved from http://citeseerx.ist.psu.edu/
viewdoc/download?doi=10.1.1.585.3355&rep=rep1&type=pdf
Novak, J. M., et al. (2012). Biochars Impact on Soil-Moisture Storage in an Ultisol and Two
Aridisols. Soil Science, 177(5), 310-320. Retrieved from https://www.researchgate.net/
publication/254996404_Biochars_Impact_on_Soil-
Moisture_Storage_in_an_Ultisol_and_Two_Aridisols
Novak, J. M., Busscher, W. J., Watts, D. W., Laird, D. A., Ahmedna, M. A., & Niandou, M. A. S.
(2010). Short-term CO2 mineralization after additions of biochar and switchgrass to a
Typic Kandiudult. Geoderma, 154, 281-288. Retrieved from http://
www.sciencedirect.com/science/article/pii/S0016706109003322
Novak, J. M., Moore, E., Spokas, K. A., Hall, K., & Williams, A. (2019). Chapter 22 - Future
Biochar Research Directions**USDA is an equal opportunity provider and employer. In Y.
S. Ok, D. C. W. Tsang, N. Bolan, & J. M. Novak (Eds.), Biochar from Biomass and Waste
(pp. 423-435): Elsevier.
Novitskii, E. G., Bazhenov, S. D., & Volkov, A. V. Optimization of Methods for Purification of Gas
Mixtures to Remove Carbon Dioxide (A Review). In.
Novoselov, A. (2021). Carbon sequestration: a critical but less-understood piece of the climate
puzzle. Retrieved from https://www.ioes.ucla.edu/article/carbon-sequestration-a-critical-
but-less-understood-piece-of-the-climate-puzzle/
Novotny, E. H., et al. (2012). Characterization of phosphate structures in biochar from swine
bones. Pesquisa Agropecuária Brasileira, 47, 672-676. Retrieved from https://
seer.sct.embrapa.br/index.php/pab/article/viewFile/10029/6914
Novotny, E. H., et al. (2015). Biochar: Pyrogenic Carbon for Agricultural Use - A Critical Review.
Revista Brasileira de Ciencia do Solo, 39(2), 321 - 344.
doi:10.1590/01000683rbcs20140818
Novotny, E. H., Auccaise, R., Lima, L. B., & Madari, B. E. (2013). Characterisation of Humic
Substances Extracted from Soil Treated with Charcoal (Biochar). In J. Xu, J. Wu, & Y. He
(Eds.), Functions of Natural Organic Matter in Changing Environment (pp. 971-974).
Novotny, E. H., deAzevedo, E. R., Bonagamba, T. J., Cunha, T. J. F., Madari, B. E., & Benites, V.
d. M. (2007). Studies of the compositions of humic acids from amazonian dark earth
soils. Environmental Science & Technology, 41(2), 400-405. Retrieved from http://
pubs.acs.org/doi/abs/10.1021/es060941x
Novotny, E. H., deAzevedo, E. R., de Souza, A. A., Song, G., Nogueira, C. M., Mangrich, A.
S., . . . Bonagamba, T. J. (2009). Lessons from the Terra Preta de Indios of the Amazon
Region for the Utilisation of Charcoal for Soil Amendment. Journal of the Brazilian
Chemical Society, 20(6), 1003 - 1010. Retrieved from http://www.scielo.br/scielo.php?
script=sci_arttext&pid=S0103-50532009000600002
Novotny, E. H., Hayes, M. H. B., deAzevedo, E. R., & Bonagamba, T. J. (2006). Characterisation
of black carbon-rich samples by C-13 solid-state nuclear magnetic resonance.
Naturwissenschaften, 93(9), 447-450. Retrieved from https://link.springer.com/article/
10.1007/s00114-006-0126-x
Nowak, D. J., & Crane, D. E. (2002). Carbon storage and sequestration by urban trees in the
USA. Environmental Pollution, 116(3), 381-389. doi:https://doi.org/10.1016/
S0269-7491(01)00214-7
Noyce, G. L., Basiliko, N., Fulthorpe, R., Sackett, T. E., & Thomas, S. C. (2015). Soil microbial
responses over 2 years following biochar addition to a north temperate forest. Biology
and Fertility of Soils, 51(6), 649-659. doi:10.1007/s00374-015-1010-7
Noyce, G. L., Winsborough, C., Fulthorpe, R., & Basiliko, N. (2016). The microbiomes and
metagenomes of forest biochars. Scientific Reports, 6, 1-12. doi:10.1038/srep26425
NPR (Writer). (2017). Cleaning up the Carbon Dioxide in our Skies. In.
Nriagu, J. (2019). Carbon Farming. In J. Nriagu (Ed.), Encyclopedia of Environmental Health
(Second Edition) (pp. 509-516). Oxford: Elsevier.
Nsamba, H. K., Hale, S. E., Cornelissen, G., & Bachmann, R. T. (2014). Improved Gasification
of Rice Husks for Optimized Biochar Production in a Top Lit Updraft Gasifier. Journal of
Sustainable Bioenergy Systems, 04(04), 225 - 242. doi:10.4236/jsbs.2014.44021
Nsamba, H. K., Hale, S. E., Cornelissen, G., & Bachmann, R. T. (2015). Designing and
Performance Evaluation of Biochar Production in a Top-Lit Updraft Up-scaled Gasifier.
Journal of Sustainable Bioenergy Systems, 05(02), 41 - 55. doi:10.4236/
jsbs.2015.52004
Nsamba, H. K., Hale, S. E., Cornelissen, G., & Bachmann, R. T. (2015). Sustainable
Technologies for Small-Scale Biochar Production—A Review. Journal of Sustainable
Bioenergy Systems, 05(01), 10-31. doi:10.4236/jsbs.2015.51002
Nunez-Lopez, V. (2019). FINAL REPORT: Carbon Life Cycle Analysis of CO2-EOR for Net
Carbon Negative Oil (NCNO) Classification
WORK PERFORMED UNDER AGREEMENT DE-FE0024433. Retrieved from https://
www.researchgate.net/publication/
336375814_FINAL_REPORT_Carbon_Life_Cycle_Analysis_of_CO2-
EOR_for_Net_Carbon_Negative_Oil_NCNO_Classification_WORK_PERFORMED_UN
DER_AGREEMENT_DE-FE0024433
Nuñez-López, V., Gil-Egui, R., Gonzalez-Nicolas, A., & Hovorka, S. (2017). Carbon Balance of
CO2-EOR for NCNO Classification. Energy Procedia, 114, 6597-6603. doi:https://
doi.org/10.1016/j.egypro.2017.03.1803
Núñez-López, V., Gil-Egui, R., & Hosseini, S. A. (2019). Environmental and Operational
Performance of CO2-EOR as a CCUS Technology: A Cranfield Example with Dynamic
LCA Considerations. Energies, 12(3), 448. Retrieved from https://www.mdpi.com/
1996-1073/12/3/448
Núñez-López, V., & Moskal, E. (2019). Potential of CO2-EOR for Near-Term Decarbonization.
Frontiers in Climate, 1(5), 1-14. doi:10.3389/fclim.2019.00005
Nuno-Santin, & Denman, H. (2013). Anthropogenic Charcoal Deposits long a Climatic Gradient:
A Tool to Assess the Functioning of Biochar in European Soils? Paper presented at the
1st Mediterranean Biochar Symposium. www.researchgate.net/profile/Ian_Mugford/
publication/
271073836_Anthropogenic_Charcoal_Deposits_long_a_Climatic_Gradient_A_Tool_to_
Assess_the_Functioning_of_Biochar_in_European_Soils/links/
54bcff130cf218da938febef.pdf
Nur, M. S. M., Islami, T., Handayanto, E., Nugroho, W. H., & Utomo, W. H. (2014). The use of
biochar fortified compost on calcareous soil of East Nusa Tenggara, Indonesia: 2. Effect
on the yield of maize (Zea mays L) and phosphate absorption. American-Eurasian
Journal of Sustainable Agriculture 2014, 8(5), 105-111. Retrieved from http://
www.cabdirect.org/abstracts/
20143270833.html;jsessionid=75C7463AB6A81AC3E24DAD48A8729689
Nurhidayati, N., & Mariati, M. (2014). Utilization of maize cob biochar and rice husk charcoal as
soil amendment for improving acid soil fertility and productivity. Journal of Degraded and
Mining Lands Management, 2(1), 223-230. Retrieved from http://jdmlm.ub.ac.id/
index.php/jdmlm/article/view/88
Nuwara, J. (2020). Should We Build More Noah’s Arks to Store Carbon Emission? Energy
Central. Retrieved from https://www.energycentral.com/c/ec/should-we-build-more-
noah%E2%80%99s-arks-store-carbon-emission?
utm_medium=eNL&utm_campaign=TEC&utm_content=510132&utm_source=2020_01_
31
Nyakatawa, E. Z., Mays, D. A., Tolbert, V. R., Green, T. H., & Bingham, L. (2006). Runoff,
sediment, nitrogen, and phosphorus losses from agricultural land converted to
sweetgum and switchgrass bioenergy feedstock production in north Alabama. Biomass
and Bioenergy, 30(7), 655-664. doi:http://dx.doi.org/10.1016/j.biombioe.2006.01.008
Nyami, B. L., Sudi, C. K., & Lejoly, J. (2016). Effect of the use of biochar and leaves of Tithonia
diversifolia combined with mineral fertilizer on maize (Zea mays L.) and the properties of
ferralitic soil in Kinshasa (DRC) [translated from French language]. Biotechnologie,
Agronomie, Société et Environnement (Biotechnology, Agronomy, Society and
Environment), 20(1), 57-67. Retrieved from http://www.pressesagro.be/base/text/
v20n1/57.pdf
Nykvist, B. (2013). Ten times more difficult: Quantifying the carbon capture and storage
challenge. Energy Policy, 55, 683-689. doi:https://doi.org/10.1016/j.enpol.2012.12.026
Nzanza, B., Marais, D., & Soundy, P. (2012). Effect of Arbuscular Mycorrhizal Fungal Inoculation
and Biochar Amendment on Growth and Yield of Tomato. INTERNATIONAL JOURNAL
OF AGRICULTURE & BIOLOGY, 14, 965–969. Retrieved from http://
www.fspublishers.org/ijab/past-issues/IJABVOL_14_NO_6/17.pdf
Nzediegwu, C., et al. (2015). ROLE OF PLANTAIN PEEL BIOCHAR IN ENHANCING SAFE
USE OF UNTREATED WASTEWATER. Paper presented at the 22nd Canadian
Hydrotechnical Conference. http://www.researchgate.net/profile/Jaskaran_Dhiman/
publication/
275660533_ROLE_OF_PLANTAIN_PEEL_BIOCHAR_IN_ENHANCING_SAFE_USE_O
F_UNTREATED_WASTEWATER/links/554461920cf24107d3965050.pdf
O’Beirne, P., Battersby, F., Mallett, A., Aczel, M., Makuch, K., Workman, M., & Heap, R. (2020).
The UK net-zero target: Insights into procedural justice for greenhouse gas removal.
Environmental Science & Policy, 112, 264-274. doi:https://doi.org/10.1016/
j.envsci.2020.06.013
O’Driscoll, C. (2008). Adding Lime To Seawater May Cut Carbon Dioxide Levels Back To Pre-
industrial Levels. ScienceDaily. Retrieved from https://www.sciencedaily.com/releases/
2008/07/080721001742.htm
O’Halloran, T., L., & Ryan, M. B. (2017). More diverse benefits from timber versus dedicated
bioenergy plantations for terrestrial carbon dioxide removal. Environmental Research
Letters, 12(2), 021001. Retrieved from http://stacks.iop.org/1748-9326/12/i=2/a=021001
O’Riordan, K. (2017). Smart Grids
Energy Futures, Carbon Capture and Geoengineering. In Unreal Objects (pp. 75-103): Pluto
Press.
Ober, H. (2021). Is it feasible to remove carbon dioxide from the atmosphere? Retrieved from
https://phys.org/news/2021-06-feasible-carbon-dioxide-atmosphere.html
Obernosterer, I., Christaki, U., Lefèvre, D., Catala, P., Van Wambeke, F., & Lebaron, P. (2008).
Rapid bacterial mineralization of organic carbon produced during a phytoplankton bloom
induced by natural iron fertilization in the Southern Ocean. Deep Sea Research Part II:
Topical Studies in Oceanography, 55(5–7), 777-789. doi:http://dx.doi.org/10.1016/
j.dsr2.2007.12.005
Obersteiner, M., Alexandrov, G., Benítez, P. C., McCallum, I., Kraxner, F., Riahi, K., . . .
Yamagata, Y. (2006). Global Supply of Biomass for Energy and Carbon Sequestration
from Afforestation/Reforestation Activities. Mitigation and Adaptation Strategies for
Global Change, 11(5), 1003-1021. doi:10.1007/s11027-006-9031-z
Obersteiner, M., Azar, C., Kauppi, P., Möllersten, K., Moreira, J., Nilsson, S., . . . van Ypersele,
J.-P. (2001). Managing Climate Risk. Science, 294(5543), 786-787. doi:10.1126/
science.294.5543.786b
Obersteiner, M., Bednar, J., Wagner, F., Gasser, T., Ciais, P., Forsell, N., . . . Schmidt-Traub, G.
(2018). How to spend a dwindling greenhouse gas budget. Nature Climate Change, 8(1),
7-10. doi:10.1038/s41558-017-0045-1
Obersteiner, M., Böttcher, H., & Yamagata, Y. (2010). Terrestrial ecosystem management for
climate change mitigation. Current Opinion in Environmental Sustainability, 2(4),
271-276. doi:http://dx.doi.org/10.1016/j.cosust.2010.05.006
Obia, A., et al. (2016). In situ effects of biochar on aggregation, water retention and porosity in
light-textured tropical soils. Soil and Tillage Research, 155, 35 - 44. doi:10.1016/
j.still.2015.08.002
Obia, A., Cornelisse, G., Mulder, J., & Dörsch, P. (2015). Effect of Soil pH Increase by Biochar
on NO, N2O and N2 Production during Denitrification in Acid Soils. Plos One, 10(9),
e0138781. doi:10.1371/journal.pone.0138781.s003
Obidzinski, K., et al. (2012). Environmental and Social Impacts of Oil Palm Plantations and their
Implications for Biofuel Production in Indonesia. Ecology and Society, 17(1), Article 25.
doi:10.5751/ES-04775-170125
O'Brien, A. (2018). The liability framework for the shipping phase of carbon capture and storage:
A critical study of the liability regime for CO2 leakage during cross-border CO2-shipping
activities in the North Sea. (M.Sc.). University of Oslo, Retrieved from https://
www.duo.uio.no/handle/10852/66478
Ocando, A. (2021). Looking to the Future: Carbon Capture and Storage. Oilman Magazine.
Retrieved from https://oilmanmagazine.com/article/looking-to-the-future-carbon-capture-
and-storage/
Ocean-Based Climate Solutions, I. (2021). Restore Phytoplankton. Reverse Climate Change.
Retrieved from https://ocean-based.com/
Ochoa, A., Aramburu, B., Ibáñez, M., Valle, B., Bilbao, J., Gayubo, A. G., & Castaño, P. (2014).
Compositional Insights and Valorization Pathways for Carbonaceous Material Deposited
During Bio-Oil Thermal Treatment. ChemSusChem, 7(9), 2597 - 2608. doi:10.1002/
cssc.201402276
Ocone, R. (2019). Carbon capture on power stations burning woodchips is not the green
gamechanger many think it is. The Conversation. Retrieved from https://
theconversation.com/carbon-capture-on-power-stations-burning-woodchips-is-not-the-
green-gamechanger-many-think-it-is-110475
O'Connor, W. K., et al. (2001). Carbon Dioxide Sequestration by Direct Mineral Carbonation:
Results from Recent Studies and Current Status. Retrieved from https://
www.netl.doe.gov/publications/proceedings/01/carbon_seq/6c2.pdf
Odesola, I. F., & Owoseni, T. A. (2011). Development of Local Technology for a Small-Scale
Biochar Production Processes from Agricultural Wastes. Journal of Emerging Trends in
Engineering and Applied Sciences (JETEAS), 1(2), 205-208. Retrieved from http://
jeteas.scholarlinkresearch.org/articles/
Development%20of%20Local%20Technology%20for%20a%20Small-
Scale%20Biochar%20Production%20Processes%20from%20Agricultural%20Wastes.pd
f
Odesola, I. F., & Owoseni, T. A. (2011). Small Scale Biochar Production Technologies: A Review.
Journal of Emerging Trends in Engineering and Applied Sciences (JETEAS), 1.
Retrieved from http://jeteas.scholarlinkresearch.org/articles/
Small%20Scale%20Biochar%20Production%20Technologies.pdf
Odlare, M., Arthurson, V., Pell, M., Svensson, K., Nehrenheim, E., & Abubaker, J. (2011). Land
application of organic waste – Effects on the soil ecosystem. Applied Energy, 88(6),
2210-2218. doi:https://doi.org/10.1016/j.apenergy.2010.12.043
Oelbermann, M., Dil, M., & Oelbermann, M. (2015). Sustainable agroecosystems in climate
change mitigationChapter 13. Evaluating the long-term effects of pre-conditioned biochar
on soil organic carbon in two southern Ontario soils using the century model:
Wageningen Academic Publishers.
Oelkers, E. H., & Cole, D. R. (2008). Carbon Dioxide Sequestration A Solution to a Global
Problem. Elements, 4(5), 305-310. doi:10.2113/gselements.4.5.305
Oelkers, E. H., Declercq, J., Saldi, G. D., Gislason, S. R., & Schott, J. (2018). Olivine dissolution
rates: A critical review. Chemical Geology, 500, 1-19. doi:https://doi.org/10.1016/
j.chemgeo.2018.10.008
Oelkers, E. H., Gislason, S. R., & Matter, J. (2008). Mineral Carbonation of CO2. Elements, 4,
333-337. Retrieved from https://notendur.hi.is/sigrg/ELEM_v4n5_OelkersGM.PDF
Oeste, F. D., et al. (2017). Climate engineering by mimicking natural dust climate control: the
iron salt aerosol method. Earth System Dynamics, 8, 1-54. Retrieved from https://
www.earth-syst-dynam.net/8/1/2017/esd-8-1-2017.pdf
Ofanos, A., et al. (2015). Sorption of Methylene Blue onto Food Industry Byproducts. In.
Offermann-van Heek, J., Arning, K., Sternberg, A., Bardow, A., & Ziefle, M. (2020). Assessing
public acceptance of the life cycle of CO2-based fuels: Does information make the
difference? Energy Policy, 143, 111586. doi:https://doi.org/10.1016/j.enpol.2020.111586
Ofori, K. (2017). The Role of CCS and CCU to Achieve the Climate Change Mitigation Goals.
Retrieved from https://www.academia.edu/attachments/54001847/download_file?
s=work_strip&ct=MTUwMjY3OTUwMSwxNTAyNjgwODQ0LDI1NDM4NQ==
Ofori, R. A. (2014). Integrated Waste Management-Source Separation and Composting Of
Household Waste in the Ayuom Farming Community in the Bosomtwe District of the
Ashanti Region. Kwame Nkrumah University of Science and Technology, Retrieved from
http://datad.aau.org/handle/123456789/8404
Ogawa, M. (1984). Controlling of soil microorganisms by charcoal. Res. J. Food and Agriculture,
41-46. Retrieved from http://agris.fao.org/agris-search/search.do?recordID=JP8404136
Ogawa, M. (1998). Utlization of Symbiotic Microorganisms and Charcoal for Desert Greening.
Green age(March), 5-9. Retrieved from http://www.geocities.jp/yasizato/File0015.PDF
Ogawa, M., & Okimori, Y. (2010). Pioneering works in biochar research, Japan. Australian
Journal of Soil Research, 48, 489- 500. doi:10.1071/sr10006
Ogawa, M., Okimori, Y., & Takahashi, F. (2006). Carbon Sequestration by Carbonization of
Biomass and Forestation: Three Case Studies. Mitigation and Adaptation Strategies for
Global Change, 11(2), 421-436. Retrieved from http://dx.doi.org/10.1007/
s11027-005-9007-4
Ogbonnaya, O. U., Adebisi, O. O., & Semple, K. T. (2014). The impact of biochar on the
bioaccessibility of 14 C-phenanthrene in aged soil. Environmental Science: Processes
Impacts, 16(11), 2635 - 2643. doi:10.1039/c4em00396a
Ogbonnaya, U., et al. (2014). Influence of Wood Biochar on Phenanthrene Catabolism in Soils.
Environments, 1(1), 60 - 74. doi:10.3390/environments1010060
Ogbonnaya, U., & Semple, K. T. (2013). Impact of Biochar on Organic Contaminants in Soil: A
Tool for Mitigating Risk? Agronomy, 3, 349-375. Retrieved from www.mdpi.com/journal/
agronomy
Ogden, J., & Johnson, N. (2010). Techno-economic analysis and modeling of carbon dioxide
(CO2) capture and storage (CCS) technologies A2 - Maroto-Valer, M. Mercedes. In
Developments and Innovation in Carbon Dioxide (CO2) Capture and Storage
Technology (Vol. 1, pp. 27-63): Woodhead Publishing.
Ogle, K. (2018). Hyperactive soil microbes might weaken the terrestrial carbon sink. Nature.
Retrieved from https://www.nature.com/articles/d41586-018-05842-2?
utm_source=briefing-
wk&utm_medium=email&utm_campaign=briefing&utm_content=20180803
Ogliore, T. (2019). Study shows how electricity-eating microbes use electrons to fix carbon
dioxide. Phys.org. Retrieved from https://phys.org/news/2019-03-electricity-eating-
microbes-electrons-carbon-dioxide.html?
fbclid=IwAR2APu3IwMKJMPadMDb5wPwm9Jffg0dqDeX9mhRRxlQIAlFrgd1ZRE3AA38
Ogundiran, M. B., Lawal, O. O., & Adejumo, S. A. (2015). Stabilisation of Pb in Pb Smelting
Slag-Contaminated Soil by Compost-Modified Biochars and Their Effects on Maize Plant
Growth. Journal of Environmental Protection, 06(08), 771 - 780. doi:10.4236/
jep.2015.68070
Oguntunde, P. G., Abiodun, B. J., Ajayi, A. E., & van de Giesen, N. (2008). Effects of charcoal
production on soil physical properties in Ghana. Journal of Plant Nutrition and Soil
Science, 171(4), 591-596. Retrieved from http://onlinelibrary.wiley.com/doi/10.1002/
jpln.200625185/abstract
Oguntunde, P. G., Fosu, M., Ajayi, A. E., & van de Giesen, N. (2004). Effects of charcoal
production on maize yield, chemical properties and texture of soil. Biology and Fertility of
Soils, 39(4), 295-299. Retrieved from http://link.springer.com/article/10.1007/
s00374-003-0707-1
Oh, N. H., & Raymond, P. A. (2006). Contribution of agricultural liming to riverine bicarbonate
export and CO2 sequestration in the Ohio River basin. Global Biogeochemical Cycles,
20(3). doi:doi:10.1029/2005GB002565
Oh, S.-Y., & Seo, Y.-D. (2014). Sorptive Removal of Nitro Explosives and Metals Using Biochar.
Journal of Environment Quality, 43(5), 1663-1671. doi:10.2134/jeq2014.02.0097
Oh, S.-Y., & Seo, Y.-D. (2015). Factors Affecting Sorption of Nitro Explosives to Biochar:
Pyrolysis Temperature, Surface Treatment, Competition, and Dissolved Metals. Journal
of Environment Quality, 44(3), 833-840. doi:10.2134/jeq2014.12.0525
Oh, S.-Y., & Seo, Y.-D. (2015). Sorption of halogenated phenols and pharmaceuticals to biochar:
affecting factors and mechanisms. Environmental Science and Pollution Research,
23(2), 951-961. doi:10.1007/s11356-015-4201-8
Oh, S.-Y., Seo, Y.-D., Kim, B., Kim, I. Y., & Cha, D. K. (2016). Microbial reduction of nitrate in the
presence of zero-valent iron and biochar. Bioresource Technology, 200, 891 - 896.
doi:10.1016/j.biortech.2015.11.021
Oh, S.-Y., & Shin, D.-S. (2013). Removal of total dissolved solids in spent caustic using biochar:
Pretreatment for subsequent biological treatment†. CLEAN – Soil, Air, Water, 43(1),
92-95. Retrieved from http://onlinelibrary.wiley.com/doi/10.1002/clen.201300784/pdf
Oh, S.-Y., Son, J.-G., & Chiu, P. C. (2012). Biochar-mediated reductive transformation of nitro
herbicides and explosives. Environmental Toxicology and Chemistry, 32(3), 501-508.
Retrieved from https://www.ncbi.nlm.nih.gov/pubmed/23334991
Oh, S.-Y., Son, J.-G., & Chiu, P. C. (2014). Black carbon-mediated reductive transformation of
nitro compounds by hydrogen sulfide. Environmental Earth Sciences, 73(4), 1813-1822.
doi:10.1007/s12665-014-3535-8
Oh, S.-Y., & Yoon, H.-S. (2016). Biochar Amendment for Reducing Leachability of Nitro
Explosives and Metals from Contaminated Soils and Mine Tailings. Journal of
Environment Quality, 45(3), 993-1002. doi:10.2134/jeq2015.05.0222
Oh, S.-Y., & Yoon, M.-K. (2013). Biochar for Treating Acid Mine Drainage. Environmental
Engineering Science, 30(10), 589-593. Retrieved from http://online.liebertpub.com/doi/
pdf/10.1089/ees.2013.0063
Oh, T.-K., et al. . (2012). Effect of pH Conditions on Actual and Apparent Fluoride Adsorption by
Biochar in Aqueous Phase. Water, Air, & Soil Pollution, 223(7), 3729-3738. doi:10.1007/
s11270-012-1144-2
O'Halloran, T. L., & Bright, R. (2017). More diverse benefits from timber versus dedicated
bioenergy plantations for terrestrial carbon dioxide removal. Environmental Research
Web Talking Point. Retrieved from http://environmentalresearchweb.org/cws/article/
opinion/68083
Ohira, T. (2012). Functional substances obtained through biomass pyrolysis - Functions of acid
liquid, bamboo vinegar, etc. Retrieved from http://www.biochar-international.org/sites/
default/files/Bamboo_Vinegar_Japan_2012.pdf
Ohsowski, B. M. (2015). Restoring grasslands in southern Ontario sandpits : plant and soil food
web responses to arbuscular mycorrhizal fungal inoculum, biochar, and municipal
compost. University of British Columbia, Retrieved from https://circle.ubc.ca/handle/
2429/53097?show=full
Oidde, M. R., Dutta, J., & Jadhav, S. (2011). Comparative adsorption studies on Activated Rice
Husk and Rice Husk Ash by using Methylene Blue as dye. INTERNATIONAL
CONGRESS ON ENVIRONMENTAL RESEARCH AT BITS PILANI GOA, 08-09.
Retrieved from http://www.bvucoepune.edu.in/pdf's/Publications_2004-2011/
Publications_2008-09/IC_2008-09/IC7_2008-09.pdf
Oil, S. (2016). A Better LIfe with a Healthy Planet. Retrieved from http://www.shell.com/energy-
and-innovation/the-energy-future/scenarios/a-better-life-with-a-healthy-planet/
_jcr_content/par/textimage.stream/1475857466913/
a1aa5660d50ab79942f7e4a629fcb37ab93d021afb308b92c1b77696ce6b2ba6/
scenarios-nze-brochure-interactive-afwv9-interactive.pdf
Ojeda, G., Mattana, S., Àvila, A., Alcañiz, J. M., Volkmann, M., & Bachmann, J. (2015). Are soil–
water functions affected by biochar application? Geoderma, 249-250, 1 - 11.
doi:10.1016/j.geoderma.2015.02.014
Ok, S. Y., Uchimiya, S. M., Chang, S., & Bolan, N. (2016). Biochar: Production,
Characterization, and Applications.
Ok, Y. S., et al. (2015). SMART biochar technology—A shifting paradigm towards advanced
materials and healthcare research. Environmental Technology & Innovation, 4, 206 -
209. doi:10.1016/j.eti.2015.08.003
Oka, H., et al. (1993). Improvement of sandy soil in the Northeast by using carbonized rice
husk. Retrieved from http://www.geocities.jp/yasizato/uti004003.pdf
Okagawa, A., Masui, T., Akashi, O., Hijioka, Y., Matsumoto, K., & Kainuma, M. (2012).
Assessment of GHG emission reduction pathways in a society without carbon capture
and nuclear technologies. Energy Economics, 34, S391-S398. doi:https://doi.org/
10.1016/j.eneco.2012.07.011
Oke, D., & Olatiilu, A. (2011). Carbon Storage in Agroecosystems: A Case Study of the Cocoa
Based Agroforestry in Ogbese Forest Reserve, Ekiti State, Nigeria. Journal of
Environmental Protection, 2, 1069-1075. Retrieved from http://
www.worldcocoafoundation.org/wp-content/uploads/files_mf/oke2011.pdf
Okesola, A. A., et al. (2018). Direct Air Capture: A Review of Carbon Dioxide Capture from the
Air. IOP Conference Series: Materials Science and Engineering, 413(1), 012077.
Retrieved from http://stacks.iop.org/1757-899X/413/i=1/a=012077
Okimori, Y., Ogawa, M., & Takahashi, F. (2003). Potential of CO2 emission reductions by
carbonizing biomass waste from industrial tree plantation in South Sumatra, Indonesia.
Mitigation and Adaptation Strategies for Global Change, 8(3), 261-280. Retrieved from
http://link.springer.com/article/10.1023/B:MITI.0000005643.79908.5a
Okoroigwe, E. C., et al. (2015). Bio-oil yield potential of some tropical woody biomass. Journal
of Energy in Southern Africa, 26(2), 33-41. Retrieved from http://www.scielo.org.za/pdf/
jesa/v26n2/04.pdf
Olah, G. A., Goeppert, A., & Prakash, G. K. S. (2009). Chemical Recycling of Carbon Dioxide to
Methanol and Dimethyl Ether: From Greenhouse Gas to Renewable, Environmentally
Carbon Neutral Fuels and Synthetic Hydrocarbons. The Journal of Organic Chemistry,
74(2), 487-498. doi:10.1021/jo801260f
Olah, G. A., Prakash, G. K. S., & Goeppert, A. (2011). Anthropogenic chemical carbon cycle for
a sustainable future. J. Am. Chem. Soc., 133, 12881.
Olaizola, M. J. B., & Engineering, B. (2003). Microalgal removal of CO2 from flue gases:
Changes in medium pH and flue gas composition do not appear to affect the
photochemical yield of microalgal cultures. 8(6), 360-367. doi:10.1007/bf02949280
Olajire, A. A. (2013). A review of mineral carbonation technology in sequestration of CO2.
Journal of Petroleum Science and Engineering, 109, 364-392. doi:https://doi.org/
10.1016/j.petrol.2013.03.013
Olaniyan, J. O., Isimikalu, T. O., Raji, B. A., Affinnih, K. O., Alasinrin, S. Y., & Ajala, O. N. (2020).
An investigation of the effect of biochar application rates on CO2 emissions in soils
under upland rice production in southern Guinea Savannah of Nigeria. Heliyon, 6(11),
e05578. doi:https://doi.org/10.1016/j.heliyon.2020.e05578
Olarieta, J. R., et al. (2010). ‘Formiguers’, a historical system of soil fertilization (and biochar
production?). Agriculture, Ecosystems & Environment, 140(1-2), 27-33. Retrieved from
http://www.sciencedirect.com/science/article/pii/S0167880910002975
Oldenburg, C. M. (2019). Geologic Carbon Sequestration: Sustainability and Environmental
Risk. In J. W. LaMoreaux (Ed.), Environmental Geology (pp. 219-234). New York, NY:
Springer US.
Oldenburg, C. M., & Torn, M. S. (2008). Biologically Enhanced Carbon Sequestration: Research
Needs and Opportunities. Retrieved from https://cloudfront.escholarship.org/dist/prd/
content/qt1dz2q8mp/qt1dz2q8mp.pdf
Oleszczuk, P., et al. (2012). Influence of activated carbon and biochar on phytotoxicity of air-
dried sewage sludges to Lepidium sativum. Ecotoxicology and Environmental Safety, 80,
321-326. Retrieved from http://www.sciencedirect.com/science/article/pii/
S0147651312001029
Oleszczuk, P., et al. (2013). Effect of pesticides on microorganisms, enzymatic activity and plant
in biochar-amended soil. Geoderma, 214-215, 10-18.
Oleszczuk, P., et al. . (2014). Microbiological, biochemical and ecotoxicological evaluation of
soils in the area of biochar production in relation to polycyclic aromatic hydrocarbon
content. Geoderma, 213, 502–511. Retrieved from http://www.sciencedirect.com/
science/article/pii/S0016706113003091
Oleszczuk, P., Hale, S. E., Lehmann, J., & Cornelissen, G. (2012). Activated carbon and biochar
amendments decrease pore-water concentrations of polycyclic aromatic hydrocarbons
(PAHs) in sewage sludge. Bioresource Technology, 111, 84-91. Retrieved from http://
www.sciencedirect.com/science/article/pii/S0960852412002593
Oleszczuk, P., Josko, I., & Kusmierz, M. (2013). Biochar properties regarding to contaminants
content and ecotoxicological assessment. Journal of Hazardous Materials, 260,
375-382. Retrieved from http://www.sciencedirect.com/science/article/pii/
S0304389413003750
Olga, P., Fabrizio, G., Elio, D., & Paolo, B. (2014). Improved pig slurry mechanical separation
using chitosan and biochar. Biosystems Engineering, 127, 115 - 124. doi:10.1016/
j.biosystemseng.2014.08.009
Olgun, N., Duggen, S., Croot, P. L., Delmelle, P., Dietze, H., Schacht, U., . . . Garbe-Schonberg,
D. (2011). Surface ocean iron fertilization: The role of airborne volcanic ash from
subduction zone and hot spot volcanoes and related iron fluxes into the Pacific Ocean.
Global Biogeochemical Cycles, 25. doi:10.1029/2009gb003761
Olgun, N., Duggen, S., Langmann, B., Hort, M., Waythomas, C. F., Hoffmann, L., & Croot, P.
(2013). Geochemical evidence of oceanic iron fertilization by the Kasatochi volcanic
eruption in 2008 and the potential impacts on Pacific sockeye salmon. Marine Ecology
Progress Series, 481, 81-88. Retrieved from http://www.int-res.com/abstracts/meps/
v488/p81-88/
Olick, D. (2021). These companies are sucking carbon out of the atmosphere — and investors
are piling in. Retrieved from https://www.cnbc.com/2021/07/23/these-companies-are-
sucking-carbon-from-the-atmosphere.html
Oliveira, F. R., Patel, A. K., Jaisi, D. P., Adhikari, S., Lu, H., & Khanal, S. K. (2017).
Environmental application of biochar: Current status and perspectives. Bioresource
Technology, 246, 110-122. doi:https://doi.org/10.1016/j.biortech.2017.08.122
Oliveira, P. R., et al. (2015). Electrochemical determination of copper ions in spirit drinks using
carbon paste electrode modified with biochar. Food Chemistry, 171, 426 - 431.
doi:10.1016/j.foodchem.2014.09.023
Oliver, C. D., Nassar, N. T., Lippke, B. R., & McCarter, J. B. (2014). Carbon, Fossil Fuel, and
Biodiversity Mitigation With Wood and Forests. Journal of Sustainable Forestry, 33(3),
248-275. doi:10.1080/10549811.2013.839386
Oliver, J., & Tucker, S. (2019). Geoengineering at Sea: Ocean Fertilization as a Policy Option. In
P. Harris (Ed.), Climate Change and Ocean Governance: Politics and Policy for
Threatened Seas (pp. 425-436).
Oliver, R. J., Blyth, E., Taylor, G., & Finch, J. W. (2015). Water use and yield of bioenergy poplar
in future climates: modelling the interactive effects of elevated atmospheric CO2 and
climate on productivity and water use. GCB Bioenergy, 7(5), 958-973. doi:10.1111/
gcbb.12197
Olivier, C. F. (2011). An investigation into the degradation of biochar and its interactions with
plants and soil microbial community. (MS Agriculture). Stellenbosch University, Retrieved
from http://scholar.sun.ac.za/bitstream/handle/10019.1/17944/
olivier_investigation_2011.pdf?sequence=1
Olivier, P., & Hyman, T. (2011). Making Waste our Greatest Resource: The Small-Scale
Production of Food, Fuel, Feed and Fertilizer. Retrieved from http://dl.dropbox.com/u/
22013094/Paper/composting.pdf
Olivier, P. A., et al. (2014). Empowering the Poor Through Waste Transformation: An
Unconventional Way Of Raising Pigs, Chickens and Cows. Retrieved from https://
dl.dropboxusercontent.com/u/22013094/Paper/Summaries/
Alternative%20to%20Biodigestion.pdf
Olmo, M., Alburquerque, J. A., Barrón, V., del Campillo, M. C., Gallardo, A., Fuentes, M., &
Villar, R. (2014). Wheat growth and yield responses to biochar addition under
Mediterranean climate conditions. Biology and Fertility of Soils, 50(8), 1177 - 1187.
doi:10.1007/s00374-014-0959-y
Olmo, M., Villar, R., Salazar, P., & Alburquerque, J. A. (2015). Changes in soil nutrient
availability explain biochar’s impact on wheat root development. Plant and Soil, 399(1),
333-343. doi:10.1007/s11104-015-2700-5
Olofsson, M., Lindehoff, E., Frick, B., Svensson, F., & Legrand, C. (2015). Baltic Sea microalgae
transform cement flue gas into valuable biomass. Algal Research, 11, 227-233.
doi:https://doi.org/10.1016/j.algal.2015.07.001
Ologeh, I. O., et al. (2018). Carbon Sequestration Implementation through Sustainable
Agricultural Land Management (SALM)
Methodology in Nigeria. International Journal of Environment and Sustainability, 7(1), 1-9.
Retrieved from https://www.sciencetarget.com/Journal/index.php/IJES/article/view/
878/226
Oloman, C., & Li, H. (2008). Electrochemical Processing of Carbon Dioxide. ChemSusChem,
1(5), 385-391. doi:https://doi.org/10.1002/cssc.200800015
Olorunfemi, I. E., Komolafe, A. A., Fasinmirin, J. T., & Olufayo, A. A. (2019). Biomass carbon
stocks of different land use management in the forest vegetative zone of Nigeria. Acta
Oecologica, 95, 45-56. doi:https://doi.org/10.1016/j.actao.2019.01.004
Oloye, O., & O'Mullane, A. P. (2021). Electrochemical Capture and Storage of CO2 as Calcium
Carbonate. ChemSusChem, 14(7), 1767-1775. doi:https://doi.org/10.1002/
cssc.202100134
Olshevski, S., et al. . (2015). Particulate Emissions from Biochar-Amended Soils: A Potential
Health Hazard? In.
Olson, K. R. (2013). Soil organic carbon sequestration, storage, retention and loss in U.S.
croplands: Issues paper for protocol development. Geoderma, 195-196, 201-206.
doi:https://doi.org/10.1016/j.geoderma.2012.12.004
Olson, K. R., Al-Kaisi, M. M., Lal, R., & Lowery, B. (2014). Experimental Consideration,
Treatments, and Methods in Determining Soil Organic Carbon Sequestration Rates. Soil
Science Society of America Journal, 78(2), 348-360. doi:10.2136/sssaj2013.09.0412
Olsson, J., et al. (2012). Olivine reactivity with CO2 and H2O on a microscale: Implications for
carbon sequestration. Geochimica Et Cosmochimica Acta, 77, 86-97. Retrieved from
http://orbit.dtu.dk/en/publications/olivine-reactivity-with-co2-and-h2o-on-a-microscale-
implications-for-carbon-sequestration(81cf28d8-0de1-40ae-966b-b1698a27c5d1).html
Olsson, J., Stipp, S. L. S., Makovicky, E., & Gislason, S. R. (2014). Metal scavenging by calcium
carbonate at the Eyjafjallajökull volcano: A carbon capture and storage analogue.
Chemical Geology, 384, 135-148. doi:https://doi.org/10.1016/j.chemgeo.2014.06.025
Olsson, L., & Jerneck, A. (2010). Farmers fighting climate change—from victims to agents in
subsistence livelihoods. Wiley Interdisciplinary Reviews: Climate Change, 1(3), 363-373.
doi:doi:10.1002/wcc.44
Olsson, O., et al. (2020). Deployment of BECCS/U value chains. Retrieved from https://
www.ieabioenergy.com/publications/new-publication-deployment-of-beccs-u-value-
chains-technological-pathways-policy-options-and-business-models/
Oltra, C., et al. (2012). Public Responses to Co2 Storage Sites: Lessons from Five European
Cases. Energy & Environment, 23(2-3), 227-248. doi:doi:10.1260/0958-305X.23.2-3.227
Oltra, C., Sala, R., Solà, R., Di Masso, M., & Rowe, G. (2010). Lay perceptions of carbon
capture and storage technology. International Journal of Greenhouse Gas Control, 4(4),
698-706. doi:https://doi.org/10.1016/j.ijggc.2010.02.001
Omar, H. M., & Rohani, S. (2017). Removal of CO2 from landfill gas with landfill leachate using
absorption process. International Journal of Greenhouse Gas Control, 58, 159-168.
doi:https://doi.org/10.1016/j.ijggc.2017.01.011
Omarjee, L. (2021). Pilot site for carbon capture project due to be up and running in 2024
Retrieved from https://www.news24.com/fin24/economy/pilot-site-for-carbon-capture-
project-due-to-be-up-and-running-in-2024-20210824
Önal, E., et al. . (2014). Performance Evaluation of the Bio-char Heavy Metal Removal
Produced from Tomato Factory Waste. In I. Dincer (Ed.), Progress in Energy, Energy,
and the Environment (pp. 733 - 740).
Onana, L. G., et al. (2015). Production and characterization of slow pyrolysis biochar of tropical
wood logs in Cameroon: case of okan, Cylicodiscus gabonensis. Paper presented at the
Symposium des ANS e.V. 2015. https://biblio.ugent.be/publication/6951704
Onarheim, K., Mathisen, A., & Arasto, A. (2015). Barriers and opportunities for application of
CCS in Nordic industry—A sectorial approach. International Journal of Greenhouse Gas
Control, 36, 93-105. doi:https://doi.org/10.1016/j.ijggc.2015.02.009
Onarheim, K., Santos, S., Kangas, P., & Hankalin, V. (2017). Performance and costs of CCS in
the pulp and paper industry part 1: Performance of amine-based post-combustion CO2
capture. International Journal of Greenhouse Gas Control, 59, 58-73. doi:https://doi.org/
10.1016/j.ijggc.2017.02.008
Ondrey, G. (2020). Construction Started on Climeworks' New Large-Scale Direct Air Capture
and Storage Plant. Chemical Engineering. Retrieved from https://
www.chemengonline.com/construction-started-on-climeworks-new-large-scale-direct-air-
capture-storage-plant/?printmode=1
Ono, E., & Cuello, J. L. (2003). Selection of optimal microalgae species for CO2 sequestration.
Paper presented at the Department of Energy.
Ono, E., & Cuello, J. L. (2007). Carbon Dioxide Mitigation using Thermophilic Cyanobacteria.
Biosystems Engineering, 96(1), 129-134. doi:https://doi.org/10.1016/
j.biosystemseng.2006.09.010
Oo, A. Z., et al. (2018). Effect of dolomite and biochar addition on N2O and CO2 emissions from
acidic tea field soi. Plos One, 1-23. Retrieved from https://journals.plos.org/plosone/
article/file?id=10.1371/journal.pone.0192235&type=printable
Oohara, K., et al. (2014). Pyrolysis of glycerol : Steamgasification using char as a catalyst. The
Japan Institute of Energy, 22, 54-55. Retrieved from http://ci.nii.ac.jp/naid/
110009799275/
Opatokun, S. A., Kan, T., Al Shoaibi, A., Srinivasakannan, C., & Strezov, V. (2015).
Characterization of Food Waste and Its Digestate as Feedstock for Thermochemical
Processing. Energy & Fuels, 30(3), 1589-1597. doi:10.1021/acs.energyfuels.5b02183
Oral, I. (2015). Determination of elastic constants of epoxy resin/biochar composites by
ultrasonic pulse echo overlap method. Polymer Composites, 37(9), 2708-2715.
doi:10.1002/pc.23488
Oram, N. J., van de Voorde, T. F. J., Ouwehand, G.-J., Bezemer, T. M., Mommer, L., Jeffery, S.,
& Groenigen, J. W. V. (2014). Soil amendment with biochar increases the competitive
ability of legumes via increased potassium availability. Agriculture, Ecosystems &
Environment, 191, 92-98. doi:http://dx.doi.org/10.1016/j.agee.2014.03.031
Orbach, M. K. (2008). Cultural context of ocean fertilization. Marine Ecology Progress Series,
364, 235-242. Retrieved from http://www.int-res.com/abstracts/meps/v364/p235-242/
Orcutt, M. (2011). Don’t Count on Geoengineering the Oceans. MIT Technology Review.
Retrieved from https://www.technologyreview.com/s/540071/dont-count-on-
geoengineering-the-oceans/
Orcutt, M. (2015). Researcher Demonstrates How to Suck Carbon from Air, Make Stuff from It.
MIT Technology Review. Retrieved from https://www.technologyreview.com/s/540706/
researcher-demonstrates-how-to-suck-carbon-from-the-air-make-stuff-from-it/
Oreska, M. P. J., et al. (2018). Comment on Geoengineering with seagrasses: is credit due
where credit is given? Environmental Research Letters, 13, 1-6. Retrieved from http://
iopscience.iop.org/article/10.1088/1748-9326/aaae72/pdf
Oreska, M. P. J., McGlathery, K. J., Aoki, L. R., Berger, A. C., Berg, P., & Mullins, L. (2020). The
greenhouse gas offset potential from seagrass restoration. Scientific Reports, 10(1),
7325. doi:10.1038/s41598-020-64094-1
Orge, R. F., & Abon, J. E. O. (2014). Cogeneration of Biochar and Heat from Rice Hull: Its
Application in the Poultry Industry. OIDA International Journal of Sustainable
Development, 7(8), 105-114. Retrieved from http://papers.ssrn.com/sol3/Papers.cfm?
abstract_id=2543229
Oriaku, T. O. (2014). The impact of nutrient and biodiesel amendments on the biodegradation of
hydrocarbons in contaminated soil. Newcastle University, Retrieved from https://
theses.ncl.ac.uk/dspace/handle/10443/2345
Orland, K. (2020). Bid to Cut Carbon-Capture Cost 80% Gets Nudge in Joint Venture.
Bloomberg Green. Retrieved from https://www.bloomberg.com/news/articles/
2020-01-27/bid-to-cut-carbon-capture-cost-80-gets-nudge-in-joint-venture
Ormerod, W. G., Webster, I. C., Audus, H., & Riemer, P. W. F. (1993). An overview of large scale
CO2 disposal options. Energy Conversion and Management, 34(9), 833-840. doi:https://
doi.org/10.1016/0196-8904(93)90026-7
Ormsby, R., Kastner, J. R., & Miller, J. (2012). Hemicellulose hydrolysis using solid acid
catalysts generated from biochar. Catalysis Today, 190(1), 89-97. Retrieved from http://
www.sciencedirect.com/science/article/pii/S0920586112001411
Ornella, A. D. (2019). “Why nature won’t save us from climate change but technology will”:
Creating a New Heaven and a New Earth Through Carbon Capture Technologies
(DRAFT Feedback). 1-35. Retrieved from https://ornella.info/why-nature-wont-save-us-
from-climate-change-but-technology-will-creating-a-new-heaven-and-a-new-earth-
through-carbon-capture-technologies/
Ornstein, L., Aleinov, I., & Rind, D. (2009). Irrigated afforestation of the Sahara and Australian
Outback to end global warming. Climatic Change, 97, 409-437. Retrieved from http://
link.springer.com/article/10.1007%2Fs10584-009-9626-y
Oroschakoff, K. (2018). Europe mulls stripping carbon from the skies. Politico. Retrieved from
https://www.politico.eu/article/geoengineering-co2-paris-agreement-carbon-europe-
mulls-stripping-from-the-skies/amp/?__twitter_impression=true
Orr, F. M., Jr. (2018). Carbon Capture, Utilization, and Storage: An Update. SPE Journal, 23(06),
2444-2455. doi:10.2118/194190-pa
Orr, J. C., & Sarmiento, J. L. (1992). Potential of marine macroalgae as a sink for CO2:
Constraints from a 3-D general circulation model of the global ocean. Water, Air, and Soil
Pollution, 64(1), 405-421. doi:10.1007/bf00477113
Ortiz, C., Valverde, J. M., & Chacartegui, R. (2016). Energy Consumption for CO2 Capture by
means of the Calcium Looping Process: A Comparative Analysis using Limestone,
Dolomite, and Steel Slag. Energy Technology, 4(10), 1317-1327. doi:10.1002/
ente.201600390
Orton, A. E. (2015). Removal of CO
2
from the terrestrial atmosphere to curtail global warming:
From methodology to laboratory prototype. (M.S.). Purdue University, Retrieved from
https://search.proquest.com/docview/1729570311?accountid=14496 (1603085)
Osaka, S., Bellamy, R., & Castree, N. Framing “nature-based” solutions to climate change.
WIREs Climate Change, n/a(n/a), e729. doi:https://doi.org/10.1002/wcc.729
Oschlies, A., Koeve, W., Rickels, W., & Rehdanz, K. (2010). Side effects and accounting
aspects of hypothetical large-scale Southern Ocean iron fertilization. Biogeosciences,
7(12), 4017-4035. doi:10.5194/bg-7-4017-2010
Oschlies, A., Pahlow, M., Yool, A., & Matear, R. J. (2010). Climate engineering by artificial ocean
upwelling: Channelling the sorcerer's apprentice. Geophysical Research Letters, 37(4),
1-5. Retrieved from http://onlinelibrary.wiley.com/doi/10.1029/2009GL041961/epdf
Osman, K. (2014). Carbon dioxide removal from coal power plants : a review of current capture
techniques and an investigation of carbon dioxide absorption using hybrid solvents.
(Doctorate). University of Kwazulu-Natal, Retrieved from https://
researchspace.ukzn.ac.za/handle/10413/11010
Osseweijer, P., et al. (2015). Bioenergy and Food Security. In G. Mendes Soutz, R. L. Vicotria,
C. A. Joly, & L. M. Verdade (Eds.), Bioenergy & Sustainability: Bridging the Gaps (Vol.
90-136).
Ostfeld, R., & Reiner, D. M. (2020). Public views of Scotland's path to decarbonization:
Evidence from citizens' juries and focus groups. Energy Policy, 140, 111332. doi:https://
doi.org/10.1016/j.enpol.2020.111332
Ostle, N. J., Levy, P. E., Evans, C. D., & Smith, P. (2009). UK land use and soil carbon
sequestration. Land Use Policy, 26, S274-S283. doi:https://doi.org/10.1016/
j.landusepol.2009.08.006
Ostovari, H., Sternberg, A., & Bardow, A. (2020). Rock ‘n’ use of CO2: carbon footprint of carbon
capture and utilization by mineralization. Sustainable Energy & Fuels, 4(9), 4482-4496.
doi:10.1039/D0SE00190B
O'Sullivan, F. O., & Poon, L. (2021). The Darker Side of Tree-Planting Pledges. Bloomberg
CityLab. Retrieved from https://www.bloomberg.com/news/features/2021-07-30/what-
happens-after-pledges-to-plant-millions-of-trees
Osuri, A. M., Gopal, A., Raman, T. R. S., DeFries, R., Cook-Patton, S. C., & Naeem, S. (2020).
Greater stability of carbon capture in species-rich natural forests compared to species-
poor plantations. Environmental Research Letters, 15(3), 034011.
doi:10.1088/1748-9326/ab5f75
Otani, S., & Endo, T. (2018). CO2 Flux in Tidal Flats and Salt Marshes. In T. Kuwae & M. Hori
(Eds.), Blue Carbon in Shallow Coastal Ecosystems: Carbon Dynamics, Policy, and
Implementation (pp. 223-250). Singapore: Springer Singapore.
Otoo, E., et al. (2016). In Vivo Yam (Dioscorea spp.) Vine Multiplication Technique: The
Plausible Solution to Seed Yam Generation Menace. Journal of Agricultural Science,
8(2), 88. doi:10.5539/jas.v8n2p88
O'Toole, A., et al. . (2016). Current and future applications for biochar. In Biochar in European
Soils and Agriculture: Science and Practice.
Otorbaev, D. (2021). Carbon capture technology: What governments should do. Retrieved from
https://news.cgtn.com/news/2021-06-11/Carbon-capture-technology-What-governments-
should-do--10Z1uNs6RMs/index.html
Otto, A., Grube, T., Schiebahn, S., & Stolten, D. (2015). Closing the loop: captured CO2 as a
feedstock in the chemical industry. Energy & Environmental Science, 8(11), 3283-3297.
doi:10.1039/C5EE02591E
Ouchi, K., Otsuka, K., & Omura, H. (2005). Recent Advances of Ocean Nutrient Enhancer
"TAKUMI" Project. Paper presented at the Sixth ISOPE Ocean Mining Symposium.
Ou-Yang, C., Chen, H.-W., Ho, C.-H., Chou, J.-C., Yuan, Y.-T., Ho, C.-L., . . . Chao, L. K. (2018).
Value chain analysis of algal bioenergy and carbon capture integrated with a
biotechnology innovation. Journal of Cleaner Production, 180, 349-359. doi:https://
doi.org/10.1016/j.jclepro.2018.01.148
Ouyang, L., et al. . (2013). Effects of biochar amendment on soil aggregates and hydraulic
properties. Journal of Soil Science and Plant Nutrition, 13(4), 991-1002. Retrieved from
http://www.scielo.cl/scielo.php?pid=S0718-95162013005000078&script=sci_arttext
Ouyang, W., Geng, X., Huang, W., Hao, F., & Zhao, J. (2015). Soil respiration characteristics in
different land uses and response of soil organic carbon to biochar addition in high-
latitude agricultural area. Environmental Science and Pollution Research, 23(3),
2279-2287. doi:10.1007/s11356-015-5306-9
Ouyang, W., Zhao, X., Tysklind, M., & Hao, F. (2016). Typical agricultural diffuse herbicide
sorption with agricultural waste-derived biochars amended soil of high organic matter
content. Water Research, 92, 156 - 163. doi:10.1016/j.watres.2016.01.055
Ouyang, W., Zhao, X., Tysklind, M., Hao, F., & Wang, F. (2015). Optimisation of corn straw
biochar treatment with catalytic pyrolysis in intensive agricultural area. Ecological
Engineering, 84, 278 - 286. doi:10.1016/j.ecoleng.2015.09.003
Overmars, K., Edwards, R., Padella, M., Prins, A. G., & Marelli, L. (2015). Estimates of indirect
land use change from biofuels based on historical data. Retrieved from http://
publications.jrc.ec.europa.eu/repository/bitstream/JRC91339/eur26819_online.pdf
Overmars, K. P., Stehfest, E., Ros, J. P. M., & Gerdie Prins, A. (2011). Indirect land use chagnes
emissions related to EU biofuel consumption: an analysis based on historical data.
Environmental Science & Policy, 14, 248-257. Retrieved from http://www.pbl.nl/sites/
default/files/cms/publicaties/Overmars_et_al_envsci14%20(2).pdf
Oviedo, A. M., Langer, G., & Ziveri, P. (2014). Effect of phosphorus limitation on coccolith
morphology and element ratios in Mediterranean strains of the coccolithophore Emiliania
huxleyi. Journal of Experimental Marine Biology and Ecology, 459, 105-113. doi:https://
doi.org/10.1016/j.jembe.2014.04.021
Owen-Jones, J. (2018). NETL solvent technology for CO2 capture. mtech.
Ozansoy, C. (2016). Development of revised R1 thermal energy efficiency guidelines for energy
from waste plants. International Journal of Energy Research, 40(9), 1178 - 1192.
doi:10.1002/er.3494
Özbay, G. (2015). Pyrolysis of Firwood (Abies bornmülleriana Mattf.) Sawdust: Characterization
of Bio-Oil and Bio-Char. Drvna industrija, 66(2), 105 - 114. doi:10.5552/drind.2015.1359
Özbay, G., Özçifçi, A., Kökten, E. S., Toker, H., & Baysal, E. (2015). Bio-Char Production from
Pyrolysis of Furniture Products Waste. Paper presented at the Proceedings of the 27th
International Conference, Research for Furniture Industry. http://www.researchgate.net/
profile/Guenay_Oezbay/publication/281863740_BIO-
CHAR_PRODUCTION_FROM_PYROLYSIS_OF_FURNITURE_PRODUCTS_WASTE/
links/55fc328208aeba1d9f3bd40d.pdf
Ozcan, D. C., Macchi, A., Lu, D. Y., Kierzkowska, A. M., Ahn, H., Müller, C. R., & Brandani, S.
(2015). Ca–Cu looping process for CO2 capture from a power plant and its comparison
with Ca-looping, oxy-combustion and amine-based CO2 capture processes.
International Journal of Greenhouse Gas Control, 43(Supplement C), 198-212.
doi:https://doi.org/10.1016/j.ijggc.2015.10.021
Özçimen, D. (2013). An Approach to the Characterization of Biochar and Bio-Oil. Yildiz
Technical University, Turkey.
Özçimen, D. (2015). Algal BiorefineriesUtilization Alternatives of Algal Wastes for Solid Algal
Products. Cham: Springer International Publishing.
Ozcimen, D., & Ersoy-Mericboyu, A. (2008). A study on the carbonization of grapeseed and
chestnut shell. Fuel Processing Technology, 89(11), 1041-1046.
Ozcimen, D., & Ersoy-Mericboyu, A. (2010). Characterization of biochar and bio-oil samples
obtained from carbonization of various biomass materials. Renewable Energy, 35,
1319-1324.
Ozcimen, D., & Karaosmanoglu, F. (2004). Production and characterization of bio-oil and
biochar from rapeseed cake. Renewable Energy, 29(5), 779-787.
Ozin, G. (2020). Flying high on carbon dioxide: Decarbonizing aviation. Advanced Science
News. Retrieved from https://www.advancedsciencenews.com/flying-high-on-carbon-
dioxide-decarbonizing-aviation/?
HootPostID=09599269-4eca-47fc-961b-6eb6399aefb9&Socialprofile=advscinews&Socia
lnetwork=twitter
Ozin, G. (2021). Direct air capture trains. Advanced Science News. Retrieved from https://
www.advancedsciencenews.com/direct-air-capture-trains/
Ozin, G. (2021). Electro swing direct air capture. Advanced Science News. Retrieved from
https://www.advancedsciencenews.com/electro-swing-direct-air-capture/
Ozkan, M. (2021). Direct air capture of CO2: A response to meet the global climate targets.
MRS Energy & Sustainability. doi:10.1557/s43581-021-00005-9
Ozyurtkan, M. H., Ozcimen, D., & Mericboyu, A. E. (2008). Investigation of the carbonization
behavior of hybrid poplar. Fuel Processing Technology, 89(9), 858-863.
Paarlberg, R. (2021). President Biden, Please Don't Get Into Carbon Farming. Wired. Retrieved
from https://www.wired.com/story/president-biden-please-dont-get-into-carbon-farming/
Pace, G., & Sheehan, S. W. (2021). Scaling CO2 Capture With Downstream Flow CO2
Conversion to Ethanol. Frontiers in Climate, 3(35). doi:10.3389/fclim.2021.656108
Pacioni, T. R., Moreira, R. F. P. M., & Jose, H. J. (2015). GASEIFICAÇÃO DE BIOCHAR
OBTIDO DA PIRÓLISE DE BAGAÇO DE MAÇÃ VISANDO SUA UTILIZAÇÃO PARA
GERAÇÃO DE ENERGIA (GASIFICATION biochar GOT AIMING APPLE POMACE
PYROLYSIS YOUR USE FOR POWER GENERATION). Paper presented at the Blucher
Chemical Engineering Proceedings: XX Congresso Brasileiro de Engenharia Química.
http://www.proceedings.blucher.com.br/article-details/gaseificao-de-biochar-obtido-da-
pirlise-de-bagao-de-ma-visando-sua-utilizao-para-gerao-de-energia-18013
Packer, M. (2009). Algal capture of carbon dioxide; biomass generation as a tool for greenhouse
gas mitigation with reference to New Zealand energy strategy and policy. Energy Policy,
37(9), 3428-3437. doi:https://doi.org/10.1016/j.enpol.2008.12.025
Page Bailey, M. (2021). Celanese announces expansion of methanol production using recycled
CO2 feedstock. Chemical Engineering. Retrieved from https://www.chemengonline.com/
celanese-announces-expansion-of-methanol-production-using-recycled-co2-feedstock/
Page, S. C., Williamson, A. G., & Mason, I. G. (2009). Carbon capture and storage:
Fundamental thermodynamics and current technology. Energy Policy, 37(9), 3314-3324.
doi:https://doi.org/10.1016/j.enpol.2008.10.028
Page-Dumroese, D. S., et al. . (2015). Water Repellency of Two Forest Soils after Biochar
Addition. Transactions of the ASABE, 58(2), 335 - 342. doi:10.13031/trans.58.10586
Pagliari, P., et al. . (2014). Biochar Effects on Phosphorus Pools in Three Soils from Minnesota.
University of Minnesota, Retrieved from https://scisoc.confex.com/scisoc/2014am/
webprogram/Handout/
Paper86757/2014_Pagliari%20et%20al%20Biochar_SSSA%20meetings_final.pdf
Pagliaro, M., Konstandopoulos, A. G., Ciriminna, R., & Palmisano, G. (2010). Solar hydrogen:
Fuel or the near future. Energy Environ. Sci., 3, 279.
Palanivelu, K. (2017). Climate Change Mitigation via Utilization of Carbon Dioxide. In M. Goel &
M. Sudhakar (Eds.), Carbon Utilization: Applications for the Energy Industry (pp.
131-141). Singapore: Springer Singapore.
Palansooriya, K. N., Ok, Y. S., Awad, Y. M., Lee, S. S., Sung, J.-K., Koutsospyros, A., & Moon,
D. H. (2019). Impacts of biochar application on upland agriculture: A review. Journal of
Environmental Management, 234, 52-64. doi:https://doi.org/10.1016/
j.jenvman.2018.12.085
Palmer, J. (2020). Putting Forests to Work? Enrolling Vegetal Labor in the Socioecological Fix of
Bioenergy Resource Making. Annals of the American Association of Geographers, 1-16.
doi:10.1080/24694452.2020.1749022
Palmer, J., & Carton, W. (2021). Carbon Removal as Carbon Revival? Bioenergy, Negative
Emissions, and the Politics of Alternative Energy Futures. Frontiers in Climate, 3(60).
doi:10.3389/fclim.2021.678031
Palmeros Parada, M., Osseweijer, P., & Posada Duque, J. A. (2017). Sustainable biorefineries,
an analysis of practices for incorporating sustainability in biorefinery design. Industrial
Crops and Products, 106, 105-123. doi:https://doi.org/10.1016/j.indcrop.2016.08.052
Palmgren, C. R., Morgan, M. G., Bruine de Bruin, W., & Keith, D. W. (2004). Initial Public
Perceptions of Deep Geological and Oceanic Disposal of Carbon Dioxide.
Environmental Science & Technology, 38(24), 6441-6450. doi:10.1021/es040400c
Pamplaniyil, A. T. (2017). Justice in Climate Engineering: Towards a Rawlsian Appropriation.
(Ph.D.). Dublin City University, Retrieved from http://doras.dcu.ie/21975/1/
Augustine_Pamplany_Ph.D_Thesis_Justice_in_Climate_Engineering_%281%29.pdf
Pan, A., Pourziaei, B., & Huang, H. X. (2011). Effect of Ocean Iron Fertilization on the
Phytoplankton Biological Carbon Pump. Advances in Applied Mathematics and
Mechanics, 3(1), 52-64. doi:10.4208/aamm.10-m1023
Pan, G., Crowley, D., & Lehmann, J. (2011). Burn to air or burial in soil: The fate of China’s
straw residues. Retrieved from http://www.biochar-international.org/sites/default/files/
Straw_burning_revised0708.pdf
Pan, J., et al. (2015). Orthogonal experiment on biogas production characteristics of chicken
manure with biochar. Nongye Jixie Xuebao = Transactions of the Chinese Society for
Agricultural Machinery, 45(12), 229-233. Retrieved from http://www.cabdirect.org/
abstracts/20153052378.html;jsessionid=5B3750E0999EE6F6C9303FD0383612D5
Pan, J.-j., et al. (2013). Removal of Cr(VI) from aqueous solutions by Na2SO3/FeSO4 combined
with peanut straw biochar. Chemosphere, 101, 71-76. Retrieved from https://
www.ncbi.nlm.nih.gov/pubmed/24380440
Pan, J.-j., et al. . (2015). Arsenate Adsorption from Aqueous Solution onto Fe(III)-Modified Crop
Straw Biochars. Environmental Engineering Science, 32(11), 922 - 929. doi:10.1089/
ees.2014.0540
Pan, S.-Y., Lorente Lafuente, A. M., & Chiang, P.-C. (2016). Engineering, environmental and
economic performance evaluation of high-gravity carbonation process for carbon capture
and utilization. Applied Energy, 170, 269-277. doi:https://doi.org/10.1016/
j.apenergy.2016.02.103
Pan, S.-Y., Shah, K. J., Chen, Y.-H., Wang, M.-H., & Chiang, P.-C. (2017). Deployment of
Accelerated Carbonation Using Alkaline Solid Wastes for Carbon Mineralization and
Utilization Toward a Circular Economy. ACS Sustainable Chemistry & Engineering, 5(8),
6429-6437. doi:10.1021/acssuschemeng.7b00291
Pan, Y., et al. (2018). Achieving Highly Efficient Atmospheric CO2 Uptake by Artificial Upwelling.
Sustainability, 10(664), 1-19. Retrieved from http://www.mdpi.com/2071-1050/10/3/664/
pdf
Pan, Y., et al. (2019). A sea trial of air-lift concept artificial upwelling in the East China Sea.
Journal of Atmospheric and Oceanic Technology. doi:https://doi.org/10.1175/JTECH-
D-18-0238.1
Pan, Y., Fan, W., Huang, T.-H., Wang, S.-L., & Chen, C.-T. A. (2015). Evaluation of the sinks and
sources of atmospheric CO2 by artificial upwelling. Science of The Total Environment,
511, 692-702. doi:https://doi.org/10.1016/j.scitotenv.2014.11.060
Pan, Y., Fan, W., Zhang, D., Chen, J., Huang, H., Liu, S., . . . Chen, Y. (2016). Research
progress in artificial upwelling and its potential environmental effects. Science China
Earth Sciences, 59(2), 236-248. doi:10.1007/s11430-015-5195-2
Pan, Z., et al. (2015). Effects of biochar and lime on soil physicochemical properties and
tobacco seedling growth in red soil. Journal of Agricultural Resources and Environment,
32(6), 590-595. Retrieved from http://www.cabdirect.org/abstracts/
20163044527.html;jsessionid=E8F18C4E5E5817F118BED179DE910A32
Panda, A. K., et al. (2015). Fast pyrolysis of Kaner (Thevetia peruviana) Seed to Fuel and
Chemicals. International Journal of Analytical and Applied Chemistry, 1(1), 53-61.
Retrieved from http://chemical.journalspub.info/index.php/JAAC/article/view/32
Panda, S. S. (2013). Geospatial Modeling Applications for Biofuel Sustainability Assessment. In
B. P. Singh (Ed.), Biofuel Food Sustainability (pp. 431-448).
Pandey, A., Mai, V. T., Vu, D. Q., Bui, T. P. L., Mai, T. L. A., Jensen, L. S., & de Neergaard, A.
(2014). Organic matter and water management strategies to reduce methane and
nitrous oxide emissions from rice paddies in Vietnam. Agriculture, Ecosystems &
Environment, 196, 137 - 146. doi:10.1016/j.agee.2014.06.010
Pandey, D. N. (2002). Carbon sequestration in agroforestry systems. Climate Policy, 2(4),
367-377. doi:10.3763/cpol.2002.0240
Pandey, N. D. (2002). Global climate change and carbon management in multifunctional forests.
Current Science, 83(5), 593-602. Retrieved from https://www.mendeley.com/research/
global-climate-change-carbon-management-multifunctional-forests-8/
Pandey, S., et al. (2019). Enhancing carbon stocks accumulation through forest protection and
regeneration. A review. International Journal of Environment, 8(1), 16-21. Retrieved from
https://www.academia.edu/38383919/
Enhancing_carbon_stocks_accumulation_through_forest_protection_and_regeneration.
_A_review
Pandey, V., Patel, A., & Patra, D. D. (2016). Biochar ameliorates crop productivity, soil fertility,
essential oil yield and aroma profiling in basil (Ocimum basilicum L.). Ecological
Engineering, 90, 361 - 366. doi:10.1016/j.ecoleng.2016.01.020
Pandian, K., Subramaniayan, P., Gnasekaran, P., & Chitraputhirapillai, S. (2016). Effect of
Biochar Amendment on Soil Physical, Chemical and Biological Properties and
Groundnut Yield in Rainfed Alfisol of Semi-Arid Tropics. Archives of Agronomy and Soil
Science, 62(9), 1293-1320. doi:10.1080/03650340.2016.1139086
Panek, R., Wdowin, M., Franus, W., Czarna, D., Stevens, L. A., Deng, H., . . . Snape, C. E.
(2017). Fly ash-derived MCM-41 as a low-cost silica support for polyethyleneimine in
post-combustion CO2 capture. Journal of CO2 Utilization, 22, 81-90. doi:https://doi.org/
10.1016/j.jcou.2017.09.015
Pang, M., Zhang, L., Liang, S., Liu, G., Wang, C., Hao, Y., . . . Xu, M. (2017). Trade-off between
carbon reduction benefits and ecological costs of biomass-based power plants with
carbon capture and storage (CCS) in China. Journal of Cleaner Production, 144,
279-286. doi:https://doi.org/10.1016/j.jclepro.2017.01.034
Pangala, S. R., Enrich-Prast, A., Basso, L. S., Peixoto, R. B., Bastviken, D., Hornibrook, E. R.
C., . . . Gauci, V. (2017). Large emissions from floodplain trees close the Amazon
methane budget. Nature, 552, 230. doi:10.1038/nature24639
https://www.nature.com/articles/nature24639#supplementary-information
Pannirselvam, P. V., et al. (2016). FOOD PRODUCTION, ANIMAL FEED AND ENERGY
BIOMASS FROM PRODUCED IN toy system EMBRAPA; EXPERIENCES OF
NORTHEAST BRAZIL (translated from Brazilian language). Agrener, 1-10. Retrieved
from http://www.iee.usp.br/agrener2015/sites/default/files/tematica1/909.pdf
Paquay, F. S., & Zeebe, R. E. (2013). Assessing possible consequences of ocean liming on
ocean pH, atmospheric CO2 concentration and associated costs. International Journal of
Greenhouse Gas Control, 17, 183-188. doi:http://dx.doi.org/10.1016/j.ijggc.2013.05.005
Parada, M. P., Asveld, L., Osseweijer, P., & Posada, J. A. (2018). Setting the design space of
biorefineries through sustainability values, a practical approach. Biofuels, Bioproducts
and Biorefining, 12(1), 29-44. doi:10.1002/bbb.1819
Paramashivam, D., Clough, T. J., Dickinson, N. M., Horswell, J., Lense, O., Clucas, L., &
Robinson, B. H. (2016). Effect of Pine Waste and Pine Biochar on Nitrogen Mobility in
Biosolids. Journal of Environment Quality, 45(1), 360. doi:10.2134/jeq2015.06.0298
Paraskova, T. (2020). Can Bioengineered Plants Solve Our Carbon Problem? Retrieved from
https://oilprice.com/Energy/Energy-General/Can-Bioengineered-Plants-Solve-Our-
Carbon-Problem.html
Pardon, P., Reubens, B., Reheul, D., Mertens, J., De Frenne, P., Coussement, T., . . . Verheyen,
K. (2017). Trees increase soil organic carbon and nutrient availability in temperate
agroforestry systems. Agriculture, Ecosystems & Environment, 247, 98-111. doi:https://
doi.org/10.1016/j.agee.2017.06.018
Parekh, P., Follows, M. J., & Boyle, E. (2004). Modeling the global ocean iron cycle. Global
Biogeochemical Cycles, 18(1), 1-15. Retrieved from http://onlinelibrary.wiley.com/doi/
10.1029/2003GB002061/epdf
Parenti, C. (2021). A Left Defense of Carbon Dioxide Removal. In J. P. Sapinski, et al. (Ed.),
Has It Come to This? (pp. 130-142).
Pari, G. (2015). Biochar Technology as a Go Green Movement in Indonesia. Indonesian Journal
of Wetlands Environmental Management, 2(1), 84-90. Retrieved from http://
ijwem.unlam.ac.id/index.php/ijwem/article/view/35/21
Parikh, S. J. (2017). Biochar Basics and Current Research. Retrieved from http://
calclimateag.org/wp-content/uploads/2017/03/Biochar.pdf
Paris, A. R., et al. (2019). Electrochemical and Photoelectrochemical Transformations of
Aqueous CO2. In M. Aresta, I. Karimi, & S. Kawi (Eds.), An Economy Based on Carbon
Dioxide and Water: Potential of Large Scale Carbon Dioxide Utilization (pp. 239-286).
Retrieved from https://link.springer.com/chapter/10.1007/978-3-030-15868-2_7
Parisien, M., A., Zeeb, B., A, & Rutter, A. (2014). EFFECT OF CADMIUM BIOAVAILABILITY ON
PHYTOEXTRACTION FEASIBILITY AND ECOLOGICAL RISK IN A COMPOST-BASED
SOIL. Retrieved from http://espace.rmc.ca/handle/11264/341
Park, A.-h. A., & Ferguson, T. E. (2015).
Park, J., et al. . (2013). Activated carbon from biochar: Influence of its physicochemical
properties on the sorption characteristics of phenanthrene. Bioresource Technology, 149,
383-389. Retrieved from http://www.sciencedirect.com/science/article/pii/
S0960852413015174
Park, J. B. K., Craggs, R. J., & Shilton, A. N. (2011). Wastewater treatment high rate algal ponds
for biofuel production. Bioresource Technology, 102(1), 35-42. doi:https://doi.org/
10.1016/j.biortech.2010.06.158
Park, J. H., et al. . (2011). Biochar reduces the bioavailability and phytotoxicity of heavy metals.
Plant and Soil, 348, 439-451. doi:10.1007/s11104-011-0948-y
Park, J. H., Ok, Y. S., Kim, S. H., Cho, J. S., Heo, J. S., Delaune, R. D., & Seo, D. C. (2015).
Evaluation of phosphorus adsorption capacity of sesame straw biochar on aqueous
solution: influence of activation methods and pyrolysis temperatures. Environmental
Geochemistry and Health, 37(6), 969-983. doi:10.1007/s10653-015-9709-9
Park, J. H., Ok, Y. S., Kim, S. H., Kang, S. W., Cho, J. S., Heo, J. S., . . . Seo, D. C. (2015).
Characteristics of biochars derived from fruit tree pruning wastes and their effects on
lead adsorption. Journal of the Korean Society for Applied Biological Chemistry, 58(5),
751 - 760. doi:10.1007/s13765-015-0103-1
Park, J.-H., Cho, J.-S., Ok, Y. S., Kim, S.-H., Heo, J.-S., Delaune, R. D., & Seo, D.-C. (2015).
Comparison of single and competitive metal adsorption by pepper stem biochar.
Archives of Agronomy and Soil Science, 1 - 16. doi:10.1080/03650340.2015.1074186
Park, J.-H., Cho, J.-S., Ok, Y. S., Kim, S.-H., Kang, S.-W., Choi, I.-W., . . . Seo, D.-C. (2015).
Competitive adsorption and selectivity sequence of heavy metals by chicken bone-
derived biochar: Batch and column experiment. Journal of Environmental Science and
Health, Part A, 50(11), 1194 - 1204. doi:10.1080/10934529.2015.1047680
Park, J.-H., Kim, S.-H., Shin, J.-H., Kim, H. C., & Seo, D. C. (2015). Competitive Adsorption
Characteristics of Cupper and Cadmium Using Biochar Derived from Phragmites
communis. Korean Journal of Environmental Agriculture, 34(1), 21 - 29. doi:10.5338/
kjea.2015.34.1.10
Park, J.-H., Ok, Y. S., Kim, S.-H., Cho, J.-S., Heo, J.-S., Delaune, R. D., & Seo, D.-C. (2015).
Competitive adsorption of heavy metals onto sesame straw biochar in aqueous
solutions. Chemosphere. doi:10.1016/j.chemosphere.2015.05.093
Park, S. H., Cho, H. J., Ryu, C., & Park, Y.-K. (2016). Removal of copper(II) in aqueous solution
using pyrolytic biochars derived from red macroalga Porphyra tenera. Journal of
Industrial and Engineering Chemistry, 36, 314 - 319. doi:10.1016/j.jiec.2016.02.021
Park, W.-K., Kim, G.-Y., Lee, S.-I., Shin, J.-D., Jang, H.-Y., & So, K.-H. (2014). Characteristics of
Greenhouse Gas Emission in the Upland Soil Applied with Agricultural Biomass.
(Korea Journal of fertilizers). Retrieved from http://www.dbpia.co.kr/
Journal/ArticleDetail/3524204
Parkin, B. (2017). The Climate Engineers Sucking CO From the Atmosphere—and Making
Money Doing It. Bloomberg Businessweek. Retrieved from https://www.bloomberg.com/
news/articles/2017-09-05/the-climate-engineers-sucking-co2-from-the-atmosphere-and-
making-money-doing-it
Parliament, U. H. o. (2010). Biochar PostNote. Retrieved from http://www.parliament.uk/
documents/post/postpn358-biochar.pdf
Parlindungan Situmeang, Y., et al. . (2015). Effect of Dose Biochar Bamboo, Compost, and
Phonska on Growth of Maize (Zea mays L.) in Dryland. In.
Parr, K., & Lehmann, C. (2019). When tree planting actually damages ecosystems. The
Conversation. Retrieved from https://theconversation.com/when-tree-planting-actually-
damages-ecosystems-120786
Parra, C., et al. (2016). Plant development effects of biochars from different raw materials.
Geophysical Research Abstracts, 17. Retrieved from http://oa.upm.es/37653/
Parra, C., et al. (2016). Viability of the biochar production from different manure wastes in the
Amblés Valley (Ávila, Spain). Geophysical Research Abstracts, 17, 1. Retrieved from
http://oa.upm.es/37654/
Parry, W. (2012). Could Fertilizing the Oceans Reduce Global Warming? LIveScience.
Retrieved from http://www.livescience.com/21684-geoengineering-iron-fertilization-
climate.html
Parson, E. A. (2006). Reflections on Air Capture: the political economy of active intervention in
the global environment. Climatic Change, 74(1), 5-15. doi:10.1007/s10584-005-9032-z
Parson, E. A., & Buck, H. J. (2020). Large-Scale Carbon Dioxide Removal: The Problem of
Phasedown. Global Environmental Politics, 20(3), 70-92. Retrieved from https://
www.mitpressjournals.org/doi/abs/10.1162/glep_a_00575
Partain, R. A. (2020). Regulatory Frameworks for South Korea’s Offshore Caron Capture and
Storage (CCS) Activities. Kyungpook Natl. Univ. Law Journal, 69, 63-115. Retrieved from
https://www.kci.go.kr/kciportal/landing/article.kci?arti_id=ART002582475
Partain, R. A., & Faure, M. G. (2017). Development of a regulatory framework for CDM-enabled
offshore carbon capture and storage (OCCS) in China. In S. E. Weishaar, N. Philipsen, &
W. Xu (Eds.), Regulatory Reform in China and the EU (pp. 165-199).
Partanen, A.-I., Keller, D. P., Korhonen, H., & Matthews, H. D. (2016). Impacts of sea spray
geoengineering on ocean biogeochemistry. Geophysical Research Letters, 43(14),
7600-7608. doi:10.1002/2016GL070111
Partanen, R. (2017). Bioenergy increases emissions in Europe. Energy Post. Retrieved from
http://energypost.eu/bioenergy-increases-emissions-europe/
Partey, S. T., Preziosi, R. F., & Robson, G. D. (2014). Short-Term Interactive Effects of Biochar,
Green Manure, and Inorganic Fertilizer on Soil Properties and Agronomic Characteristics
of Maize. Agricultural Research, 3(2), 128-136. doi:10.1007/s40003-014-0102-1
Parvage, M. M., et al. (2012). Phosphorus availability in soils amended with wheat residue char.
Biology and Fertility of Soils, 49(2), 245-250. Retrieved from https://link.springer.com/
article/10.1007/s00374-012-0746-6
Pasgaard, M., Sun, Z., Müller, D., & Mertz, O. (2016). Challenges and opportunities for REDD+:
A reality check from perspectives of effectiveness, efficiency and equity. Environmental
Science & Policy, 63, 161-169. doi:https://doi.org/10.1016/j.envsci.2016.05.021
Passos, A. M. A. d., Rezende, P. M. d., Carvalho, E. R., & Aker, A. M. (2014). Residual Effects of
the Organic Amendments Poultry Litter, Farmyard Manure and Biochar on Soybean
Crop. Agricultural Sciences, 05(14), 1376 - 1383. doi:10.4236/as.2014.514148
Pastor-Villegas, J., Rodriguez, J. M. M., Pastor-Valle, J. F., & Garcia, M. G. (2007). Changes in
commercial wood charcoals by thermal treatments. Journal of Analytical and Applied
Pyrolysis, 80(2), 507-514. Retrieved from https://www.researchgate.net/publication/
223915164_Changes_in_commercial_wood_charcoals_by_thermal_treatments
Pasztor, J. (2017). The Need for Governance of Climate Geoengineering. Ethics &#x0026;
International Affairs, 31(4), 419-430. doi:10.1017/S0892679417000405
Pasztor, J. (2020). Governing Carbon Dioxide Removal. Retrieved from https://
globalchallenges.org/governing-carbon-dioxide-removal/
Patania, F., et al. (2015). An Applied Research to Supply Energy Coming from Exploitation of
Biomass Scraps to "Little and Middle Enterprise (LME) (Part One). European Scientific
Journal(November). Retrieved from http://eujournal.org/index.php/esj/article/view/6525
Patel, B., Guo, M., Izadpanah, A., Shah, N., & Hellgardt, K. (2016). A review on hydrothermal
pre-treatment technologies and environmental profiles of algal biomass processing.
Bioresource Technology, 199, 288 - 299. doi:10.1016/j.biortech.2015.09.064
Patel, M., Zhang, X. L., & Kumar, A. (2016). Techno-economic and life cycle assessment on
lignocellulosic biomass thermochemical conversion technologies: A review. Renewable
Sustainable Energy Rev, 53. doi:10.1016/j.rser.2015.09.070
Patel, P. (2019). What’s the best way to lock up carbon emissions—and make money doing it?
Anthropocene. Retrieved from http://www.anthropocenemagazine.org/2019/12/what-are-
the-best-ways-to-use-carbon-dioxide-emissions/?
utm_source=Anthropocene&utm_campaign=6055ae6a92-
Anthropocene+science+to+AM&utm_medium=email&utm_term=0_ececcea89a-6055ae
6a92-294293021
Patel, P. (2021). To stop the climate clock, fund technologies to pull carbon dioxide from air,
researchers say. Anthropocene. Retrieved from https://www.anthropocenemagazine.org/
2021/01/to-reverse-the-climate-clock-fund-technologies-to-pull-carbon-dioxide-from-air-
researchers-say/
Patel, V., Sharma, B. K., Zheng, W., Liu, P. P., & Toosi, M. (2015). Evaluate Feasibility of
Sustainable and Economical Utilization of Biomass Gasification Byproducts. Retrieved
from https://www.ideals.illinois.edu/handle/2142/75953
Pati, S., Pal, B., Badole, S., Hazra, G. C., & Mandal, B. (2016). Effect of Silicon Fertilization on
Growth, Yield, and Nutrient Uptake of Rice. Communications in Soil Science and Plant
Analysis, 47(3), 284-290. doi:10.1080/00103624.2015.1122797
Patrionos, A., et al. (2020). From the Ground Up: Cutting Edge Approaches for Land-Based
Carbon Dioxide Removal. Retrieved from https://energyfuturesinitiative.org/efi-reports
Patrizio, P., Fajardy, M., Bui, M., & Dowell, N. M. (2021). CO2 mitigation or removal: The optimal
uses of biomass in energy system decarbonization. IScience, 24(7), 102765. doi:https://
doi.org/10.1016/j.isci.2021.102765
Patrizio, P., Leduc, S., Kraxner, F., Fuss, S., Kindermann, G., Spokas, K., . . . Obersteiner, M.
(2019). Chapter 11 - Killing two birds with one stone: a negative emissions strategy for a
soft landing of the US coal sector. In J. C. Magalhães Pires & A. L. D. Cunha Gonçalves
(Eds.), Bioenergy with Carbon Capture and Storage (pp. 219-236): Academic Press.
Patterson, B. D., Mo, F., Borgschulte, A., Hillestad, M., Joos, F., Kristiansen, T., . . . van
Bokhoven, J. A. (2019). Renewable CO2 recycling and synthetic fuel production in a
marine environment. Proceedings of the National Academy of Sciences, 116(25),
12212-12219. doi:10.1073/pnas.1902335116 %J Proceedings of the National Academy
of Sciences
Paukert, A. N. (2012). Reaction path modeling of enhanced in situ CO2 mineralization for
carbon sequestration in the peridotite of the Samail Ophiolite, Sultanate of Oman.
Chemical Geology, 330-331, 86-100. Retrieved from https://ac.els-cdn.com/
S0009254112003725/1-s2.0-S0009254112003725-main.pdf?_tid=a0afa5b5-
ab6d-4346-86a5-5880d8ae339f&acdnat=1525309531_091948b78dbbe845d4d4be221bf
90de0
Paul, K. I., Polglase, P. J., Nyakuengama, J. G., & Khanna, P. K. (2002). Change in soil carbon
following afforestation. Forest Ecology and Management, 168(1–3), 241-257. doi:http://
dx.doi.org/10.1016/S0378-1127(01)00740-X
Paulo, C., Power, I. M., Stubbs, A. R., Wang, B., Zeyen, N., & Wilson, S. A. (2021). Evaluating
feedstocks for carbon dioxide removal by enhanced rock weathering and CO2
mineralization. Applied Geochemistry, 104955. doi:https://doi.org/10.1016/
j.apgeochem.2021.104955
Paulos, B. (2017). Biopower (part 2): Climate science for bioenergy is lost in the woods.
EnergyPost. Retrieved from http://eujournal.org/index.php/esj/article/view/6525/6250
Paulos, B. (2017). Biopower (part 3): what does the future hold? EnergyPost. Retrieved from
http://energypost.eu/biopower-part-3-what-does-the-future-hold/?
utm_campaign=shareaholic&utm_medium=linkedin&utm_source=socialnetwork
Paulos, B. (2017). Myths and facts about biopower (part 1 of 3). EnergyPost. Retrieved from
http://energypost.eu/myths-and-facts-about-biopower-part-1-of-3/
Paulson, K. (2014). Methylmercury Production in Riverbank Sediments of the South River,
Virginia (USA) and Assessment of Biochar as a Mercury Treatment Option. University of
Waterloo,
Paustian, K., et al. (1997). Agricultural soils as a sink to mitigate CO2 emissions. Soil Use and
Management, 13, 230-244. Retrieved from https://onlinelibrary.wiley.com/doi/pdf/10.1111/
j.1475-2743.1997.tb00594.x
Paustian, K. (2014). Soil: Carbon Sequestration in Agricultural Systems. In N. K. Van Alfen
(Ed.), Encyclopedia of Agriculture and Food Systems (pp. 140-152). Oxford: Academic
Press.
Paustian, K., Collier, S., Baldock, J., Burgess, R., Creque, J., DeLonge, M., . . . Jahn, M. (2019).
Quantifying carbon for agricultural soil management: from the current status toward a
global soil information system. Carbon Management, 10(6), 567-587.
doi:10.1080/17583004.2019.1633231
Paustian, K., Larson, E., Kent, J., Marx, E., & Swan, A. (2019). Soil C Sequestration as a
Biological Negative Emission Strategy. Frontiers in Climate, 1(8). doi:10.3389/
fclim.2019.00008
Paustian, K., Lehmann, J., Ogle, S., Reay, D., Robertson, G. P., & Smith, P. (2016). Climate-
smart soils. Nature, 532, 49. doi:10.1038/nature17174
Pavlik, D., Zhong, Y., Daiek, C., Liao, W., Morgan, R., Clary, W., & Liu, Y. (2017). Microalgae
cultivation for carbon dioxide sequestration and protein production using a high-
efficiency photobioreactor system. Algal Research, 25, 413-420. doi:https://doi.org/
10.1016/j.algal.2017.06.003
Pawar, R. J., Bromhal, G. S., Carey, J. W., Foxall, W., Korre, A., Ringrose, P. S., . . . White, J. A.
(2015). Recent advances in risk assessment and risk management of geologic CO2
storage. International Journal of Greenhouse Gas Control, 40(Supplement C), 292-311.
doi:https://doi.org/10.1016/j.ijggc.2015.06.014
Pawar, R. J., Warpinski, N. R., Benson, R. D., Grigg, R. B., Krumhansl, J. L., & Stubbs, B. A.
(2004). Geologic Sequestration of CO2 in a Depleted Oil Reservoir: An Overview of a
Field Demonstration Project. Paper presented at the SPE Annual Technical Conference
and Exhibition, Houston, Texas. https://doi.org/10.2118/90936-MS
Pawlok, D., et al. (2018). Grasslands may be more reliable carbon sinks than forests in
California. Environmental Research Letters, 13(7), 074027. Retrieved from http://
stacks.iop.org/1748-9326/13/i=7/a=074027
Paz-Ferreiro, J., et al. (2013). Interactive effects of biochar and the earthworm Pontoscolex
corethrurus on plant productivity and soil enzyme activities. Journal of Soils and
Sediments, 14(3), 483-494. Retrieved from https://link.springer.com/article/10.1007/
s11368-013-0806-z
Paz-Ferreiro, J., et al. . (2013). Use of phytoremediation and biochar to remediate heavy metal
polluted soils: a review. Solid Earth Discuss, 5, 2155–2179. Retrieved from http://
www.solid-earth-discuss.net/5/2155/2013/sed-5-2155-2013.pdf
Paz-Ferreiro, J., et al. (2014). Biochar modifies the thermodynamic parameters of soil enzyme
activity in a tropical soil. Journal of Soils and Sediments, 15(3), 578-583. doi:10.1007/
s11368-014-1029-7
Paz-Ferreiro, J., et al. . (2014). Preface: Environmental benefits of biochar. Solid Earth, 5(2),
1301 - 1303. doi:10.5194/se-5-1301-2014
Paz-Ferreiro, J., et al. (2014). Use of phytoremediation and biochar to remediate heavy metal
polluted soils: a review. Solid Earth, 5, 65-75. Retrieved from http://www.solid-earth.net/
5/65/2014/se-5-65-2014.pdf
Paz-Ferreiro, J., et al. (2015). The Effect of Biochar and Its Interaction with the Earthworm
Pontoscolex corethrurus on Soil Microbial Community Structure in Tropical Soils. Plos
One, 10(4), e0124891. doi:10.1371/journal.pone.0124891.t003
Paz-Ferreiro, J., Gascó, G., Gutiérrez, B., & Méndez, A. (2011). Soil biochemical activities and
the geometric mean of enzyme activities after application of sewage sludge and sewage
sludge biochar to soil. Biology and Fertility of Soils. doi:10.1007/s00374-011-0644-3
Peacock, K. A. (2021). As Much as Possible, as Soon As Possible: Getting Negative About
Emissions. Ethics, Policy & Environment, null-null. doi:10.1080/21550085.2021.1904497
Peake, L. (2015). Biochar amendment to improve soil productivity with particular emphasis on
the influence of soil type. University of East Anglia, Retrieved from http://ethos.bl.uk/
OrderDetails.do?uin=uk.bl.ethos.656154
Peake, L., Freddo, A., & Reid, B. J. (2014). Sustaining Soils and Mitigating Climate Change
Using Biochar. In Sustainability Science and Technology: An Introduction: CRC Press.
Peake, L. R., Reid, B. J., & Tang, X. (2014). Quantifying the influence of biochar on the physical
and hydrological properties of dissimilar soils. Geoderma, 235-236, 182 - 190.
doi:10.1016/j.geoderma.2014.07.002
Pearce, F. (2017). Planting trees could mop up ten years’ worth of greenhouse gases. New
Scientist. Retrieved from https://www.newscientist.com/article/2152648-planting-trees-
could-mop-up-ten-years-worth-of-greenhouse-gases/
Pearce, F. (2019). The natural solutions to climate change held in the ocean.
Chinadialogue.com. Retrieved from https://chinadialogueocean.net/11915-coastal-
ecosystem-natural-solutions-climate-change/
Pearce, F. (2020). Planting a trillion trees really can help us fight climate change. New Scientist.
Retrieved from https://www.newscientist.com/article/mg24532640-800-planting-a-trillion-
trees-really-can-help-us-fight-climate-change/#ixzz6GPSzFBUT
Pearce, F. (2021). Net-Zero Emissions: Winning Strategy or Destined for Failure? Yale
Environment 360. Retrieved from https://e360.yale.edu/features/net-zero-emissions-
winning-strategy-or-destined-for-failure
Pearson, H. (2019). Sea creatures store carbon in the ocean – could protecting them help slow
climate change? The Conversation, (April 17). Retrieved from https://
theconversation.com/sea-creatures-store-carbon-in-the-ocean-could-protecting-them-
help-slow-climate-change-108872
Pearson, R. J., et al. (2020). Energy Storage via Carbon-Neutral Fuels Made From CO 2, Water,
and Renewable Energy. Proceedings of the IEEE, 100(2), 439-460. Retrieved from
https://ieeexplore.ieee.org/abstract/document/6070946
Peck, W. D., Azzolina, N. A., Ge, J., Gorecki, C. D., Gorz, A. J., & Melzer, L. S. (2017). Best
Practices for Quantifying the CO2 Storage Resource Estimates in CO2 Enhanced Oil
Recovery. Energy Procedia, 114, 4741-4749. doi:https://doi.org/10.1016/
j.egypro.2017.03.1613
Peckham, S. D., & Gower, S. T. (2011). Simulated long-term effects of harvest and biomass
residue removal on soil carbon and nitrogen content and productivity for two Upper
Great Lakes forest ecosystems. GCB Bioenergy, 3(2), 135-147. doi:10.1111/
j.1757-1707.2010.01067.x
Pečkytė, J., & Baltrėnaitė, E. (2015). Assessment of heavy metals leaching from (bio)char
obtained from industrial sewage sludge. Mokslas - Lietuvos ateitis, 7(4), 399 - 406.
doi:10.3846/mla.2015.811
Pedersen, T. H., & Rosendahl, L. A. (2015). Production of fuel range oxygenates by supercritical
hydrothermal liquefaction of lignocellulosic model systems. Biomass and Bioenergy, 83,
206 - 215. doi:10.1016/j.biombioe.2015.09.014
Pedram Bahrami, M., & Mohammadi, T. (2017). Simulation of Carbon Dioxide Removal by
Three Amine Mixture of Diethanolamine, Methyldiethanolamine, and 2-Amino- 2-
Methyl-1-Propanol in a Hollow Fiber Membrane Contactor Using Computational Fluid
Dynamics. Periodica Polytechnica. Chemical Engineering, 61(3), 227-235. doi:http://
dx.doi.org/10.3311/PPch.9789
Pehlken, A., et al. (2020). More Sustainable Bioenergy by Making Use of Regional Alternative
Biomass? Sustainability, 12(19), 1-22. Retrieved from https://www.mdpi.com/
2071-1050/12/19/7849/htm
Pehnt, M., & Henkel, J. (2009). Life cycle assessment of carbon dioxide capture and storage
from lignite power plants. International Journal of Greenhouse Gas Control, 3(1), 49-66.
doi:https://doi.org/10.1016/j.ijggc.2008.07.001
PeiChen, L., Wei, W., FengSong, Z., DaiYi, W., & Jie, H. (2015). Structural characteristics of
straw biochars and sorption of 17β-estradiol on straw biochar. Research of
Environmental Sciences. Retrieved from http://www.cabdirect.org/abstracts/
20153339861.html
Pellegrini, A. F. A., McLauchlan, K. K., Hobbie, S. E., Mack, M. C., Marcotte, A. L., Nelson, D.
M., . . . Whittinghill, K. (2020). Frequent burning causes large losses of carbon from
deep soil layers in a temperate savanna. Journal of Ecology, 108(4), 1426-1441.
doi:https://doi.org/10.1111/1365-2745.13351
Pellegrini, A. F. A., Refsland, T., Averill, C., Terrer, C., Staver, A. C., Brockway, D. G., . . .
Jackson, R. B. (2021). Decadal changes in fire frequencies shift tree communities and
functional traits. Nature Ecology & Evolution. doi:10.1038/s41559-021-01401-7
Pellera, F.-M., & Gidarakos, E. (2015). Effect of dried olive pomace – derived biochar on the
mobility of cadmium and nickel in soil. Journal of Environmental Chemical Engineering,
3(2), 1163-1176. doi:10.1016/j.jece.2015.04.005
Pelley, J. (2008). Can wetland restoration cool the planet? Environmental Science &
Technology, 42(24), 8994-8994. doi:10.1021/es802790q
Peloquin, J., Hall, J., Safi, K., Ellwood, M., Law, C. S., Thompson, K., . . . Pickmere, S. (2011).
Control of the phytoplankton response during the SAGE experiment: A synthesis. Deep
Sea Research Part II: Topical Studies in Oceanography, 58(6), 824-838. doi:https://
doi.org/10.1016/j.dsr2.2010.10.019
Peloquin, J., Hall, J., Safi, K., Smith, W. O., Wright, S., & van den Enden, R. (2011). The
response of phytoplankton to iron enrichment in Sub-Antarctic HNLCLSi waters: Results
from the SAGE experiment. Deep Sea Research Part II: Topical Studies in
Oceanography, 58(6), 808-823. doi:https://doi.org/10.1016/j.dsr2.2010.10.021
Peltz, C. D., & Harley, A. (2015). SSSA Special PublicationAgricultural and Environmental
Applications of Biochar: Advances and BarriersBiochar Application for Abandoned Mine
Land Reclamation: Soil Science Society of America, Inc.
Peltz, C. D., Zillich, C., & Brown, K. L. (2014). A Combination of Acid B Extra ™ and Biochar to
Reduce Metal Concentrations in Acid Mine Drainage. Journal American Society of
Mining and Reclamation, 3(1), 100-116. Retrieved from http://scholar.google.com.ph/
scholar?hl=en&as_sdt=0,5&q=biochar&scisbd=1
Peña, M. A. (2003). Modelling the response of the planktonic food web to iron fertilization and
warming in the NE subarctic Pacific. Progress in Oceanography, 57(3), 453-479.
doi:https://doi.org/10.1016/S0079-6611(03)00110-1
Pendleton, L., et al. (2012). Estimating Global “Blue Carbon” Emissions from Conversion and
Degradation of Vegetated Coastal Ecosystems. Plos One, 7(9), e43542. Retrieved from
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0043542
Peng, T.-H. (1991). Factors limiting the reduction of atmospheric CO, by iron fertilization.
Limnology and Oceanography, 36(8), 1919-1927. Retrieved from http://aslo.net/lo/toc/
vol_36/issue_8/1919.pdf
Peng, T. H., & Broecker, W. S. (1991). Dynamical Limitations on the Antarctic Iron Fertilization
Strategy. Nature, 349(6306), 227-229.
Peng, X., et al. (2011). Temperature- and duration-dependent rice straw-derived biochar:
Characteristics and its effects on soil properties of an Ultisol in southern China. Soil and
Tillage Research, 112(2), 159-166. doi:10.1016/j.still.2011.01.002
Peng, X., et al. (2016). The impact of manure, straw and biochar amendments on aggregation
and erosion in a hillslope Ultisol. CATENA, 138, 30 - 37. doi:10.1016/
j.catena.2015.11.008
PengHan, F., Ren, L., & Zhang, X.-C. (2016). Effect of biochar on the soil nutrients about
different grasslands in the Loess Plateau. CATENA, 137, 554 - 562. doi:10.1016/
j.catena.2015.11.002
Penman, D. E., Caves Rugenstein, J. K., Ibarra, D. E., & Winnick, M. J. (2020). Silicate
weathering as a feedback and forcing in Earth's climate and carbon cycle. Earth-Science
Reviews, 209, 103298. doi:https://doi.org/10.1016/j.earscirev.2020.103298
Penner, D. (2017). A Crucial Climate Mystery Hides Just Beneath Your Feet. Wired. Retrieved
from https://www.wired.com/2017/04/crucial-climate-mystery-just-feet/
Pepper, E., Skene, J., & Stashwick, S. (2021). Drax Purchase Would Implicate the United
Kingdom in Loss of Canadian Forests. Retrieved from https://www.nrdc.org/experts/elly-
pepper/drax-purchase-would-implicate-united-kingdom-loss-canadian-forests
Perciasepe, B., & Bonnie, R. (2020). Wood energy as a climate change solution. The Hill.
Retrieved from https://thehill.com/opinion/energy-environment/494708-wood-energy-as-
a-climate-change-solution?rl=1
Pereira, E. I. P., Suddick, E. C., Mansour, I., Mukome, F. N. D., Parikh, S. J., Scow, K., & Six, J.
(2015). Biochar alters nitrogen transformations but has minimal effects on nitrous oxide
emissions in an organically managed lettuce mesocosm. Biology and Fertility of Soils,
51(5), 573-582. doi:10.1007/s00374-015-1004-5
Pereira, R. C., & Yarish, C. (2008). Mass production of marine macroalgae. In S. R. Jorgensen
& B. D. Fath (Eds.), Ecological Engineering, Encylopedia of Ecology (Vol. 3, pp.
2236-2247).
Pereira, R. G., et al. (2012). Transpiration response of upland rice to water deficit changed by
different levels of eucalyptus biochar. Pesquisa Agropecuária Brasileira, 47(5), 716-721.
Retrieved from http://www.scielo.br/scielo.php?
script=sci_arttext&pid=S0100-204X2012000500012
Pereiraa, C. C., & Pinhob, C. (2014). Influence of particle fragmentation and non-sphericity on
the determination of diffusive and kinetic fluidized bed biochar combustion data. Fuel,
131, 77-88. doi:10.1016/j.fuel.2014.04.072
Pérez, A., Libardoni, B. G., & Sanders, C. J. (2018). Factors influencing organic carbon
accumulation in mangrove ecosystems. Biology Letters, 14(10). doi:10.1098/
rsbl.2018.0237
Pérez-Fortes, M., Bocin-Dumitriu, A., & Tzimas, E. (2014). CO2 Utilization Pathways: Techno-
Economic Assessment and Market Opportunities. Energy Procedia, 63, 7968-7975.
doi:https://doi.org/10.1016/j.egypro.2014.11.834
Pérez-Gallent, E., Vankani, C., Sánchez-Martínez, C., Anastasopol, A., & Goetheer, E. (2021).
Integrating CO2 Capture with Electrochemical Conversion Using Amine-Based Capture
Solvents as Electrolytes. Industrial & Engineering Chemistry Research, 60(11),
4269-4278. doi:10.1021/acs.iecr.0c05848
Peridas, G., & Mordick Schmidt, B. (2021). The role of carbon capture and storage in the race to
carbon neutrality. The Electricity Journal, 34(7), 106996. doi:https://doi.org/10.1016/
j.tej.2021.106996
Perkins, S. (2019). Scubalike technology could suck carbon dioxide from smokestacks. Science.
Retrieved from http://www.sciencemag.org/news/2019/01/scubalike-technology-could-
suck-carbon-dioxide-smokestacks
Perry, D. (2017). NRL Receives US Patent for Carbon Capture Device: A Key Step in Synthetic
Fuel Production from Seawater. Retrieved from https://www.nrl.navy.mil/news/releases/
nrl-receives-us-patent-carbon-capture-device-key-step-synthetic-fuel-production-
seawater
Perry, S. C., Mavrikis, S., Wegener, M., Nazarovs, P., Wang, L., & Ponce de León, C. (2021).
Hydrophobic thiol coatings to facilitate a triphasic interface for carbon dioxide reduction
to ethylene at gas diffusion electrodes. Faraday Discussions, 230(0), 375-387.
doi:10.1039/D0FD00133C
Pershing, A. J., et al. (2010). The Impact of Whaling on the Ocean Carbon Cycle: Why Bigger
Was Better. Plos One, 5(8), 1-9. Retrieved from https://journals.plos.org/plosone/article?
id=10.1371/journal.pone.0012444
Persson, U. M. (2015). The impact of biofuel demand on agricultural commodity prices: a
systematic review. Wiley Interdisciplinary Reviews: Energy and Environment, 4(5),
410-428. doi:doi:10.1002/wene.155
Pervaiz, M., & Sain, M. M. (2003). Carbon storage potential in natural fiber composites.
Resources, Conservation and Recycling, 39(4), 325-340. doi:http://dx.doi.org/10.1016/
S0921-3449(02)00173-8
Pessenda, L. C. R., Gouveia, S. E. M., & Aravena, R. (2001). Radiocarbon dating of total soil
organic matter and humin fraction and its comparison with C-14 ages of fossil charcoal.
Radiocarbon, 43(2B), 595-601.
Petelina, E., Klyashtorin, A., & Yankovich, T. (2014). Field trials on use of biochar versus peat for
land reclamation purposes. Retrieved from https://circle.ubc.ca/handle/2429/51149
Petelina, E., Klyashtorin, A., & Yankovich, T. (2014). Greenhouse trials on use of biochar versus
peat for land reclamation purposes. Paper presented at the British Columbia Mine
Reclamation Symposium. https://circle.ubc.ca/handle/2429/51148?show=full
Petelina, E., Sanscartier, D., MacWilliam, S., & Ridsdale, R. (2015). Environmental, social, and
economic benefits of biochar application for land reclamation purposes. Paper presented
at the B.C. Mine Reclamation Symposium 2014. http://cypress.library.ubc.ca/handle/
2429/51133
Peters, A. (2018). CO2-sucking factories could anchor a new, clean economy. FastCompany.
Retrieved from https://www.fastcompany.com/90255654/co2-sucking-factories-could-
anchor-a-new-clean-economy
Peters, A. (2019). We have the tech to suck CO2 from the air–but can it suck enough to make a
difference? Fast Company. Retrieved from https://www.fastcompany.com/90356326/we-
have-the-tech-to-suck-co2-from-the-air-but-can-it-suck-enough-to-make-a-difference
Peters, A. (2020). Ever been to a green sand beach? The newest geohack to fight climate
change. Retrieved from https://www.fastcompany.com/90510254/ever-been-to-a-green-
sand-beach-the-newest-geohack-to-fight-climate-change
Peters, A. (2020). Forget about planting trees: This company is making carbon offsets by putting
seaweed on the ocean floor. Fast Company. Retrieved from https://
www.fastcompany.com/90548820/forget-planting-trees-this-company-is-making-carbon-
offsets-by-putting-seaweed-on-the-ocean-floor
Peters, A. (2020). Horizon will become the first ‘carbon positive’ national dairy in the U.S. Fast
Company. Retrieved from https://www.fastcompany.com/90469745/horizon-will-become-
the-first-carbon-positive-national-dairy-in-the-u-s
Peters, A. (2021). This carbon-capture tech removes CO2 from the ocean by making seashells.
Retrieved from https://www.fastcompany.com/90642340/this-carbon-capture-tech-
removes-co2-from-the-ocean-by-making-seashells
Peters, A. (2021). Using artificial photosynthesis, Twelve creates CO2-based chemicals that can
be used to make everything from car parts to laundry detergent. Retrieved from https://
www.fastcompany.com/90652611/petrochemicals-are-in-all-sorts-of-products-this-
startup-makes-the-same-compounds-out-of-captured-co2
Peters, G., & Geden, O. (2017). Guest post: Who will deliver the negative emissions needed to
avoid 2C warming? CarbonBrief. Retrieved from https://www.carbonbrief.org/guest-post-
who-will-deliver-the-negative-emissions-needed-to-avoid-2c-warming
Peters, G. P., & Geden, O. (2017). Catalysing a political shift from low to negative carbon.
Nature Climate Change, 7, 619-621. doi:10.1038/nclimate3369
Peters, G. P., & Sognnaes, I. (2019). The role of carbon capture and storage in the mitigation of
climate change. Retrieved from https://cicero.oslo.no/en/publications/internal/2900
Peters, J. F., Iribarren, D., & Dufour, J. (2015). Biomass Pyrolysis for Biochar or Energy
Applications? A Life Cycle Assessment. Environmental Science & Technology, 49(8),
5195-5202. doi:10.1021/es5060786
Petersen, H. A., & Luca, O. R. (2021). Application-specific thermodynamic favorability zones for
direct air capture of carbon dioxide. Physical Chemistry Chemical Physics. doi:10.1039/
D1CP01670A
Peterson, D. (2015). Climate-Informed Scrub Oak Restoration on the Florence County Forest,
Wisconsin. In.
Peterson, K. S. (2021). Climate: Proforestation vs. more old-growth logging. The Nelson Daily.
Retrieved from http://thenelsondaily.com/news/climate-proforestation-vs-more-old-
growth-logging
Peterson, L. (2020). North Dakota’s carbon capture project Tundra another ‘expensive
greenwashing’ attempt to bail out coal power. Nation of Change. Retrieved from https://
www.nationofchange.org/2020/03/23/north-dakotas-carbon-capture-project-tundra-
another-expensive-greenwashing-attempt-to-bail-out-coal-power/
Peterson, S. C. (2012). Utilization of low-ash biochar to partially replace carbon black in
styrene–butadiene rubber composites. Journal of Elastomers and Plastics, 45(5),
487-497. Retrieved from http://journals.sagepub.com/doi/pdf/
10.1177/0095244312459181
Peterson, S. C., et al. . (2013). Comparing Corn Stover and Switchgrass Biochar:
Characterization and Sorption Properties. Journal of Agricultural Science, 5(1), 1-8.
Peters-Stanley, M., Hamilton, K. E., & Trends, E. M. F. (2012). Developing Dimension State of
the Voluntary Carbon Markets 2012. Retrieved from http://www.forest-trends.org/
publication_details.php?publicationID=3164
Petropoulou, E., Petousi, V., & Theodorakopoulou, I. (2018). To Cultivate or Not to Cultivate? An
Exploratory Analysis of What Influences Greek Farmers’ Decisions Towards the
Cultivation of Bioenergy Crops. In W. Leal Filho, D. M. Pociovălișteanu, P. R. Borges de
Brito, & I. Borges de Lima (Eds.), Towards a Sustainable Bioeconomy: Principles,
Challenges and Perspectives (pp. 435-455). Cham: Springer International Publishing.
Petruccelli, R., Bonetti, A., Traversi, M. L., Faraloni, C., Valagussa, M., & Pozzi, A. (2015). The
Influence of biochar application on nutritional quality of tomato (Lycopersicon esculentum
Mill.). Crop and Pasture Science. Retrieved from http://www.publish.csiro.au/view/
journals/dsp_journals_pip_abstract_Scholar1.cfm?nid=40&pip=CP14247
Petruzzelli, L., Subedi, R., Bertora, C., Remogna, E., & Grignani, C. (2014). Biochar: factors
influencing its quality. Informatore Agrario Supplemento 2014. Retrieved from http://
www.cabdirect.org/abstracts/
20143255864.html;jsessionid=7AF6954CD84A2F29F0E7D42A874C40AB
Petter, F. A., Lima, L. B. d., Júnior, B. H. M., Alves de Morais, L., & Marimon, B. S. (2016).
Impact of biochar on nitrous oxide emissions from upland rice. Journal of Environmental
Management, 169, 27 - 33. doi:10.1016/j.jenvman.2015.12.020
Petter, F. A., & Madari, B. E. (2012). Biochar: Agronomic and environmental potential in Brazilian
savannah soils. Revista Brasileira de Engenharia Agrícola e Ambiental, 16, 761–768.
Retrieved from http://www.agriambi.com.br/revista/v16n07/v16n07a09.pdf
Petter, F. A., Madari, B. E., Silva, M. A. S. d., Carneiro, M. A. C., Carvalho, M. T. d. M., Júnior, B.
H. M., & Pacheco, L. P. (2012). Soil fertility and upland rice yield after biochar application
in the Cerrado. Pesquisa Agropecuária Brasileira, 47, 699-706.
Petter, F. A., Marimon Junior, B. H., Andrade, F. R., Schossler, T. R., Gonçalves, L. G., &
Marimon, B. S. (2012). Biochar conditioner as substrate for the production of lettuce.
Biochar como condicionador de substrato para a produção de mudas de alface. Revista
Agrarian, 5, 243-250.
Pettinari, C., & Tombesi, A. (2020). Metal–organic frameworks for carbon dioxide capture. MRS
Energy & Sustainability, 7, E35. doi:10.1557/mre.2020.30
Pfaff, I., Oexmann, J., & Kather, A. (2010). Optimised integration of post-combustion CO2
capture process in greenfield power plants. Energy, 35(10), 4030-4041. doi:https://
doi.org/10.1016/j.energy.2010.06.004
Phalan, B. (2009). The social and environmental impacts of biofuels in Asia: An overview.
Applied Energy, 86, Supplement 1, S21-S29. doi:https://doi.org/10.1016/
j.apenergy.2009.04.046
Pham, V. T. H., Lu, P., Aagaard, P., Zhu, C., & Hellevang, H. (2011). On the potential of CO2–
water–rock interactions for CO2 storage using a modified kinetic model. International
Journal of Greenhouse Gas Control, 5(4), 1002-1015. doi:https://doi.org/10.1016/
j.ijggc.2010.12.002
Phiddian, E. (2021). Less carbon = greater food cost? Cosmos. Retrieved from https://
cosmosmagazine.com/earth/sustainability/less-carbon-greater-food-cost/
Phinney, L., Richard Leaitch, W., Lohmann, U., Boudries, H., Worsnop, D. R., Jayne, J. T., . . .
Shantz, N. (2006). Characterization of the aerosol over the sub-arctic north east Pacific
Ocean. Deep Sea Research Part II: Topical Studies in Oceanography, 53(20–22),
2410-2433. doi:http://dx.doi.org/10.1016/j.dsr2.2006.05.044
Phondani, P. C., Maikhuri, R. K., Rawat, L. S., & Negi, V. S. (2020). Assessing farmers’
perception on criteria and indicators for sustainable management of indigenous
agroforestry systems in Uttarakhand, India. Environmental and Sustainability Indicators,
5, 100018. doi:https://doi.org/10.1016/j.indic.2019.100018
Phongpanith, S., Inthapanya, S., & Preston, T. R. (2013). Effect on feed intake, digestibility and
N balance in goats of supplementing a basal diet of Muntingia foliage with biochar and
water spinach (Ipomoea aquatica). Livestock Research for Rural Development, 25(2).
Retrieved from http://www.lrrd.org/lrrd25/2/seng25035.htm
Phuong, H. T., Uddin, M. A., & Kato, Y. (2015). Characterization of Biochar from Pyrolysis of
Rice Husk and Rice Straw. Journal of Biobased Materials and Bioenergy, 9(4), 439 -
446. doi:10.1166/jbmb.2015.1539
Phy, C., et al. (2014). Biochar Amendment to Different Paddy Soils on CH4 Production, Labile
Organic Carbon, pH and Electrical Conductivity Dynamics: Incubation Experiment.
IJERD – International Journal of Environmental and Rural Development, 5(1), 58-64.
Retrieved from http://iserd.net/ijerd51/51010.pdf
Phyconomy. (2021). A database of seaweed organisations. In.
Phys.org. (2018). 'Electrogeochemistry' captures carbon, produces fuel, offsets ocean
acidification. Phys.org. Retrieved from https://phys.org/news/2018-06-
electrogeochemistry-captures-carbon-fuel-offsets.html
Pi, L., Jiang, R., Zhou, W., Zhu, H., Xiao, W., Wang, D., & Mao, X. (2015). g-C3N4 Modified
biochar as an adsorptive and photocatalytic material for decontamination of aqueous
organic pollutants. Applied Surface Science, 358(Part A), 231-239. doi:10.1016/
j.apsusc.2015.08.176
Pianta, S., Rinscheid, A., & Weber, E. U. (2021). Carbon Capture and Storage in the United
States: Perceptions, preferences, and lessons for policy. Energy Policy, 151, 112149.
doi:https://doi.org/10.1016/j.enpol.2021.112149
Picchi, A. (2019). Climate-smart farming: Save the Earth -- and make money? CBS News, (May
17). Retrieved from https://www.cbsnews.com/amp/news/climate-smart-farming-save-
the-earth-and-make-money/?__twitter_impression=true
Piccoli, I., Chiarini, F., Carletti, P., Furlan, L., Lazzaro, B., Nardi, S., . . . Morari, F. (2016).
Disentangling the effects of conservation agriculture practices on the vertical distribution
of soil organic carbon. Evidence of poor carbon sequestration in North- Eastern Italy.
Agriculture, Ecosystems & Environment, 230, 68-78. doi:https://doi.org/10.1016/
j.agee.2016.05.035
Piccolo, A., Pietramellara, G., & Mbagwu, J. S. C. (1996). Effects of coal derived humic
substances on water retention and structural stability of Mediterranean soils. Soil Use
and Management, 12(4), 209-213.
Pickard, S., Daood, S. S., Nimmo, W., Lord, R., & Pourkashanian, M. (2013). Bio-CCS: Co-firing
of established greenfield and novel, brownfield biomass resources under air, oxygen-
enriched air and oxy-fuel conditions. In T. Dixon & K. Yamaji (Eds.), Ghgt-11 (Vol. 37, pp.
6062-6069). Amsterdam: Elsevier Science Bv.
Pidgeon, N. F., & Spence, E. (2017). Perceptions of enhanced weathering as a biological
negative emissions option. Biology Letters, 13(4), 1-5. Retrieved from http://
rsbl.royalsocietypublishing.org/content/13/4/20170024
Pielke Jr, R. A. (2009). An idealized assessment of the economics of air capture of carbon
dioxide in mitigation policy. Environmental Science & Policy, 12(3), 216-225. doi:http://
dx.doi.org/10.1016/j.envsci.2009.01.002
Pierrehumbert, R. (2019). There is no Plan B for dealing with the climate crisis. Bulletin of the
Atomic Scientists, 75(5), 215-221. doi:10.1080/00963402.2019.1654255
Pietikainen, J., Kiikkila, O., & Fritze, H. (2000). Charcoal as a habitat for microbes and its effect
on the microbial community of the underlying humus. Oikos, 89(2), 231-242. Retrieved
from http://onlinelibrary.wiley.com/doi/10.1034/j.1600-0706.2000.890203.x/abstract
Pietrowski, M., et al. . (2019). Technological Carbon Removal: Recent Economic and Political
Trends in the United States. Retrieved from https://www.climateadvisers.com/wp-
content/uploads/2019/04/Carbon-Removal-Final-2.pdf
Pietzner, K., Schumann, D., Tvedt, S. D., Torvatn, H. Y., Næss, R., Reiner, D. M., . . . Ziogou, F.
(2011). Public awareness and perceptions of carbon dioxide capture and storage (CCS):
Insights from surveys administered to representative samples in six European countries.
Energy Procedia, 4, 6300-6306. doi:http://dx.doi.org/10.1016/j.egypro.2011.02.645
Pighinelli, A. L. M. T., et al. (2014). Evaluation of Brazilian biomasses as feedstocks for fuel
production via fast pyrolysis. Energy for Sustainable Development, 21, 42-50. Retrieved
from http://www.sciencedirect.com/science/article/pii/S0973082614000441
Pignatello, J. J., Kwon, S., & Lu, Y. (2006). Effect of natural organic substances on the surface
and adsorptive properties of environmental black carbon (char): Attenuation of surface
activity by humic and fulvic acids. Environmental Science & Technology, 40(24),
7757-7763. Retrieved from http://pubs.acs.org/doi/abs/10.1021/es061307m
Pilkington, B. (2021). Eliminating Fossil-Based Plastics with Carbon-Negative Biochar
Alternatives. AZO Cleantech. Retrieved from https://www.azocleantech.com/
article.aspx?ArticleID=1230
Piloto-Rodríguez, R., Sánchez-Borroto, Y., Melo-Espinosa, E. A., & Verhelst, S. (2017).
Assessment of diesel engine performance when fueled with biodiesel from algae and
microalgae: An overview. Renewable and Sustainable Energy Reviews, 69, 833-842.
doi:https://doi.org/10.1016/j.rser.2016.11.015
Pimental, D., & Patzek, T. W. (2005). Ethanol production using corn, switchgrass, and wood:
biodiesel prodution using soybean and sunflower. Natural Resources Forum, 14(1),
65-76. Retrieved from http://s3.amazonaws.com/academia.edu.documents/31141200/
LOL-EXH-48.pdf?
AWSAccessKeyId=AKIAIWOWYYGZ2Y53UL3A&Expires=1495400598&Signature=PBg
cIDdBiAYccqTZV0cZtcTrIAE%3D&response-content-
disposition=inline%3B%20filename%3DEthanol_production_using_corn_switchgras.pdf
Pind Aradóttir, E. S., & Hjálmarsson, E. (2018). CarbFix – public engagement and transparency.
Energy Procedia, 146, 115-120. doi:https://doi.org/10.1016/j.egypro.2018.07.015
Pinder, C. (2014). Moving Below Zero: Understanding Bioenergy with Carbon Capture and
Storage [Press release]. Retrieved from http://www.climateinstitute.org.au/verve/
_resources/MovingBelowZero_SpotlightReport_April2014.pdf
Pindilli, E., Sleeter, R., & Hogan, D. (2018). Estimating the Societal Benefits of Carbon Dioxide
Sequestration Through Peatland Restoration. Ecological Economics, 154, 145-155.
doi:https://doi.org/10.1016/j.ecolecon.2018.08.002
Pinheiro, É. F. M., de Campos, D. V. B., de Carvalho Balieiro, F., dos Anjos, L. H. C., & Pereira,
M. G. (2015). Tillage systems effects on soil carbon stock and physical fractions of soil
organic matter. Agricultural Systems, 132, 35-39. doi:https://doi.org/10.1016/
j.agsy.2014.08.008
Pinho, C., et al. . (2015). Obtaining Difusive and Kinetic Data from Batch Combustion of
Invasive Species Char Pellets. Paper presented at the 15th Brazilian Congress of
Thermal Sciences and Engineering.
Piper, K. (2019). The climate renegade. Vox, (May 31). Retrieved from https://www.vox.com/the-
highlight/2019/5/24/18273198/climate-change-russ-george-unilateral-geoengineering
Pires, J. C. M. (2017). COP21: The algae opportunity? Renewable and Sustainable Energy
Reviews, 79, 867-877. doi:https://doi.org/10.1016/j.rser.2017.05.197
Pires, J. C. M. (2019). Negative emissions technologies: A complementary solution for climate
change mitigation. Science of The Total Environment, 672, 502-514. doi:https://doi.org/
10.1016/j.scitotenv.2019.04.004
Pires, J. C. M., Alvim-Ferraz, M. C. M., Martins, F. G., & Simões, M. (2012). Carbon dioxide
capture from flue gases using microalgae: Engineering aspects and biorefinery concept.
Renewable and Sustainable Energy Reviews, 16(5), 3043-3053. doi:https://doi.org/
10.1016/j.rser.2012.02.055
Pires, J. C. M., Goncalves, A. L., Martins, F. G., Alvim-Ferraz, M. C. M., & Simoes, M. (2014).
Effect of light supply on CO2 capture from atmosphere by Chlorella vulgaris and
Pseudokirchneriella subcapitata. Mitigation and Adaptation Strategies for Global
Change, 19(7), 1109-1117. doi:10.1007/s11027-013-9463-1
Pirker, J., Mosnier, A., Kraxner, F., Havlík, P., & Obersteiner, M. (2016). What are the limits to oil
palm expansion? Global Environmental Change, 40, 73-81. doi:http://dx.doi.org/10.1016/
j.gloenvcha.2016.06.007
Piscitelli, L., Shaaban, A., Mondelli, D., Mezzapesa, G. N., Miano, T. M., & Dumontet, S. (2015).
Use of Olive Mill Pomace Biochar as a Support for Soil Microbial Communities in an
Italian Sandy Soil. Soil Horizons, 56(6), 1-7. doi:10.2136/sh15-02-0006
Pistorius, T., et al. (2014). Target to Implementation: Perspectives for the International
Governance of Forest Landscape Restoration. Forests, 5, 482-497. Retrieved from
https://www.mdpi.com/1999-4907/5/3/482
Pitchford, J. W., & Brindley, J. (1999). Iron limitation, grazing pressure and oceanic high
nutrient-low chlorophyll (HNLC) regions. Journal of Plankton Research, 21(3), 525-547.
Retrieved from https://academic.oup.com/plankt/article/21/3/525/1395829
Pittman, J. K., Dean, A. P., & Osundeko, O. (2011). The potential of sustainable algal biofuel
production using wastewater resources. Bioresource Technology, 102(1), 17-25.
doi:https://doi.org/10.1016/j.biortech.2010.06.035
Pituello, C., Francioso, O., Simonetti, G., Pisi, A., Torreggiani, A., Berti, A., & Morari, F. (2014).
Characterization of chemical–physical, structural and morphological properties of
biochars from biowastes produced at different temperatures. Journal of Soils and
Sediments. doi:10.1007/s11368-014-0964-7
Piyo, N. (2014). Liquefaction of sunflower husks for biochar production. North-West University,
Retrieved from http://dspace.nwu.ac.za/handle/10394/11942
Plácido, J., & Capareda, S. (2015). Production of silicon compounds and fulvic acids from cotton
wastes biochar using chemical depolymerization. Industrial Crops and Products, 67, 270
- 280. doi:10.1016/j.indcrop.2015.01.027
Placido, J., Capareda, S., & Karthikeyan, R. (2016). Production of humic substances from
cotton stalks biochar by fungal treatment with Ceriporiopsis subvermispora. Sustainable
Energy Technologies and Assessments, 13, 31 - 37. doi:10.1016/j.seta.2015.11.004
Platform, E. B. T. (2014). Biomass with CO2 Capture and Storage (Bio-CCS): The Way Forward
for Europe. Retrieved from https://network.bellona.org/content/uploads/sites/3/
EBTP__ZEP_Report_Bio-CCS_The_Way_Forward.pdf
Platform, E. B. T. P. Z. E. (2012). Biomass with CO2 Capture and Storage (Bio-CCS): The Way
Forward for Europe. Retrieved from http://www.biofuelstp.eu/downloads/bioccsjtf/EBTP-
ZEP-Report-Bio-CCS-The-Way-Forward.pdf
Platform, N. E. (2020). Additional input to the consultation on ReFuelEU Aviation strategy.
Retrieved from https://www.negative-emissions.org/s/Additional-input_SAF-
consultation.pdf
Platform, N. E. (2020). Public Consultation Response to a Proposal for Scaling Voluntary
Carbon Markets and Avoiding Double Counting Post-2020. Retrieved from https://
www.negative-emissions.org/s/Scaling-Voluntary-Carbon-Markets-and-Avoiding-Double-
Counting-Post-2020-_NEP-3.pdf
Platform, N. E. (2020). Statement on the Environment Committee draft report on Climate Law
prop. 1-4. Retrieved from https://www.negative-emissions.org/s/Climate-Law-report-
ENVI-Cmttee_-NEP-statement.pdf
Platt, D., Workman, M., & Hall, S. (2018). A novel approach to assessing the commercial
opportunities for greenhouse gas removal technology value chains: Developing the case
for a negative emissions credit in the UK. Journal of Cleaner Production, 203,
1003-1018. doi:https://doi.org/10.1016/j.jclepro.2018.08.291
Plaven, G. (2019). Machine converts forest debris into biochar. Capital Press(February 4).
Retrieved from https://www.capitalpress.com/nation_world/science_and_tech/machine-
converts-forest-debris-into-biochar/article_cd95da56-24e8-11e9-ad88-
a361ce6d5a57.html
Plaza, C., et al. . (2015). Effects of biochar on organic matter dynamics in unamended soils and
soils amended with municipal solid waste compost and sewage sludge. Geophysical
Research Abstracts, 17. Retrieved from http://www.researchgate.net/profile/
Claudio_Zaccone/publication/
275037092_Effects_of_biochar_on_organic_matter_dynamics_in_unamended_soils_an
d_soils_amended_with_municipal_solid_waste_compost_and_sewage_sludge/links/
5530a22d0cf2f2a588ab25ad.pdf
Plaza, C., Pawlett, M., Fernández, J. M., Méndez, A., Gascó, G., & Ritz, K. (2015). Does
biochar interfere with standard methods for determining soil microbial biomass and
phenotypic community structure? Soil Biology and Biochemistry, 81, 143 - 146.
doi:10.1016/j.soilbio.2014.11.010
Plaza, J. M., & Rochelle, G. T. (2011). Modeling pilot plant results for CO2 capture by aqueous
piperazine. Energy Procedia, 4, 1593-1600. doi:http://dx.doi.org/10.1016/
j.egypro.2011.02.029
Plaza, J. M., Van Wagener, D., & Rochelle, G. T. (2010). Modeling CO2 capture with aqueous
monoethanolamine. International Journal of Greenhouse Gas Control, 4(2), 161-166.
doi:http://dx.doi.org/10.1016/j.ijggc.2009.09.017
Plaza, M. G., et al. (2007). CO2 capture by adsorption with nitrogen enriched carbons. Fuel, 86,
2204-2212. Retrieved from https://www.researchgate.net/profile/Cova_Pevida/
publication/222186261_CO2_capture_by_adsorption_with_nitrogen_enriched_carbons/
links/5554686308aeaaff3bf1bdd5.pdf
Plaza, M. G., Durán, I., Querejeta, N., Rubiera, F., & Pevida, C. (2016). Experimental and
Simulation Study of Adsorption in Postcombustion Conditions Using a Microporous
Biochar. 1. CO <sub>2</sub> and N <sub>2</sub> Adsorption. Industrial & Engineering
Chemistry Research, 55(11), 3097 - 3112. doi:10.1021/acs.iecr.5b04856
Plaza, M. G., González, A. S., Rubiera, F., & Pevida, C. (2014). Evaluation of Microporous
Biochars Produced by Single-step Oxidation for Postcombustion CO2 Capture under
Humid Conditions. Energy Procedia, 63, 693 - 702. doi:10.1016/j.egypro.2014.11.077
Pleasant, B. (2009). Make Biochar--This Ancient Technique will Improve your Soil. In.
Plechaty, D., Amador, G., & Mazurek, J. (2019). 2050 Priorities for Climate Action: How
Philanthropy Can Help to Scale Carbon Removal. Retrieved from https://
www.climateworks.org/blog/how-philanthropy-can-help-to-scale-carbon-removal/
Plevin, R. J. (2017). Assessing the Climate Effects of Biofuels Using Integrated Assessment
Models, Part I: Methodological Considerations. Journal of industrial Ecology, 21(6),
1478-1487. doi:10.1111/jiec.12507
Plevin, R. J., Beckman, J., Golub, A. A., Witcover, J., & O’Hare, M. (2015). Carbon Accounting
and Economic Model Uncertainty of Emissions from Biofuels-Induced Land Use Change.
Environmental Science & Technology, 49(5), 2656-2664. doi:10.1021/es505481d
Plevin, R. J., Delucchi, M. A., & Creutzig, F. (2014). Using Attributional Life Cycle Assessment to
Estimate Climate-Change Mitigation Benefits Misleads Policy Makers. Journal of
industrial Ecology, 18(1), 73-83. doi:10.1111/jiec.12074
Plevin, R. J., O'Hare, M., Jones, A. D., Torn, M. S., & Gibbs, H. K. (2010). Greenhouse gas
emissions from biofuels' indirect land use change are uncertain but may be much greater
than previously estimated. Environmental Science & Technology, 44(21), 8015-8021.
Retrieved from https://www.ncbi.nlm.nih.gov/pubmed/20942480
Pluer, W. (2015). Controls Influencing The Treatment Of Excess Agricultural Nitrate With
Denitrifying Bioreactors. Cornell University, Retrieved from https://
ecommons.cornell.edu/handle/1813/41042
Plumer, B. (2015). Can we build power plants that actually take carbon dioxide out of the air?
Vox. Retrieved from https://www.vox.com/2015/3/11/8190243/carbon-negative-power-
plants
Plumer, B. (2017). How carbon capture could become a rare bright spot on climate policy in the
Trump era. Vox. Retrieved from http://www.vox.com/energy-and-environment/
2017/4/12/15269628/carbon-capture-trump
Plumer, B. (2020). Businesses Aim to Pull Greenhouse Gases From the Air. It’s a Gamble. New
York Times, (January 18). Retrieved from https://www.nytimes.com/2021/01/18/climate/
carbon-removal-technology.html
Poeplau, C., & Don, A. (2015). Carbon sequestration in agricultural soils via cultivation of cover
crops – A meta-analysis. Agriculture, Ecosystems & Environment, 200, 33-41. doi:https://
doi.org/10.1016/j.agee.2014.10.024
Poerschmann, J., Weiner, B., Wedwitschka, H., Zehnsdorf, A., Koehler, R., & Kopinke, F.-D.
(2015). Characterization of biochars and dissolved organic matter phases obtained upon
hydrothermal carbonization of Elodea nuttallii. Bioresource Technology, 189, 145 - 153.
doi:10.1016/j.biortech.2015.03.146
Pogge von Strandmann, P. A. E., Burton, K. W., Snæbjörnsdóttir, S. O., Sigfússon, B., Aradóttir,
E. S., Gunnarsson, I., . . . Gislason, S. R. (2019). Rapid CO2 mineralisation into calcite
at the CarbFix storage site quantified using calcium isotopes. Nature Communications,
10(1), 1983. doi:10.1038/s41467-019-10003-8
Pogge von Strandmann, P. A. E., Renforth, P., West, A. J., Murphy, M. J., Luu, T.-H., &
Henderson, G. M. (2020). The lithium and magnesium isotope signature of olivine
dissolution in soil experiments. Chemical Geology, 120008. doi:https://doi.org/10.1016/
j.chemgeo.2020.120008
Poggio, M. (2019). Carbon Capture: Will It Save the Climate, or the Fossil Fuel Industry?
Climate Liability News. Retrieved from https://www.climateliabilitynews.org/2019/03/13/
carbon-capture-fossil-fuels-ciel-report/
Pogson, E. M., Horvat, J., Lewis, R. A., & Joseph, S. D. (2010). Detection of biochar
components for soil fertility using THz-TDs. Paper presented at the 35th International
Conference on Infrared Millimeter and Terahertz Waves (IRMMW-THz), Rome, Italy.
Pogson, M., Hastings, A., & Smith, P. (2013). How does bioenergy compare with other land-
based renewable energy sources globally? GCB Bioenergy, 5(5), 513-524. doi:10.1111/
gcbb.12013
Pokharel, P., & Chang, S. X. (2019). Manure pellet, woodchip and their biochars differently
affect wheat yield and carbon dioxide emission from bulk and rhizosphere soils. Science
of The Total Environment, 659, 463-472. doi:https://doi.org/10.1016/
j.scitotenv.2018.12.380
Pokharel, P., Kwak, J.-H., Ok, Y. S., & Chang, S. X. (2018). Pine sawdust biochar reduces GHG
emission by decreasing microbial and enzyme activities in forest and grassland soils in a
laboratory experiment. Science of The Total Environment, 625, 1247-1256. doi:https://
doi.org/10.1016/j.scitotenv.2017.12.343
Pokrovsky, O. S., & Schott, J. (2000). Forsterite surface composition in aqueous solutions: A
combined potentiometric, electrokinetic, and spectroscopic approach. Geochimica Et
Cosmochimica Acta, 64(9), 3299-3312. Retrieved from https://www.researchgate.net/
profile/Jacques_Schott/publication/
221720722_Forsterite_surface_composition_in_aqueous_solutions_A_combined_potent
iometric_electrokinetic_and_spectroscopic_approach/links/
0046352b856fe27bd9000000.pdf
Polglase, P. J., Reeson, A., Hawkins, C. S., Paul, K. I., Siggins, A. W., Turner, J., . . . Almeida, A.
(2013). Potential for forest carbon plantings to offset greenhouse emissions in Australia:
economics and constraints to implementation. Climatic Change, 121(2), 161-175.
doi:10.1007/s10584-013-0882-5
Policy, I. f. C. R. L. (2020). What is Direct Air Capture? Fact Sheets. Retrieved from https://
www.american.edu/sis/centers/carbon-removal/upload/
ICRLP_fact_sheet_DACS_2020_UPDATE.pdf
(2021). Net Zero Targets: The Good, the Bad and the Ugly [Retrieved from https://
www.youtube.com/watch?v=JN7rUazmvaw
Pollak, M. F., & Wilson, E. J. (2009). Regulating Geologic Sequestration in the United States:
Early Rules Take Divergent Approaches. Environmental Science & Technology, 43(9),
3035-3041. doi:10.1021/es803094f
Pollard, R., Sanders, R., Lucas, M., & Statham, P. (2007). The Crozet Natural Iron Bloom and
Export Experiment (CROZEX). Deep Sea Research Part II: Topical Studies in
Oceanography, 54(18), 1905-1914. doi:https://doi.org/10.1016/j.dsr2.2007.07.023
Pollard, R. T., Salter, I., Sanders, R. J., Lucas, M. I., Moore, C. M., Mills, R. A., . . . Zubkov, M. V.
(2009). Southern Ocean deep-water carbon export enhanced by natural iron fertilization.
Nature, 457(7229), 577-580. doi:http://www.nature.com/nature/journal/v457/n7229/
suppinfo/nature07716_S1.html
Pollyea, R. M., & Rimstidt, J. D. (2017). Rate equations for modeling carbon dioxide
sequestration in basalt. Applied Geochemistry, 81(Supplement C), 53-62. doi:https://
doi.org/10.1016/j.apgeochem.2017.03.020
Pommier, T., Merroune, A., Bettarel, Y., Got, P., Janeau, J.-L., Jouquet, P., . . . Rochelle-Newall,
E. (2014). Off-site impacts of agricultural composting: role of terrestrially derived organic
matter in structuring aquatic microbial communities and their metabolic potential. FEMS
Microbiology Ecology, 90(3), 622-632. doi:10.1111/1574-6941.12421
Pomponi, F., Hart, J., Arehart, J. H., & D’Amico, B. (2020). Buildings as a Global Carbon Sink? A
Reality Check on Feasibility Limits. One Earth, 3(2), 157-161. doi:10.1016/
j.oneear.2020.07.018
Pongratz, J., Reick, C. H., Raddatz, T., Caldeira, K., & Claussen, M. (2011). Past land use
decisions have increased mitigation potential of reforestation. Geophysical Research
Letters, 38(15), 1-5. doi:10.1029/2011GL047848
Ponnusamy, S., Reddy, H. K., Muppaneni, T., Downes, C. M., & Deng, S. (2014). Life cycle
assessment of biodiesel production from algal bio-crude oils extracted under subcritical
water conditions. Bioresource Technology, 170, 454-461. doi:https://doi.org/10.1016/
j.biortech.2014.07.072
Pontecorvo, E. (2020). What if net-zero isn’t enough? Inside the push to ‘restore’ the climate.
Grist. Retrieved from https://grist.org/climate/can-we-restore-the-climate-these-young-
activists-want-us-to-try/
Pontecorvo, E. (2021). ‘Orca,’ the largest carbon removal facility to date, is up and running Grist.
Retrieved from https://grist.org/technology/orca-the-largest-carbon-removal-facility-to-
date-is-up-and-running/
Pontecorvo, E., & Osaka, S. (2020). This Oregon forest was supposed to store carbon for 100
years. Now it’s on fire. Grist. Retrieved from https://grist.org/climate/this-oregon-forest-
was-supposed-to-store-carbon-for-100-years-now-its-on-fire/
Ponton, R. (2020). Women Launch First Voluntary Scalable Marketplace For ‘Carbon Removal’
To Help Corporations Reach Net Zero. Forbes. Retrieved from https://www.forbes.com/
sites/rebeccaponton/2020/09/22/woman-owned-finnish-carbon-capture-and-storage-
company-puroearth-created-to-help-corporations-reach-net-zero/?sh=598fe90d5e85
Popescu, A. (2019). This scientist thinks she has the key to curb climate change: super plants.
The Guardian, (April 16). Retrieved from https://www.theguardian.com/environment/
2019/apr/16/super-plants-climate-change-joanne-chory-carbon-dioxide?
CMP=Share_AndroidApp_Gmail
Popescu, C.-M., Hill, C. A. S., Anthony, R., Ormondroyd, G., & Curling, S. (2014). Equilibrium
and dynamic vapour water sorption properties of biochar derived from apple wood.
Polymer Degradation and Stability, 111, 263-268. doi:10.1016/
j.polymdegradstab.2014.10.014
Popkin, G. (2019). The forest question. Nature, 565, 280-282. Retrieved from https://
www.nature.com/magazine-assets/d41586-019-00122-z/d41586-019-00122-z.pdf
Popkin, G. (2020). Can ‘Carbon Smart’ Farming Play a Key Role in the Climate Fight? Yale
Environment 360. Retrieved from https://e360.yale.edu/features/can-carbon-smart-
farming-play-a-key-role-in-the-climate-fight
Popkin, G. (2020). Is carbon farming a climate boon, or boondoggle? Retrieved from https://
thefern.org/2020/03/is-carbon-farming-a-climate-boon-or-boondoggle/amp/?
__twitter_impression=true
Popkin, G. (2021). Planting crops — and carbon, too. Washington Post. Retrieved from https://
www.washingtonpost.com/graphics/2021/climate-solutions/climate-regenerative-
agriculture/?itid=sf_climate-solutions
Popova, E. E., Pollard, R. T., Lucas, M. I., Venables, H. J., & Anderson, T. R. (2007). Real-time
forecasting of ecosystem dynamics during the CROZEX experiment and the roles of
light, iron, silicate, and circulation. Deep Sea Research Part II: Topical Studies in
Oceanography, 54(18–20), 1966-1988. doi:http://dx.doi.org/10.1016/j.dsr2.2007.06.018
Popova, E. E., Ryabchenko, V. A., & Fasham, M. J. R. (2000). Biological pump and vertical
mixing in the southern ocean: Their impact on atmospheric CO2. Global Biogeochemical
Cycles, 14(1), 477-498. Retrieved from http://onlinelibrary.wiley.com/doi/
10.1029/1999GB900090/abstract
Popp, A., et al. (2010). Food Consumption, Diet Shifts and Associated Non-CO2 Greenhouse
Gases from Agricultural Production. Global Environmental Change, 20(3), 451-462.
Retrieved from https://www.researchgate.net/publication/
200803881_Food_Consumption_Diet_Shifts_and_Associated_Non-
CO2_Greenhouse_Gases_from_Agricultural_Production
Popp, A., et al. (2011). The economic potential of bioenergy for climate change mitigation with
special attention given to implications for the land system. Environmental Research
Letters, 6(3), 034017. Retrieved from http://stacks.iop.org/1748-9326/6/i=3/a=034017
Popp, A., Humpenoder, F., Weindl, I., Bodirsky, B. L., Bonsch, M., Lotze-Campen, H., . . .
Dietrich, J. P. (2014). Land-use protection for climate change mitigation. Nature Climate
Change, 4(12), 1095-1098. doi:10.1038/nclimate2444
http://www.nature.com/nclimate/journal/v4/n12/abs/nclimate2444.html#supplementary-
information
Popp, A., Krause, M., Dietrich, J. P., Lotze-Campen, H., Leimbach, M., Beringer, T., & Bauer, N.
(2012). Additional CO2 emissions from land use change — Forest conservation as a
precondition for sustainable production of second generation bioenergy. Ecological
Economics, 74, 64-70. doi:http://dx.doi.org/10.1016/j.ecolecon.2011.11.004
Popp, A., Lotze-Campen, H., Leimbach, M., Knopf, B., Beringer, T., Bauer, N., & Bodirsky, B.
(2011). On sustainability of bioenergy production: Integrating co-emissions from
agricultural intensification. Biomass and Bioenergy, 35(12), 4770-4780. doi:https://
doi.org/10.1016/j.biombioe.2010.06.014
Popp, A., Rose, S. K., Calvin, K., Van Vuuren, D. P., Dietrich, J. P., Wise, M., . . . Kriegler, E.
(2014). Land-use transition for bioenergy and climate stabilization: model comparison of
drivers, impacts and interactions with other land use based mitigation options. Climatic
Change, 123(3), 495-509. doi:10.1007/s10584-013-0926-x
Popp, J. (2013). Food, Farming, and Biofuels. In B. P. Singh (Ed.), Biofuel Crop Sustainability
(pp. 325-355).
Popper, N. (2019, May 7). Start-Ups Hoping to Fight Climate Change Struggle as Other Tech
Firms Cash In. New York Times. Retrieved from https://www.nytimes.com/2019/05/07/
business/carbon-removal-technology-start-ups.html?smid=nytcore-ios-share
Poralla, M., et al. (2021). Sewage Treatment for the Skies: Mobilising carbon dioxide removal
through public policies and private financing. Retrieved from https://
climatestrategies.org/wp-content/uploads/2021/03/CS-NR_Mobilising-CDR-
report-1.2.pdf
Porras, R. C., Hicks Pries, C. E., Torn, M. S., & Nico, P. S. (2018). Synthetic iron (hydr)oxide-
glucose associations in subsurface soil: Effects on decomposability of mineral
associated carbon. Science of The Total Environment, 613–614, 342-351. doi:https://
doi.org/10.1016/j.scitotenv.2017.08.290
Portugal-Pereira, J., Soria, R., Rathmann, R., Schaeffer, R., & Szklo, A. (2015). Agricultural and
agro-industrial residues-to-energy: Techno-economic and environmental assessment in
Brazil. Biomass and Bioenergy, 81, 521-533. doi:https://doi.org/10.1016/
j.biombioe.2015.08.010
Posada, J. A., Brentner, L. B., Ramirez, A., & Patel, M. K. (2016). Conceptual design of
sustainable integrated microalgae biorefineries: Parametric analysis of energy use,
greenhouse gas emissions and techno-economics. Algal Research, 17, 113-131.
doi:https://doi.org/10.1016/j.algal.2016.04.022
Postlethwaite, V. R., et al. (2018). Low blue carbon storage in eelgrass (Zostera marina)
meadows on the Pacific Coast of Canada. Plos One, 13(6), e0198348. Retrieved from
https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0198348
Potouroglou, M. (2017). How Big, How Blue, How Beautiful: seagrasses help fight climate
change in Norway. GRID-ARENDAL. Retrieved from http://news.grida.no/how-big-how-
blue-how-beautiful-seagrasses-help-fight-climate-change-in-norway
Potter, C., Klooster, S., Hiatt, S., Fladeland, M., Genovese, V., & Gross, P. (2007). Satellite-
derived estimates of potential carbon sequestration through afforestation of agricultural
lands in the United States. Climatic Change, 80(3), 323-336. doi:10.1007/
s10584-006-9109-3
Potter, M. E., Cho, K. M., Lee, J. J., & Jones, C. W. (2017). Role of Alumina Basicity in CO2
Uptake in 3-Aminopropylsilyl-Grafted Alumina Adsorbents. ChemSusChem, 10(10),
2192-2201. doi:10.1002/cssc.201700115
Poulton, P., Johnston, J., Macdonald, A., White, R., & Powlson, D. (2018). Major limitations to
achieving “4 per 1000” increases in soil organic carbon stock in temperate regions:
Evidence from long-term experiments at Rothamsted Research, United Kingdom. Global
Change Biology, 217, 2563-2584. doi:10.1111/gcb.14066
Poupak, Y., & Reddy, K. R. (2011). Characteristics of Biochar-Amended Soil Cover for Landfill
Gas Mitigation. Paper presented at the 2011 Pan Am CGS GeoTechnical Conference.
http://geoserver.ing.puc.cl/info/conferences/PanAm2011/panam2011/pdfs/
GEO11Paper684.pdf
Pour, N. (2019). Chapter 5 - Status of bioenergy with carbon capture and storage—potential and
challenges. In J. C. Magalhães Pires & A. L. D. Cunha Gonçalves (Eds.), Bioenergy with
Carbon Capture and Storage (pp. 85-107): Academic Press.
Pour, N. (2019). Chapter 13 - Economics and policy of bioenergy with carbon capture and
storage. In J. C. Magalhães Pires & A. L. D. Cunha Gonçalves (Eds.), Bioenergy with
Carbon Capture and Storage (pp. 257-271): Academic Press.
Pour, N., Webley, P. A., & Cook, P. J. (2017). A Sustainability Framework for Bioenergy with
Carbon Capture and Storage (BECCS) Technologies. Energy Procedia, 114, 6044-6056.
doi:https://doi.org/10.1016/j.egypro.2017.03.1741
Pour, N., Webley, P. A., & Cook, P. J. (2018). Opportunities for application of BECCS in the
Australian power sector. Applied Energy, 224, 615-635. doi:https://doi.org/10.1016/
j.apenergy.2018.04.117
Pour, N., Webley, P. A., & Cook, P. J. (2018). Potential for using municipal solid waste as a
resource for bioenergy with carbon capture and storage (BECCS). International Journal
of Greenhouse Gas Control, 68(Supplement C), 1-15. doi:https://doi.org/10.1016/
j.ijggc.2017.11.007
Pourhashem, G., Hung, S. Y., Medlock, K. B., & Masiello, C. A. (2019). Policy support for
biochar: Review and recommendations. GCB Bioenergy, 11(2), 364-380. doi:https://
doi.org/10.1111/gcbb.12582
Powar, R. V., & Gangil, S. (2015). Effect of temperature on iodine value and total carbon contain
in bio-char produced from soybean stalk in continuous feed reactor. International Journal
of Agricultural Engineering. Retrieved from http://www.cabdirect.org/abstracts/
20153268206.html;jsessionid=027D56883A59910883858425AB819CC0
Powell, C. S. (2017). Can a Carbon 'Vacuum Cleaner' Save the Planet? Retrieved from https://
www.nbcnews.com/mach/science/can-carbon-vacuum-cleaner-save-planet-ncna816376
Powell, H. (2007). Fertilizing the Ocean with Iron. Oceanus. Retrieved from https://
www.whoi.edu/oceanus/feature/fertilizing-the-ocean-with-iron/
Powell, H. (2008). Dumping Iron and Trading Carbon. Oceanus, 46(1). Retrieved from http://
www.whoi.edu/oceanus/feature/dumping-iron-and-trading-carbon
Powell, H. (2008). Lessons from Nature, Models, and the Past. Oceanus, 46(1). Retrieved from
http://www.whoi.edu/oceanus/feature/lessons-from-nature--models--and-the-past
Powell, H. (2008). Proposals Emerge to Transfer Excess Carbon into the Ocean. Oceanus,
46(1). Retrieved from http://www.whoi.edu/oceanus/feature/proposals-emerge-to-
transfer-excess-carbon-into-the-ocean
Powell, H. (2008). Should we add iron to the sea to help reduce greenhouse gases in the air?
Oceanus, 46(1). Retrieved from http://www.whoi.edu/oceanus/feature/fertilizing-the-
ocean-with-iron
Powell, H. (2008). What Are the Possible Side Effects? Oceanus, 46(1). Retrieved from http://
www.whoi.edu/oceanus/feature/what-are-the-possible-side-effects
Powell, H. (2008). Will Ocean Iron Fertilization Work? Oceanus, 46(1). Retrieved from http://
www.whoi.edu/oceanus/feature/will-ocean-iron-fertilization-work
Powell, T. W. R., & Lenton, T. M. (2012). Future carbon dioxide removal via biomass energy
constrained by agricultural efficiency and dietary trends. Energy & Environmental
Science, 5(8), 8116-8133. doi:10.1039/C2EE21592F
Power, I. M., et al. (2013). Carbon Mineralization: From Natural Analogues to Engineered
Systems. Reviews in Mineralogy and Geochemistry, 77(1), 305-360. Retrieved from
https://pubs.geoscienceworld.org/msa/rimg/article/77/1/305-360/140975
Power, I. M., Dipple, G. M., Bradshaw, P. M. D., & Harrison, A. L. (2020). Prospects for CO2
mineralization and enhanced weathering of ultramafic mine tailings from the Baptiste
nickel deposit in British Columbia, Canada. International Journal of Greenhouse Gas
Control, 94, 102895. doi:https://doi.org/10.1016/j.ijggc.2019.102895
Power, I. M., McCutcheon, J., Harrison, A. L., Wilson, S. A., Dipple, G. M., Kelly, S., . . .
Southam, G. (2014). Strategizing Carbon-Neutral Mines: A Case for Pilot Projects.
Minerals, 4(2), 399-436. Retrieved from https://www.mdpi.com/2075-163X/4/2/399
Power, I. M., Paulo, C., Long, H., Lockhart, J. A., Stubbs, A. R., French, D., & Caldwell, R.
(2021). Carbonation, Cementation, and Stabilization of Ultramafic Mine Tailings.
Environmental Science & Technology. doi:10.1021/acs.est.1c01570
Power, I. M., Paulo, C., Long, H., Lockhart, J. A., Stubbs, A. R., French, D., & Caldwell, R.
(2021). Carbonation, Cementation, and Stabilization of Ultramafic Mine Tailings.
Environmental Science & Technology, 55(14), 10056-10066. doi:10.1021/
acs.est.1c01570
Power, I. M., Wilson, S. A., & Dipple, G. M. (2013). Serpentinite Carbonation for CO2
Sequestration. Elements, 9(2), 115-121. doi:10.2113/gselements.9.2.115
Powlson, D. S., Riche, A. B., Coleman, K., Glendining, M. J., & Whitmore, A. P. (2008). Carbon
sequestration in European soils through straw incorporation: Limitations and
alternatives. Waste Management, 28(4), 741-746. doi:http://dx.doi.org/10.1016/
j.wasman.2007.09.024
Powlson, D. S., Stirling, C. M., Jat, M. L., Gerard, B. G., Palm, C. A., Sanchez, P. A., &
Cassman, K. G. (2014). Limited potential of no-till agriculture for climate change
mitigation. Nature Climate Change, 4(8), 678-683. doi:10.1038/nclimate2292
Powlson, D. S., Stirling, C. M., Jat, M. L., Gerard, B. G., Palm, C. A., Sanchez, P. A., &
Cassman, K. G. (2015). Reply to 'No-till agriculture and climate change mitigation'.
Nature Climate Change, 5(6), 489 - 489. doi:10.1038/nclimate2654
Powlson, D. S., Whitmore, A. P., & Goulding, K. W. T. (2011). Soil carbon sequestration to
mitigate climate change: A critical re-examination to identify the true and the false.
European Journal of Soil Science, 62(1), 42-55. Retrieved from https://
www.researchgate.net/publication/
227853256_Soil_carbon_sequestration_to_mitigate_climate_change_A_critical_re-
examination_to_identify_the_true_and_the_false
Pownall, A. (2019). Salk Institute develops a plant that offers a solution to climate change. de
Zeen. Retrieved from https://www.dezeen.com/2019/05/30/salk-institute-ideal-plant-
climate-change/
Pozo, C., Galán-Martín, Á., Reiner, D. M., Mac Dowell, N., & Guillén-Gosálbez, G. (2020).
Equity in allocating carbon dioxide removal quotas. Nature Climate Change.
doi:10.1038/s41558-020-0802-4
Prabha, B., et al. (2015). Design and development of semi-indirect non-electric pyrolytic reactor
for biochar production from farm waste. The Indian Journal of Agricultural Sciences,
85(4), 585-591. Retrieved from http://epubs.icar.org.in/ejournal/index.php/IJAgS/article/
view/47951
Prabha, S. V., et al. (2013). A Study of the Fertility and Carbon Sequestration Potential of Rice
Soil with Respect to the Application of Biochar and Selected Amendments. Annals of
Environmental Science, 7, 17-30. Retrieved from http://openjournals.neu.edu/aes/
journal/article/view/v7art2/v7p17-30
Prabowo, B., Aziz, M., Umeki, K., Susanto, H., Yan, M., & Yoshikawa, K. (2015). CO2-recycling
biomass gasification system for highly efficient and carbon-negative power generation.
Applied Energy, 158, 97-106. doi:http://dx.doi.org/10.1016/j.apenergy.2015.08.060
Prabowo, B., Aziz, M., Umeki, K., Yan, M., Susanto, H., & Yoshikawa, K. (2015). Utilization of
Rice Husk in the CO2-Recycling Gasification System for the Effective Implementation of
Bioenergy with Carbon Capture and Storage (BECCS) Technology. In F. Jin, L. N. He, &
Y. H. Hu (Eds.), Advances in Co2 Capture, Sequestration, and Conversion (Vol. 1194,
pp. 323-340).
Pradhan, D., Singh, R. K., Bendu, H., & Mund, R. (2016). Pyrolysis of Mahua seed (Madhuca
indica) – Production of biofuel and its characterization. Energy Conversion and
Management, 108, 529 - 538. doi:10.1016/j.enconman.2015.11.042
Pradhan, R. R., Pradhan, R. R., Das, S., Dubey, B., & Dutta, A. (2017). Bioenergy Combined
with Carbon Capture Potential by Microalgae at Flue Gas-Based Carbon Sequestration
Plant of NALCO as Accelerated Carbon Sink. In M. Goel & M. Sudhakar (Eds.), Carbon
Utilization: Applications for the Energy Industry (pp. 231-244). Singapore: Springer
Singapore.
Pradhan, U. (2015). Physical treatments for reducing biomass ash and effect of ash content on
pyrolysis products. Auburn University, Retrieved from http://holocron.lib.auburn.edu/
handle/10415/4726
Prajapati, A., & Singh, M. R. (2019). Assessment of Artificial Photosynthetic Systems for
Integrated Carbon Capture and Conversion. ACS Sustainable Chemistry & Engineering,
7(6), 5993-6003. doi:10.1021/acssuschemeng.8b04969
Prakongkep, N., et al. (2013). The Effects of Pyrolysis Conditions on the Chemical and Physical
Properties of Rice Husk Biochar. International Journal of Material Science (IJMSCI),
3(3), 97-103. Retrieved from https://www.researchgate.net/publication/
283347475_The_Effects_of_Pyrolysis_Conditions_on_the_Chemical_and_Physical_Pro
perties_of_Rice_Husk_Biochar
Prakongkep, N., Gilkes, R. J., & Wiriyakitnateekul, W. (2014). Agronomic benefits of durian shell
biochar. Journal of Metals, Materials and Minerals, 24(1), 7-11. Retrieved from file:///C:/
Users/Gateway/Downloads/93-364-1-PB.pdf
Prakongkep, N., Gilkes, R. J., & Wiriyakitnateekul, W. (2015). Forms and solubility of plant
nutrient elements in tropical plant waste biochars. Journal of Plant Nutrition and Soil
Science, 178(5), 732 - 740. doi:10.1002/jpln.201500001
Prakosa, R. A., Putera, A. D. P., Kusumastuti, F. R., Satriawan, H. B., Tri Bayu Murti Petrus, W.,
& Tri Bayu Murti Petrus, H. (2014). Release characteristic of modified fertilizer using rice
husk biochar. Paper presented at the Chemeca 2014: Processing excellence; Powering
our future!http://search.informit.com.au/
documentSummary;dn=713074993685921;res=IELENG
Prapagdee, S., et al. . (2014). Application of Biochar for Enhancing Cadmium and Zinc
Phytostabilization in Vigna radiata L. Cultivation. Water, Air, & Soil Pollution, 225(12).
doi:10.1007/s11270-014-2233-1
Prapagdee, S., Piyatiratitivorakul, S., & Petsom, A. (2014). Activation of Cassava Stem Biochar
by Physico-Chemical Method for Stimulating Cadmium Removal Efficiency from
Aqueous Solution. Environment Asia, 7(2), 60-69. Retrieved from http://www.tshe.org/ea/
pdf/vol7no2-08.pdf
Prapagdee, S., Piyatiratitivorakul, S., & Petsom, A. (2016). Physico-chemical Activation on Rice
Husk Biochar for Enhancing of Cadmium Removal from Aqueous Solution. Asian Journal
of Water, Environment and Pollution, 13(1), 27 - 34. doi:10.3233/ajw-160004
Prasad, J. V. N. S., Rao, C. S., Srinivas, K., Jyothi, C. N., Venkateswarlu, B., Ramachandrappa,
B. K., . . . Mishra, P. K. (2016). Effect of ten years of reduced tillage and recycling of
organic matter on crop yields, soil organic carbon and its fractions in Alfisols of semi arid
tropics of southern India. Soil and Tillage Research, 156, 131-139. doi:https://doi.org/
10.1016/j.still.2015.10.013
Prasad, P. S. R., et al. (2009). Geological sequestration of carbon dioxide in Deccan basalts:
preliminary laboratory study. Current Science, 96, 288-291.
Prasad, P. S. R., & Eswari, C. V. V. (2017). Clathrate Hydrates: A Powerful Tool to Mitigate
Greenhouse Gas. In M. Goel & M. Sudhakar (Eds.), Carbon Utilization: Applications for
the Energy Industry (pp. 157-168). Singapore: Springer Singapore.
Prasad, S., Kumar, A., & Muralikrishna, K. S. (2014). Biofuels production: A sustainable solution
to combat climate change. Indian Journal of Agricultural Sciences, 84(12), 1443-1452.
Retrieved from <Go to ISI>://WOS:000346464300001
Prasai, T. P., et al. . (2016). Effect of biochar, zeolite and bentonite feed supplements
on egg yield and excreta attributes. Animal Production Science, A-J. Retrieved from http://
www.publish.csiro.au/AN/pdf/AN16290
Pratt, K., & Moran, D. (2010). Evaluating the cost-effectiveness of global biochar mitigation
potential. Biomass & Bioenergy, 34(8), 1149-1158. Retrieved from http://
www.sciencedirect.com/science/article/pii/S0961953410000991
Prayogo, C., et al. (2013). Impact of biochar on mineralisation of C and N from soil and willow
litter and its relationship with microbial community biomass and structure. Biology and
Fertility of Soils, 50(4), 695-702. Retrieved from http://link.springer.com/article/10.1007/
s00374-013-0884-5
Prendergast-Miller, M. T., Duvall, M., & Sohi, S. P. (2011). Localisation of nitrate in the
rhizosphere of biochar-amended soils. Soil Biology and Biochemistry, 43(11),
2243-2246. doi:10.1016/j.soilbio.2011.07.019
Prendergast-Miller, M. T., Duvall, M., & Sohi, S. P. (2013). Biochar–root interactions are
mediated by biochar nutrient content and impacts on soil nutrient availability. European
Journal of Soil Science.
Press, A. (2017). Scientists seek holy grail of climate change in Oman's hills. Fox News World.
Retrieved from http://www.foxnews.com/world/2017/04/13/scientists-seek-holy-grail-
climate-change-in-oman-hills.html
Preston, C. M., & Schmidt, M. W. I. (2006). Black (pyrogenic) carbon: a synthesis of current
knowledge and uncertainties with special consideration of boreal regions.
Biogeosciences, 3(4), 397-420. Retrieved from http://hal.archives-ouvertes.fr/docs/
00/29/75/71/PDF/bg-3-397-2006.pdf
Preston, M. (2020). Carbon Dioxide Removal: Now is the time for an honest conversation about
carbon dioxide removal. Retrieved from https://bellona.org/news/carbon-dioxide-
removal/2020-10-now-is-the-time-for-an-honest-conversation-about-carbon-dioxide-
removal
Preston, R., & Rodríguez, L. (2014). Sustainable Agriculture ReviewsSustainable Agriculture
Reviews 14Food and Energy Production from Biomass in an Integrated Farming System
(Vol. 14). Cham: Springer International Publishing.
Preston, T. (2009). Environmentally sustainable production of food, feed and fuel from natural
resources in the tropics. Tropical Animal Health and Production, 41, 873-882.
Price, P., et al. (2018). A Post-Paris Literature Review of Negative Emissions Technology, and
Potential for Ireland. Retrieved from http://doras.dcu.ie/22230/1/Lit-Review-2018-01.pdf
Prieto, G. (2017). Carbon Dioxide Hydrogenation into Higher Hydrocarbons and Oxygenates:
Thermodynamic and Kinetic Bounds and Progress with Heterogeneous and
Homogeneous Catalysis. ChemSusChem, 10(6), 1056-1070. doi:doi:10.1002/
cssc.201601591
Primeau, F. W., Holzer, M., & DeVries, T. (2013). Southern Ocean nutrient trapping and the
efficiency of the biological pump. 118(5), 2547-2564. doi:10.1002/jgrc.20181
Pritchard, C., Yang, A., Holmes, P., & Wilkinson, M. (2015). Thermodynamics, economics and
systems thinking: What role for air capture of CO2? Process Safety and Environmental
Protection, 94, 188-195. doi:http://dx.doi.org/10.1016/j.psep.2014.06.011
Prithvi, S. (2014). Use of urea adsorbed KOH-activated Napier grass biochar for soil
conditioning–A step towards biochar tailoring. Spanish Journal of Rural Development, 33
- 48. doi:10.5261/2014.gen4.04
Prodana, M., Bastos, A. C., Amaro, A., Cardoso, D., Morgado, R., Machado, A. L., . . . Loureiro,
S. (2019). Biomonitoring tools for biochar and biochar-compost amended soil under
viticulture: Looking at exposure and effects. Applied Soil Ecology, 137, 120-128.
doi:https://doi.org/10.1016/j.apsoil.2019.01.007
Proelss, A., & Hong, C. (2012). Ocean Upwelling and International Law. Ocean Development &
International Law, 43(4), 371-385. doi:10.1080/00908320.2012.726843
Programme, U. N. E. (2017). Chapter 7, Bridging the Gap – Carbon dioxide removal. In
Emissions Gap Report 2017 (pp. 58-66): UNEP.
Project, S. EU to Incentivise CO2 Utilisation. Retrieved from http://www.scotproject.org/images/
Briefing%20paper%20EU%20ETS%20final.pdf
Pröll, T., Afif, R. A., Schaffer, S., & Pfeifer, C. (2017). Reduced Local Emissions and Long-term
Carbon Storage through Pyrolysis of Agricultural Waste and Application of Pyrolysis
Char for Soil Improvement. Energy Procedia, 114, 6057-6066. doi:https://doi.org/
10.1016/j.egypro.2017.03.1742
Pröll, T., Zerobin, F. J. M., & Change, A. S. f. G. (2019). Biomass-based negative emission
technology options with combined heat and power generation. 24(7), 1307-1324.
doi:10.1007/s11027-019-9841-4
Prommer, J., et al. (2014). Biochar Decelerates Soil Organic Nitrogen Cycling but Stimulates
Soil Nitrification in a Temperate Arable Field Trial. Plos One, 9(1). Retrieved from http://
www.plosone.org/article/
info%3Adoi%2F10.1371%2Fjournal.pone.0086388#pone-0086388-g004
Prost, K., et al. . (2012). Biochar Affected by Composting with Farmyard Manure. Journal of
Environmental Quality, 42, 164-172. Retrieved from https://s3.amazonaws.com/
academia.edu.documents/45651957/
Biochar_Affected_by_Composting_with_Farm20160515-10629-18emll4.pdf?
AWSAccessKeyId=AKIAIWOWYYGZ2Y53UL3A&Expires=1550371638&Signature=OgR
un6Qm4rHIVi39SLGR91WHFSg%3D&response-content-
disposition=inline%3B%20filename%3DBiochar_Affected_by_Composting_with_Farm.p
df
Psarras, P., et al. (2017). Slicing the pie: how big could carbon dioxide removal be? WIRES
Energy and Environment, 6(5), 1-21. doi:10.1002/wene.253
PTI. (2019). Centre approves strategy to create carbon sink of 3 billion tonnes from forests by
2030. Financial Express, (March 8). Retrieved from https://www.financialexpress.com/
lifestyle/science/centre-approves-strategy-to-create-carbon-sink-of-3-billion-tonnes-from-
forests-by-2030/1509824/
Puga, A. P., Abreu, C. A., Melo, L. C. A., & Beesley, L. (2015). Biochar application to a
contaminated soil reduces the availability and plant uptake of zinc, lead and cadmium.
Journal of Environmental Management, 159, 86 - 93. doi:10.1016/j.jenvman.2015.05.036
Puga, A. P., Abreu, C. A., Melo, L. C. A., Paz-Ferreiro, J., & Beesley, L. (2015). Cadmium, lead,
and zinc mobility and plant uptake in a mine soil amended with sugarcane straw biochar.
Environmental Science and Pollution Research, 22(22), 17606–17614. doi:10.1007/
s11356-015-4977-6
Puga, A. P., Grutzmacher, P., Cerri, C. E. P., Ribeirinho, V. S., & Andrade, C. A. d. (2020).
Biochar-based nitrogen fertilizers: Greenhouse gas emissions, use efficiency, and maize
yield in tropical soils. Science of The Total Environment, 704, 135375. doi:https://doi.org/
10.1016/j.scitotenv.2019.135375
Puga, A. P., Melo, L. C. A., de Abreu, C. A., Coscione, A. R., & Paz-Ferreiro, J. (2016). Leaching
and fractionation of heavy metals in mining soils amended with biochar. Soil and Tillage
Research, 164, 25-33. doi:10.1016/j.still.2016.01.008
Pugliese, M., Gullino, M. L., & Garibaldi, A. (2015). The REFERTIL Project: standardization of
compost and biochar quality and results in Piedmont, Italy. Protezione delle Coltur (Crop
protection). Retrieved from http://www.cabdirect.org/abstracts/20153403131.html
Pulighe, G., Altobelli, F., Bonati, G., & Lupia, F. (2021). Challenges and Opportunities for
Growing Bioenergy Crops in the EU: Linking Support Schemes With Sustainability
Issues Towards Carbon Neutrality. In Reference Module in Earth Systems and
Environmental Sciences: Elsevier.
Pulighe, G., Altobelli, F., Bonati, G., & Lupia, F. (2021). Challenges and Opportunities for
Growing Bioenergy Crops in the EU: Linking Support Schemes With Sustainability
Issues Towards Carbon Neutrality. In Reference Module in Earth Systems and
Environmental Sciences: Elsevier.
Pultarova, T. (2017). A small effort to extract CO2 from the atmosphere aims to create big
change. Washington Post. Retrieved from https://www.washingtonpost.com/national/
health-science/a-small-effort-to-extract-co2-from-the-atmosphere-aims-to-create-big-
change/2017/06/02/7de79a04-4622-11e7-a196-a1bb629f64cb_story.html?
utm_term=.d0befea5f9dd
Pulver, C. (2014). Preferential rooting in biochars. Paper presented at the SEMINAR SERIES
FALL 2014, Cornell University 135 Emerson Hall. https://css.cals.cornell.edu/sites/
css.cals.cornell.edu/files/shared/CSSseminar-10-30-14.pdf
Purakayastha, T. J., et al. (2016). Effect of pyrolysis temperatures on stability and priming
effects of C3 and C4 biochars applied to two different soils. Soil and Tillage Research,
155, 107 - 115. doi:10.1016/j.still.2015.07.011
Purakayastha, T. J., Kumari, S., & Pathak, H. (2015). Characterisation, stability, and microbial
effects of four biochars produced from crop residues. Geoderma, 239-240, 293 - 303.
doi:10.1016/j.geoderma.2014.11.009
Purevsuren, B., Avid, B., Tesche, B., & Davaajav, Y. (2003). A biochar from casein and its
properties. Journal of Materials Science, 38(11), 2347-2351. Retrieved from https://
link.springer.com/article/10.1023%2FA%3A1023980429410?LI=true
Puro.earth. (2019). Reversing Climate Change with Puro CO
2
Removal Certificate Marketplace.
Retrieved from https://puro.earth/app/uploads/2019/04/Puro-whitepaper.pdf
Puro.earth. (2020). Puro.earth CO2 Removal Marketplace. Retrieved from https://
static.puro.earth/live/uploads/tinymce/Puro_Documents/Puro-Rules-CO2-removal-
marketplace_v2.0_final.pdf
Puro.earth. (2021). BECCS and Geologically Stored Carbon Methodology Webinar Retrieved
from https://puro.earth/articles/beccs-and-geologically-stored-carbon-methodology-
webinar-584#
Pye, S., Broad, O., Bataille, C., Brockway, P., Daly, H. E., Freeman, R., . . . Watson, J. (2020).
Modelling net-zero emissions energy systems requires a change in approach. Climate
Policy, 1-10. doi:10.1080/14693062.2020.1824891
Pyle, L., Hockaday, W. C., Boutton, T. W., Zygourakis, K., Kinney, T., & Masiello, C. A. (2015).
Chemical and Isotopic Thresholds in Charring: Implications for the Interpretation of
Charcoal Mass and Isotopic Data. American Geophysical Union, Fall Meeting. Retrieved
from http://adsabs.harvard.edu/abs/2014AGUFM.B41A0008P
Qayyum, M. F., et al. (2011). Kinetics of Carbon Mineralization of Biochars Compared with
Wheat Straw in Three Soils. Journal of Environmental Quality, 41(4), 1210-1220.
doi:doi:10.2134/jeq2011.0058
Qayyum, M. F., et al. . (2014). Biochars influence differential distribution and chemical
composition of soil organic matter. Plant Soil Environment, 60(8), 337-343. Retrieved
from http://www.agriculturejournals.cz/publicFiles/128953.pdf
Qayyum, M. F., et al. (2015). Effect of biochar, lime, and compost application on phosphorus
adsorption in a Ferralsol. Journal of Plant Nutrition and Soil Science, 178(4), 576-581.
doi:10.1002/jpln.201400552
Qi, R.-P., Zhang, L., Yan, Y.-H., Wen, M., & Zheng, J.-Y. (2014). Effects of biochar addition into
soils in semiarid land on water infiltration under the condition of the same bulk density.
The Journal of Applied Ecology, 25(8), 2281-2288. Retrieved from http://europepmc.org/
abstract/med/25509079
Qian, K., et al. . (2015). Recent advances in utilization of biochar. Renewable and Sustainable
Energy Reviews, 42, 1055 - 1064. doi:10.1016/j.rser.2014.10.074
Qian, L., et al. . (2016). Effective removal of heavy metal by biochar colloids under different
pyrolysis temperatures. Bioresource Technology, 206, 217 - 224. doi:10.1016/
j.biortech.2016.01.065
Qian, L., & Chen, B. (2013). Interactions of Aluminum with Biochars and Oxidized Biochars:
Implications for the Biochar Aging Process. Journal of Agricultural and Food Chemistry,
62(2), 373-380. Retrieved from http://pubs.acs.org/doi/abs/10.1021/jf404624h
Qian, L., Chen, B., & Hu, D. (2013). Effective Alleviation of Aluminum Phytotoxicity by Manure-
derived Biochar. Environmental Science and Technology, 47(6), 2737-2745. Retrieved
from http://pubs.acs.org/doi/abs/10.1021/es3047872
Qian, L., Chen, M., & Chen, B. (2015). Competitive adsorption of cadmium and aluminum onto
fresh and oxidized biochars during aging processes. Journal of Soils and Sediments,
15(5), 1130-1138. doi:10.1007/s11368-015-1073-y
Qian, L. I., et al. . (2014). Biochar compound fertilizer as an option to reach high productivity but
low carbon intensity in rice agriculture of China. Carbon Management, 5(2), 145 - 154.
doi:10.1080/17583004.2014.912866
Qian, T., et al. (2016). A new insight into the immobilization mechanism of Zn on biochar: the
role of anions dissolved from ash. Scientific Reports, 6(33630), 1-10. Retrieved from
file:///C:/Users/Gateway/Downloads/srep33630.pdf
Qian, T.-T., et al. (2013). Effects of environmental conditions on the release of phosphorus from
biochar. Chemosphere, 93(9), 2069-2075. Retrieved from http://www.sciencedirect.com/
science/article/pii/S0045653513010254
Qiao, J., Liu, Y., Hong, F., & Zhang, J. (2014). A review of catalysts for the electroreduction of
carbon dioxide to produce low-carbon fuels. Chem. Soc. Rev., 43, 631-675. Retrieved
from https://pubs.rsc.org/en/content/articlehtml/2013/cs/c3cs60323g?casa_token=j-B9-
fpGvmgAAAAA:JS4kGiUZOXpqDHiQi1dSC31GD7WfRd8URz4oLE2oXOLo87O8boOmv
omdMDBJy8D76SQm-g2lgEZdk1s
Qiao, Y., Crowley, D., Wang, K., Zhang, H., & Li, H. (2015). Effects of biochar and Arbuscular
mycorrhizae on bioavailability of potentially toxic elements in an aged contaminated soil.
Environmental Pollution, 206, 636 - 643. doi:10.1016/j.envpol.2015.08.029
QiKai, W., et al. . (2015). Combined effects of biochar and fertilizer on cadmium contaminated
soil remediation. Journal of Agricultural Resources and Environment, 32(6), 583-589.
Retrieved from http://www.cabdirect.org/abstracts/20163044526.html
Qin, G., Dan, G., & Fan, M.-Y. (2013). Bioremediation of petroleum-contaminated soil by
biostimulation amended with biochar. International Biodeterioration & Biodegradation,
85, 150–155.
Qin, X., et alo. (2006). Switchgrass as an alternate feedstock for power generation: an
integrated environmental, energy and economic life-cycle assessment. Clean
Technologies and Environmental Policy, 8, 233-349.
Qin, X., Li, Y. e., Wang, H., Liu, C., Li, J., Wan, Y., . . . Liao, Y. (2016). Long-term effect of
biochar application on yield-scaled greenhouse gas emissions in a rice paddy cropping
system: A four-year case study in south China. Science of The Total Environment, 569–
570, 1390-1401. doi:http://dx.doi.org/10.1016/j.scitotenv.2016.06.222
Qin, Z., Zhuang, Q., Cai, X., He, Y., Huang, Y., Jiang, D., . . . Wang, M. Q. (2018). Biomass and
biofuels in China: Toward bioenergy resource potentials and their impacts on the
environment. Renewable and Sustainable Energy Reviews, 82, 2387-2400. doi:https://
doi.org/10.1016/j.rser.2017.08.073
Qin, Z.-z. (2015). Photocatalytic Reduction of Carbon Dioxide. In E. Lightfouse, J.
Schwarzbauer, & R. Didier (Eds.), Hydrogen Production and Remediation of Carbon and
Pollutants (pp. 61-98).
Qiu, M., Sun, K., Jin, J., Han, L., Sun, H., Zhao, Y., . . . Xing, B. (2015). Metal/metalloid
elements and polycyclic aromatic hydrocarbon in various biochars: The effect of
feedstock, temperature, minerals, and properties. Environmental Pollution, 206, 298 -
305. doi:10.1016/j.envpol.2015.07.026
Qiu, Y., et al. . (2013). Enhanced irreversible sorption of carbaryl to soils amended with crop-
residue-derived biochar. Chemosphere, 93(1), 69-74. Retrieved from http://
www.sciencedirect.com/science/article/pii/S0045653513006954
QiuTong, X., et al. (2014). Effects of biochar application on transformation and chemical forms
of C, N and P in soils with different pH. Journal of Zhejiang University (Agriculture and
Life Sciences), 40, 303-313. Retrieved from http://www.cabdirect.org/abstracts/
20143299103.html;jsessionid=9C87787FCF9A6782AB7D31A9A379C72C
Quader, M. A., & Ahmed, S. (2017). Chapter Four - Bioenergy With Carbon Capture
and!Storage (BECCS): Future Prospects of Carbon-Negative Technologies. In Clean
Energy for Sustainable Development (pp. 91-140): Academic Press.
Quan, G., Sun, W., Yan, J. L., & Lan, Y. (2014). Nanoscale Zero-Valent Iron Supported on
Biochar: Characterization and Reactivity for Degradation of Acid Orange 7 from Aqueous
Solution. Water, Air, & Soil Pollution, 225(11). doi:10.1007/s11270-014-2195-3
Quéguiner, B. (2013). Iron fertilization and the structure of planktonic communities in high
nutrient regions of the Southern Ocean. Deep Sea Research Part II: Topical Studies in
Oceanography, 90, 43-54. doi:http://dx.doi.org/10.1016/j.dsr2.2012.07.024
Quesada Kimzey, J. (2015). The carbonization of biomass waste: an exploration with exciting
prospects. Tecnología en Marcha, 25(5). Retrieved from http://repositoriotec.tec.ac.cr/
handle/2238/4086?show=full
Quesne, M. G., Catlow, C. R. A., & de Leeuw, N. H. (2021). How bulk and surface properties of
Ti4SiC3, V4SiC3, Nb4SiC3 and Zr4SiC3 tune reactivity: a computational study. Faraday
Discussions, 230(0), 87-99. doi:10.1039/D1FD00004G
Quilliam, R. S., et al. (2013). Is biochar a source or sink for polycyclic aromatic hydrocarbon
(PAH) compounds in agricultural soils? GCB Bioenergy, 5(2), 96-103. doi:10.1111/
gcbb.12007
Quilliam, R. S., DeLuca, T. H., & Jones, D. L. (2012). Biochar application reduces nodulation but
increases nitrogenase activity in clover. Plant and Soil. doi:10.1007/s11104-012-1411-4
Quilliam, R. S., Marsden, K. A., Gertler, C., Rousk, J., DeLuca, T. H., & Jones, D. L. (2012).
Nutrient dynamics, microbial growth and weed emergence in biochar amended soil are
influenced by time since application and reapplication rate. Agriculture, Ecosystems &
Environment, 158, 192–199. Retrieved from http://www.sciencedirect.com/science/
article/pii/S016788091200237X
Quin, P., et al. (2015). Lowering N2O emissions from soils using eucalypt biochar: the
importance of redox reactions. Scientific Reports, 5, 1-14. doi:10.1038/srep16773
Quin, P. R., Cowie, A. L., Flavel, R. J., Keen, B. P., Macdonald, L. M., Morris, S. G., . . . Van
Zwieten, L. (2014). Oil mallee biochar improves soil structural properties—A study with
x-ray micro-CT. Agriculture, Ecosystems & Environment, 191, 142-149. doi:http://
dx.doi.org/10.1016/j.agee.2014.03.022
Quinby, E. F. (2018). Regulating Geoengineering: Applications of GMO Trade and Ocean
Dumping Regulation. Vanderbilt Journal of Transnational Law, 51, 211-246. Retrieved
from https://heinonline.org/HOL/Page?handle=hein.journals/
vantl51&id=221&collection=journals&index=
Quinn, D. (2015). Biochar: Industrial Applications A White Paper. In.
Quinn, J. C., & Davis, R. (2015). The potentials and challenges of algae based biofuels: A
review of the techno-economic, life cycle, and resource assessment modeling.
Bioresource Technology, 184, 444-452. doi:https://doi.org/10.1016/
j.biortech.2014.10.075
Quinn, P. K., & Bates, T. S. (2011). The case against climate regulation via oceanic
phytoplankton sulphur emissions. Nature, 480(7375), 51-56. doi:10.1038/nature10580
Quirk, J., et al. (2014). Ectomycorrhizal fungi and past high CO2 atmospheres enhance mineral
weathering through increased below-ground carbon-energy fluxes. Biology Letters,
10(7), 20140375. doi:doi:10.1098/rsbl.2014.0375
Quirk, J., Beerling, D. J., Banwart, S. A., Kakonyi, G., Romero-Gonzalez, M. E., & Leake, J. R.
(2012). Evolution of trees and mycorrhizal fungi intensifies silicate mineral weathering.
Biology Letters, 8(6), 1006-1011. doi:10.1098/rsbl.2012.0503
Quirk, R. G. e. a. (2012). Utilization of Biochar in Sugarcane and Sugar-Industry Management.
Sugar Tech, 14(4), 321-326. doi:10.1007/s12355-012-0158-9
Quiroz Arita, C. E., Peebles, C., & Bradley, T. H. (2015). Scalability of combining microalgae-
based biofuels with wastewater facilities: A review. Algal Reseach, 9, 160-169. Retrieved
from http://www.engr.colostate.edu/~thb/Publications/cqa_review.pdf
Rabah, M. A. (2015). Quick Ignited and Smokeless Carbon Shapes From Household Garbage
Agriculture Waste. International Journal of Scientific Progress and Research, 11(1), 1-7.
Retrieved from http://www.ijspr.com/citations/v11n1/IJSPR_1101_352.pdf
Rabinowitz, A., & Simson, A. (2017). The Dirty Secret of the World’s Plan to Avert Climate
Disaster. Wired. Retrieved from https://www.wired.com/story/the-dirty-secret-of-the-
worlds-plan-to-avert-climate-disaster/
Rabitz, F. (2016). Going rogue? Scenarios for unilateral geoengineering. Futures, 84, Part A,
98-107. doi:http://dx.doi.org/10.1016/j.futures.2016.11.001
Rackley, S. (2020). Ocean Alkalinity Enhancement: A preliminary research agenda and
maturation roadmap. Retrieved from https://carbonactionnow.files.wordpress.com/
2020/10/ocean-alkalinity-enhancement-a-preliminary-research-agenda-and-technology-
maturation-roadmap.pdf
Rackley, S. A. (2010). Absorption Capture Systems. In Carbon Capture and Storage (pp.
103-131). Boston: Butterworth-Heinemann.
Rackley, S. A. (2010). Mineral Carbonation. In Carbon Capture and Storage (pp. 207-225).
Boston: Butterworth-Heinemann.
Rackley, S. A. (2010). Ocean Storage. In Carbon Capture and Storage (pp. 267-286). Boston:
Butterworth-Heinemann.
Rackley, S. A. (2010). Overview of Carbon Capture and Storage. In Carbon Capture and
Storage (pp. 19-28). Boston: Butterworth-Heinemann.
Rackley, S. A. (2017). 2 - Overview of carbon capture and storage. In Carbon Capture and
Storage (Second Edition) (pp. 23-36). Boston: Butterworth-Heinemann.
Rackley, S. A. (2017). 4 - Carbon capture from power generation. In Carbon Capture and
Storage (Second Edition) (pp. 75-101). Boston: Butterworth-Heinemann.
Rackley, S. A. (2017). 5 - Carbon capture from industrial processes. In Carbon Capture and
Storage (Second Edition) (pp. 103-114). Boston: Butterworth-Heinemann.
Rackley, S. A. (2017). 6 - Absorption capture systems. In Carbon Capture and Storage (Second
Edition) (pp. 115-149). Boston: Butterworth-Heinemann.
Rackley, S. A. (2017). 7 - Adsorption capture systems. In Carbon Capture and Storage (Second
Edition) (pp. 151-185). Boston: Butterworth-Heinemann.
Rackley, S. A. (2017). 8 - Membrane separation systems. In Carbon Capture and Storage
(Second Edition) (pp. 187-225). Boston: Butterworth-Heinemann.
Rackley, S. A. (2017). 9 - Low temperature and distillation systems. In Carbon Capture and
Storage (Second Edition) (pp. 227-252). Boston: Butterworth-Heinemann.
Rackley, S. A. (2017). 10 - Mineral carbonation. In Carbon Capture and Storage (Second
Edition) (pp. 253-282). Boston: Butterworth-Heinemann.
Rackley, S. A. (2017). 11 - Introduction to geological storage. In Carbon Capture and Storage
(Second Edition) (pp. 285-304). Boston: Butterworth-Heinemann.
Rackley, S. A. (2017). 12 - Geological and geomechanical features, events, and processes. In
Carbon Capture and Storage (Second Edition) (pp. 305-336). Boston: Butterworth-
Heinemann.
Rackley, S. A. (2017). 13 - Fluid properties and rock–fluid interactions. In Carbon Capture and
Storage (Second Edition) (pp. 337-364). Boston: Butterworth-Heinemann.
Rackley, S. A. (2017). 15 - Hydrological and environmental features, events, and processes. In
Carbon Capture and Storage (Second Edition) (pp. 387-406). Boston: Butterworth-
Heinemann.
Rackley, S. A. (2017). 16 - Engineered system features, events, and processes. In Carbon
Capture and Storage (Second Edition) (pp. 407-428). Boston: Butterworth-Heinemann.
Rackley, S. A. (2017). 17 - Saline aquifer geological storage. In Carbon Capture and Storage
(Second Edition) (pp. 429-470). Boston: Butterworth-Heinemann.
Rackley, S. A. (2017). 18 - Other geological storage options. In Carbon Capture and Storage
(Second Edition) (pp. 471-488). Boston: Butterworth-Heinemann.
Rackley, S. A. (2017). 19 - Storage monitoring and verification technologies. In Carbon Capture
and Storage (Second Edition) (pp. 489-516). Boston: Butterworth-Heinemann.
Rackley, S. A. (2017). 20 - Ocean storage. In Carbon Capture and Storage (Second Edition)
(pp. 517-541). Boston: Butterworth-Heinemann.
Rackley, S. A. (2017). 21 - Storage in terrestrial ecosystems. In Carbon Capture and Storage
(Second Edition) (pp. 543-576). Boston: Butterworth-Heinemann.
Rackley, S. A. (2017). 22 - CO2 utilization and other sequestration options. In Carbon Capture
and Storage (Second Edition) (pp. 577-591). Boston: Butterworth-Heinemann.
Rackley, S. A. (2017). 23 - Carbon dioxide transportation. In Carbon Capture and Storage
(Second Edition) (pp. 595-611). Boston: Butterworth-Heinemann.
Raclavská, H., Corsaro, A., Juchelková, D., Sassmanová, V., & Frantík, J. (2015). Effect of
temperature on the enrichment and volatility of 18 elements during pyrolysis of biomass,
coal, and tires. Fuel Processing Technology, 131, 330 - 337. doi:10.1016/
j.fuproc.2014.12.001
Raclavsky, K., Raclavska, H., Kovalova, L., Skrobankova, H., & Frydrych, J. (2015). Utilization
of carbon produced by torrefaction of grass for energy purposes and related risks. Paper
presented at the 2015 IEEE 15th International Conference on Environment and
Electrical Engineering (EEEIC)2015 IEEE 15th International Conference on Environment
and Electrical Engineering (EEEIC), Rome, Italy. http://ieeexplore.ieee.org/xpl/
articleDetails.jsp?
tp=&arnumber=7165476&url=http%3A%2F%2Fieeexplore.ieee.org%2Fxpls%2Fabs_all.j
sp%3Farnumber%3D7165476
Radawiec, W., et al. (2015). Biowęgiel z masy pofermentacyjnej biogazowni rolniczej jako
produkt energetyczny i polepszacz gleb (Biocarbon digestate from agricultural biogas as
an energy product and soil improver). Inżynieria Rolnicza (Agricultural Engineering),
3(151), 149-156. Retrieved from http://ir.ptir.org/index.php?mood=article&article_id=3595
Radawiec, W., Dubicki, M., Karwowska, A., Żelazna, K., & Gołaszewski, J. (2015). BIOCHAR
FROM A DIGESTATE AS AN ENERGY PRODUCT AND SOIL IMPROVER. In.
Radcliffe, S. (2014). Geoengineering: Ocean Iron Fertilisation and the Law of the Sea. (LLM).
Victoria, University of Wellington, Retrieved from http://researcharchive.vuw.ac.nz/xmlui/
bitstream/handle/10063/4554/thesis.pdf?sequence=2
Radford, T. (2021). Overheated Earth can slow plants’ carbon storage. Retrieved from https://
climatenewsnetwork.net/overheated-earth-can-slow-plants-carbon-storage/
Radics, R. I., Dasmohapatra, S., & Kelley, S. (2015). Systematic Review of Bioenergy
Perception Studies. Bio Resources, 10(4), 8770-8778. Retrieved from http://
ojs.cnr.ncsu.edu/index.php/BioRes/article/view/
BioRes_10_4_Review_Radics_Bioenergy_Perception_Studies
Radunsky, K., & Cadman, T. (2019). Governing the Sun. International Journal of Social Quality,
9(2), 19-34.
Raeesossadati, M. J., Ahmadzadeh, H., McHenry, M. P., & Moheimani, N. R. (2014). CO2
bioremediation by microalgae in photobioreactors: Impacts of biomass and CO2
concentrations, light, and temperature. Algal Research, 6, 78-85. doi:https://doi.org/
10.1016/j.algal.2014.09.007
Rafiee, A., Panahi, M., & Khalilpour, K. R. (2017). CO2 utilization through integration of post-
combustion carbon capture process with Fischer-Tropsch gas-to-liquid (GTL) processes.
Journal of CO2 Utilization, 18(Supplement C), 98-106. doi:https://doi.org/10.1016/
j.jcou.2017.01.016
Raghav, S. (2020). The Business Case for Natural Climate Solutions: Insights and Opportunities
for Southeast Asia. Retrieved from https://bit.ly/2Wq31xj
Raheem, A., Prinsen, P., Vuppaladadiyam, A. K., Zhao, M., & Luque, R. (2018). A review on
sustainable microalgae based biofuel and bioenergy production: Recent developments.
Journal of Cleaner Production, 181, 42-59. doi:https://doi.org/10.1016/
j.jclepro.2018.01.125
Rahman, A. A., Abdullah, N., & Sulaiman, F. (2014). Temperature Effect on the Characterization
of Pyrolysis Products from Oil Palm Fronds. Advances in Energy Engineering, 2(1),
14-21. Retrieved from http://www.studentsoutlook.com/upload/technicalpaper/
engineering/Temperature-Effect-on-the-Characterizat-on-of-Pyrolysis-Products-from-Oil-
Palm-Fronds.pdf
Rahman, A. A., Sulaiman, F., & Abdullah, N. (2015). AIP Conference Proceedings Effect of
temperature on pyrolysis product of empty fruit bunches. Paper presented at the
NATIONAL PHYSICS CONFERENCE 2014 (PERFIK 2014), Kuala Lumpur, Malaysia.
http://scitation.aip.org/content/aip/proceeding/aipcp/10.1063/1.4915172
Rahman, F. A., Aziz, M. M. A., Saidur, R., Bakar, W. A. W. A., Hainin, M. R., Putrajaya, R., &
Hassan, N. A. (2017). Pollution to solution: Capture and sequestration of carbon dioxide
(CO2) and its utilization as a renewable energy source for a sustainable future.
Renewable and Sustainable Energy Reviews, 71, 112-126. doi:https://doi.org/10.1016/
j.rser.2017.01.011
Rahman, L., Whitelaw-Weckert, M., & Orchard, B. (2014). Impact of organic soil amendments,
including poultry litter biochar, on nematodes in a Riverina, NSW vineyard. Soil
Research, 52(6), 604-619.
Rahman, M. (2021). Drax seeks to build resilient supply chain for negative emissions
technology. The Business Desk. Retrieved from https://www.thebusinessdesk.com/
yorkshire/news/2081287-drax-seeks-to-build-resilient-supply-chain-for-negative-
emissions-technology
Rahman, M. F. (2015). Removal of Perfluorinated Compounds from Ultrapure and Surface
Waters by Adsorption and Ion Exchange. University of Waterloo, Retrieved from https://
uwspace.uwaterloo.ca/handle/10012/9161
Rahman, M. M., & Kabir, K. B. (2015). Production of biochar from biomass residue for
household cooking. Paper presented at the Asia Pacific Confederation of Chemical
Engineering Congress. http://search.informit.com.au/
documentSummary;dn=727509859755231;res=IELENG
Rahmani, O. (2018). CO2 sequestration by indirect mineral carbonation of industrial waste red
gypsum. Journal of CO2 Utilization, 27, 374-380. doi:https://doi.org/10.1016/
j.jcou.2018.08.017
Rahmstorf, S. (2019). Can planting trees save our climate? RealClimate. Retrieved from Can
planting trees save our climate?
Raimi, K. T. (2021). Public Perceptions of Geoengineering. Current Opinion in Psychology.
doi:https://doi.org/10.1016/j.copsyc.2021.03.012
Räisänen, R. (2021). How third-party verification of carbon removal works - VIDEO. Retrieved
from https://puro.earth/articles/how-third-party-verification-of-carbon-removals-work-
video-646?type=webinars-and-
videos&utm_source=newsletter&utm_medium=email&utm_campaign=newsletter-43&ut
m_content=20210722-
Raiswell, R., & Canfield, D. E. (2011). The Iron Biogeochemical Cycle Past and Present.
Geochemical Perspectives, 1(1), 1-2. Retrieved from https://pubs.geoscienceworld.org/
perspectives/article-abstract/1/1/1/251624/the-iron-biogeochemical-cycle-past-and-
present?redirectedFrom=fulltext
Rajagopal, D. (2008). Implications of India’s biofuel policies for food, water and the poor. Water
Policy, 10 (supp.), 95-106. Retrieved from http://wp.iwaponline.com/content/
ppiwawaterpol/10/S1/95.full.pdf
Rajagopal, D. (2013). The fuel market effects of biofuel policies and implications for regulations
based on lifecycle emissions. Environmental Research Letters, 8, 1-8. Retrieved from
http://iopscience.iop.org/article/10.1088/1748-9326/8/2/024013/pdf
Rajagopal, D., Hochman, G., & Zilberman, D. (2011). Indirect fuel use change (IFUC) and the
lifecycle environmental impact of biofuel policies. Energy Policy, 31, 228-233. Retrieved
from http://www.sciencedirect.com/science/article/pii/S0301421510007214
Rajapaksha, A. U., et al. . (2014). Invasive plant-derived biochar inhibits sulfamethazine uptake
by lettuce in soil. Chemosphere, 111, 500-504. doi:10.1016/j.chemosphere.2014.04.040
Rajapaksha, A. U., et al. . (2014). Pyrolysis condition affected sulfamethazine sorption by tea
waste biochars. Bioresource Technology, 166, 303-308. doi:10.1016/
j.biortech.2014.05.029
Rajapaksha, A. U., et al. . (2014). Removal of Hexavalent Chromiumin Aqueous Solutions Using
Different Biochars and Characterization of the Products of the CR (VI) Adsorportion and
Reducation. Paper presented at the 2014 GSA Annual Meeting in Vancouver, British
Columbia. https://gsa.confex.com/gsa/2014AM/finalprogram/abstract_247706.htm
Rajapaksha, A. U., et al. . (2015). Enhanced sulfamethazine removal by steam-activated
invasive plant-derived biochar. Journal of Hazardous Materials, 290, 43 - 50.
doi:10.1016/j.jhazmat.2015.02.046
Rajapaksha, A. U., et al. . (2015). The role of biochar, natural iron oxides, and nanomaterials as
soil amendments for immobilizing metals in shooting range soil. Environmental
Geochemistry and Health, 37(6), 931-942. doi:10.1007/s10653-015-9694-z
Rajapaksha, A. U., et al. (2015). Steam activation of biochars facilitates kinetics and pH-
resilience of sulfamethazine sorption. Journal of Soils and Sediments, 16(3), 889-895.
doi:10.1007/s11368-015-1325-x
Rajapaksha, A. U., et al. (2016). Engineered/designer biochar for contaminant removal/
immobilization from soil and water: Potential and implication of biochar modification.
Chemosphere, 148, 276 - 291. doi:10.1016/j.chemosphere.2016.01.043
Rajapaksha, A. U., & Mohan, D. (2015). Definitions and Fundamentals of Biochar. In Biochar:
Production, Characterization, and Applications.
Rajkovich, S. (2010). Biochar as an Amendment to Improve Soil Fertility. Retrieved from http://
ecommons.cornell.edu/bitstream/1813/17306/2/Rajkovich%2c%20Shelby%20.pdf
Ralston, S. J. (2009). Engineering an Artful and Ethical Solution to the Problem of Global
Warming. Review of Policy Research, 26(6), 821-837. doi:https://doi.org/10.1111/
j.1541-1338.2009.00419.x
Rama Chandraiah, M. (2016). Facile synthesis of zero valent iron magnetic biochar composites
for Pb(II) removal from the aqueous medium. Alexandria Engineering Journal, 55(1), 619
- 625. doi:10.1016/j.aej.2015.12.015
Ramachandra, T. V., & Bharath, S. J. R. S. i. E. S. S. (2019). Global Warming Mitigation
Through Carbon Sequestrations in the Central Western Ghats. Remote Sensing in Earth
Systems Sciences, 2(1), 39-63. doi:10.1007/s41976-019-0010-z
Ramachandran Nair, P. K., Mohan Kumar, B., & Nair, V. D. (2009). Agroforestry as a strategy for
carbon sequestration. 172(1), 10-23. doi:10.1002/jpln.200800030
Ramachandran Nair, P. K., Nair, V. D., Mohan Kumar, B., & Showalter, J. M. (2010). Chapter
Five - Carbon Sequestration in Agroforestry Systems. In D. L. Sparks (Ed.), Advances in
Agronomy (Vol. 108, pp. 237-307): Academic Press.
Ramaiah, N., Jain, A., Meena, R. M., Naik, R. K., Verma, R., Bhat, M., . . . Gomes, J. (2015).
Response of bacteria and phytoplankton from a subtropical front location Southern
Ocean to micronutrient amendments ex-situ. Deep Sea Research Part II: Topical Studies
in Oceanography, 118(Part B), 209-220. doi:http://dx.doi.org/10.1016/j.dsr2.2015.03.013
Ramanan, R., Kannan, K., Deshkar, A., Yadav, R., & Chakrabarti, T. (2010). Enhanced algal
CO2 sequestration through calcite deposition by Chlorella sp. and Spirulina platensis in
a mini-raceway pond. Bioresource Technology, 101(8), 2616-2622. doi:https://doi.org/
10.1016/j.biortech.2009.10.061
Ramaraj, R. (2015). Carbon sequestration by alga ecosystems. Ecological Engineering, 84,
386-389. Retrieved from https://www.researchgate.net/publication/
281491325_Carbon_sequestration_by_alga_ecosystems
Rambo, M. K. D., et al. (2014). Production of biochar and chemical products from banana and
coffee residues after acid hydrolysis. Paper presented at the Embrapa Solos - Article in
conference proceedings (ALICE).
Ramdin, M., et al. (2012). State-of-the-Art of CO2 Capture with Ionic Liquids. Ind. Eng. Chem.
Res., 51, 8149-8177. Retrieved from https://pubs.acs.org/doi/abs/10.1021/ie3003705
Ramírez Ramírez, A. (2020). Chapter 13 Carbon Capture and Utilisation. In Carbon Capture
and Storage (pp. 426-446): The Royal Society of Chemistry.
Ramola, S., Mishra, T., Rana, G., & Srivastava, R. K. (2014). Characterization and pollutant
removal efficiency of biochar derived from baggase, bamboo and tyre. Environmental
Monitoring and Assessment, 186(12), 9023 - 9039. doi:10.1007/s10661-014-4062-5
Ramos, C. G., Hower, J. C., Blanco, E., Oliveira, M. L. S., & Theodoro, S. H. (2021). Possibility
of uses of silicate rocks powder: A review. Geoscience Frontiers, 101185. doi:https://
doi.org/10.1016/j.gsf.2021.101185
Ramos Tercero, E. A., Domenicali, G., & Bertucco, A. (2014). Autotrophic production of biodiesel
from microalgae: An updated process and economic analysis. Energy, 76, 807-815.
doi:https://doi.org/10.1016/j.energy.2014.08.077
Ramsurn, H., Kumar, S., & Gupta, R. B. (2011). Enhancement of Biochar Gasification in Alkali
Hydrothermal Medium by Passivation of Inorganic Components Using Ca(OH)2. Energy
Fuels, 25(5), 2389-2398. doi:10.1021/ef200438b
Randers, J., & Goluke, U. (2020). An earth system model shows self-sustained melting of
permafrost even if all man-made GHG emissions stop in 2020. Scientific Reports, 10(1),
18456. doi:10.1038/s41598-020-75481-z
Randolph, J. B., & Saar, M. O. (2011). Coupling carbon dioxide sequestration with geothermal
energy capture in naturally permeable, porous geologic formations: Implications for CO2
sequestration. Energy Procedia, 4, 2206-2213. doi:https://doi.org/10.1016/
j.egypro.2011.02.108
Randow, J. (2019). One Whale Is Worth Thousands of Trees in Climate Fight. Bloomberg.
Retrieved from https://www.bloomberg.com/news/articles/2019-11-20/one-whale-is-
worth-thousands-of-trees-in-helping-save-the-planet
Ranganathan, J., et al. (2020). Regenerative Agriculture: Good for Soil Health, but Limited
Potential to Mitigate Climate Change. Retrieved from https://www.wri.org/blog/2020/05/
regenerative-agriculture-climate-change
Rani, D., et al. (2015). Management opportunities to mitigate greenhouse gas emissions from
Chinese agriculture. Pure Collection, 209, 108-124. Retrieved from http://
cadair.aber.ac.uk/dspace/handle/2160/29729
Rani, P., Singh, A. P., & Rai, S. (2015). Effect of rice husk biochar and lime treated sludge on
NPK concentration and uptake by rice crop. Environment and Ecology, 22(4), 503-511.
Retrieved from http://www.cabdirect.org/abstracts/
20153308822.html;jsessionid=1F34BE24F66214E191655B02B567B3FB
Ranjan, M. (2010). Feasibility of Air Capture. (Master of Science). MIT, Retrieved from http://
sequestration.mit.edu/pdf/ManyaRanjan_Thesis_June2010.pdf
Ranjan, M. (2018). Attractiveness of Air Capture: Time for a reality check. Energy World.
Retrieved from https://energy.economictimes.indiatimes.com/energy-speak/
seductiveness-of-air-capture-time-for-a-reality-check/3344
Ranjan, M., & Herzog, H. J. (2011). Feasibility of air capture. Energy Procedia, 4, 2869-2876.
doi:http://dx.doi.org/10.1016/j.egypro.2011.02.193
Rao, A. B., & Rubin, E. S. (2002). A Technical, Economic, and Environmental Assessment of
Amine-Based CO2 Capture Technology for Power Plant Greenhouse Gas Control.
Environmental Science and Technology, 36(20), 4467-4475. Retrieved from http://
pubs.acs.org/doi/abs/10.1021/es0158861
Rao, A. B., Rubin, E. S., Keith, D. W., & Granger Morgan, M. (2006). Evaluation of potential cost
reductions from improved amine-based CO2 capture systems. Energy Policy, 34(18),
3765-3772. doi:http://dx.doi.org/10.1016/j.enpol.2005.08.004
Rao, M. A. (2015). Biochar: properties and use for environmental management. In.
Rashidi, N. A., Yusup, S., & Hameed, B. H. (2013). Kinetic studies on carbon dioxide capture
using lignocellulosic based activated carbon. Energy, 61, 440-446. doi:https://doi.org/
10.1016/j.energy.2013.08.050
Raslavičius, L., Striūgas, N., & Felneris, M. (2018). New insights into algae factories of the
future. Renewable and Sustainable Energy Reviews, 81, 643-654. doi:https://doi.org/
10.1016/j.rser.2017.08.024
Rassmussen, S. (2018). Carbon Dioxide Removal Costs Decline 84 Percent. NewsMax.
Retrieved from https://www.newsmax.com/scottrasmussen/gallon-fuel-gasoline-
technology/2018/06/14/id/866141/
Rassool, D., & Havercroft, I. (2021). Financing CCS in Developing Countries. Retrieved from
https://www.globalccsinstitute.com/resources/publications-reports-research/
Rathi, A. (2017). The compelling case for capturing carbon emissions and burying them
underground. Quartz. Retrieved from https://qz.com/1137197/the-compelling-case-for-
capturing-carbon-emissions-and-burying-them-underground/
Rathi, A. (2017). The world’s first “negative emissions” plant has begun operation—turning
carbon dioxide into stone. Quartz. Retrieved from https://qz.com/1100221/the-worlds-
first-negative-emissions-plant-has-opened-in-iceland-turning-carbon-dioxide-into-stone/
Rathi, A. (2019). Stripe has a science-based blueprint for companies to address the climate
crisis. Quartz. Retrieved from https://qz.com/1691241/stripe-has-a-science-based-way-
to-offset-its-emissions/
Rathi, A. (2019). A tiny tweak in California law is creating a strange thing: carbon-negative oil.
Quartz. Retrieved from https://qz.com/1638096/the-story-behind-the-worlds-first-large-
direct-air-capture-plant/
Rathi, A. (2021). Musk’s $100 Million Prize Is for Tech the World Desperately Needs. Bloomberg
Green. Retrieved from https://www.bloomberg.com/news/articles/2021-01-22/musk-
s-100-million-prize-is-for-tech-the-world-desperately-needs
Rathi, A. (2021). We Pay to Treat Waste Water, Why Not Waste Carbon? Retrieved from https://
www.bloomberg.com/authors/AUdOobfNzkQ/akshat-rathi
Rathi, A., & Gillespie, T. (2020). With Big Oil Declining, Carbon Removal Could Take Its Place.
Bloomberg Green. Retrieved from https://www.bloomberg.com/news/articles/
2020-10-27/carbon-dioxide-removal-industry-could-rival-oil-and-gas-in-climate-
fight#:~:text=3%3A54-,With%20Big%20Oil%20Declining%2C%20Carbon%20Removal%
20Could%20Take%20Its%20Place,today%27s%20oil%20and%20gas%20giants.&text=
Carbon%20Engineering%27s%20plant%20captures%20carbon%20dioxide%20directly
%20from%20the%20air.
Ratnam, J., et al. (2020). Trees as Nature-Based Solutions: A Global South Perspective. One
Earth, 3(2), 140-144. doi:10.1016/j.oneear.2020.07.008
Rattan, C. (2021). CO2 and EfW. Retrieved from https://energycentral.com/c/og/turning-carbon-
waste-resource-ecos?
utm_source=feedburner&utm_medium=email&utm_campaign=Energy+
%26+Sustainability+Network+%28all+posts%29
Rau, G. H. (2008). Electrochemical Splitting of Calcium Carbonate to Increase Solution
Alkalinity: Implications for Mitigation of Carbon Dioxide and Ocean Acidity.
Environmental Science & Technology, 42(23), 8935-8940. doi:10.1021/es800366q
Rau, G. H. (2009). Electrochemical CO
2
capture and storage with hydrogen generation. Energy
Procedia, 1(1), 823-828. doi:http://dx.doi.org/10.1016/j.egypro.2009.01.109
Rau, G. H. (2011). CO2 Mitigation via Capture and Chemical Conversion in Seawater.
Environmental Science & Technology, 45(3), 1088-1092. doi:10.1021/es102671x
Rau, G. H. (2014). Enhancing the Ocean’s Role in CO
2
Mitigation. In B. Freedman (Ed.), Global
Environmental Change (pp. 817-824).
Rau, G. H. (2019). The race to remove CO2 needs more contestants. Nature Climate Change.
doi:10.1038/s41558-019-0445-5
Rau, G. H., & Baird, J. R. (2018). Negative-CO2-emissions ocean thermal energy conversion.
Renewable and Sustainable Energy Reviews, 95, 265-272. doi:https://doi.org/10.1016/
j.rser.2018.07.027
Rau, G. H., & Caldeira, K. (1999). Enhanced carbonate dissolution: a means of sequestering
waste CO2 as ocean bicarbonate. Energy Conversion and Management, 40(17),
1803-1813. doi:http://dx.doi.org/10.1016/S0196-8904(99)00071-0
Rau, G. H., Carroll, S. A., Bourcier, W. L., Singleton, M. J., Smith, M. M., & Aines, R. D. (2013).
Direct electrolytic dissolution of silicate minerals for air CO2 mitigation and carbon-
negative H2 production. Proceedings of the National Academy of Sciences, 110(25),
10095-10100. doi:10.1073/pnas.1222358110
Rau, G. H., & Greene, C. H. (2015). Emissions reduction is not enough. Science, 349(6255),
1459. Retrieved from http://science.sciencemag.org/content/349/6255/1459.2
Rau, G. H., Knauss, K. G., Langer, W. H., & Caldeira, K. (2007). Reducing energy-related CO2
emissions using accelerated weathering of limestone. Energy, 32(8), 1471-1477.
doi:https://doi.org/10.1016/j.energy.2006.10.011
Rau, G. H., McLeod, E. L., & Hoegh-Guldberg, O. (2012). The need for new ocean conservation
strategies in a high-carbon dioxide world. Nature Climate Change, 2(10), 720-724.
doi:http://www.nature.com/nclimate/journal/v2/n10/abs/
nclimate1555.html#supplementary-information
Rau, G. H., Willauer, H. D., & Ren, Z. J. (2018). The global potential for converting renewable
electricity to negative-CO2-emissions hydrogen. Nature Climate Change. doi:10.1038/
s41558-018-0203-0
Rauh, S. (2007). Interactive comment on “N2O release from agro-biofuel production negates
global warming reduction by replacing fossil fuels” by P. J. Crutzen et al. Atmospheric
Chemistry and Physics Discussions, 7, S4616-4619. Retrieved from http://www.atmos-
chem-phys-discuss.net/7/S4616/2007/acpd-7-S4616-2007.pdf
Rausis, K., Ćwik, A., & Casanova, I. (2020). Phase evolution during accelerated CO2
mineralization of brucite under concentrated CO2 and simulated flue gas conditions.
Journal of CO2 Utilization, 37, 122-133. doi:https://doi.org/10.1016/j.jcou.2019.12.007
Raven, J. A., & Falkowski, P. G. (1999). Oceanic sinks for atmospheric CO2. Plant, Cell &
Environment, 22(6), 741-755. doi:10.1046/j.1365-3040.1999.00419.x
Ravi Ganesh, P., Mishra, S., Haagsma, A., & Gupta, N. (2021). Dynamic modeling to
understand pressure response from oil production and CO2 injection in a depleted
pinnacle reef reservoir: Manual calibration using simplified resolution of reservoir
heterogeneity. International Journal of Greenhouse Gas Control, 108, 103308.
doi:https://doi.org/10.1016/j.ijggc.2021.103308
Ravi, S., et al. (2016). Particulate matter emissions from biochar-amended soils as a potential
tradeoff to the negative emission potential. Scientific Reports, 6(35984), 1-7. Retrieved
from https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5080604/pdf/srep35984.pdf
Ravikumar, D., Keoleian, G., & Miller, S. (2020). The environmental opportunity cost of using
renewable energy for carbon capture and utilization for methanol production. Applied
Energy, 279, 115770. doi:https://doi.org/10.1016/j.apenergy.2020.115770
Ravikumar, D., Keoleian, G. A., Miller, S. A., & Sick, V. (2021). Assessing the Relative Climate
Impact of Carbon Utilization for Concrete, Chemical, and Mineral Production.
Environmental Science & Technology. doi:10.1021/acs.est.1c01109
Ravikumar, D., Zhang, D., Keoleian, G., Miller, S., Sick, V., & Li, V. (2021). Carbon dioxide
utilization in concrete curing or mixing might not produce a net climate benefit. Nature
Communications, 12(1), 855. doi:10.1038/s41467-021-21148-w
Ravindranath, J., et al. (2009). GHG Implications of Land Use and Land Conversion to Biofuel
Crops. Paper presented at the Proceedings of the Science Committte on Problems of
the Environment (SCOPE). International Biofuels Project Rapid Assessment,
Gummersbach, Germany. http://citeseerx.ist.psu.edu/viewdoc/download?
doi=10.1.1.519.6089&rep=rep1&type=pdf
Ravindranath, N. H., Balachandra, P., Dasappa, S., & Rao, K. U. (2006). Bioenergy
technologies for carbon abatement. Biomass & Bioenergy, 30(10), 826-837. doi:10.1016/
j.biombioe.2006.02.003
Raviv, M. (2015). Can the Use of Composts and Other Organic Amendments in Horticulture
Help to Mitigate Climate Change? Paper presented at the International Society for
Horticultural Science, Proceedings of the IInd IS on Organic Matter Mgt. and Compost
Use in Hort.
Ray, R., & Jana, T. K. (2017). Carbon sequestration by mangrove forest: One approach for
managing carbon dioxide emission from coal-based power plant. Atmospheric
Environment, 171, 149-154. doi:https://doi.org/10.1016/j.atmosenv.2017.10.019
Rayfuse, R., Lawrence, M., & Gjerde, K. M. (2008). Ocean Fertilisation and Climate Change:
The Need to Regulate Emerging High Seas Uses. International Journal of Marine and
Coastal Law, 23(2), 297-326. Retrieved from http://booksandjournals.brillonline.com/
content/journals/10.1163/092735208x295846
Razzak, S. A., Ali, S. A. M., Hossain, M. M., & deLasa, H. (2017). Biological CO
2
fixation with
production of microalgae in wastewater – A review. Renewable and Sustainable Energy
Reviews, 76, 379-390. doi:https://doi.org/10.1016/j.rser.2017.02.038
Razzak, S. A., Hossain, M. M., Lucky, R. A., Bassi, A. S., & de Lasa, H. (2013). Integrated CO2
capture, wastewater treatment and biofuel production by microalgae culturing—A review.
Renewable and Sustainable Energy Reviews, 27, 622-653. doi:https://doi.org/10.1016/
j.rser.2013.05.063
Read, P. (2008). Biosphere carbon stock management: addressing the threat of abrupt climate
change in the next few decades: an editorial essay. Climatic Change, 87(3), 305-320.
doi:10.1007/s10584-007-9356-y
Read, P. (2009). Policy to Address the Threat of Dangerous Climate Change: A Leading Role for
Biochar. In L. Johannes & J. Stephen (Eds.), Biochar for Environmental Management:
Science and Technology (pp. 393-404). London, UK: Earthscan.
Read, P., & Lermit, J. (2005). Bio-energy with carbon storage (BECS): A sequential decision
approach to the threat of abrupt climate change. Energy, 30(14), 2654-2671. doi:http://
dx.doi.org/10.1016/j.energy.2004.07.003
Read, P., Lermit, J., & Kathirgamanathan, P. (2003). Modelling bio-energy with carbon storage
(BECS) in a multi-region version of flames. Amsterdam: Elsevier Science Bv.
Realff, M. J., & Eisenberger, P. (2012). Flawed analysis of the possibility of air capture.
Proceedings of the National Academy of Sciences, 109(25), E1589-E1589. doi:10.1073/
pnas.1203618109
Realmonte, G., Drouet, L., Gambhir, A., Glynn, J., Hawkes, A., Köberle, A. C., & Tavoni, M.
(2019). An inter-model assessment of the role of direct air capture in deep mitigation
pathways. Nature Communications, 10(1), 3277. doi:10.1038/s41467-019-10842-5
Realmonte, G., Drouet, L., Gambhir, A., Glynn, J., Hawkes, A., Köberle, A. C., & Tavoni, M.
(2020). Reply to “High energy and materials requirement for direct air capture calls for
further analysis and R&D”. Nature Communications, 11(1), 3286. doi:10.1038/
s41467-020-17204-6
Reals, K. (2021). CO2 sucked from the air and turned into jet fuel shows promise. Retrieved
from https://runwaygirlnetwork.com/2021/02/16/co2-sucked-from-the-air-and-turned-into-
jet-fuel-shows-promise/
Reardon, J. P., Paskach, T. J., & Evans, P. (2015).
Rebitanim, N. Z., et al. . (2013). Potential applications of wastes from energy generation
particularly biochar in Malaysia. Renewable and Sustainable Energy Reviews, 21, 694–
702. Retrieved from http://www.sciencedirect.com/science/article/pii/
S1364032113000075
Recapture. (2021). Why We Created Recapture. Retrieved from https://
www.recapturecarbon.com/why-we-created-recapture
Reckamp, J. M., Garrido, R. A., & Satrio, J. A. (2014). Selective pyrolysis of paper mill sludge by
using pretreatment processes to enhance the quality of bio-oil and biochar products.
Biomass and Bioenergy, 71, 235 - 244. doi:10.1016/j.biombioe.2014.10.003
Reddy, A. (2012). Phosphorus Transport and Distribution in Kentucky Soils Prepared Using
Various Biochar Types. Retrieved from http://digitalcommons.wku.edu/theses/1210
Reddy, G. K., Nagender, T., & Yerasi, P. K. R. (2013). Biochar and its potential benefits - a
review. Environment and Ecology, 31(4A), 2000-2005. Retrieved from https://
www.cabdirect.org/cabdirect/abstract/20143078339
Reddy, K. R., Xie, T., & Dastgheibi, S. (2014). Evaluation of Biochar as a Potential Filter Media
for the Removal of Mixed Contaminants from Urban Storm Water Runoff. Journal of
Environmental Engineering, 140(12), 04014043. doi:10.1061/
(asce)ee.1943-7870.0000872
Reddy, K. R., Yargicoglu, E. N., Yue, D., & Yaghoubi, P. (2014). Enhanced Microbial Methane
Oxidation in Landfill Cover Soil Amended with Biochar. Journal of Geotechnical and
Geoenvironmental Engineering. Retrieved from http://ascelibrary.org/doi/abs/10.1061/
(ASCE)GT.1943-5606.0001148
Reed, D. G., Dowson, G. R. M., & Styring, P. (2017). Cellulose-Supported Ionic Liquids for Low-
Cost Pressure Swing CO2 Capture. 5(13). doi:10.3389/fenrg.2017.00013
Rees, F. (2015). Mobilité des métaux dans les systèmes sol-plante-biochar (Mobility of metals in
soil-plant-biochar systems). Université de Lorraine, Retrieved from http://www.theses.fr/
2014LORR0293
Rees, F., Germain, C., Sterckeman, T., & Morel, J.-L. (2015). Plant growth and metal uptake by
a non-hyperaccumulating species (Lolium perenne) and a Cd-Zn hyperaccumulator
(Noccaea caerulescens) in contaminated soils amended with biochar. Plant and Soil.
doi:10.1007/s11104-015-2384-x
Rees, F., Simonnot, M. O., & Morel, J. L. (2013). Short-term effects of biochar on soil heavy
metal mobility are controlled by intra-particle diffusion and soil pH increase. European
Journal of Soil Science, 65(1), 149-161. Retrieved from http://onlinelibrary.wiley.com/doi/
10.1111/ejss.12107/abstract
Rees, F., Sterckeman, T., & Morel, J.-L. (2015). LE BIOCHAR, UN OUTIL POUR LA
PHYTOREMÉDIATION DES SOLS CONTAMINÉS (THE BIOCHAR, A TOOL FOR
CONTAMINATED SOIL PHYTOREMEDIATION). In.
Rees, F., TERCKEMAN, T., & Morel, J.-L. (2015). ROOT DEVELOPMENT IN METAL
CONTAMINATED SOILS AMENDED WITH BIOCHAR. In.
Registry, A. C. (2015). Scientific Peer Review Comments and Responses: A Methodology for
Biochar Projects. Retrieved from http://americancarbonregistry.org/carbon-accounting/
standards-methodologies/methodology-for-emissions-reductions-from-biochar-projects/
biochar-methodology-scientific-peer-review-comments-and-response-final.pdf
Rehdanz, K., Tol, R. S. J., & Wetzel, P. (2006). Ocean carbon sinks and international climate
policy. Energy Policy, 34(18), 3516-3526. doi:http://dx.doi.org/10.1016/
j.enpol.2005.07.015
Rehman, U., et al. . (2015). Adsorption of Brilliant Green dye on biochar prepared from
lignocellulosic bioethanol plant waste. CLEAN - Soil, Air, Water, 44(1), 55-62.
doi:10.1002/clen.201300954
Rehrah, D., Bansode, R. R., Hassan, O., & Ahmedna, M. (2016). Physico-chemical
characterization of biochars from solid municipal waste for use in soil amendment.
Journal of Analytical and Applied Pyrolysis. doi:10.1016/j.jaap.2015.12.022
Reibe, K. (2015). Wirkungen von Biokohlen im System Boden-Pflanze – Untersuchungen auf
sandigen Standorten (Effects of biochars in the system soil-plant - studies on sandy
sites). Humboldt-Universität zu Berlin (Humboldt University of Berlin), Retrieved from
http://edoc.hu-berlin.de/docviews/abstract.php?id=41929
Reibe, K., Götz, K.-P., Döring, T. F., Roß, C.-L., & Ellmer, F. (2014). Impact of hydro-biochars on
root morphology of spring wheat. Archives of Agronomy and Soil Science, 1 - 14.
doi:10.1080/03650340.2014.983090
Reibe, K., Götz, K.-P., Roß, C.-L., Döring, T. F., Ellmer, F., & Ruess, L. (2015). Impact of quality
and quantity of biochar and hydrochar on soil Collembola and growth of spring wheat.
Soil Biology and Biochemistry, 83, 84 - 87. doi:10.1016/j.soilbio.2015.01.014
Reibe, K., Roß, C.-L., & Ellmer, F. (2014). Hydro-/Biochar application to sandy soils: impact on
yield components and nutrients of spring wheat in pots. Archives of Agronomy and Soil
Science, 1 - 6. doi:10.1080/03650340.2014.977786
Reichel, T., Demus, T., Echterhof, T., & Pfeifer, H. (2014). Increasing the sustainability of the
steel production in the electric arc furnace by substituting fossil coal with biochar. Paper
presented at the 4th Central European Biomass Conference. http://
www.researchgate.net/publication/
260174609_Increasing_the_sustainability_of_the_steel_production_in_the_electric_arc_
furnace_by_substituting_fossil_coal_with_biochar
Reid, B. J., et al. (2013). Influence of biochar on isoproturon partitioning and bioaccessibility in
soil. Environmental Pollution, 181, 44–50. Retrieved from http://www.sciencedirect.com/
science/article/pii/S026974911300300X
Reid, P. C., & Edwards, M. (2001). Plankton And Climate A2 - Steele, John H. In Encyclopedia
of Ocean Sciences (pp. 2194-2200). Oxford: Academic Press.
Reijnders, L. (2006). Conditions for the sustainability of biomass based fuel use. Energy Policy,
34(7), 863-876. Retrieved from https://www.researchgate.net/publication/
222051790_Conditions_for_the_sustainability_of_biomass_based_fuel_use
Reijnders, L. (2009). Are forestation, bio-char and landfilled biomass adequate offsets for the
climate effects of burning fossil fuels? Energy Policy, 37(8), 2839-2841. Retrieved from
http://www.sciencedirect.com/science/article/pii/S0301421509002146
Reiley, L. (2019). The new plan to remove a trillion tons of carbon dioxide from the atmosphere:
Bury it. Washington Post. Retrieved from https://www.washingtonpost.com/business/
2019/06/12/new-plan-remove-trillion-tons-carbon-dioxide-atmosphere-bury-it/?
noredirect=on&utm_term=.77bfbb421ae0
Reilly, J., Melillo, J., Cai, Y., Kicklighter, D., Gurgel, A., Paltsev, S., . . . Schlosser, A. (2012).
Using Land To Mitigate Climate Change: Hitting the Target, Recognizing the Trade-offs.
Environmental Science & Technology, 46(11), 5672-5679. doi:10.1021/es2034729
Reinecke, S., et al. (2018). Accelerating Forest Landscape Restoration: Key Governance
Factors. Retrieved from
Reiner, D., et al. (2011). Opinion shaping factors towards CCS and local CCS projects: Public
and stakeholder survey and focus groups. Retrieved from http://www.ccs.cam.ac.uk/files/
opinion-shaping-factors-towards-ccs-and-local-ccs-projects-public-and-stakeholder-
survey-and-focus-groups/at_download/file
Reiner, D., & Liang, X. (2012). Stakeholder views on financing carbon capture and storage
demonstration projects in China. Environmental Science and Technology, 46(2),
643-651. doi:10.1021/es203037j
Reiner, D. M. (2016). Learning through a portfolio of carbon capture and storage demonstration
projects. Nature Energy, 1, 15011. doi:10.1038/nenergy.2015.11
Reiner, D. M. (2020). Chapter 16 The Political Economy of Carbon Capture and Storage. In
Carbon Capture and Storage (pp. 536-558): The Royal Society of Chemistry.
Reitze, A. W. J. (2016). Climate Change Law. In D. A. Farber & M. Peeters (Eds.), Climate
Change Law (pp. 451-464).
Rékási, M., & Uzinger, N. (2015). A bioszén felhasználásának lehetőségei a talaj tápanyag-
utánpótlásában – Szemle. Agrokémia és Talajtan, 64(1), 239 - 256.
doi:10.1556/0088.2015.64.1.18
Rembauville, M., Salter, I., Dehairs, F., Miquel, J. C., & Blain, S. (2018). Annual particulate
matter and diatom export in a high nutrient, low chlorophyll area of the Southern Ocean.
Polar Biology, 41(1), 25-40. doi:10.1007/s00300-017-2167-3
Remenárová, L., et al. (2012). Adsorption of Copper and Zinc by Biochars Produced from
Pyrolysis of Hardwood and Corn Straw in Aqueous Solution. Biosorption and
bioaccumulation of heavy metals, 102(19), 8877-8884. Retrieved from http://
www.sciencedirect.com/science/article/pii/S0960852411009059
Remer, L. A. (2006). Dust, fertilization and sources. Environmental Research Letters, 1(1), 1-2.
Retrieved from http://iopscience.iop.org/article/10.1088/1748-9326/1/1/011001/meta
Ren, J., Li, N., Li, L., An, J.-K., Zhao, L., & Ren, N.-Q. (2014). Granulation and ferric oxides
loading enable biochar derived from cotton stalk to remove phosphate from water.
Bioresource Technology, 178, 119-125. doi:10.1016/j.biortech.2014.09.071
Ren, N., Tang, Y., & Li, M. (2018). Mineral additive enhanced carbon retention and stabilization
in sewage sludge-derived biochar. Process Safety and Environmental Protection, 115,
70-78. doi:https://doi.org/10.1016/j.psep.2017.11.006
Ren, S., et al. (2014). Hydrocarbons and hydrogen-rich syngas production by biomass catalytic
pyrolysis and bio-oil upgrading over biochar catalysts. RSC Adv, 4, 10731-10737.
Retrieved from http://pubs.rsc.org/-/content/articlehtml/2014/ra/c4ra00122b
Ren, X., Sun, H., Wang, F., & Cao, F. (2016). The changes in biochar properties and sorption
capacities after being cultured with wheat for 3 months. Chemosphere, 144, 2257 -
2263. doi:10.1016/j.chemosphere.2015.10.132
Ren, X., Zhang, P., Zhao, L., & Sun, H. (2015). Sorption and degradation of carbaryl in soils
amended with biochars: influence of biochar type and content. Environmental Science
and Pollution Research, 23(3), 2724-2734. doi:10.1007/s11356-015-5518-z
Renforth, P., et al. (2011). Designing a carbon capture function into urban soils. Proceedings of
the Institution of Civil Engineers - Urban Design and Planning, 164(2), 121-128.
Retrieved from http://www.icevirtuallibrary.com/doi/full/10.1680/udap.2011.164.2.121
Renforth, P. (2012). The potential of enhanced weathering in the UK. International Journal of
Greenhouse Gas Control, 10, 229-243. Retrieved from http://www.sciencedirect.com/
science/article/pii/S1750583612001466
Renforth, P. (2017). Preventing Climate Change by Increasing Ocean Alkalinity. EOS Editors'
Vox. Retrieved from https://eos.org/editors-vox/preventing-climate-change-by-increasing-
ocean-alkalinity
Renforth, P. (2019). The negative emission potential of alkaline materials. Nature
Communications, 10(1), 1401. doi:10.1038/s41467-019-09475-5
Renforth, P., & Campbell, J. S. (2021). The role of soils in the regulation of ocean acidification.
Philosophical Transactions of the Royal Society B: Biological Sciences, 376(1834),
20200174. doi:doi:10.1098/rstb.2020.0174
Renforth, P., & Henderson, G. (2017). Assessing ocean alkalinity for carbon sequestration.
Reviews of Geophysics, 55(3), 636-674. doi:10.1002/2016RG000533
Renforth, P., Jenkins, B. G., & Kruger, T. (2013). Engineering challenges of ocean liming.
Energy, 60, 442-452. doi:http://dx.doi.org/10.1016/j.energy.2013.08.006
Renforth, P., & Kruger, T. (2013). Coupling Mineral Carbonation and Ocean Liming. Energy &
Fuels, 27(8), 4199-4207. doi:10.1021/ef302030w
Renforth, P., & Manning, D. A. C. (2011). Laboratory carbonation of artificial silicate gels
enhanced by citrate: Implications for engineered pedogenic carbonate formation.
International Journal of Greenhouse Gas Control, 5(6), 1578-1586. doi:http://dx.doi.org/
10.1016/j.ijggc.2011.09.001
Renforth, P., Manning, D. A. C., & Lopez-Capel, E. (2009). Carbonate precipitation in artificial
soils as a sink for atmospheric carbon dioxide. Applied Geochemistry, 24(9), 1757-1764.
doi:http://dx.doi.org/10.1016/j.apgeochem.2009.05.005
Renforth, P., Pogge von Strandmann, P. A. E., & Henderson, G. M. (2015). The dissolution of
olivine added to soil: Implications for enhanced weathering. Applied Geochemistry, 61,
109-118. doi:http://dx.doi.org/10.1016/j.apgeochem.2015.05.016
Renforth, P., Washbourne, C. L., Taylder, J., & Manning, D. A. C. (2011). Silicate Production and
Availability for Mineral Carbonation. Environmental Science & Technology, 45(6),
2035-2041. doi:10.1021/es103241w
Renforth, P., & Wilcox, J. (2020). Editorial: The Role of Negative Emission Technologies in
Addressing Our Climate Goals. Frontiers in Climate. Retrieved from https://
www.frontiersin.org/articles/10.3389/fclim.2020.00001/full?
utm_source=FRN&utm_medium=EMAIL_IRIS&utm_campaign=EMI_FRN_ARTICLEPU
BLISHED_FOLLOWERS&utm_content=ARTICLE_TITLE
Renfrew, S. E., Starr, D. E., & Strasser, P. (2020). Electrochemical Approaches toward CO2
Capture and Concentration. ACS Catalysis, 10(21), 13058-13074. doi:10.1021/
acscatal.0c03639
Renner, R. (2007). Rethinking biochar. Environmental Science & Technology, 41(17),
5932-5933. doi:10.1021/es0726097
Renwick, A. R., Lin, B. B., Schellhorn, N. A., Macfadyen, S., & Cunningham, S. A. (2013).
Maximizing the Environmental Benefits of Carbon Farming through Ecosystem Service
Delivery. BioScience, 63(10), 793-803. doi:10.1525/bio.2013.63.10.6 %J BioScience
Reppin, S., Kuyah, S., de Neergaard, A., Oelofse, M., & Rosenstock, T. S. J. A. S. (2019).
Contribution of agroforestry to climate change mitigation and livelihoods in Western
Kenya. doi:10.1007/s10457-019-00383-7
Reppman, M., et al. (2021). The insurance rationale for carbon removal solutions. Retrieved
from https://www.swissre.com/dam/jcr:31e39033-0ca6-418e-a540-d61b8e7d7b31/swiss-
re-institute-expertise-publication-insurance-%20rationale-for-carbon-removal-
solutions.pdf
Reppman, M., et al. (2021). The insurance rationale for carbon removal solutions. Retrieved
from https://www.swissre.com/institute/research/topics-and-risk-dialogues/climate-and-
natural-catastrophe-risk/expertise-publication-carbon-removal-technologies.html
Resasco, J., Chen, L. D., Clark, E., Tsai, C., Hahn, C., Jaramillo, T. F., . . . Bell, A. T. (2017).
Promoter Effects of Alkali Metal Cations on the Electrochemical Reduction of Carbon
Dioxide. Journal of the American Chemical Society, 139(32), 11277-11287. doi:10.1021/
jacs.7b06765
Reside, A. E., VanDerWal, J., & Moran, C. (2017). Trade-offs in carbon storage and biodiversity
conservation under climate change reveal risk to endemic species. Biological
Conservation, 207, 9-16. doi:https://doi.org/10.1016/j.biocon.2017.01.004
Resnick-Ault, J. (2019). Occidental CEO calls for new U.S. laws to boost carbon capture.
Financial Post. Retrieved from https://business.financialpost.com/pmn/business-pmn/
occidental-ceo-calls-for-new-u-s-laws-to-boost-carbon-capture
Restoration, F. f. C. (2019). Rick Parnell, CEO of the Foundation for Climate Restoration, Issues
the Following Statement on UK Parliamentary Debate on Climate Restoration [Press
release]. Retrieved from http://www.globenewswire.com/news-release/
2019/10/29/1937293/0/en/Rick-Parnell-CEO-of-the-Foundation-for-Climate-Restoration-
Issues-the-Following-Statement-on-UK-Parliamentary-Debate-on-Climate-
Restoration.html
Retallack, G. J. (1997). Early Forest Soils and Their Role in Devonian Global Change.
276(5312), 583-585. doi:10.1126/science.276.5312.583 %J Science
Rétháti, G., Vejzer, A., Simon, B., Benjared, R., & Füleky, G. (2014). Examination of zinc
adsorption capacity of soils treated with different pyrolysis productsAbstract. Acta
Universitatis Sapientiae, Agriculture and Environment, 6(1). doi:10.2478/
ausae-2014-0010
Reuters, T. (2020). Can carbon capture help to curb climate change? The Dispatch. Retrieved
from https://www.thedispatch.in/can-carbon-capture-help-to-curb-climate-change/
Revell, K. T., Maguire, R. O., & Agblevor, F. A. (2012). Field Trials With Poultry Litter Biochar
and Its Effect on Forages, Green Peppers, and Soil Properties. Soil Science.
doi:10.1097/SS.0b013e3182741050
Revell, K. T., Maguire, R. O., & Agblevor, F. A. (2012). Influence of Poultry Litter Biochar on Soil
Properties and Plant Growth. Soil Science. doi:10.1097/SS.0b013e3182564202
Reverchon, F., et al. (2013). Changes in d15N in a soil–plant system under different biochar
feedstocks and application rates. Biology and Fertility of Soils, 50(2), 275-283. Retrieved
from https://research-repository.uwa.edu.au/en/publications/changes-in-%CE%B415n-in-
a-soilplant-system-under-different-biochar-fee
Reverchon, F., et al. . (2014). A preliminary assessment of the potential of using an acacia—
biochar system for spent mine site rehabilitation. Environmental Science and Pollution
Research, 22(3), 2138-2144. doi:10.1007/s11356-014-3451-1
Rex, D., Schimmelpfennig, S., Jansen-Willems, A., Moser, G., Kammann, C., & Müller, C.
(2015). Microbial community shifts 2.6!years after top dressing of Miscanthus biochar,
hydrochar and feedstock on a temperate grassland site. Plant and Soil. doi:10.1007/
s11104-015-2618-y
Reyes, O., et al. . (2015). The Effects of Ash and Black Carbon (Biochar) on Germination of
Diffrent Tree Species. Fire Ecology, 11(1), 119-133. doi:10.4996/fireecology.1101119
Reyes-Escobar, J., Zagal, E., Sandoval, M., Navia, R., & Muñoz, C. (2015). Development of a
Biochar-Plant-Extract-Based Nitrification Inhibitor and Its Application in Field Conditions.
Sustainability, 7(10), 13585 - 13596. doi:10.3390/su71013585
Reynolds, J. (2018). Governing Experimental Responses Negative Emissions Technologies and
Solar Climate Engineering. In A. Jordan, et al. (Ed.), Governing Climate Change:
Polycentricity in Action? (pp. 285-302).
Reynolds, J. (2019). Can Planting Trees Solve Climate Change? Legal Planet. Retrieved from
https://legal-planet.org/2019/07/05/can-planting-trees-solve-climate-change/
Reynolds, J. (2019). Can Soils Solve Climate Change? Legal Planet. Retrieved from https://
legal-planet.org/2019/10/28/can-soils-solve-climate-change/
Reynolds, J. (2020). Carbon tax should fund CO2 removal, says CEO of 'mechanical trees' firm.
Independent.ie. Retrieved from https://www.independent.ie/business/technology/carbon-
tax-should-fund-co2-removal-says-ceo-of-mechanical-trees-firm-39300156.html
Rey-Salgueiro, L., Omil, B., Merino, A., Martínez-Carballo, E., & Simal-Gándara, J. (2016).
Organic pollutants profiling of wood ashes from biomass power plants linked to the ash
characteristics. Science of The Total Environment, 544, 535 - 543. doi:10.1016/
j.scitotenv.2015.11.134
Reza, M. T., et al. . (2012). Pelletization of biochar from hydrothermally carbonized wood.
Environmental Progress & Sustainable Energy, 31(2), 225-234. doi:10.1002/ep.11615
Reza, M. T., et al. (2014). Engineered pellets from dry torrefied and HTC biochar blends.
Biomass and Bioenergy, 63, 229-238. Retrieved from http://www.sciencedirect.com/
science/article/pii/S0961953414000488
Rezende, E. I. P., et al., & . (2011). Biochar & Carbon Sequestration [Biocarvão (Biochar) e
Sequestro de Carbono]. Revista Virtual de Química, 3, 426-433.
Rezvani, S., Moheimani, N. R., & Bahri, P. A. (2016). Techno-economic assessment of CO2 bio-
fixation using microalgae in connection with three different state-of-the-art power plants.
Computers & Chemical Engineering, 84, 290-301. doi:https://doi.org/10.1016/
j.compchemeng.2015.09.001
Rheinhardt, J. H., Singh, P., Tarakeshwar, P., & Buttry, D. A. (2017). Electrochemical Capture
and Release of Carbon Dioxide. ACS Energy Letters, 2(2), 454-461. doi:10.1021/
acsenergylett.6b00608
Rhode, E. (2021). What Is Direct Air Capture? Does It Work? Treehugger. Retrieved from
https://www.treehugger.com/what-is-direct-air-capture-5118138
Rhodes, A. H., Carlin, A., & Semple, K. T. (2008). Impact of black carbon in the extraction and
mineralization of phenanthrene in soil. Environmental Science & Technology, 42(3),
740-745. Retrieved from http://pubs.acs.org/doi/abs/10.1021/es071451n
Rhodes, C. (2009). Thinking Positive - Carbon Capture. Retrieved from http://scitizen.com/
stories/Future-Energies/2009/02/Thinking-Positive---Carbon-Capture-/
Rhodes, C. J., & Martin, A. P. (2010). The influence of viral infection on a plankton ecosystem
undergoing nutrient enrichment. Journal of Theoretical Biology, 265(3), 225-237.
doi:http://dx.doi.org/10.1016/j.jtbi.2010.04.022
Rhodes, J. S. (2007). Carbon mitigation with biomass: An engineering, economic and policy
assessment of opportunities and implications. (Ph.D. Dissertation/Thesis). Carnegie
Mellon University, Retrieved from https://search.proquest.com/docview/304885642?
accountid=14496
Rhodes, J. S., & Keith, D. W. (2003). Biomass energy with geological sequestration of CO2:
Two for the price of one? Amsterdam: Elsevier Science Bv.
Rhodes, J. S., & Keith, D. W. (2005). Engineering economic analysis of biomass IGCC with
carbon capture and storage. Biomass and Bioenergy, 29, 440-450. Retrieved from
https://keith.seas.harvard.edu/files/tkg/files/67.rhodes.2005.biomassccs.e.pdf
Rhodes, J. S., & Keith, D. W. (2008). Biomass with capture: negative emissions within social
and environmental constraints: an editorial comment. Climatic Change, 87, 321-328.
Riahi, K., Rubin, E. S., Taylor, M. R., Schrattenholzer, L., & Hounshell, D. (2004). Technological
learning for carbon capture and sequestration technologies. Energy Economics, 26(4),
539-564. doi:http://dx.doi.org/10.1016/j.eneco.2004.04.024
Ricci, O. (2012). Providing adequate economic incentives for bioenergies with CO2 capture and
geological storage. Energy Policy, 44, 362-373. doi:http://dx.doi.org/10.1016/
j.enpol.2012.01.066
Ricci, O., & Selosse, S. (2013). Global and regional potential for bioelectricity with carbon
capture and storage. Energy Policy, 52(Supplement C), 689-698. doi:https://doi.org/
10.1016/j.enpol.2012.10.027
Rice, M. L. (2003). GreenSea&#39;s interest in fertilizing sea with iron. Nature, 421, 786.
doi:10.1038/421786c
Richards, B. K., Stoof, C. R., Cary, I. J., & Woodbury, P. B. (2014). Reporting on Marginal Lands
for Bioenergy Feedstock Production: a Modest Proposal. BioEnergy Research, 7(3),
1060-1062. doi:10.1007/s12155-014-9408-x
Richards, H. (2017). Carbon dioxide from coal plants has an interested buyer from oil and gas, if
the costs come down. Casper Star Tribune. Retrieved from http://trib.com/business/
energy/carbon-dioxide-from-coal-plants-has-an-interested-buyer-from/article_db13a06a-
af61-52b5-858d-ff0330dc1e54.html
Richards, K. R., & Stokes, C. (2004). A Review of Forest Carbon Sequestration Cost Studies: A
Dozen Years of Research. Climatic Change, 63(1), 1-48. doi:10.1023/
b:Clim.0000018503.10080.89
Richards, T. (2016). Biochar production opportunities for South East Asia. Agriculture Science
Journal, 2(1), 12-20. Retrieved from http://eprints.utar.edu.my/1994/1/
Biochar_production_opportunities_for_South_East_Asia.pdf
Richardson, J. (2015). It's Getting Hot in Here: A Look into Whether Ocean Iron Fertilization is
Legally Viable in the United States. SMU Science & Technology Law Review, 18,
73-107. Retrieved from http://www.lexisnexis.com/hottopics/lnacademic/?
Richardson, J. W., Johnson, M. D., Lacey, R., Oyler, J., & Capareda, S. (2014). Harvesting and
extraction technology contributions to algae biofuels economic viability. Algal Research,
5, 70-78. doi:https://doi.org/10.1016/j.algal.2014.05.007
Richardson, J. W., Johnson, M. D., & Outlaw, J. L. (2012). Economic comparison of open pond
raceways to photo bio-reactors for profitable production of algae for transportation fuels
in the Southwest. Algal Research, 1(1), 93-100. doi:https://doi.org/10.1016/
j.algal.2012.04.001
Richardson, J. W., Johnson, M. D., Zhang, X., Zemke, P., Chen, W., & Hu, Q. (2014). A financial
assessment of two alternative cultivation systems and their contributions to algae biofuel
economic viability. Algal Research, 4, 96-104. doi:https://doi.org/10.1016/
j.algal.2013.12.003
Richardson, T. L., & Jackson, G. A. (2007). Small Phytoplankton and Carbon Export from the
Surface Ocean. Science, 315(5813), 838-840. doi:10.1126/science.1133471
Richardson, W. (2020). Running Tide attracts big VC names with plan to bury gigatons of CO2
on ocean floor. Maine Startups Insider. Retrieved from https://mainestartupsinsider.com/
running-tides-attracts-big-vc-names/
Richter, A. (2020). Significant expansion of carbon removal and storage planned at geothermal
plant in Iceland. Retrieved from https://www.thinkgeoenergy.com/significant-expansion-
of-carbon-removal-and-storage-planned-at-geothermal-plant-in-iceland/
Ricke, K. L., Millar, R. J., & MacMartin, D. G. (2017). Constraints on global temperature target
overshoot. Scientific Reports, 7(1), 14743. doi:10.1038/s41598-017-14503-9
Rickels, W., et al. (2018). Integrated Assessment of Carbon Dioxide Removal. Earth's Future,
6(3), 565-582. doi:doi:10.1002/2017EF000724
Rickels, W., et al. (2020). The Future of (Negative) Emissions Trading in the European Union.
Retrieved from https://www.ifw-kiel.de/experts/ifw/wilfried-rickels/the-future-of-negative-
emissions-trading-in-the-european-union-15070/
Rickels, W., Rehdanz, K., & Oschlies, A. (2010). Methods for greenhouse gas offset accounting:
A case study of ocean iron fertilization. Ecological Economics, 69(12), 2495-2509.
doi:http://dx.doi.org/10.1016/j.ecolecon.2010.07.026
Rickels, W., Rehdanz, K., & Oschlies, A. (2012). Economic prospects of ocean iron fertilization
in an international carbon market. Resource and Energy Economics, 34(1), 129-150.
doi:http://dx.doi.org/10.1016/j.reseneeco.2011.04.003
Ricketts, E. R., et al. (2009). Effects of carbon dioxide sequestration on California margin deep-
sea foraminiferal assemblages. Marine Micropaleontology, 72(3), 165-175.
Ricklingen, F. (2014). Qualitätssicherung ung Umwelteffekte von Pflanzenkohle (Quality
assurance and environmental effects of biochar). BUND: Friends of the Earth Germany.
Retrieved from http://www.bund-bergstrasse.de/fileadmin/bundgruppen/bcmskgbergstr/
Atomkraft/Tagungsreader_17_10_14_Pflanzenkohle-1.pdf
Ridgwell, A. (2009). Implications of the glacial CO2 ‘‘iron hypothesis’ for Quaternary climate
change. Geochemistry, Geophysics, Geosystems, 4(9), 1-10. Retrieved from http://
onlinelibrary.wiley.com/doi/10.1029/2003GC000563/pdf
Ridgwell, A., & Hargreaves, J. C. (2007). Regulation of atmospheric CO2 by deep-sea
sediments in an Earth system model. Global Biogeochemical Cycles, 21(2), n/a-n/a.
doi:10.1029/2006GB002764
Ridgwell, A., Rodengen, T. J., & Kohfeld, K. E. (2013). Geographical variations in the
effectiveness and side effects of deep ocean carbon sequestration. Geophysical
Research Letters, 38(17), 1-6. Retrieved from http://onlinelibrary.wiley.com/doi/
10.1029/2011GL048423/pdf
Ridha, F. N., Manovic, V., Macchi, A., & Anthony, E. J. (2015). CO2 capture at ambient
temperature in a fixed bed with CaO-based sorbents. Applied Energy, 140, 297-303.
doi:http://dx.doi.org/10.1016/j.apenergy.2014.11.030
Ridley, C. E., Clark, C. M., LeDuc, S. D., Bierwagen, B. G., Lin, B. B., Mehl, A., & Tobias, D. A.
(2012). Biofuels: Network Analysis of the Literature Reveals Key Environmental and
Economic Unknowns. Environmental Science & Technology, 46(3), 1309-1315.
doi:10.1021/es2023253
Riedel, T., et al. (2014). Changes in the molecular composition of organic matter leached from
an agricultural topsoil following addition of biomass-derived black carbon (biochar).
Organic Geochemistry, 69, 52-60. Retrieved from http://www.sciencedirect.com/science/
article/pii/S0146638014000382
Riedel, T., Hennessy, P., Iden, S. C., & Koschinsky, A. (2015). Leaching of soil-derived major
and trace elements in an arable topsoil after the addition of biochar. European Journal of
Soil Science, 66(4), 823-834. doi:10.1111/ejss.12256
Rigdon, W. A., Omasta, T. J., Lewis, C., Hickner, M. A., Varcoe, J. R., Renner, J. N., . . . Mustain,
W. E. (2017). Carbonate Dynamics and Opportunities With Low Temperature, Anion
Exchange Membrane-Based Electrochemical Carbon Dioxide Separators. Journal of
Electrochemical Energy Conversion and Storage, 14(2), 020701-020701-020708.
doi:10.1115/1.4033411
Righelato, R., & Spracklen, D. V. (2007). Carbon Mitigation by Biofuels or by Saving and
Restoring Forests? Science, 317(5840), 902-902. doi:10.1126/science.1141361
Rigopoulos, I., Harrison, A. L., Delimitis, A., Ioannou, I., Efstathiou, A. M., Kyratsi, T., & Oelkers,
E. H. (2018). Carbon sequestration via enhanced weathering of peridotites and basalts
in seawater. Applied Geochemistry, 91, 197-207. doi:https://doi.org/10.1016/
j.apgeochem.2017.11.001
Rigopoulos, I., Petallidou, K. C., Vasiliades, M. A., Delimitis, A., Ioannou, I., Efstathiou, A. M., &
Kyratsi, T. (2016). On the potential use of quarry waste material for CO2 sequestration.
Journal of CO2 Utilization, 16, 361-370. doi:https://doi.org/10.1016/j.jcou.2016.09.005
Rijs, M. (2021). The production of synthetic kerosene by combined DAC with water electrolysis
and biomass gasification for Rotterdam-The Hague Airport along with intermittent
electricity supply. (Masters). Delft University of Technology, Retrieved from http://
resolver.tudelft.nl/uuid:8f6f283f-7b04-4bf2-979b-6adeca8e42bf
Rillig, M. C., M., W., M., S., P.M., A., C., G., H.G., R., . . . M., A. (2010). Material derived from
hydrothermal carbonization: Effects on plant growth and arbuscular mycorrhiza. Applied
Soil Ecology, 45(3), 238-242. doi:10.1016/j.apsoil.2010.04.011.
Rinberg, A., Bergman, A. M., Schrag, D. P., & Aziz, M. J. (2021). Alkalinity Concentration Swing
for Direct Air Capture of Carbon Dioxide. ChemSusChem, n/a(n/a). doi:https://doi.org/
10.1002/cssc.202100786
Rinder, T., & von Hagke, C. (2021). The influence of particle size on the potential of enhanced
basalt weathering for carbon dioxide removal - Insights from a regional assessment.
Journal of Cleaner Production, 128178. doi:https://doi.org/10.1016/j.jclepro.2021.128178
Ringius, L. (2002). Soil Carbon Sequestration and the CDM: Opportunities and Challenges for
Africa. Climatic Change, 54(4), 471-495. doi:10.1023/a:1016108215242
Ringrose, P. S. (2018). The CCS hub in Norway: some insights from 22 years of saline aquifer
storage. Energy Procedia, 146, 166-172. doi:https://doi.org/10.1016/
j.egypro.2018.07.021
Rinklebe, J., & Shaheen, S. M. (2015). Miscellaneous additives can enhance plant uptake and
affect geochemical fractions of copper in a heavily polluted riparian grassland soil.
Ecotoxicology and Environmental Safety, 119, 58 - 65. doi:10.1016/j.ecoenv.2015.04.046
Rinklebe, J., Shaheen, S. M., & Frohne, T. (2015). Amendment of biochar reduces the release
of toxic elements under dynamic redox conditions in a contaminated floodplain soil.
Chemosphere, 142, 41-47. doi:10.1016/j.chemosphere.2015.03.067
Ríos, S. D., Torres, C. M., Torras, C., Salvadó, J., Mateo-Sanz, J. M., & Jiménez, L. (2013).
Microalgae-based biodiesel: Economic analysis of downstream process realistic
scenarios. Bioresource Technology, 136, 617-625. doi:https://doi.org/10.1016/
j.biortech.2013.03.046
Ripberger, G. D., Jones, J. R., Paterson, A., & Holt, R. (2015). Is it possible to produce biochar
at different highest treatment temperatures in the pyrolysis range? - The exothermic
nature of pyrolysis. Paper presented at the Asia Pacific Confederation of Chemical
Engineering Congress. http://search.informit.com.au/
documentSummary;dn=728404242375624;res=IELENG
Ritschard, R. L. (1992). Marine algae as a CO
2
sink. Water, Air, and Soil Pollution, 64(1),
289-303. doi:10.1007/bf00477107
Ritson, J. (2020). Wishful thinking about carbon removal is slowing down climate action. In:
Green Alliance.
Rittl, T. F., Novotny, E. H., Balieiro, F. C., Hoffland, E., Alves, B. J. R., & Kuyper, T. W. (2015).
Negative priming of native soil organic carbon mineralization by oilseed biochars of
contrasting quality. European Journal of Soil Science, 66(4), 714-721. doi:10.1111/
ejss.12257
Ritzberge, J., et al. r. (2014). The BioCRACK Process -A Refinery Integrated Biomass-to-Liquid
Concept to Produce Diesel from Biogenic Feedstock. In.
Rivas, J., & Mc Carty, A. (2015). Simultaneous Biochar and Syngas Production in a Top-Lit
Updraft Biomass Gasifier. NC State University, Retrieved from http://
repository.lib.ncsu.edu/ir/handle/1840.16/10715
Rizhiya, E. Y., Buchkina, N. P., Mukhina, I. M., Belinets, A. S., & Balashov, E. V. (2015). Effect of
biochar on the properties of loamy sand Spodosol soil samples with different fertility
levels: A laboratory experiment. Eurasian Soil Science, 48(2), 192 - 200. doi:10.1134/
s1064229314120084
Rizwan, M. S., Imtiaz, M., Chhajro, M. A., Huang, G., Fu, Q., Zhu, J., . . . Hu, H. (2016).
Influence of pyrolytic and non-pyrolytic rice and castor straws on the immobilization of
Pb and Cu in contaminated soil. Environmental Technology, 37, 1-8.
doi:10.1080/09593330.2016.1158870
Ro, K., et al. . (2015). Removing Gaseous NH3 Using Biochar as an Adsorbent. Agriculture,
5(4), 991 - 1002. doi:10.3390/agriculture5040991
Ro, K. S., Cantrell, K. B., & Hunt, P. G. (2010). High-Temperature Pyrolysis of Blended Animal
Manures for Producing Renewable Energy and Value-Added Biochar. Industrial &
Engineering Chemistry Research, 49(20), 10125-10131. Retrieved from http://
pubs.acs.org/doi/abs/10.1021/ie101155m
Ro, K. S., Novak, J. M., Bae, S., Flora, J., & Berge, N. (2010). Greenhouse gas emission from
soil amended with biochar made from hydrothermally carbonizing swine solids [abstract].
Paper presented at the American Chemical Society National Meeting, San Francisco,
California.
Robert, B. J., James, T. R., Josep, G. C., Ray, G. A., Roni, A., Dennis, D. B., . . . Diane, E. P.
(2008). Protecting climate with forests. Environmental Research Letters, 3(4), 044006.
Retrieved from http://stacks.iop.org/1748-9326/3/i=4/a=044006
Roberts, D. (2017). It’s time to start talking about “negative” carbon dioxide emissions. Vox.
Retrieved from https://www.vox.com/energy-and-environment/2017/8/18/16166014/
negative-emissions
Roberts, D. (2018). Sucking carbon out of the air won’t solve climate change. Vox. Retrieved
from https://www.vox.com/energy-and-environment/2018/6/14/17445622/direct-air-
capture-air-to-fuels-carbon-dioxide-engineering
Roberts, D. (2019). 6 ways to use CO2 to cut emissions and generate trillions of dollars. Vox.
Retrieved from https://www.vox.com/energy-and-environment/2019/11/13/20839531/
climate-change-industry-co2-carbon-capture-utilization-storage-ccu
Roberts, D. (2019). Could squeezing more oil out of the ground help fight climate change. Vox.
Retrieved from https://www.vox.com/energy-and-environment/2019/10/2/20838646/
climate-change-carbon-capture-enhanced-oil-recovery-eor
Roberts, D. (2019). Pulling CO2 out of the air and using it could be a trillion-dollar business.
Vox. Retrieved from https://www.vox.com/energy-and-environment/2019/9/4/20829431/
climate-change-carbon-capture-utilization-sequestration-ccu-ccs
Roberts, D. (2020). How to build a circular economy that recycles carbon. Vox. Retrieved from
https://www.vox.com/energy-and-environment/2020/1/8/20841897/climate-change-
carbon-capture-circular-economy-recycle
Roberts, D. (2020). Microsoft’s astonishing climate change goals, explained. Vox. Retrieved
from https://www.vox.com/energy-and-environment/2020/7/30/21336777/microsoft-
climate-change-goals-negative-emissions-technologies
Roberts, D. A., et al. (2015). Algal biochar enhances the re-vegetation of stockpiled mine soils
with native grass. Journal of Environmental Management, 161, 173 - 180. doi:10.1016/
j.jenvman.2015.07.002
Roberts, D. A., et al. (2015). Biochar from commercially cultivated seaweed for soil amelioration.
Scientific Reports, 5, 1-6. doi:10.1038/srep09665
Roberts, D. A., et al. (2015). Gracilaria waste biomass (sampah rumput laut) as a bioresource
for selenium biosorption. Journal of Applied Phycology, 27(1), 611 - 620. doi:10.1007/
s10811-014-0346-y
Roberts, D. A., & de Nys, R. (2016). The effects of feedstock pre-treatment and pyrolysis
temperature on the production of biochar from the green seaweed Ulva. Journal of
Environmental Management, 169, 253 - 260. doi:10.1016/j.jenvman.2015.12.023
Roberts, K. G., Gloy, B. A., Joseph, S., Scott, N. R., & Lehmann, J. (2010). Life Cycle
Assessment of Biochar Systems: Estimating the Energetic, Economic, and Climate
Change Potential. Environmental Science & Technology, 44(2), 827-833. doi:10.1021/
es902266r
Roberts, T., & Mander, S. (2011). Assessing public perceptions of CCS: Benefits, challenges
and methods. Energy Procedia, 4, 6307-6314. doi:http://dx.doi.org/10.1016/
j.egypro.2011.02.646
RobertsDavid A., e. a. (2015). Bioremediation for coal-fired power stations using macroalgae.
Journal of Environmental Management, 153, 25-32. doi:10.1016/j.jenvman.2015.01.036
Robertson, C., & Mokaya, R. (2013). Microporous activated carbon aerogels via a simple
subcritical drying route for CO2 capture and hydrogen storage. Microporous and
Mesoporous Materials, 179, 151-156. doi:http://dx.doi.org/10.1016/
j.micromeso.2013.05.025
Robertson, G. P. (2014). Soil Greenhouse Gas Emissions and Their Mitigation. In N. K. Van
Alfen (Ed.), Encyclopedia of Agriculture and Food Systems (pp. 185-196). Oxford:
Academic Press.
Robertson, S. J., Rutherford, P. M., López-Gutiérrez, J. C., & Massicotte, H. B. (2012). Biochar
enhances seedling growth and alters root symbioses and properties of sub-boreal forest
soils. Canadian Journal of Soil Science, 92, 329–340. Retrieved from http://
www.bioone.org/doi/abs/10.1139/CJSS2011-066
Robinson, J., Popova, E. E., Yool, A., Srokosz, M., Lampitt, R. S., & Blundell, J. R. (2014). How
deep is deep enough? Ocean iron fertilization and carbon sequestration in the Southern
Ocean. Geophysical Research Letters, 41(7), 2489-2495. doi:10.1002/2013gl058799
Robinson, J. M., et al. (2009). Energy Dispersive X-ray Fluorescence Analysis of Sulfur in
Biomass. Energy Fuels, 23(4), 2235–2241. Retrieved from http://pubs.acs.org/doi/abs/
10.1021/ef800920y
RobledoAbad, C., et al. (2017). Bioenergy production and sustainable development: science
base for policymaking remains limited. GCB Bioenergy, 9(3), 541-556. doi:doi:10.1111/
gcbb.12338
Rochedo, P. R. R., Costa, I. V. L., Império, M., Hoffmann, B. S., Merschmann, P. R. d. C.,
Oliveira, C. C. N., . . . Schaeffer, R. (2016). Carbon capture potential and costs in Brazil.
Journal of Cleaner Production, 131, 280-295. doi:http://dx.doi.org/10.1016/
j.jclepro.2016.05.033
Rochelle, G. T. (2009). Amine scrubbing for CO
2
capture. Science, 325, 1652-1654. Retrieved
from http://shadow.eas.gatech.edu/~kcobb/energy/Readings/rochelle2009.pdf
Rochelle, G. T. (2009). Amine Scrubbing for CO2 Capture. Science, 325, 1652-1654. Retrieved
from https://science.sciencemag.org/content/325/5948/1652
Rockström, J. (2017). A roadmap for rapid decarbonization. Science, 355(6331), 1269-1271.
Retrieved from http://science.sciencemag.org/content/sci/355/6331/1269.full.pdf
Rockström, J., Beringer, T., Hole, D., Griscom, B., Mascia, M. B., Folke, C., & Creutzig, F.
(2021). Opinion: We need biosphere stewardship that protects carbon sinks and builds
resilience. Proceedings of the National Academy of Sciences, 118(38), e2115218118.
doi:10.1073/pnas.2115218118
Rockström, J., Schellnhuber, H. J., Hoskins, B., Ramanathan, V., Schlosser, P., Brasseur, G.
P., . . . Lucht, W. (2016). The world's biggest gamble. Earth's Future, 4(10), 465-470.
doi:https://doi.org/10.1002/2016EF000392
Röder, M., Thiffault, E., Martínez-Alonso, C., Senez-Gagnon, F., Paradis, L., & Thornley, P.
(2019). Understanding the timing and variation of greenhouse gas emissions of forest
bioenergy systems. Biomass and Bioenergy, 121, 99-114. doi:https://doi.org/10.1016/
j.biombioe.2018.12.019
Rödger, J.-M., et al. (2016). Life cycle assessment: Biochar as a greenhouse gas sink? In
Biochar in European Soils and Agriculture: Science and Practice.
Rodionov, A., Amelung, W., Haumaier, L., Urusevskaja, I., & Zech, W. (2006). Black carbon in
the zonal steppe soils of Russia. Journal of Plant Nutrition and Soil Science-Zeitschrift
Fur Pflanzenernahrung Und Bodenkunde, 169(3), 363-369. Retrieved from http://
onlinelibrary.wiley.com/doi/10.1002/jpln.200521813/abstract
Rodrigo, B. R., Drummond, P., & Elkins, P. (2017). Decarbonizing the EU energy system by
2050: an important role for BECCS. Climate Policy, 17(Supp. 1), S93-S110. Retrieved
from http://www.tandfonline.com/doi/abs/10.1080/14693062.2016.1242058?
needAccess=true&journalCode=tcpo20
Rodrigues, M. (2021). Trees That Live Fast, Die Young, and Mess with Climate Models EOS.
Retrieved from https://eos.org/articles/trees-that-live-fast-die-young-and-mess-with-
climate-models
Rodrigues, R., Pietzcker, R., Fragkos, P., Price, J., McDowall, W., Siskos, P., . . . Capros, P.
(2021). Narrative-driven alternative roads to achieve mid-century CO2 net neutrality in
Europe. Energy, 121908. doi:https://doi.org/10.1016/j.energy.2021.121908
Rodríguez, L., Salazar, P., & Preston, T. R. (2009). Effect of biochar and biodigester effluent on
growth of maize in acid soils. Livestock Research for Rural Development, 21. Retrieved
from http://www.lrrd.org/lrrd21/7/rodr21110.htm
Rodríguez L, S. P., & R, P. T. (2011). Effect of a culture of “native” micro-organisms, biochar and
biodigester effluent on the growth of maize in acid soils. Livestock Research for Rural
Development, 23(10). Retrieved from http://www.lrrd.org/lrrd23/10/rodr23223.htm
Rodríguez-Mosqueda, R., Bramer, E. A., Roestenberg, T., & Brem, G. (2018). Parametrical
Study on CO2 Capture from Ambient Air Using Hydrated K2CO3 Supported on an
Activated Carbon Honeycomb. Industrial & Engineering Chemistry Research, 57(10),
3628-3638. doi:10.1021/acs.iecr.8b00566
Rodríguez-Mosqueda, R., Rutgers, J., Bramer, E. A., & Brem, G. (2019). Low temperature water
vapor pressure swing for the regeneration of adsorbents for CO2 enrichment in
greenhouses via direct air capture. Journal of CO2 Utilization, 29, 65-73. doi:https://
doi.org/10.1016/j.jcou.2018.11.010
Rodríguez-Vila, A., et al. . (2014). Phytoremediating a copper mine soil with Brassica juncea L.,
compost and biochar. Environmental Science and Pollution Research, 21(19),
11293-11304. doi:10.1007/s11356-014-2993-6
Rodríguez-Vila, A., et al. (2015). Assessing the influence of technosol and biochar amendments
combined with Brassica juncea L. on the fractionation of Cu, Ni, Pb and Zn in a polluted
mine soil. Journal of Soils and Sediments, 16(2), 339-348. doi:10.1007/
s11368-015-1222-3
Rodríguez-Vila, A., et al. (2015). Chemical fractionation of Cu, Ni, Pb and Zn in a mine soil
amended with compost and biochar and vegetated with Brassica juncea L. Journal of
Geochemical Exploration, 158, 74 - 81. doi:10.1016/j.gexplo.2015.07.005
Rodríguez-Vila, A., et al. (2015). Recovering a copper mine soil using organic amendments and
phytomanagement with Brassica juncea L. Journal of Environmental Management, 147,
73 - 80. doi:10.1016/j.jenvman.2014.09.011
Rodríguez-Vila, A., et al. (2015). Recuperación de un suelo de mina de cobre con enmiendas
orgánicas: compost y biochar versus tecnosol y biochar (Recovering from a copper mine
soil with organic amendments: compost and biochar and biochar versus TECNOSOL).
In.
Rodríguez-Vila, A., et al. . (2016). Build-up of carbon fractions in technosol-biochar amended
partially reclaimed mine soil grown with Brassica juncea. Journal of Soils and
Sediments, 16(5), 1529-1537. doi:10.1007/s11368-016-1358-9
Roe, S., et al. (2017). How Improved Land Use Can Contribute to the 1.5°C Goal of the Paris
Agreement. Retrieved from http://www.climatefocus.com/sites/default/files/
CIFF%20Report.pdf
Roesijadi, G., et al. (2010). Macroalgae as a Biomass Feedstock: A Preliminary Analysis
(PNNL-19944). Retrieved from https://www.pnnl.gov/main/publications/external/
technical_reports/PNNL-19944.pdf
Rogelj, J., Huppmann, D., Krey, V., Riahi, K., Clarke, L., Gidden, M., . . . Meinshausen, M.
(2019). A new scenario logic for the Paris Agreement long-term temperature goal.
Nature, 573(7774), 357-363. doi:10.1038/s41586-019-1541-4
Rogers, J. G., & Brammer, J. G. (2012). Estimation of the production cost of fast pyrolysis bio-
oil. Biomass Bioenergy, 36, 208-217. doi:10.1016/j.biombioe.2011.10.028
Rogovska, N., et al. (2011). Impact of Biochar on Manure Carbon Stabilization and Greenhouse
Gas Emissions. Soil Science Society of America Journal, 75(3), 871-879. Retrieved from
https://www.researchgate.net/publication/
273223662_Impact_of_Biochar_on_Manure_Carbon_Stabilization_and_Greenhouse_G
as_Emissions
Rogovska, N., et al. (2012). Germination Tests for Assessing Biochar Quality. Journal of
Environmental Quality, 41(4), 1014-1022. doi:10.2134/jeq2011.0103
Rogovska, N., et al. (2014). Biochar impact on Midwestern Mollisols and maize nutrient
availability. Geoderma, 230-231, 340-347. doi:10.1016/j.geoderma.2014.04.009
Rogovska, N., Laird, D., Cruse, R., Fleming, P., Parkin, T., & Meek, D. (2011). Impact of Biochar
on Manure Carbon Stabilization and Greenhouse Gas Emissions. 75(3), 871-879.
doi:10.2136/sssaj2010.0270
Rogovska, N., Laird, D. A., & Karlen, D. L. (2016). Corn and soil response to biochar application
and stover harvest. Field Crops Research, 187, 96 - 106. doi:10.1016/j.fcr.2015.12.013
Roh, H., Yu, M.-R., Yakkala, K., Koduru, J. R., Yang, J.-K., & Chang, Y.-Y. (2014). Removal
studies of Cd(II) and explosive compounds using buffalo weed biochar-alginate beads.
Journal of Industrial and Engineering Chemistry, 26, 226-233. doi:10.1016/
j.jiec.2014.11.034
Roh, K., Frauzem, R., Gani, R., & Lee, J. H. (2016). Process systems engineering issues and
applications towards reducing carbon dioxide emissions through conversion
technologies. Chemical Engineering Research and Design, 116, 27-47. doi:http://
dx.doi.org/10.1016/j.cherd.2016.10.007
Rohling, E. (2021). The future is now: how the ocean can help us solve the climate crisis. The
Mandarin. Retrieved from https://www.themandarin.com.au/164419-the-future-is-now-
how-the-ocean-can-help-us-solve-the-climate-crisis/
Röhr, M. E., Boström, C., Canal-Vergés, P., & Holmer, M. (2016). Blue carbon stocks in Baltic
Sea eelgrass (Zostera marina) meadows. Biogeosciences, 13(22), 6139-6153.
doi:10.5194/bg-13-6139-2016
Rohr, T. (2019). Southern Ocean Iron Fertilization: An Argument Against Commercialization but
for Continued Research Amidst Lingering Uncertainty". Journal of Science Policy &
Governance, 15, 1-20. Retrieved from https://www.sciencepolicyjournal.org/uploads/
5/4/3/4/5434385/rohr_jspg_v15.pdf
Rohr, T., Long, M. C., Kavanaugh, M. T., Lindsay, K., & Doney, S. C. (2017). Variability in the
mechanisms controlling Southern Ocean phytoplankton bloom phenology in an ocean
model and satellite observations. Global Biogeochemical Cycles, 31(5), 922-940.
doi:10.1002/2016GB005615
Roker, S. (2019). BHP and Mitsubishi sign up to reduce greenhouse gas emissions. World Coal.
Retrieved from https://www.worldcoal.com/power/20062019/bhp-and-mitsubishi-sign-up-
to-reduce-greenhouse-gas-emissions/
Rokityanskiy, D., Benítez, P. C., Kraxner, F., McCallum, I., Obersteiner, M., Rametsteiner, E., &
Yamagata, Y. (2007). Geographically explicit global modeling of land-use change, carbon
sequestration, and biomass supply. Technological Forecasting and Social Change,
74(7), 1057-1082. doi:http://dx.doi.org/10.1016/j.techfore.2006.05.022
Rokke, N. (2020). How Europe Can Lead The Technical ‘Moonshot’ Of Carbon Capture And
Sequestration. Forbes. Retrieved from https://www.forbes.com/sites/nilsrokke/
2020/08/20/business-case-for-ccs-a-climate-change-mitigation-technology-that-works/?
sh=10bea14465d4
Roman, J., Estes, J., Morissette, L., Smith, C., Costa, D., McCarthy, J., . . . Smetacek, V. (2014).
Whales as marine ecosystem engineers. Frontiers in Ecology and the Environment, 12.
doi:10.1890/130220
Roman, L. A., Conway, T. M., Eisenman, T. S., Koeser, A. K., Ordóñez Barona, C., Locke, D.
H., . . . Vogt, J. (2021). Beyond ‘trees are good’: Disservices, management costs, and
tradeoffs in urban forestry. Ambio, 50(3), 615-630. doi:10.1007/s13280-020-01396-8
Román, M. (2011). Carbon capture and storage in developing countries: A comparison of Brazil,
South Africa and India. Global Environmental Change, 21(2), 391-401. doi:http://doi.org/
10.1016/j.gloenvcha.2011.01.018
Romanov, V., Soong, Y., Carney, C., Rush, G. E., Nielsen, B., & O'Connor, W. (2015).
Mineralization of Carbon Dioxide: A Literature Review. ChemBioEng Reviews, 2(4),
231-256. doi:doi:10.1002/cben.201500002
Rombolà, A. G., et al. (2015). Fate of Soil Organic Carbon and Polycyclic Aromatic
Hydrocarbons in a Vineyard Soil Treated with Biochar. Environmental Science &
Technology, 49(18), 11037–11044. doi:10.1021/acs.est.5b02562
Rombolà, A. G., et al. . (2015). Relationships between Chemical Characteristics and
Phytotoxicity of Biochar from Poultry Litter Pyrolysis. Journal of Agricultural and Food
Chemistry, 63(30), 6660 - 6667. doi:10.1021/acs.jafc.5b01540
Romeo, L. M., Abanades, J. C., Escosa, J. M., Paño, J., Giménez, A., Sánchez-Biezma, A., &
Ballesteros, J. C. (2008). Oxyfuel carbonation/calcination cycle for low cost CO2 capture
in existing power plants. Energy Conversion and Management, 49(10), 2809-2814.
doi:https://doi.org/10.1016/j.enconman.2008.03.022
Romero, M., & Steinfeld, A. (2012). Concentrating solar thermal power and thermochemical
fuels. Energy Environ. Sci., 5, 9234.
Romig, K. D. (2021). Workers have a stake in CCUS. The Electricity Journal, 34(7), 107001.
doi:https://doi.org/10.1016/j.tej.2021.107001
Rondon, M., et al. (2006). Enhancing the Productivity of Crops and Grasses while Reducing
Greenhouse Gas Emissions through Bio-Char Amendments to Unfertile Tropical Soils.
Paper presented at the 18th World Congress of Soil Science, Philadelphia, PA, USA.
http://soilcarboncenter.k-state.edu/conference/
Technical_Sessions_Oral_Presentations.htm
Rondon, M., et al. (2007). Biological Nitrogen Fixation by Common Beans (Phaseolus Vulgaris
L.) Increases with Biochar Additions. Biology and Fertility in Soils, 43(6), 699-708.
Retrieved from https://link.springer.com/article/10.1007/s00374-006-0152-z
Rondon, M., Ramirez, J. A., & Lehmann, J. (2005). Greenhouse Gas Emissions Decrease with
Charcoal Additions to Tropical Soils. Paper presented at the 3rd USDA Symposium on
Greenhouse Gases and Carbon Sequestration in Agriculture and Forestry, Baltimore,
MD, USA.
Ronson, J. (2017). Super Basic Power Plants Build Mussels. Accelerated limestone weathering
will save coral reefs and undo carbon dioxide emissions. Inverse Science. Retrieved
from https://www.inverse.com/article/27594-rau-ocean-acidification-limestone-chemical-
weathering-power-plant-carbon-geoengineering
Ronsse, F., et al. . (2012). Production and characterization of slow pyrolysis biochar: influence
of feedstock type and pyrolysis conditions. Global Change Biology, 5(2), 104-115.
Retrieved from http://onlinelibrary.wiley.com/doi/10.1111/gcbb.12018/full
Ronsse, F., Hecke, S., Dickinson, D., & Prins, W. (2013). Production and characterization of
slow pyrolysis biochar: influence of feedstock type and pyrolysis conditions. GCB
Bioenergy, 5(2), 104-115. doi:10.1111/gcbb.12018
Roobroeck, D., Hood-Nowotny, R., Nakubulwa, D., Tumuhairwe, J.-B., Mwanjalolo, M. J. G.,
Ndawula, I., & Vanlauwe, B. (2019). Biophysical potential of crop residues for biochar
carbon sequestration, and co-benefits, in Uganda. Ecological Applications, 29(8),
e01984. doi:10.1002/eap.1984
Rootzén, J., & Johnsson, F. (2015). CO2 emissions abatement in the Nordic carbon-intensive
industry – An end-game in sight? Energy, 80, 715-730. doi:https://doi.org/10.1016/
j.energy.2014.12.029
Ros, J. P. M., et al. . (2010). Identifying the indirect effects of bio-energy production. Retrieved
from https://www.pbl.nl/sites/default/files/cms/publicaties/500143003.pdf
Rosa Arranz, J. M. d. l., Paneque Carmona, M., Velasco Molina, M., González-Vila, F. J., Miller,
A. Z., & Knicker, H. (2015). Biochar induced alterations of soil properties and its organic
matter; discerning how it improves crop production. Paper presented at the 17th Meeting
of the International Humic Substances Society Ioannina, Greece 1-5 September 2014.
http://digital.csic.es/handle/10261/116563?
mode=full&submit_simple=Show+full+item+record
Rosa, L., Sanchez, D. L., & Mazzotti, M. (2021). Assessment of carbon dioxide removal
potential via BECCS in a carbon-neutral Europe. Energy & Environmental Science.
doi:10.1039/D1EE00642H
Rosa, L., Sanchez, D. L., Realmonte, G., Baldocchi, D., & D'Odorico, P. (2020). The water
footprint of carbon capture and storage technologies. Renewable and Sustainable
Energy Reviews, 110511. doi:https://doi.org/10.1016/j.rser.2020.110511
Rosas, J. G., Gómez, N., Cara, J., Ubalde, J., Sort, X., & Sánchez, M. E. (2015). Assessment of
sustainable biochar production for carbon abatement from vineyard residues. Journal of
Analytical and Applied Pyrolysis, 113, 239-247. doi:https://doi.org/10.1016/
j.jaap.2015.01.011
Rose, S. K., Kriegler, E., Bibas, R., Calvin, K., Popp, A., van Vuuren, D. P., & Weyant, J. (2014).
Bioenergy in energy transformation and climate management. Climatic Change, 123(3),
477-493. doi:10.1007/s10584-013-0965-3
Rosegrant, M. W., & Msangi, S. (2014). Consensus and Contention in the Food-Versus-Fuel
Debate. Annual Review of Environment and Resources, 39(1), 271-294. doi:10.1146/
annurev-environ-031813-132233
Rosen, J. (2018). The carbon harvest. Science, 359(6377), 733-737. doi:10.1126/
science.359.6377.733
Rosen, J. (2018). Vast bioenergy plantations could stave off climate change—and radically
reshape the planet. Science. Retrieved from http://www.sciencemag.org/news/2018/02/
vast-bioenergy-plantations-could-stave-climate-change-and-radically-reshape-planet
Rosen, L. (2018). Ever Heard of the Mineral Peridotite? Some Scientists See It as a Way to
Solve the Carbon Problem and Fight Climate Change. 21st Century Tech. Retrieved
from http://www.21stcentech.com/heard-mineral-peridotite-scientists-fight-climate-
change/
Rosenani, A. B., Deniel, S., Ahmad, S. H., & Khairuddin, A. R. (2014). Effect of Rice Husk
Biochar Soil Amendment on Rice Crop growth PERFORMANCE AND Soil Properties.
Agricongress 2014. Retrieved from www.iac2014.upm.edu.my/iac/reg/file/
doc724104401.docx
Rosenbauer, R. J., Thomas, B., Bischoff, J. L., & Palandri, J. (2012). Carbon sequestration via
reaction with basaltic rocks: Geochemical modeling and experimental results.
Geochimica Et Cosmochimica Acta, 89, 116-133. doi:https://doi.org/10.1016/
j.gca.2012.04.042
Rosende, M., et al.l. (2015). Automatic flow-through dynamic extraction: A fast tool to evaluate
char-based remediation of multi-element contaminated mine soils. Talanta, 148,
686-693. doi:10.1016/j.talanta.2015.04.077
Rosental, M., Fröhlich, T., & Liebich, A. (2020). Life Cycle Assessment of Carbon Capture and
Utilization for the Production of Large Volume Organic Chemicals. Frontiers in Climate,
2(9). doi:10.3389/fclim.2020.586199
Roshetko, J. M., Delaney, M., Hairiah, K., & Purnomosidhi, P. (2002). Carbon stocks in
Indonesian homegarden systems: Can smallholder systems be targeted for increased
carbon storage? American Journal of Alternative Agriculture, 17(3), 138-148.
doi:10.1079/AJAA200116
Rosner, F., Chen, Q., Rao, A., & Samuelsen, S. (2019). Thermo-economic analyses of concepts
for increasing carbon capture in high-methane syngas integrated gasification combined
cycle power plants. Energy Conversion and Management, 199, 112020. doi:https://
doi.org/10.1016/j.enconman.2019.112020
Rosner, H. (2018). Plants are Great at Storing CO2. These Scientists Aim to Make Them Even
Better. Ensia. Retrieved from https://ensia.com/articles/plants-co2/
Ross, A. B., Singh, S., & Fryda, L. (2015). Biochar production and its beneficial properties for
agricultural use. In.
Ross, D. (2019). One solution to climate change no one is talking about. Nation of Change.
Retrieved from https://www.nationofchange.org/2019/05/25/one-solution-to-climate-
change-no-one-is-talking-about/
Ross, J. (2015). Fate of Micropollutants During Pyrolysis of Biosolids. Marquette University,
Retrieved from http://epublications.marquette.edu/theses_open/286/
Ross, J. J., Zitomer, D. H., Miller, T. R., Weirich, C. A., & McNamara, P. J. (2016). Emerging
investigators series: pyrolysis removes common microconstituents triclocarban,
triclosan, and nonylphenol from biosolids. Environmental Science: Water Research &
Technology, 2, 282-289. doi:10.1039/c5ew00229j
Rossana, M., et al. (2018). Impact of Biochar Amendment on Soil Quality and Crop Yield in a
Greenhouse Environment. Journal of Environmental Accounting and Management, 6(4),
313-324. Retrieved from https://www.researchgate.net/publication/
329772777_Impact_of_Biochar_Amendment_on_Soil_Quality_and_Crop_Yield_in_a_Gr
eenhouse_Environment
Rosso, J. J., & Rimstidt, J. D. (2000). A high resolution study of forsterite dissolution rates.
Geochimica Et Cosmochimica Acta, 64(5), 797-811. doi:http://dx.doi.org/10.1016/
S0016-7037(99)00354-3
Rostad, C. E., & Rutherford, D. W. (2011). Biochar for Soil Fertility and Natural Carbon
Sequestration. Retrieved from Reston, VA, USA: http://pubs.usgs.gov/fs/2010/3117/
Rostamian, R., et al. (2015). Application of Rice Husk Biochar to Desalinate Irrigation Water.
Journal of Science and Technology of Agiculture and Natural Resources, Water and Soil
Science, 19(71), 21-30. Retrieved from http://jstnar.iut.ac.ir/browse.php?
a_id=2994&sid=1&slc_lang=en
Rostamian, R., et al. (2015). Characterization and Sodium Sorption Capacity of Biochar and
Activated Carbon Prepared from Rice Husk. Journal of Agricultural Science &
Technology, 17, 1057-1069. Retrieved from http://jast.modares.ac.ir/
article_12957_0.html
Roth, C. (2011). Micro-gasification:Cooking with gas from biomass An introduction to the
concept and the applications of wood-gas burning technologies for cooking. Retrieved
from www.biochar-international.org/sites/default/files/HERA-GIZ%20micro-
gasification%20manual%20V1.0%20January%202011.pdf
Rouchon, V., Magnier, C., Miller, D., Bandeira, C., Gonçalves, R., & Dino, R. (2011). The
relationship between CO2 flux and gas composition in soils above an EOR- CO2 oil field
(Brazil): A guideline for the surveillance of CO2 storage sites. Energy Procedia, 4,
3354-3362. doi:https://doi.org/10.1016/j.egypro.2011.02.257
Rouse, P., et al. (2020). International Governance Issues on Climate Engineering - information
for policymakers. Retrieved from
Rousk, J., Dempster, D. N., & Jones, D. L. (2013). Transient biochar effects on decomposer
microbial growth rates: evidence from two agricultural case-studies. European Journal of
Soil Science, 64(6), 770-776. Retrieved from http://onlinelibrary.wiley.com/doi/10.1111/
ejss.12103/abstract
Roussanaly, S., Berghout, N., Fout, T., Garcia, M., Gardarsdottir, S., Nazir, S. M., . . . Rubin, E.
S. (2021). Towards improved cost evaluation of Carbon Capture and Storage from
industry. International Journal of Greenhouse Gas Control, 106, 103263. doi:https://
doi.org/10.1016/j.ijggc.2021.103263
Roussanaly, S., & Grimstad, A.-A. (2014). The Economic Value of CO2 for EOR Applications.
Energy Procedia, 63, 7836-7843. doi:https://doi.org/10.1016/j.egypro.2014.11.818
Roussanaly, S., Jakobsen, J. P., Hognes, E. H., & Brunsvold, A. L. (2013). Benchmarking of
CO2 transport technologies: Part I—Onshore pipeline and shipping between two
onshore areas. International Journal of Greenhouse Gas Control, 19, 584-594.
doi:https://doi.org/10.1016/j.ijggc.2013.05.031
Rovira, P., Duguy, B., & Vallejo, V. R. (2009). Black carbon in wildfire-affected shrubland
mediterranean soils. Journal of Plant Nutrition and Soil Science-Zeitschrift Fur
Pflanzenernahrung Und Bodenkunde, 172(1), 43-52. Retrieved from http://
onlinelibrary.wiley.com/doi/10.1002/jpln.200700216/abstract
Roxburgh, S. H., et al. (2006). Assessing the carbon sequestration potential of managed forests:
a case study from temperate Australia. Journal of Applied Ecology, 43(6), 1149-1159.
doi:https://doi.org/10.1111/j.1365-2664.2006.01221.x
Roy, S. C., Varghese, O. K., Paulose, M., & Grimes, C. A. (2010). Toward solar fuels:
Photocatalytic conversion of carbon dioxide to hydrocarbons. ACSNano, 4, 1259.
Róz, A. L. d., Ricardo, J. F. C., Nakashima, G. T., Santos, L. R. O., & Yamaji, F. M. (2015).
Maximização do teor de carbono fixo em biocarvão aplicado ao sequestro de carbono
(Maximization of fixed carbon content in biochar applied to carbon sequestration).
Revista Brasileira de Engenharia Agrícola e Ambiental (Journal of Agricultural and
Environmental Engineering), 19(8), 810 - 814. doi:10.1590/1807-1929/
agriambi.v19n8p810-814
Ruan, Z.-H., Wu, J.-H., Huang, J.-F., Lin, Z.-T., Li, Y.-F., Liu, Y.-L., . . . Jiang, G.-B. (2015). Facile
preparation of rosin-based biochar coated bentonite for supporting α-Fe2O3
nanoparticles and its application for Cr() adsorption. J. Mater. Chem. A. doi:10.1039/
c4ta06491g
Rubin, E. S., et al. (2007). Cost and performance of fossil fuel power plants with CO2 capture
and storage. Energy Policy, 35, 4444-4454. Retrieved from https://www.cmu.edu/epp/
iecm/rubin/PDF%20files/2007/2007b%20Rubin%20et%20al,
%20Energy%20Policy%20%28Mar%29.pdf
Rubin, E. S., Davison, J. E., & Herzog, H. J. (2015). The cost of CO2 capture and storage.
International Journal of Greenhouse Gas Control, 40(Supplement C), 378-400.
doi:https://doi.org/10.1016/j.ijggc.2015.05.018
Rubin, E. S., Short, C., Booras, G., Davison, J., Ekstrom, C., Matuszewski, M., & McCoy, S.
(2013). A proposed methodology for CO2 capture and storage cost estimates.
International Journal of Greenhouse Gas Control, 17, 488-503. doi:https://doi.org/
10.1016/j.ijggc.2013.06.004
Rubio, R. C. (1999). Prediction of dissolved oxygen and carbon dioxide concentration profiles in
tubular photobioreactors for microalgal culture. Biotechnology and Bioengineering, 62(1),
71-86. Retrieved from http://onlinelibrary.wiley.com/doi/10.1002/
(SICI)1097-0290(19990105)62:1%3C71::AID-BIT9%3E3.0.CO;2-T/full
Rudee, A. (2020). How and Where to Plant 60 Billion Trees in the US. Retrieved from https://
www.wri.org/blog/2020/02/how-where-plant-trees-us
Rudee, A. (2020). Want to help the US economy? Rethink the Trillion Trees Act. Red Green and
Blue. Retrieved from http://redgreenandblue.org/2020/04/08/want-help-us-economy-
rethink-trillion-trees-act/
Rudolf, J. C. (2011). Economical carbon dioxide capture may elude scientists, report says.
International Herald Tribune. Retrieved from https://search.proquest.com/docview/
865651963?accountid=14496
Rue, E. L., & Bruland, K. W. (2003). The role of organic complexation on ambient iron chemistry
in the equatorial Pacific Ocean and the response of a mesoscale iron addition
experiment. Limnology and Oceanography, 42(5), 901-910. doi:10.4319/
lo.1997.42.5.0901
Rueda, O., Mogollón, J. M., Tukker, A., & Scherer, L. (2021). Negative-emissions technology
portfolios to meet the 1.5°C target. Global Environmental Change, 67(102238), 1-13.
doi:https://doi.org/10.1016/j.gloenvcha.2021.102238
Rueter, G. (2020). How Can We Remove CO2 From the Atmosphere? Retrieved from https://
www.ecowatch.com/carbon-dioxide-removal-2647855981.html?
rebelltitem=1#rebelltitem1
Ruiz Esquius, J., Bahruji, H., Bowker, M., & Hutchings, G. J. (2021). Identification of C2–C5
products from CO2 hydrogenation over PdZn/TiO2–ZSM-5 hybrid catalysts. Faraday
Discussions, 230(0), 52-67. doi:10.1039/D0FD00135J
Ruiz-Agudo, C., Ibañez-Velasco, A., Navarro, J., Ruiz-Agudo, E., & Rodriguez-Navarro, C.
(2018). The Carbonation of Wollastonite: A Model Reaction to Test Natural and
Biomimetic Catalysts for Enhanced CO2 Sequestration. Minerals, 8(5), 209. doi:10.3390/
min8050209
Rulli, M. C., Bellomi, D., Cazzoli, A., De Carolis, G., & D’Odorico, P. (2016). The water-land-food
nexus of first-generation biofuels. Scientific Reports, 6, 22521. doi:10.1038/srep22521
https://www.nature.com/articles/srep22521#supplementary-information
Rumpel, C., et al. . (2015). Movement of Biochar in the Environment. In Biochar For
Environmental Engineering.
Rumpel, C., et al. (2018). Put more carbon in soils to meet Paris climate pledges. Nature.
Retrieved from https://www.nature.com/articles/d41586-018-07587-4
Rumpel, C., Alexis, M., Chabbi, A., Chaplot, V., Rasse, D. P., & Valentin, C. (2006). Black
carbon contribution to soil organic matter composition in tropical sloping land under
slash and burn agriculture. Geoderma, 130(1-2), 35-46. Retrieved from http://
www.sciencedirect.com/science/article/pii/S001670610500011X
Rumpel, C., Amiraslani, F., Chenu, C., Garcia Cardenas, M., Kaonga, M., Koutika, L.-S., . . .
Wollenberg, E. (2020). The 4p1000 initiative: Opportunities, limitations and challenges
for implementing soil organic carbon sequestration as a sustainable development
strategy. Ambio, 49(1), 350-360. doi:10.1007/s13280-019-01165-2
Rumpel, C., Chaplot, V., Planchon, O., Bernadou, J., Valentin, C., & Mariotti, A. (2006).
Preferential erosion of black carbon on steep slopes with slash and burn agriculture.
CATENA, 65(1), 30-40. Retrieved from http://www.sciencedirect.com/science/article/pii/
S0341816205001438
Rumpel, C., & Kögel-Knabner, I. (2011). Deep soil organic matter—a key but poorly understood
component of terrestrial C cycle. Plant and Soil, 338(1), 143-158. Retrieved from https://
link.springer.com/article/10.1007/s11104-010-0391-5
Runge, C. F., & Senauer, B. (2007). How Biofuels Could Starve the Poor. Foreign Affairs(May/
June), 41-53. Retrieved from https://www.foreignaffairs.com/articles/2007-05-01/how-
biofuels-could-starve-poor
Rutherford, D. W., Wershaw, A. L., & Cox, L. G. (2004). Changes in composition and porosity
occurring during the thermal degradation of wood and wood components. Retrieved from
Reston, VA:
Rutherford, D. W., Wershaw, A. L., & Reeves, J. B. I. (2007). Development of acid functional
groups and lactones during the thermal degradation of wood and wood components.
United States Geological Survey Scientific Investigations report, 2007-5013.
Ruthiraan, M., Mubarak, N. M., Thines, R. K., Abdullah, E. C., Sahu, J. N., Jayakumar, N. S., &
Ganesan, P. (2015). Comparative kinetic study of functionalized carbon nanotubes and
magnetic biochar for removal of Cd2+ ions from wastewater. Korean Journal of Chemical
Engineering, 32(3), 446-457. doi:10.1007/s11814-014-0260-7
Ruthven, D. M. (2014). CO2 capture: Value functions, separative work and process economics.
Chemical Engineering Science, 114, 128-133. doi:http://dx.doi.org/10.1016/
j.ces.2014.04.020
Ruthven, D. M., Farooq, S., & Brandani, S. (2015). Work of separation in CO2 capture:
Applicability of the value function. Chemical Engineering Science, 126, 604-607.
doi:http://dx.doi.org/10.1016/j.ces.2015.01.001
Rutigliano, F. A., et al. . (2014). Effect of biochar addition on soil microbial community in a wheat
crop. European Journal of Soil Biology, 60, 9-15. Retrieved from http://
www.sciencedirect.com/science/article/pii/S1164556313000903
Ruuskanen, V., Givirovskiy, G., Elfving, J., Kokkonen, P., Karvinen, A., Järvinen, L., . . . Ahola, J.
(2021). Neo-Carbon Food concept: A pilot-scale hybrid biological–inorganic system with
direct air capture of carbon dioxide. Journal of Cleaner Production, 278, 123423.
doi:https://doi.org/10.1016/j.jclepro.2020.123423
Ruysschaert, G., et al. (2016). Field applications of pure biochar in the North Sea region and
across Europe. In Biochar in European Soils and Agriculture: Science and Practice.
Ruysschaert, G., Vandecasteele, B., Willekens, K., Waes, J. v., & Laecke, K. v. (2014). Soil,
nutrients, compost: research for sustainable agriculture. Mededeling ILVO, 171, 252.
Retrieved from http://www.cabdirect.org/abstracts/
20143372515.html;jsessionid=7B3E65E27EBA9D8AD98F5A6943F67599
Ryaboshapko, A. G., & Revokatova, A. P. (2015). A potential role of the negative emission of
carbon dioxide in solving the climate problem. Russian Meteorology and Hydrology,
40(7), 443-455. doi:10.3103/s106837391507002x
Ryabov, G. A., Folomeev, O. M., & Dolgushin, I. A. (2018). Study of Conditions of Binary Particle
Mixture Motion Applied to Chemical Looping Combustion of Fuel with Carbon Dioxide
Capture. Thermal Engineering, 65(7), 429-434. doi:10.1134/s004060151807008x
Ryals, R., et al. (2015). Longterm climate change mitigation potential with organic matter
management on grasslands. Ecological Applications, 25(2), 531-545. Retrieved from
https://esajournals.onlinelibrary.wiley.com/doi/abs/10.1890/13-2126.1
Ryan, D. (2017). Assuming easy carbon removal from the atmosphere is a high-stakes gamble.
Retrieved from https://woods.stanford.edu/news-events/news/assuming-easy-carbon-
removal-atmosphere-high-stakes-gamble?
utm_source=Woods+Newsletter&utm_campaign=b0bbb3defa-
WOODS_NEWSLETTER_JUNE_2017&utm_medium=email&utm_term=0_ec34d34b19-
b0bbb3defa-238699265
Ryan, L. B., Convery, F. J., & Ferreira, S. (2004). Stimulating the use of biofuels in the European
Union : implications for climate change policy. Retrieved from http://
researchrepository.ucd.ie/bitstream/handle/10197/870/ferreiras_workpap_004.pdf?
sequence=1
Rydén, M., Lyngfelt, A., Langørgen, Ø., Larring, Y., Brink, A., Teir, S., . . . Karmhagen, P. (2017).
Negative CO2 Emissions with Chemical-Looping Combustion of Biomass – A Nordic
Energy Research Flagship Project. Energy Procedia, 114, 6074-6082. doi:https://doi.org/
10.1016/j.egypro.2017.03.1744
Ryi, S.-K., Park, J.-S., Hwang, K.-R., Lee, C.-B., & Lee, S.-W. (2013). The property of hydrogen
separation from CO2 mixture using Pd-based membranes for carbon capture and
storage (CCS). International Journal of Hydrogen Energy, 38(18), 7605-7611. doi:https://
doi.org/10.1016/j.ijhydene.2012.08.114
Ryu, D.-J., Oh, R.-G., Seo, Y.-D., Oh, S.-Y., & Ryu, K.-S. (2015). Recovery and electrochemical
performance in lithium secondary batteries of biochar derived from rice straw.
Environmental Science and Pollution Research, 22(14), 10405-10412. doi:10.1007/
s11356-015-4348-3
Saarnio, S. (2015). SSSA Special PublicationAgricultural and Environmental Applications of
Biochar: Advances and BarriersImpacts of Biochar Amendment on Greenhouse Gas
Emissions from Agricultural Soils: Soil Science Society of America, Inc.
Saarnio, S., Heimonen, K., & Kettunen, R. (2012). Biochar addition indirectly affects N2O
emissions via soil moisture and plant N uptake. Soil Biology and Biochemistry, 58,
99-106.
Saba, B., et al. . (2014). Treatment Comparison Efficiency of Microbial Amended Agro-waste
Biochar Constructed Wetlands for Reactive Black Textile Dye. Paper presented at the
2014 5th International Conference on Food Engineering and Bio technology. http://
www.ipcbee.com/vol65/003-ICFEB2014-C3010.pdf
Sabatino, F., Grimm, A., Gallucci, F., van Sint Annaland, M., Kramer, G. J., & Gazzani, M.
(2021). A comparative energy and costs assessment and optimization for direct air
capture technologies. Joule, 5(8), 2047-2076. doi:https://doi.org/10.1016/
j.joule.2021.05.023
Sabatino, F., Mehta, M., Grimm, A., Gazzani, M., Gallucci, F., Kramer, G. J., & van Sint
Annaland, M. (2020). Evaluation of a Direct Air Capture Process Combining Wet
Scrubbing and Bipolar Membrane Electrodialysis. Industrial & Engineering Chemistry
Research, 59(15), 7007-7020. doi:10.1021/acs.iecr.9b05641
Sabine, C. L., Feely, R. A., Gruber, N., Key, R. M., Lee, K., Bullister, J. L., . . . Rios, A. F. (2004).
The Oceanic Sink for Anthropogenic CO<sub>2</sub>. Science, 305(5682), 367-371.
doi:10.1126/science.1097403
Sackett, T. E., Basiliko, N., Noyce, G. L., Winsborough, C., Schurman, J., Ikeda, C., & Thomas,
S. C. (2014). Soil and greenhouse gas responses to biochar additions in a temperate
hardwood forest. Global Change Biology Bioenergy, 7(5), 1062-1074. doi:10.1111/
gcbb.12211
Sacks, A. D. (2015). Reestablishing the Evolutionary Grassland–Grazer Relationship to Restore
Atmospheric Carbon Dioxide to Preindustrial Levels. In T. Goreau, R. Larson, & J.
Campe (Eds.), Geotherapy: Innovative Methods of Soil Fertility Restoration, Carbon
Sequestration, and Reversing CO2 Increase (pp. 156-193).
Sacuta, N., Gauvreau, L., & Greenberg, S. E. (2013). Emergency response planning: An
example of international collaboration in CCS community outreach and project
development.
Sadaka, S., et al. (2014). Characterization of Biochar from Switchgrass Carbonization.
Energies, 7(2), 548-567. Retrieved from http://www.mdpi.com/1996-1073/7/2/548/htm
Sadasivam, B. Y., & Reddy, K. R. (2015). Adsorption and transport of methane in biochars
derived from waste wood. Waste Management, 43, 218-229. doi:10.1016/
j.wasman.2015.04.025
Sadasivam, B. Y., & Reddy, K. R. (2015). Adsorption and transport of methane in landfill cover
soil amended with waste-wood biochars. Journal of Environmental Management, 158, 11
- 23. doi:10.1016/j.jenvman.2015.04.032
Sadasivam, B. Y., & Reddy, K. R. (2015). Engineering properties of waste wood-derived
biochars and biochar-amended soils. International Journal of Geotechnical Engineering,
9(5), 521-535. doi:10.1179/1939787915y.0000000004
Sadeghi, S. H., Hazbavi, Z., & Harchegani, M. K. (2016). Controllability of runoff and soil loss
from small plots treated by vinasse-produced biochar. Science of The Total Environment,
541, 483 - 490. doi:10.1016/j.scitotenv.2015.09.068
Saeidi, S., Najari, S., Fazlollahi, F., Nikoo, M. K., Sefidkon, F., Klemeš, J. J., & Baxter, L. L.
(2017). Mechanisms and kinetics of CO2 hydrogenation to value-added products: A
detailed review on current status and future trends. Renewable and Sustainable Energy
Reviews, 80, 1292-1311. doi:https://doi.org/10.1016/j.rser.2017.05.204
Saffari, M., et al. (2015). Reduction of chromium toxicity by applying various soil amendments in
artificially contaminated soil. Journal Advances in Environmental Health Research, 2(4),
251-262. Retrieved from http://www.researchgate.net/profile/Mahboub_Saffari/
publication/
277248121_Reduction_of_chromium_toxicity_by_applying_various_soil_amendments_i
n_artificially_contaminated_soil/links/5564bbef08ae94e9572050cd.pdf
Safi, R., Agarwal, R. K., & Banerjee, S. (2016). Numerical simulation and optimization of CO2
utilization for enhanced oil recovery from depleted reservoirs. Chemical Engineering
Science, 144, 30-38. doi:https://doi.org/10.1016/j.ces.2016.01.021
Sagar, A. D., & Kartha, S. (2007). Bioenergy and Sustainable Development? , 32(1), 131-167.
doi:10.1146/annurev.energy.32.062706.132042
Sagrilo, E. (2014). Soil and plant responses to pyrogenic organic matter: carbon stability and
symbiotic patterns. Wageningen University, Retrieved from http://library.wur.nl/
WebQuery/clc/2075520
Sagrilo, E., Hoffland, E., & Kuyper, T. W. (2014). Does pyrogenic organic matter enhance
biological nitrogen fixation in well-managed soybean cropping systems? In Soil and plant
responses to pyrogenic organic matter: carbon stability and symbiotic patterns.
Sagrilo, E., Jeffery, S., Hoffland, E., & Kuyper, T. W. (2014). Emission of CO2 from biochar-
amended soils and implications for soil organic carbon. GCB Bioenergy, n/a - n/a.
doi:10.1111/gcbb.12234
Sagrilo, E., Rittl, T. F., Hoffland, E., Alves, B. J. R., Mehl, H. U., & Kuyper, T. W. (2015). Rapid
decomposition of traditionally produced biochar in an Oxisol under savannah in
Northeastern Brazil. Geoderma Regional, 6, 1 - 6. doi:10.1016/j.geodrs.2015.08.006
Sagrilo, E., Rittl, T. F., Hoffland, E., Alves, B. J. R. A. J. R., Mehl, H. U., & Kuyper, T. W. (2014).
Biochar decomposition under field conditions depends on its application rate. In Soil and
plant responses to pyrogenic organic matter: carbon stability and symbiotic patterns.
Sagues, W. J., Park, S., Jameel, H., & Sanchez, D. L. (2019). Enhanced carbon dioxide removal
from coupled direct air capture–bioenergy systems. Sustainable Energy & Fuels.
doi:10.1039/C9SE00384C
Sahiner, N., Karakoyun, N., Alpaslan, D., & Aktas, N. (2013). Biochar-Embedded Soft Hydrogel
and Their Use in Ag Nanoparticle Preparation and Reduction of 4-Nitro Phenol.
International Journal of Polymeric Materials and Polymeric Biomaterials, 62, 590-595.
Saidi, M., & Inaloo, E. B. (2021). CO2 removal using 1DMA2P solvent via membrane
technology: Rate based modeling and sensitivity analysis. Chemical Engineering and
Processing - Process Intensification, 166, 108464. doi:https://doi.org/10.1016/
j.cep.2021.108464
Saiful Islam, M., et al. (2015). Bio-Oil From Pyrolsis of Rice Husk. Journals of Biofuels, 80(1),
30-35. Retrieved from http://www.researchgate.net/profile/M_Jamal/publication/
274001817_Bio-oil_from_pyrolysis_of_rice_husk/links/5520ed560cf29dcabb0b5b5e.pdf
Saikia, P., Gupta, U. N., Barman, R. S., Kataki, R., Chutia, R. S., & Baruah, B. P. (2015).
Production and Characterization of Bio-Oil Produced from Ipomoea carnea Bio-Weed.
BioEnergy Research. doi:10.1007/s12155-014-9561-2
Saikia, R., Chutia, R. S., Kataki, R., & Pant, K. K. (2015). Perennial grass (Arundo donax L.) as
a feedstock for thermo-chemical conversion to energy and materials. Bioresource
Technology. doi:10.1016/j.biortech.2015.01.089
Saini, A., Aggarwal, N. K., Sharma, A., Kaur, M., & Yadav, A. (2014). Utility Potential of
Parthenium hysterophorus for Its Strategic Management. Advances in Agriculture,
2014(83-441335111115112542511336521-23-45131111121211323-423-4113522131111-
2591413233-4110118893172211823-42734364423112641112224421), 1 - 16.
doi:10.1155/2014/381859
Saini, D. (2015). CO2-Prophet model based evaluation of CO2-EOR and storage potential in
mature oil reservoirs. Journal of Petroleum Science and Engineering, 134, 79-86.
doi:https://doi.org/10.1016/j.petrol.2015.07.024
Saintilan, N., Khan, N. S., Ashe, E., Kelleway, J. J., Rogers, K., Woodroffe, C. D., & Horton, B.
P. (2020). Thresholds of mangrove survival under rapid sea level rise. Science,
368(6495), 1118-1121. doi:10.1126/science.aba2656
Saito, A., Itaoka, K., & Akai, M. (2019). Those who care about CCS—Results from a Japanese
survey on public understanding of CCS. International Journal of Greenhouse Gas
Control, 84, 121-130. doi:https://doi.org/10.1016/j.ijggc.2019.02.014
Saito, H., Suzuki, K., Hinuma, A., Ota, T., Fukami, K., Kiyosawa, H., . . . Tsuda, A. (2005).
Responses of microzooplankton to in situ iron fertilization in the western subarctic Pacific
(SEEDS). Progress in Oceanography, 64(2), 223-236. doi:https://doi.org/10.1016/
j.pocean.2005.02.010
Saito, H., Tsuda, A., Nojiri, Y., Nishioka, J., Takeda, S., Kiyosawa, H., . . . Boyd, P. W. (2006).
Nutrient and phytoplankton dynamics during the stationary and declining phases of a
phytoplankton bloom induced by iron-enrichment in the eastern subarctic Pacific. Deep
Sea Research Part II: Topical Studies in Oceanography, 53(20–22), 2168-2181.
doi:http://dx.doi.org/10.1016/j.dsr2.2006.05.029
Saito, M. (1990). Charcoal as a microhabitat for va mycorrhizal fungi, and its practical
implication. Agriculture Ecosystems & Environment, 29(1-4), 341-344.
Saito, T., Otani, T., Seike, N., Murano, H., & Okazaki, M. (2011). Suppressive effect of soil
application of carbonaceous adsorbents on dieldrin uptake by cucumber fruits. Soil
Science and Plant Nutrition.
Sajdak, M., Muzyka, R., Hrabak, J., & Rózycki, G. (2013). Biomass, biochar and hard coal: Data
mining application to elemental composition and high heating values prediction. Journal
of Analytical and Applied Pyrolysis, 104, 153-160. Retrieved from https://ac.els-cdn.com/
S0165237013001903/1-s2.0-S0165237013001903-main.pdf?_tid=9fe85340-
e981-44ea-8783-2c7d1ba60f72&acdnat=1552346676_eafc55cebe42bdf89996db6d8ee
b6f83
Sajdak, M., Muzyka, R., Hrabak, J., & Słowik, K. (2015). Use of plastic waste as a fuel in the co-
pyrolysis of biomass. Journal of Analytical and Applied Pyrolysis. doi:10.1016/
j.jaap.2015.01.008
Sajdak, M., & Stelmach, S. (2014). Using chemometric analysis to classify and confirm the
origin of bio-char. Journal of Analytical and Applied Pyrolysis. doi:10.1016/
j.jaap.2014.11.018
Sajdak, M., Stelmach, S., Kotyczka-Morańska, M., & Plis, A. (2014). Application of chemometric
methods to evaluate the origin of solid fuels subjected to thermal conversion. Journal of
Analytical and Applied Pyrolysis, 113, 65-72. doi:10.1016/j.jaap.2014.10.005
SakwaNovak, M. A. (2016). Poly(ethylenimine)Functionalized Monolithic Alumina Honeycomb
Adsorbents for CO2 Capture from Air. ChemSusChem, 9(14), 1859-1868.
doi:doi:10.1002/cssc.201600404
Sakwa-Novak, M. A., Tan, S., & Jones, C. W. (2015). Role of Additives in Composite PEI/Oxide
CO2 Adsorbents: Enhancement in the Amine Efficiency of Supported PEI by PEG in
CO2 Capture from Simulated Ambient Air. Acs Applied Materials & Interfaces, 7(44),
24748-24759. doi:10.1021/acsami.5b07545
Sala, O. E., Sax, D., & Leslie, H. (2009). Biodiversity consequences of biofuel production. Paper
presented at the Biofuels: Environmental Consequences and Interactions with Changing
Land Use. Proceedings of the Scientific Committee on Problems of the Environment
(SCOPE) International Biofuels Project Rapid Assessmen. http://sala.lab.asu.edu/wp-
content/uploads/158-Biofuels-and-biodiversity-Sala-et-al.pdf
Salam, K. (2015). BAMBOO AND SUSTAINABLE DEVELOPMENT WITH CLIMATE CHANGE:
OPPORTUNITIES AND CHALLENGES. In Climate Dynamics in Horticultural Science.
Saleh, M. E., Mahmoud, A. H., & Rashad, M. (2013). Biochar Usage as a Cost-Effective Bio-
Sorbent for Removing NH4-N from Wastewater. CLEAN - Soil, Air, Water, 44(1), 55-62.
Retrieved from http://gccbs2013.aast.edu/newgcc/images/pdf/
biochar%20usage%20as%20a%20cost-effective%20bio-
sorbent%20for%20removing%20nh4-n%20from%20wastewater%20maher%20e.
%20saleh%20amal%20h.%20mahmoud%20and%20mohamed%20rashad.pdf
Salek, S. S., Kleerebezem, R., Jonkers, H. M., Witkamp, G.-j., & van Loosdrecht, M. C. M.
(2013). Mineral CO2 sequestration by environmental biotechnological processes. Trends
in Biotechnology, 31(3), 139-146. doi:http://dx.doi.org/10.1016/j.tibtech.2013.01.005
Salema, A. A., et al. (2013). Dielectric properties and microwave heating of oil palm biomass
and biochar. Industrial Crops and Products, Volume 50, 366–374.
Sali, D. (2020). Ottawa startup sees ocean of opportunities in new carbon-capture technology.
Ottawa Business Journal. Retrieved from https://www.obj.ca/article/techopia/ottawa-
startup-sees-ocean-opportunities-new-carbon-capture-technology
Salleh, M. A. M., et al. (2010). Gasification of Biochar from Empty Fruit Bunch in a Fluidized Bed
Reactor. Energies, 3(7), 1344-1352. doi:10.3390/en3071344.
Salman, M., Cizer, Ö., Pontikes, Y., Santos, R. M., Snellings, R., Vandewalle, L., . . . Van Balen,
K. (2014). Effect of accelerated carbonation on AOD stainless steel slag for its
valorisation as a CO2-sequestering construction material. Chemical Engineering
Journal, 246, 39-52. doi:https://doi.org/10.1016/j.cej.2014.02.051
Salmani, M. S., et al. (2014). Biochar Effects on Copper Availability and Uptake by Sunflower in
a Copper Contaminated Calcareous Soil. International Journal of Plant, Animal and
Environmental Sciences, 4(3), 389-394. Retrieved from http://www.ijpaes.com/admin/
php/uploads/643_pdf.pdf
Salmon, S., & House, A. (2015). Chapter 2 - Enzyme-catalyzed Solvents for CO2 Separation A2
- Shi, Fan. In B. Morreale (Ed.), Novel Materials for Carbon Dioxide Mitigation
Technology (pp. 23-86). Amsterdam: Elsevier.
Salter, I., Lampitt, R. S., Sanders, R., Poulton, A., Kemp, A. E. S., Boorman, B., . . . Pearce, R.
(2007). Estimating carbon, silica and diatom export from a naturally fertilised
phytoplankton bloom in the Southern Ocean using PELAGRA: A novel drifting sediment
trap. Deep Sea Research Part II: Topical Studies in Oceanography, 54(18–20),
2233-2259. doi:http://dx.doi.org/10.1016/j.dsr2.2007.06.008
Salter, I., Schiebel, R., Ziveri, P., Movellan, A., Lampitt, R., & Wolff, G. A. (2014). Carbonate
counter pump stimulated by natural iron fertilization in the Polar Frontal Zone. Nature
Geoscience, 7(12), 885-889. doi:10.1038/ngeo2285
http://www.nature.com/ngeo/journal/v7/n12/abs/ngeo2285.html#supplementary-information
Samaniego, J., et al. (2021). Current understanding of the potential impacts of Carbon Dioxide
Removal approaches on the SDGs in selected countries in Latin America and the
Caribbean. Retrieved from https://www.c2g2.net/wp-content/uploads/20210711_Current-
understanding-CDR-SDGs_LAC_Final-Report.pdf
Samari, M., Ridha, F., Manovic, V., Macchi, A., Anthony, E. J. J. M., & Change, A. S. f. G.
(2019). Direct capture of carbon dioxide from air via lime-based sorbents. doi:10.1007/
s11027-019-9845-0
Sambusiti, C., Bellucci, M., Zabaniotou, A., Beneduce, L., & Monlau, F. (2015). Algae as
promising feedstocks for fermentative biohydrogen production according to a biorefinery
approach: A comprehensive review. Renewable and Sustainable Energy Reviews, 44,
20-36. doi:https://doi.org/10.1016/j.rser.2014.12.013
Sampson, J. (2019). Drax CEO sets record straight about company operations. Gasworld.
Retrieved from https://www.gasworld.com/drax-ceo-sets-record-straight-about-company-
operations/2017596.article
Samson, R., et al. (2005). The Potential of C4 Perennial Grasses for Developing a Global
BIOHEAT Industry. Critical Reviews in Plant Sciences, 24, 461-495. Retrieved from
http://www.tandfonline.com/doi/pdf/10.1080/07352680500316508
Samun, I., Saeed, R., Abbas, M., Rehan, M., Nizami, A.-S., & Asam, Z.-u.-Z. (2017).
Assessment of Bioenergy Production from Solid Waste. Energy Procedia, 142, 655-660.
doi:https://doi.org/10.1016/j.egypro.2017.12.108
Sanchez, D., et al. . (2020). Literature Review and Evaluation of Research Gaps to Support
Wood Products Innovation. Retrieved from https://bof.fire.ca.gov/media/9688/full-12-a-
jiwpi_formattedv12_3_05_2020.pdf
Sanchez, D. L., et al. (2018). Federal research, development, and demonstration priorities for
carbon dioxide removal in the United States. Environmental Research Letters,
13(015005), 1-12.
Sanchez, D. L., & Callaway, D. S. (2016). Optimal scale of carbon-negative energy facilities.
Applied Energy, 170, 437-444. doi:http://dx.doi.org/10.1016/j.apenergy.2016.02.134
Sanchez, D. L., Houlton, B., & Silver, W. (2019). UC experts can lead on carbon dioxide
removal. California Agriculture, 73(2), 69-72. doi:10.3733/ca.2019a0009
Sanchez, D. L., Johnson, N., McCoy, S. T., Turner, P. A., & Mach, K. J. (2018). Near-term
deployment of carbon capture and sequestration from biorefineries in the United States.
Proceedings of the National Academy of Sciences. doi:10.1073/pnas.1719695115
Sanchez, D. L., & Kammen, D. M. (2016). A commercialization strategy for carbon-negative
energy. Nature Energy, 1, 15002. doi:10.1038/nenergy.2015.2
Sanchez, D. L., Nelson, J. H., Johnston, J., Mileva, A., & Kammen, D. M. (2015). Biomass
enables the transition to a carbon-negative power system across western North America.
Nature Climate Change, 5(3), 230-234. doi:10.1038/nclimate2488
Sanchez, D. L., Turner, P. A., Baik, E., Field, C. B., Benson, S. M., & Mach, K. J. (2019).
Chapter 4 - Rightsizing expectations for bioenergy with carbon capture and storage
toward ambitious climate goals. In J. C. Magalhães Pires & A. L. D. Cunha Gonçalves
(Eds.), Bioenergy with Carbon Capture and Storage (pp. 63-84): Academic Press.
Sanchez, J., et al. (2021). The Road to Ten Gigatons. Carbon Removal Scale Up Challenge
Retrieved from https://www.roadto10gigatons.com/
Sanchez, M. E., et al. . (2009). Bio-fuels and bio-char production from pyrolysis of sewage
sludge. Journal of Residuals Science & Technology, 6(1), 35-41. Retrieved from http://
dpi-journals.com/index.php/JRST/article/view/1413
Sanchez, M. E., et al. (2009). Pyrolysis of Agricultural Residues from Rape and Sunflowers:
Production and Characterization of Bio-Fuels and Biochar Soil Management. Journal of
Analytical and Applied Pyrolysis, 85(1-2), 142-144. Retrieved from http://
www.sciencedirect.com/science/article/pii/S0165237008001745
Sánchez-Biezma, A., Paniagua, J., Diaz, L., Lorenzo, M., Alvarez, J., Martínez, D., . . .
Abanades, J. C. (2013). Testing postcombustion CO2 capture with CaO in a 1.7 MWt
pilot facility. Energy Procedia, 37(Supplement C), 1-8. doi:https://doi.org/10.1016/
j.egypro.2013.05.078
Sánchez-García, M., Alburquerque, J. A., Sánchez-Monedero, M. A., Roig, A., & CAYUELA, M.
L. (2015). Biochar accelerates organic matter degradation and enhances N
mineralisation during composting of poultry manure without a relevant impact on gas
emissions. Bioresource Technology, 192, 272 - 279. doi:10.1016/j.biortech.2015.05.003
Sanchez-Garcia, M., Cayuela, M. L., Rasse, D., & Sanchez-Monedero, M. A. (2019). Biochars
from Mediterranean agro-industry residues: physico-chemical properties relevant for C
sequestration and soil water retention. ACS Sustainable Chemistry & Engineering.
doi:10.1021/acssuschemeng.8b04589
Sánchez-García, M., Sánchez-Monedero, M. A., Roig, A., López-Cano, I., Moreno, B., Benitez,
E., & CAYUELA, M. L. (2016). Compost vs biochar amendment: a two-year field study
evaluating soil C build-up and N dynamics in an organically managed olive crop. Plant
and Soil. doi:10.1007/s11104-016-2794-4
Sandalow, D., et al. (2018). Direct Air Capture of Carbon Dioxide. Retrieved from https://
energypolicy.columbia.edu/sites/default/files/pictures/DAC_Roadmap_20181210.pdf
Sandalow, D., et al. (2021). Biomass Carbon Removal and Storage (BiCRS). Retrieved from
https://www.icef-forum.org/roadmap/#bicrs
Sanderman, J., & Baldock, j. A. (2010). Accounting for soil carbon sequestration in national
inventories: a soil scientist's perspective. Environmental Research Letters, 5(3), 034003.
Retrieved from http://stacks.iop.org/1748-9326/5/i=3/a=034003
Sanders, J. (2021). The climate crisis requires every tool we've got, including carbon removal.
The Hill. Retrieved from https://thehill.com/opinion/energy-environment/569593-the-
climate-crisis-requires-every-tool-weve-got-including-carbon
Sanderson, B. M., O'Neill, B. C., & Tebaldi, C. (2016). What would it take to achieve the Paris
temperature targets? Geophysical Research Letters, 43(13), 7133-7142.
doi:doi:10.1002/2016GL069563
Sandra, J. A., Lutfi, M., & Nugroho, W. A. (2014). Pengaruh Konsentrasi Asam Sulfat Terhadap
Sifat Fisik dan Kimia Biochar dari Sludge Biogas pada Proses Aktivasi (Effect of Sulfuric
Acid Concentration Against Physical and Chemical Properties of Sludge Biogas Biochar
on Activation Process). Journal Keteknikan Pertanian Tropis dan Biosistem (Journal of
Tropical Agricultural Engineering and Biosystems), 2(3), 205-210. Retrieved from http://
jkptb.ub.ac.id/index.php/jkptb/article/view/222/187
Sankaran, R., Show, P. L., Nagarajan, D., & Chang, J.-S. (2018). Chapter 19 - Exploitation and
Biorefinery of Microalgae. In T. Bhaskar, A. Pandey, S. V. Mohan, D.-J. Lee, & S. K.
Khanal (Eds.), Waste Biorefinery (pp. 571-601): Elsevier.
Sanna, A., Dri, M., Hall, M. R., & Maroto-Valer, M. (2012). Waste materials for carbon capture
and storage by mineralisation (CCSM) – A UK perspective. Applied Energy, 99, 545-554.
doi:https://doi.org/10.1016/j.apenergy.2012.06.049
Sanna, A., Gaubert, J., & Maroto-Valer, M. M. (2016). Alternative regeneration of chemicals
employed in mineral carbonation towards technology cost reduction. Chemical
Engineering Journal, 306, 1049-1057. doi:https://doi.org/10.1016/j.cej.2016.08.039
Sanna, A., Hall, M. R., & Maroto-Valer, M. M. (2012). Post-processing pathways in carbon
capture and storage by mineral carbonation (CCSM) towards the introduction of carbon
neutral materials. Energy & Environmental Science, 5, 7781-7796.
Sanna, A., Ramli, I., & Mercedes Maroto-Valer, M. (2015). Development of sodium/lithium/fly
ash sorbents for high temperature post-combustion CO2 capture. Applied Energy, 156,
197-206. doi:https://doi.org/10.1016/j.apenergy.2015.07.008
Sanna, A., Thompson, S., Whitty, K. J., & Maroto-Valer, M. M. (2017). Fly Ash Derived Lithium
Silicate for in-situ Pre-combustion CO2 Capture. Energy Procedia, 114, 2401-2404.
doi:https://doi.org/10.1016/j.egypro.2017.03.1386
Sanna, A., Uibu, M., Caramanna, G., Kuusik, R., & Maroto-Valer, M. M. (2014). A review of
mineral carbonation technologies to sequester CO2. Chemical Society Reviews, 43(23),
8049-8080. doi:10.1039/C4CS00035H
Sanpasertparnich, T., Idem, R., Bolea, I., deMontigny, D., & Tontiwachwuthikul, P. (2010).
Integration of post-combustion capture and storage into a pulverized coal-fired power
plant. International Journal of Greenhouse Gas Control, 4(3), 499-510. doi:https://
doi.org/10.1016/j.ijggc.2009.12.005
Santhi Prabha, V. (2015). A study on carbon and green house gas dynamics of wetland rice
soils with special reference to biochar application. (Ph.D.). Mahatma Gandhi University,
Retrieved from http://ir.inflibnet.ac.in:8080/jspui/handle/10603/50719
Santín, C., Doerr, S. H., Kane, E. S., Masiello, C. A., Ohlson, M., de la Rosa, J. M., . . . Dittmar,
T. (2015). Towards a global assessment of pyrogenic carbon from vegetation fires.
Global Change Biology, n/a - n/a. doi:10.1111/gcb.12985
Santín, C., Doerr, S. H., Preston, C. M., & González-Rodríguez, G. (2014). Pyrogenic organic
matter production from wildfires: a missing sink in the global carbon cycle. Global
Change Biology, n/a - n/a. doi:10.1111/gcb.12800
Santori, G., Charalambous, C., Ferrari, M.-C., & Brandani, S. (2018). Adsorption artificial tree for
atmospheric carbon dioxide capture, purification and compression. Energy. doi:https://
doi.org/10.1016/j.energy.2018.08.090
Santos, B. S., & Capareda, S. C. (2015). Energy sorghum pyrolysis using a pressurized batch
reactor. Biomass Conversion and Biorefinery. doi:10.1007/s13399-015-0191-5
Santos, F. M., Gonçalves, A. L., & Pires, J. C. M. (2019). Chapter 1 - Negative emission
technologies. In J. C. Magalhães Pires & A. L. D. Cunha Gonçalves (Eds.), Bioenergy
with Carbon Capture and Storage (pp. 1-13): Academic Press.
Santos, L. B., Striebeck, M. V., Crespi, M. S., Ribeiro, C. A., & De Julio, M. (2015).
Characterization of biochar of pine pellet. Journal of Thermal Analysis and Calorimetry,
122(1), 21-32. doi:10.1007/s10973-015-4740-8
Santos, R. M., Van Bouwel, J., Vandevelde, E., Mertens, G., Elsen, J., & Van Gerven, T. (2013).
Accelerated mineral carbonation of stainless steel slags for CO2 storage and waste
valorization: Effect of process parameters on geochemical properties. International
Journal of Greenhouse Gas Control, 17, 32-45. doi:https://doi.org/10.1016/
j.ijggc.2013.04.004
Santos, R. M., Verbeeck, W., Knops, P., Rijnsburger, K., Pontikes, Y., & Van Gerven, T. (2013).
Integrated Mineral Carbonation Reactor Technology for Sustainable Carbon Dioxide
Sequestration: ‘CO2 Energy Reactor’. Energy Procedia, 37(Supplement C), 5884-5891.
doi:https://doi.org/10.1016/j.egypro.2013.06.513
Sanvong, C., & Nathewet, P. (2014). A comparative study of pelleted broiler litter biochar derived
from lab-scale pyrolysis reactor with that resulted from 200-liter-oil drum kiln to
ameliorate the relations between physicochemical properties of soil with lower organic
matter soil. Environment Asia, Vol. 7 No. 1, 95-103.
Sanvong, C., & Suppadit, T. (2013). The Characteristic of Pelleted Broiler Litter Biochar Derived
from Pilot Scale Pyrolysis Reactor and 200-Liter-Oil-Drum Kiln. Journal of Energy
Technologies and Policy.
Sanyang, L., Ghani, W. A. W. A. K., Idris, A., & Bin Ahmad, M. (2014). Zinc Removal from
Wastewater Using Hydrogel Modified Biochar. Applied Mechanics and Materials, 625,
842 - 846. doi:10.4028/www.scientific.net/AMM.625.842
Sanyang, M. L., Ghani, W. A. W. A. K., Idris, A., & Ahmad, M. B. (2016). Hydrogel biochar
composite for arsenic removal from wastewater. Desalination and Water Treatment,
57(8), 3674-3688. doi:10.1080/19443994.2014.989412
Sanyang, M. L., Ghani, W. A. W. A. K., Idris, A., & Bin Ahmad, M. (2014). Hydrogel biochar
composite for arsenic removal from wastewater. Desalination and Water Treatment, 1 -
15. doi:10.1080/19443994.2014.989412
Sanz-Pérez, E. S., Murdock, C. R., Didas, S. A., & Jones, C. W. (2016). Direct Capture of CO2
from Ambient Air. Chemical Reviews, 116(19), 11840-11876. doi:10.1021/
acs.chemrev.6b00173
Saquing, J. M., Yu, Y.-H., & Chiu, P. C. (2016). Wood-Derived Black Carbon (Biochar) as a
Microbial Electron Donor and Acceptor. Environmental Science & Technology Letters,
3(2), 62-66. doi:10.1021/acs.estlett.5b00354
Saranya, K., Kumutha, K., & Krishnan, P. S. (2011). Influence of biochar and Azospirillum
application on the growth of maize. Madras Agricultural Journal, 98, 158-164.
Saranya, K., Santhana, K. P., Kumutha, K., & John, F. (2011). Potential for Biochar as an
Alternate Carrier to Lignite for the Preparation of Biofertilizers in India. International
Journal of Agriculture, Environment and Biotechnology, 4.
Sarauer, J. L., Page-Dumroese, D. S., & Coleman, M. D. (2019). Soil greenhouse gas, carbon
content, and tree growth response to biochar amendment in western United States
forests. GCB Bioenergy, 11(5), 660-671. doi:https://doi.org/10.1111/gcbb.12595
Sari, N. A., Ishak, C. F., & Bakar, R. A. (2014). Characterization of Oil Palm Empty Fruit Bunch
and Risk Husk Biochars and Their Potential to Adsorb Arsenic and Calcium. American
Journal of Agricultural and Biological Sciences, 9(3), 450 - 456. doi:10.3844/
ajabssp.2014.450.456
Sarkar, O., Agarwal, M., Naresh Kumar, A., & Venkata Mohan, S. (2014). Retrofitting
hetrotrophically cultivated algae biomass as pyrolytic feedstock for biogas, bio-char and
bio-oil production encompassing biorefinery. Bioresource Technology, 78, 132-138.
doi:10.1016/j.biortech.2014.09.070
Sarkar, S., & Sarkar, S. (2017). Current and Future Trends Toward Reduction of CO2 Emission
from Steel Industries. In M. Goel & M. Sudhakar (Eds.), Carbon Utilization: Applications
for the Energy Industry (pp. 245-256). Singapore: Springer Singapore.
Sarkhot, D. V., Berhe, A. A., & Ghezzeehei, T. A. (2012). Impact of Biochar Enriched with Dairy
Manure Effluent on Carbon and Nitrogen Dynamics. Journal of Environmental Quality,
41(4), 1107-1114.
Sarkhot, D. V., Berhe, A. A., & Ghezzeehei, T. A. (2013). Effectiveness of biochar for sorption of
ammonium and phosphate from dairy effluent. Journal of Environmental Quality, 42(5),
1545–1554. Retrieved from https://dl.sciencesocieties.org/publications/jeq/abstracts/
42/5/1545?access=0&view=pdf
Sarma, B., Gogoi, N., & Tejada Moral, M. (2015). Germination and seedling growth of Okra
(Abelmoschus esculentus L.) as influenced by organic amendments. Cogent Food &
Agriculture, 1(1), 1030906. doi:10.1080/23311932.2015.1030906
Sarmah, A. K., Srinivasan, P., Smernik, R. J., Manley-Harris, M., Antal, M. J., Downie, A., & Van
Zwieten, L. (2010). Retention capacity of biochar-amended New Zealand dairy farm soil
for an estrogenic steroid hormone and its primary metabolite. Australian Journal of Soil
Research, 48(6), 648-658. Retrieved from https://www.researchgate.net/publication/
47379281_Retention_capacity_of_biochar-
amended_New_Zealand_dairy_farm_soil_for_an_estrogenic_steroid_hormone_and_its_
primary_metabolite
Sarmiento, J. L., & Orr, J. C. (1991). Three-dimensional simulations of the impact of Southern
Ocean nutrient depletion on atmospheric CO2 and ocean chemistry. Limnology and
Oceanography, 36(8), 1928-1950. doi:10.4319/lo.1991.36.8.1928
Sarmiento, J. L., Slater, R. D., Dunne, J., Gnanadesikan, A., & Hiscock, M. R. (2010). Efficiency
of small scale carbon mitigation by patch iron fertilization. Biogeosciences, 7(11),
3593-3624. doi:10.5194/bg-7-3593-2010
Sarmiento, J. L., & Toggweiler, J. R. (1984). A new model for the role of the oceans in
determining atmospheric PCO2. Nature, 308, 621. doi:10.1038/308621a0
Sarnoff, J. D. (2020). Negative-Emission Technologies and Patent Rights after COVID-19.
Climate Law, 10(3-4), 225-265. Retrieved from https://brill.com/view/journals/clla/10/3-4/
article-p225_225.xml
Saroha, A. K., & Devi, P. (2016). Risk Assessment and synthesis of magnetic biochar
composites from paper mill sludge for removal of pentachlorophenol. Indian Institute of
Technology Delhi, Retrieved from http://eprint.iitd.ac.in/handle/2074/6956?
mode=full&submit_simple=Show+full+item+record
Sarong, M. M., & Orge, R. F. (2015). Effect of Rice Hull Biochar on the Fertility and Nutrient
Holding Capacity of Sandy Soils. OIDA International Journal of Sustainable
Development, 8(12), 33-44. Retrieved from http://papers.ssrn.com/sol3/papers.cfm?
abstract_id=2730687
Sarthou, G., Vincent, D., Christaki, U., Obernosterer, I., Timmermans, K. R., & Brussaard, C. P.
D. (2008). The fate of biogenic iron during a phytoplankton bloom induced by natural
fertilisation: Impact of copepod grazing. Deep Sea Research Part II: Topical Studies in
Oceanography, 55(5), 734-751. doi:https://doi.org/10.1016/j.dsr2.2007.12.033
Sarula, Chen, H., Hou, X., Ubugunov, L., Vishnyakova, O., Wu, X., . . . Ding, Y. (2014). Carbon
storage under different grazing management in the typical steppe. Eurasian Soil
Science, 47(11), 1152-1160. doi:10.1134/s1064229314110106
Sarvaramini, A., Assima, G. P., Beaudoin, G., & Larachi, F. (2014). Biomass torrefaction and
CO2 capture using mining wastes – A new approach for reducing greenhouse gas
emissions of co-firing plants. Fuel, 115, 749-757. doi:http://dx.doi.org/10.1016/
j.fuel.2013.07.087
Sasidharan, S., Torkzaban, S., Bradford, S. A., Kookana, R., Page, D., & Cook, P. G. (2016).
Transport and retention of bacteria and viruses in biochar-amended sand. Science of
The Total Environment, 548-549, 100 - 109. doi:10.1016/j.scitotenv.2015.12.126
Sassaman, E. (2019). Turning carbon dioxide into fish food?! It can be done. Stone Pier Press,
(April 19). Retrieved from https://stonepierpress.org/goodfoodnews/carboncapture
Sastri, A. R., & Dower, J. F. (2006). Mesozooplankton community response during the SERIES
iron enrichment experiment in the subarctic NE Pacific. Deep Sea Research Part II:
Topical Studies in Oceanography, 53(20–22), 2268-2280. doi:http://dx.doi.org/10.1016/
j.dsr2.2006.05.034
Sati, H., Mitra, M., Mishra, S., & Baredar, P. (2019). Microalgal lipid extraction strategies for
biodiesel production: A review. Algal Research, 38, 101413. doi:https://doi.org/10.1016/
j.algal.2019.101413
Sato, M., Takeda, S., & Furuya, K. (2009). Responses of pico- and nanophytoplankton to
artificial iron infusions observed during the second iron enrichment experiment in the
western subarctic Pacific (SEEDS II). Deep Sea Research Part II: Topical Studies in
Oceanography, 56(26), 2745-2754. doi:https://doi.org/10.1016/j.dsr2.2009.06.002
Satriawan, B. D., & Handayanto, E. (2015). Effects of biochar and crop residues application on
chemical properties of a degraded soil of South Malang, and P uptake by maize. Journal
of Degraded and Mining Lands Management, 2(2), 271-280. Retrieved from http://
jdmlm.ub.ac.id/index.php/jdmlm/article/view/105
Sattar, A. (2015). Hydrogen production from biomass for use in solid oxide fuel cells. University
of Birmingham, Retrieved from http://etheses.bham.ac.uk/6335/
Sattar, A., Leeke, G. A., Hornung, A., & Wood, J. (2014). Steam gasification of rapeseed, wood,
sewage sludge and miscanthus biochars for the production of a hydrogen-rich syngas.
Biomass and Bioenergy, 69, 276 - 286. doi:10.1016/j.biombioe.2014.07.025
Satyanarayana, T., & Bose, H. (2017). Prospects in Mitigating Global Warming by Biomimetic
Carbon Sequestration Using Recombinant Microbial Carbonic Anhydrases. In M. Goel &
M. Sudhakar (Eds.), Carbon Utilization: Applications for the Energy Industry (pp.
101-127). Singapore: Springer Singapore.
Saucier, D. S. (2013). Cyclone Performance for Reducing Biochar Concentrations in Syngas.
(Master's thesis). Texas A & M University,
Sauerbeck, D. R. (2001). CO2 emissions and C sequestration by agriculture – perspectives and
limitations. Nutrient Cycling in Agroecosystems, 60(1), 253-266. doi:10.1023/
a:1012617516477
Savaresi, A., & Perugini, L. (2021). Sinks, reervoirs or GHGs and Forests. In G. Van Calter & L.
Reins (Eds.), The Paris Agreement on Climate Change: A Commetnary (pp. 133-147).
Savoye, N., Trull, T. W., Jacquet, S. H. M., Navez, J., & Dehairs, F. (2008). 234Th-based export
fluxes during a natural iron fertilization experiment in the Southern Ocean (KEOPS).
Deep Sea Research Part II: Topical Studies in Oceanography, 55(5–7), 841-855.
doi:http://dx.doi.org/10.1016/j.dsr2.2007.12.036
Sawaraba, I., & Rao, B. K. R. (2015). Monitoring of river water for free cyanide pollution from
mining activity in Papua New Guinea and attenuation of cyanide by biochar.
Environmental Monitoring and Assessment, 187(1), 1-9. doi:10.1007/s10661-014-4181-z
Sawayama, S., Inoue, S., Dote, Y., & Yokoyama, S.-Y. (1995). CO2 fixation and oil production
through microalga. Energy Conversion and Management, 36(6), 729-731. doi:https://
doi.org/10.1016/0196-8904(95)00108-P
Sawayama, S., Minowa, T., & Yokoyama, S. Y. (1999). Possibility of renewable energy
production and CO2 mitigation by thermochemical liquefaction of microalgae. Biomass
and Bioenergy, 17(1), 33-39. doi:https://doi.org/10.1016/S0961-9534(99)00019-7
Sawyer, D. (2008). Climate change, biofuels and eco-social impacts in the Brazilian Amazon
and Cerrado. Philosophical Transactions of the Royal Society B: Biological Sciences,
363(1498), 1747-1752. doi:10.1098/rstb.2007.0030
Saxe, J. P., Boman, J. H., Bondi, M., Norton, U., Righetti, T. K., Rony, A. H., & Sajjadi, B. (2019).
Just or bust? Energy justice and the impacts of siting solar pyrolysis biochar production
facilities. Energy Research & Social Science, 58, 101259. doi:https://doi.org/10.1016/
j.erss.2019.101259
Saxena, J., Rana, G., & Pandey, M. (2013). Impact of addition of biochar along with Bacillus sp.
on growth and yield of French beans. Scientia Horticulturae, 162, 351–356. Retrieved
from http://www.sciencedirect.com/science/article/pii/S0304423813004111
Saxena, M., Maity, S., & Sarkar, S. (2014). Carbon nanoparticles in ‘biochar boost wheat
(Triticum aestivum) plant growth. RSC Adv., 4(75), 39948. doi:10.1039/c4ra06535b
Sayari, A., Liu, Q., & Mishra, P. (2016). Enhanced Adsorption Efficiency through Materials
Design for Direct Air Capture over Supported Polyethylenimine. ChemSusChem, 9(19),
2796-2803. doi:10.1002/cssc.201600834
Sayre, L. (2017). How carbon farming could halt climate change. The New Food Economy.
Retrieved from https://newfoodeconomy.org/how-carbon-farming-could-halt-climate-
change/
Sayre, R. (2010). Microalgae: The Potential for Carbon Capture. BioScience, 60(9), 722-727.
Retrieved from http://oup.silverchair-cdn.com/oup/backfile/Content_public/Journal/
bioscience/60/9/10.1525/bio.2010.60.9.9/2/60-9-722.pdf?
Expires=1485911225&Signature=W1Eu9Wq77Utb4J2Rx85Hdh5QcQ6-
yUaMt5f0dMbuFWM2UdzuZKI6CZSUU~~~d0Izx--
OX3E4VIkplXn45IuxFdiznToYWvHH6hSAarxFYsWNsS731wVP~W~zLpPZWb7kxHoXls
dB3i2TZ3tRAc0oJ4fIgnEfbx9njAF2-
ttQaFQ5CNYAQJs92UQokTNf28smhxnW3NUXzpVk1uCuCB2Sppsb3igEp6rYfr9M7sUI
8IeJkjDXjRtdbWZ0jcMvxq1CNdshBKM0kzymR0N2pRfjal1Av2bNqpJVMPt7kiatL6aXOW
tnYD05YNxfP9cihEYOxIr-0PeNAp7cDmUVvJDIcg__&Key-Pair-
Id=APKAIUCZBIA4LVPAVW3Q
Scarlat, N., Dallemand, J.-F., Monforti-Ferrario, F., & Nita, V. (2015). The role of biomass and
bioenergy in a future bioeconomy: Policies and facts. Environmental Development, 15,
3-34. doi:http://dx.doi.org/10.1016/j.envdev.2015.03.006
Scarpare, F., et al. (2013). Bioenergy & water: Brazilian sugar cane ethanol. In J. F. Dellemand
& P. W. Gerbens-Leenes (Eds.), Bioenergy and Water (pp. 89-102): European
Commission.
Scarratt, M. G., Marchetti, A., Hale, M. S., Rivkin, R. B., Michaud, S., Matthews, P., . . .
Kiyosawa, H. (2006). Assessing microbial responses to iron enrichment in the Subarctic
Northeast Pacific: Do microcosms reproduce the in situ condition? Deep Sea Research
Part II: Topical Studies in Oceanography, 53(20–22), 2182-2200. doi:http://dx.doi.org/
10.1016/j.dsr2.2006.05.035
Schabort, C. J. (2014). Evaluation of suitability of water hyacinth as feedstock for bio-energy
production / Cornelis JohannesJ. Schabort. North-West University, Retrieved from http://
dspace.nwu.ac.za/handle/10394/11969
Schaef, H. T., McGrail, B. P., & Owen, A. T. (2010). Carbonate mineralization of volcanic
province basalts. International Journal of Greenhouse Gas Control, 4(2), 249-261.
doi:https://doi.org/10.1016/j.ijggc.2009.10.009
Schaefer, C. E. G. R., et al. . (2004). Micromorphology and Electron Microprobe Analysis of
Phosphorus and Potassium Forms of an Indian Black Earth (IBE) Anthrosol from
Western Amazonia. Australian Journal of Soil Research, 42(4), 401-409. Retrieved from
http://research-repository.uwa.edu.au/en/publications/micromorphology-and-electron-
microprobe-analysis-of-phosphorus-and-potassium-forms-of-an-indian-black-earth-ibe-
anthrosol-from-western-amazonia(74fdcbac-32c7-4c25-bf17-f075ea7e86af)/export.html
Schaeffer, M., Eickhout, B., Hoogwijk, M., Strengers, B., Van Vuuren, D., Leemans, R., &
Opsteegh, T. (2006). CO
2
and albedo climate impacts of extratropical carbon and
biomass plantations. Global Biogeochemical Cycles, 20(2), 1-15. Retrieved from http://
onlinelibrary.wiley.com/doi/10.1029/2005GB002581/epdf
Schahczenski, J. (2010). Biochar and Sustainable Agriculture. Retrieved from http://
attra.ncat.org/attra-pub/PDF/biochar.pdf
Schahczenski, J., & Hill, H. (2009). Agriculture, Climate Change and Carbon Sequestration.
Retrieved from https://www.nrcs.usda.gov/Internet/FSE_DOCUMENTS/
nrcs141p2_002437.pdf
Schakel, W., Meerman, H., Talaei, A., Ramírez, A., & Faaij, A. (2014). Comparative life cycle
assessment of biomass co-firing plants with carbon capture and storage. Applied
Energy, 131, 441-467. doi:https://doi.org/10.1016/j.apenergy.2014.06.045
Scharenbroch, B. C., et al. . (2013). Biochar and Biosolids Increase Tree Growth and Improve
Soil Quality for Urban Landscapes. American Society of Agronomy, 42(5), 1372-1385.
Retrieved from https://dl.sciencesocieties.org/publications/jeq/abstracts/42/5/1372
Scharlemann, J. P. W., & Laurance, W. F. (2008). How Green Are Biofuels? Science, 319(5859),
43-44. Retrieved from http://science.sciencemag.org/content/319/5859/43
Schartau, M., Landry, M. R., & Armstrong, R. A. (2010). Density estimation of plankton size
spectra: a reanalysis of IronEx II data. Journal of Plankton Research, 32(8), 1167-1184.
doi:10.1093/plankt/fbq072
Scheer, C., et al. , & n. (2011). Effect of biochar amendment on the soil-atmosphere exchange
of greenhouse gases from an intensive subtropical pasture in northern New South
Wales, Australia. Plant Soil, 345(1-2), 47-58. doi:DOI 10.1007/s11104-011-0759-1
Scheidel, A., & Work, C. (2018). Forest plantations and climate change discourses: New powers
of ‘green’ grabbing in Cambodia. Land Use Policy, 77, 9-18. doi:https://doi.org/10.1016/
j.landusepol.2018.04.057
Schenuit, F., Colvin, R., Fridahl, M., McMullin, B., Reisinger, A., Sanchez, D. L., . . . Geden, O.
(2021). Carbon Dioxide Removal Policy in the Making: Assessing Developments in 9
OECD Cases. Frontiers in Climate, 3(7). doi:10.3389/fclim.2021.638805
Schieber, J. (2020). New stimulus bill includes $35.2 billion for new energy initiatives. Tech
Crunch. Retrieved from https://techcrunch.com/2020/12/21/new-stimulus-bill-
includes-35-2-billion-for-new-energy-initiatives/
Schiermeier, Q. (2004). Fertilising the sea could combat global warming. Nature. Retrieved from
http://www.nature.com/news/2004/040422/full/news040419-7.html
Schiermeier, Q. (2007). Mixing the oceans proposed to reduce global warming. Nature.
Retrieved from https://www.nature.com/news/2007/070924/full/070924-8.html
Schiffman, R. (2016). Why CO2 ‘Air Capture’ Could Be Key to Slowing Global Warming. Yale
Environment 360. Retrieved from http://e360.yale.edu/features/
pulling_co2_from_atmosphere_climate_change_lackner
Schile, L. M., Kauffman, J. B., Crooks, S., Fourqurean, J. W., Glavan, J., & Megonigal, J. P.
(2017). Limits on carbon sequestration in arid blue carbon ecosystems. Ecological
Applications, 27(3), 859-874. doi:doi:10.1002/eap.1489
Schimmelpfennig, S. (2015). Carbon sequestration in temperate grassland soil : risks and
opportunities of biochar and hydrochar application. Justus-Liebig-Universität Gießen
(University of Giessen), Retrieved from http://geb.uni-giessen.de/geb/volltexte/
2015/11605/
Schimmelpfennig, S., & Glaser, B. (2012). One Step Forward toward Characterization: Some
Important Material Properties to Distinguish Biochars. Journal of Environmental Quality,
41(4), 1–13. doi:10.2134/jeq2011.0146
Schimmelpfennig, S., Müller, C., Grünhage, L., Koch, C., & Kammann, C. (2014). Biochar,
hydrochar and uncarbonized feedstock application to permanent grassland—Effects on
greenhouse gas emissions and plant growth. Agriculture, Ecosystems & Environment.
Schipper, O. (2020). Binding carbon dioxide using broken concrete. Phys.org. Retrieved from
http://www.californiacountynews.org/news/2018/02/why-are-there-so-many-missing-
people-humboldt-county
Schirmer, J., & Bull, L. (2014). Assessing the likelihood of widespread landholder adoption of
afforestation and reforestation projects. Global Environmental Change, 24, 306-320.
doi:https://doi.org/10.1016/j.gloenvcha.2013.11.009
Schlamadinger, B., Apps, M., Bohlin, F., Gustavsson, L., Jungmeier, G., Marland, G., . . .
Savolainen, I. (1997). Towards a standard methodology for greenhouse gas balances of
bioenergy systems in comparison with fossil energy systems. Biomass and Bioenergy,
13(6), 359-375. doi:http://dx.doi.org/10.1016/S0961-9534(97)10032-0
Schlesinger, B. (2015). Biochar Reality Check. Retrieved from https://blogs.nicholas.duke.edu/
citizenscientist/biochar-reality-check/
Schlesinger, B. (2020). The Futility of Soil Carbon Sequestration. The Millbrook Independent.
Retrieved from https://themillbrookindependent.com/?p=679
Schlesinger, B. (2020). Grasping at Straws. The Millbrook Independent. Retrieved from https://
themillbrookindependent.com/?p=503
Schlesinger, W. H. (1999). Carbon Sequestration in Soils. Science, 284(5423), 2095-2095.
doi:10.1126/science.284.5423.2095
Schlesinger, W. H. (2000). Carbon sequestration in soils: some cautions amidst optimism.
Agriculture, Ecosystems & Environment, 82(1–3), 121-127. doi:http://dx.doi.org/10.1016/
S0167-8809(00)00221-8
Schlesinger, W. H., et al. (2018). Pruitt Is Wrong on Burning Forests for Energy. New York
Times. Retrieved from https://www.nytimes.com/2018/05/03/opinion/pruitt-forests-
burning-energy.html
Schlesinger, W. H., & Lichter, J. (2001). Limited carbon storage in soil and litter of experimental
forest plots under increased atmospheric CO2. Nature, 411(6836), 466-469. Retrieved
from http://dx.doi.org/10.1038/35078060
Schlossberg, J. (2016). Is Biomass Energy Renewable? Retrieved from https://
www.ecowatch.com/is-biomass-energy-renewable-1891131459.html
Schmalenberger, A., & Fox, A. (2015). Bacterial Mobilization of Nutrients From Biochar-
Amended Soils. Advances in Applied Microbiology, 94, 109-159. doi:10.1016/
bs.aambs.2015.10.001
Schmauss, T. A., & Barnett, S. A. (2021). Viability of Vehicles Utilizing On-Board CO2 Capture.
ACS Energy Letters, 6(9), 3180-3184. doi:10.1021/acsenergylett.1c01426
Schmelz, W. J., Hochman, G., & Miller, K. G. (2020). Total cost of carbon capture and storage
implemented at a regional scale: northeastern and midwestern United States. Interface
Focus, 10(5), 20190065. doi:doi:10.1098/rsfs.2019.0065
Schmer, M. R., Vogel, K. P., Mitchell, R. B., & Perrin, R. K. (2008). Net energy of cellulosic
ethanol from switchgrass. Proceedings of the National Academy of Sciences, 105(2),
464-469. doi:10.1073/pnas.0704767105
Schmidt, H. (2012). Treating liquid manure in biochar. Ithaka Journal, 1/2012, 273–276.
Retrieved from http://www.ithaka-journal.net/druckversionen/e062012-bc-manure.pdf
Schmidt, H., Pandit, B., Martinsen, V., Cornelissen, G., Conte, P., & Kammann, C. (2015).
Fourfold Increase in Pumpkin Yield in Response to Low-Dosage Root Zone Application
of Urine-Enhanced Biochar to a Fertile Tropical Soil. Agriculture, 5(3), 723 - 741.
doi:10.3390/agriculture5030723
Schmidt, H.-P. (2012). 55 Uses of Biochar. ithakajournal viticulture ecology climate-farming.
Retrieved from http://www.ithaka-journal.net/druckversionen/e082012-55-uses-of-bc.pdf
Schmidt, H. P., & Niglli, C. (2012). Biochar Gardening – Results 2011. Ithaka Journal, 265–269.
Retrieved from http://www.ithaka-journal.net/druckversionen/e042012-bc-gardening.pdf
Schmidt, H.-P., Anca-Couce, A., Hagemann, N., Werner, C., Gerten, D., Lucht, W., & Kammann,
C. (2019). Pyrogenic carbon capture and storage. GCB Bioenergy, 11(4), 573-591.
doi:10.1111/gcbb.12553
Schmidt, H.-P., Kammann, C., Niggli, C., Evangelou, M. W. H., Mackie, K. A., & Abiven, S.
(2014). Biochar and biochar-compost as soil amendments to a vineyard soil: Influences
on plant growth, nutrient uptake, plant health and grape quality. Agriculture, Ecosystems
& Environment, 191, 117-123. doi:http://dx.doi.org/10.1016/j.agee.2014.04.001
Schmidt, H.-P., & Shackley, S. (2016). Biochar horizon 2025. In Biochar in European Soils and
Agriculture: Science and Practice.
Schmidt, H.-P., & Taylor, P. (2015). Kon-Tiki flame cap pyrolysis for the democratization of
biochar production. Ithaka Journal: biochar materials, ecosystems & agronomy, 2014,
338-348. Retrieved from http://www.ithaka-journal.net/druckversionen/
e012014_schmidt_kon-tiki_2014.pdf
Schmidt, J., Leduc, S., Dotzauer, E., Kindermann, G., & Schmid, E. (2010). Cost-effective CO2
emission reduction through heat, power and biofuel production from woody biomass: A
spatially explicit comparison of conversion technologies. Applied Energy, 87(7),
2128-2141. doi:10.1016/j.apenergy.2009.11.007
Schmidt, J., Leduc, S., Dotzauer, E., & Schmid, E. (2011). Cost-effective policy instruments for
greenhouse gas emission reduction and fossil fuel substitution through bioenergy
production in Austria. Energy Policy, 39(6), 3261-3280. doi:http://dx.doi.org/10.1016/
j.enpol.2011.03.018
Schmidt, M. (2013). Amazonian Dark Earths: pathways to sustainable development in tropical
rainforests? Boletim do Museu Paraense
Emílio Goeldi. Ciências Humanas, 8(1), 11-38. Retrieved from http://www.scielo.br/pdf/bgoeldi/
v8n1/v8n1a02.pdf
Schmidt, M. W. I. (2004). Biogeochemistry - carbon budget in the black. Nature, 427(6972), 305-
+.
Schmidt, M. W. I., & Noack, A. G. (2000). Black carbon in soils and sediments: Analysis,
distribution, implications, and current challenges. Global Biogeochemical Cycles, 14(3),
777-793. Retrieved from http://onlinelibrary.wiley.com/doi/10.1029/1999GB001208/
abstract
Schmidt, M. W. I., Skjemstad, J. O., Czimczik, C. I., Glaser, B., Prentice, K. M., & Gelinas, Y.
(2001). Comparative analysis of black carbon in soils. Global Biogeochemical Cycles,
15(1), 163-167. Retrieved from http://onlinelibrary.wiley.com/doi/
10.1029/2000GB001284/abstract
Schmidt, M. W. I., Skjemstad, J. O., Gehrt, E., & Kogel-Knabner, I. (1999). Charred organic
carbon in german chernozemic soils. European Journal of Soil Science, 50(2), 351-365.
Retrieved from http://onlinelibrary.wiley.com/doi/10.1046/j.1365-2389.1999.00236.x/
abstract
Schmidt, M. W. I., Torn, M. S., Abiven, S., Dittmar, T., Guggenberger, G., Janssens, I. A., . . .
Koegel-Knaber, I. (2011). Persistence of soil organic matter as an ecosystem property.
Nature.
Schmitz, M., & Linderholm, C. J. (2016). Performance of calcium manganate as oxygen carrier
in chemical looping combustion of biochar in a 10kW pilot. Applied Energy, 169, 729 -
737. doi:10.1016/j.apenergy.2016.02.088
Schneider, D., et al. (2011). Characterization of biochar from hydrothermal carbonization of
bamboo. International Journal of Energy and Environment, 2(4), 647-652. Retrieved
from http://www.ijee.ieefoundation.org/vol2/issue4/IJEE_06_v2n4.pdf
Schneider, E. (2012). The Effects of Biochar Age and Concentration on Soil Retention of
Phosphorus and Infiltration Rate. (Bachelor of Science). California Polytechnic State
University, San Luis Obispo. Retrieved from http://digitalcommons.calpoly.edu/cgi/
viewcontent.cgi?article=1023&context=nrmsp
Schneider, J. (2020). Decarbonizing construction through carbonation. Proceedings of the
National Academy of Sciences, 117(23), 12515-12517. doi:10.1073/pnas.1913867116
Schneider, L. J. D. (2019). Fixing the Climate? How Geoengineering Threatens to Undermine
the SDGs and Climate Justice. doi:10.1057/s41301-019-00211-6
Schneider, M. P. W., Hilf, M., Vogt, U. F., & Schmidt, M. W. I. (2010). The benzene
polycarboxylic acid (BPCA) pattern of wood pyrolyzed between 200 degrees C and 1000
degrees C. Organic Geochemistry, 41(10), 1082-1088. Retrieved from http://
www.zora.uzh.ch/39567/
Schnellmann, M. A., Görke, R. H., Scott, S. A., & Dennis, J. S. (2020). Chapter 7 Chemical
Looping Technologies for CCS. In Carbon Capture and Storage (pp. 189-237): The
Royal Society of Chemistry.
Schoedel, A., Ji, Z., & Yaghi, O. M. (2016). The role of metal–organic frameworks in a carbon-
neutral energy cycle. Nature Energy, 1, 1-13. Retrieved from https://www.nature.com/
articles/nenergy201634
Schoeneberger, M. M. (2009). Branching out: Agroforestry as a climate change mitigation and
adaptation tool for agriculture. Agroforestry Systems, 75, 27-37.
Schofield, H. K. (2015). A biogeochemical study of nutrient dynamics in artificial soil. Plymouth
University, Retrieved from https://pearl.plymouth.ac.uk/handle/10026.1/3766?show=full
Scholes, R. J., & Noble, I. R. (2001). Storing Carbon on Land. Science, 294(5544), 1012-1013.
doi:10.1126/science.1065307
Scholz, F., & Hasse, U. (2008). Permanent Wood Sequestration: The Solution to the Global
Carbon Dioxide Problem. ChemSusChem, 1(5), 381-384. doi:10.1002/cssc.200800048
Scholz, S. M. (2014). Biochar Systems for Smallholders in Developing Countries : Leveraging
Current Knowledge and Exploring Future Potential for Climate-Smart Agriculture.
Retrieved from https://openknowledge.worldbank.org/handle/10986/18781
Schomberg, H. H. (2012). Influence of Biochar on Nitrogen Fractions in a Coastal Plain Soil.
Journal of Environmental Quality, 41(4), 1087-1095. doi:10.2134/jeq2011.0133
Schoneveld, G. C., German, L. A., & Nutakor, E. (2011). Land-based Investments for Rural
Development? A Grounded Analysis of the Local Impacts of Biofuel Feedstock
Plantations in Ghana. Ecology and Society, 16(4), Article 10. doi:10.5751/
ES-04424-160410
Schouten, S., et al. . (2012). ‘Bioenergy from cattle manure? Implications of anaerobic digestion
and subsequent pyrolysis for carbon and nitrogen dynamics in soil’. GCB Bioenergy,
4(6), 751–760. Retrieved from http://onlinelibrary.wiley.com/doi/10.1111/
j.1757-1707.2012.01163.x/abstract
Schrag, D. P. (2009). Storage of carbon dioxide in offshore sediments. Science, 325,
1658-1659. Retrieved from http://www.precaution.org/lib/offshore_ccs.090925.pdf
Schrammel, G., Paisler, C., Krug, H., Rauch, R., & Hofbauer, H. (2010). Thermal Conversion of
Biomass by Microwave Energy - First Results with Wood. Paper presented at the 18th
European Biomass Conference and Exhibition.
Schreier, M., et al. (2017). Solar conversion of CO2 to CO using Earth-abundant
electrocatalysts prepared by atomic layer modification of CuO. Nature Energy, 2, 1-9.
Retrieved from https://infoscience.epfl.ch/record/228911/files/
schreier_solar_2017_natureenergy_2.pdf
Schübel, H., & Wallimann-Helmer, I. (2021). Food security and the moral differences between
climate mitigation and geoengineering: the case of biofuels and BECCS. In H. Schübel &
I. Wallimann-Helmer (Eds.), Justice and food security in a changing climate (pp. 71-76).
Schueler, V., Weddige, U., Beringer, T., Gamba, L., & Lamers, P. (2013). Global biomass
potentials under sustainability restrictions defined by the European Renewable Energy
Directive 2009/28/EC. GCB Bioenergy, 5(6), 652-663. doi:10.1111/gcbb.12036
Schuiling, O. (2015). The Green Cookery Book: Recipe against Climate Change and Ocean
Acidification. In T. Goreau, R. Larson, & J. Campe (Eds.), Geotherapy: Innovative
Methods of Soil Fertility Restoration, Carbon Sequestration, and Reversing CO2
Increase (pp. 136-151).
Schuiling, R. D. (1998). Geochemical engineering; taking stock. Journal of Geochemical
Exploration, 62(1), 1-28. doi:http://dx.doi.org/10.1016/S0375-6742(97)00042-3
Schuiling, R. D. (2006). Mineral Sequestration of CO2 and Recovery of the Heat of Reaction. In
V. Badescu, R. B. Cathcart, & R. D. Schuiling (Eds.), Macro-Engineering: A Challenge for
the Future (pp. 21-29). Dordrecht: Springer Netherlands.
Schuiling, R. D. (2013). Carbon Dioxide Sequestration, Weathering Approaches to. In T. Lenton
& N. Vaughan (Eds.), Geoengineering Responses to Climate Change: Selected Entries
from the Encyclopedia of Sustainability Science and Technology (pp. 141-168).
Schuiling, R. D., & de Boer, P. L. (2010). Coastal spreading of olivine to control atmospheric
CO2 concentrations: A critical analysis of viability. Comment: Nature and laboratory
models are different. International Journal of Greenhouse Gas Control, 4, 855-856.
Retrieved from http://innovationconcepts.eu/res/literatuurSchuiling/
2010schuiling_de_boercommenthangx.pdf
Schuiling, R. D., & de Boer, P. L. (2011). Rolling stones; fast weathering of olivine in shallow
seas for cost-effective CO<sub>2</sub> capture and mitigation of global warming and
ocean acidification. Earth Syst. Dynam. Discuss., 2011, 551-568. doi:10.5194/
esdd-2-551-2011
Schuiling, R. D., & Krijgsman, P. (2006). Enhanced Weathering: An Effective and Cheap Tool to
Sequester Co2. Climatic Change, 74(1), 349-354. doi:10.1007/s10584-005-3485-y
Schuiling, R. D., & Praagman, E. (2011). Olivine Hills: Mineral Water Against Climate Change. In
S. D. Brunn (Ed.), Engineering Earth: The Impacts of Megaengineering Projects (pp.
2201-2206). Dordrecht: Springer Netherlands.
Schuiling, R. D., & Tickell, O. (2010). Enhanced weathering of olivine to capture CO2. Journal of
Applied Chemistry, 12, 510-519.
Schuiling, R. D., Wilson, S. A., & Power, l. M. (2011). Enhanced silicate weathering is not limited
by silicic acid saturation. Proceedings of the National Academy of Sciences, 108(12),
E41-E41. doi:10.1073/pnas.1019024108
Schulz, H., Dunst, G., & Glaser, B. (2013). Positive effects of composted biochar on plant
growth and soil fertility. Agronomy for Sustainable Development, 33(4), 817-827.
Retrieved from https://www.researchgate.net/publication/
257805348_Positive_effects_of_composted_biochar_on_plant_growth_and_soil_fertility
Schulz, H., Dunst, G., & Glaser, B. (2014). No Effect Level of Co-Composted Biochar on Plant
Growth and Soil Properties in a Greenhouse Experiment. Agronomy, 4, 34-51. Retrieved
from http://www.mdpi.com/2073-4395/4/1/34
Schulz, H., & Glaser, B. (2012). Effects of biochar compared to organic and inorganic fertilizers
on soil quality and plant growth in a greenhouse experiment. Journal of Plant Nutrition
and Soil Science, 175(3), 410-422. doi:10.1002/jpln.201100143
Schulz, I., et al. (2018). Remarkable structural resistance of a nanoflagellatedominated plankton
community to iron fertilization during the Southern Ocean experiment LOHAFEX. Marine
Ecology Progress Series, 601, 77-95. Retrieved from https://www.int-res.com/articles/
meps_oa/m601p077.pdf
Schulze, E. D., Stupak, I., & Hessenmöller, D. (2019). Chapter 7 - The climate mitigation
potential of managed versus unmanaged spruce and beech forests in Central Europe. In
J. C. Magalhães Pires & A. L. D. Cunha Gonçalves (Eds.), Bioenergy with Carbon
Capture and Storage (pp. 131-149): Academic Press.
Schulze, E.-D., Körner, C., Law, B. E., Haberl, H., & Luyssaert, S. (2012). Large-scale bioenergy
from additional harvest of forest biomass is neither sustainable nor greenhouse gas
neutral. GCB Bioenergy, 4(6), 611-616. doi:10.1111/j.1757-1707.2012.01169.x
Schumacher, B. (2002). Methods for determination of Total Organic Carbon (TOC) in soils and
sediments. Retrieved from
Schumann, D. (2014). Carbon Capture, Storage and Use. In W. Kuckshinrichs & J.-F. Hake
(Eds.), (pp. 221-251).
Schumann, D. (2017). Public Perception of CO2 Pipelines. Energy Procedia, 114, 7356-7366.
doi:https://doi.org/10.1016/j.egypro.2017.03.1867
Schwaiger, N., et al. . (2015). Biomass Pyrolysis Refinery - Herstellung von nachhaltigen
Treibstoffen. Chemie Ingenieur Technik, 87(6), 803-809. doi:10.1002/cite.201400099
Schwartz, J. (2017). Can Carbon Capture Technology Prosper Under Trump? New York Times.
Retrieved from https://www.nytimes.com/2017/01/02/science/donald-trump-carbon-
capture-clean-coal.html
Schweizer, V. J., Ebi, K. L., van Vuuren, D. P., Jacoby, H. D., Riahi, K., Strefler, J., . . . Weyant,
J. P. (2020). Integrated Climate-Change Assessment Scenarios and Carbon Dioxide
Removal. One Earth, 3(2), 166-172. doi:10.1016/j.oneear.2020.08.001
Sciences, C., & Initiative, C. (2016). Global Roadmap for Implementing CO2 Utilization.
Retrieved from https://www.google.com/url?
sa=t&rct=j&q=&esrc=s&source=web&cd=3&cad=rja&uact=8&ved=2ahUKEwjnrsv1o-
jmAhV5IjQIHSBYDmcQFjACegQIBRAB&url=https%3A%2F%2Fwww.globalco2initiative.
org%2Fresearch%2Fglobal-roadmap-study-of-co2u-
technologies%2F&usg=AOvVaw1jZXnggQXIuKeUAXXyhzgt
Scientists, T. N. (2021). Net zero: a dangerous delay tactic? Retrieved from https://
www.thenakedscientists.com/articles/interviews/net-zero-dangerous-delay-tactic
Ścisłowska, M., Włodarczyk, R., Kobyłecki, R., & Bis, Z. (2015). Biochar to Improve the Quality
and Productivity of Soils. Journal of Ecological Engineering, 16, 31 - 35.
doi:10.12911/22998993/2802
Scott, A. C., & Damblon, F. (2010). Charcoal: Taphonomy and significance in geology, botany
and archaeology. Palaeogeography Palaeoclimatology Palaeoecology, 291(1), 1-10.
Retrieved from http://www.sciencedirect.com/science/article/pii/S0031018210001835
Scott, D. (2018). Ethics of Climate Engineering: Chemical Capture of Carbon Dioxide from Air.
HYLE – International Journal for Philosophy of Chemistry, 24, 55-77. Retrieved from
http://hyle.org/journal/issues/24-1/scott.pdf
Scott, D., & Boyanton, M. U. (2021). Climate Bill Boosting Growers’ Carbon Credits Hits House
Hurdles. Bloomberg Law. Retrieved from https://news.bloomberglaw.com/environment-
and-energy/climate-bill-boosting-growers-carbon-credits-hits-house-hurdles
Scott, K. N. (2005-2006). The Day After Tomorrow: Ocean CO2 Sequestration and the Future of
Climate Change. Georgetown International Enviornmental Law Review, 18, 57-108.
Retrieved from https://heinonline.org/HOL/LandingPage?handle=hein.journals/
gintenlr18&div=8&id=&page=
Scott, K. N. (2018). Mind the Gap: Marine Geoengineering and the Law of the Sea. In R. C.
Beckman, et al. (Ed.), High Seas Governance: Gaps and Challenges (pp. 34-56).
Scott, K. N. (2021). Not an Intractable Challenge: Geoengineering MSR in ABNJ. In M. H.
Nordquist & R. Long (Eds.), Marine Biodiversity of Areas beyond National Jurisdiction
(pp. 189-210).
Scott, S. A., Davey, M. P., Dennis, J. S., Horst, I., Howe, C. J., Lea-Smith, D. J., & Smith, A. G.
(2010). Biodiesel from algae: challenges and prospects. Current Opinion in
Biotechnology, 21(3), 277-286. doi:https://doi.org/10.1016/j.copbio.2010.03.005
Scott, V., & Geden, O. (2018). The challenge of carbon dioxide removal for EU policy-making.
Nature Energy. doi:10.1038/s41560-018-0124-1
Scott, V., Gilfillan, S., Markusson, N., Chalmers, H., & Haszeldine, R. S. (2013). Last chance for
carbon capture and storage. Nature Climate Change, 3(2), 105-111. Retrieved from
http://dx.doi.org/10.1038/nclimate1695
Scott-Buechler, C. M., & Greene, C. H. (2019). Chapter 6 - Role of the ocean in climate
stabilization. In J. C. Magalhães Pires & A. L. D. Cunha Gonçalves (Eds.), Bioenergy
with Carbon Capture and Storage (pp. 109-130): Academic Press.
Scott-Clarke, E., & Page, T. (2021). This underwater farmer wants us to eat more seaweed.
Retrieved from https://www.cnn.com/2020/11/20/uk/uk-kelp-farming-seaweed-rathlin-
c2e-spc-intl/index.html
Scragg, A. H., Illman, A. M., Carden, A., & Shales, S. W. (2002). Growth of microalgae with
increased calorific values in a tubular bioreactor. Biomass and Bioenergy, 23(1), 67-73.
doi:https://doi.org/10.1016/S0961-9534(02)00028-4
Sculley, J. P. (2013). Synthesis and characterization of rationally designed porous materials for
energy storage and carbon capture. (Ph.D.). Texas A&M, Retrieved from http://
search.proquest.com/socialsciences/docview/1428847200/fulltextPDF/
99D1E51DC856484BPQ/3?accountid=14496
Sculley, J. P., & Zhou, H. C. (2012). Enhancing Amine-Supported Materials for Ambient Air
Capture. Angewandte Chemie-International Edition, 51(51), 12660-12661. doi:10.1002/
anie.201207495
Searchinger, T., et al. (2008). Use of U.S. Croplands for Biofuels Increases Greenhouse Gases
Through Emissions from Land-Use Change. Science, 319(5867), 1238-1240. Retrieved
from http://science.sciencemag.org/content/319/5867/1238
Searchinger, T., et al. (2009). Fixing a critical climate accounting error. Science, 326(5922),
527-528. Retrieved from http://science.sciencemag.org/content/326/5952/527
Searchinger, T., Edwards, R., Mulligan, D., Heimlich, R., & Plevin, R. (2015). Do biofuel policies
seek to cut emissions by cutting food? Science, 347(6229), 1420-1422. doi:10.1126/
science.1261221
Searchinger, T., & Heimlich, R. (2015). Avoiding Bioenergy Competition for Food Crops and
Land. Retrieved from https://www.wri.org/sites/default/files/
avoiding_bioenergy_competition_food_crops_land.pdf
Searchinger, T., & Ranganathan, J. (2020). INSIDER: Further Explanation on the Potential
Contribution of Soil Carbon Sequestration on Working Agricultural Lands to Climate
Change Mitigation. Retrieved from https://www.wri.org/blog/2020/08/insider-further-
explanation-potential-contribution-soil-carbon-sequestration-working
Searchinger, T. D., Beringer, T., Holtsmark, B., Kammen, D. M., Lambin, E. F., Lucht, W., . . . van
Ypersele, J.-P. (2018). Europe’s renewable energy directive poised to harm global
forests. Nature Communications, 9(1), 3741. doi:10.1038/s41467-018-06175-4
Searchinger, T. D., Beringer, T., & Strong, A. (2017). Does the world have low-carbon bioenergy
potential from the dedicated use of land? Energy Policy, 110, 434-446. doi:https://doi.org/
10.1016/j.enpol.2017.08.016
Searchinger, T. D., Estes, L., Thornton, P. K., Beringer, T., Notenbaert, A., Rubenstein, D., . . .
Herrero, M. (2015). High carbon and biodiversity costs from converting Africa/'s wet
savannahs to cropland. Nature Climate Change, 5(5), 481-486. doi:10.1038/
nclimate2584
http://www.nature.com/nclimate/journal/v5/n5/abs/nclimate2584.html#supplementary-
information
Searchinger, T. D., Wirsenius, S., Beringer, T., & Dumas, P. (2018). Assessing the efficiency of
changes in land use for mitigating climate change. Nature, 564(7735), 249-253.
doi:10.1038/s41586-018-0757-z
SearchingerT, i., D. . (2010). Biofuels and the need for additional carbon. Environmental
Research Letters, 5(2), 1-10. Retrieved from http://stacks.iop.org/1748-9326/5/i=2/
a=024007
Searle, S. Y., & Malins, C. J. (2014). Will energy crop yields meet expectations? Biomass and
Bioenergy, 65, 3-12. doi:http://dx.doi.org/10.1016/j.biombioe.2014.01.001
Seddon, N., Chausson, A., Berry, P., Girardin, C. A. J., Smith, A., & Turner, B. (2020).
Understanding the value and limits of nature-based solutions to climate change and
other global challenges. Philosophical Transactions of the Royal Society B: Biological
Sciences, 375(1794), 20190120. doi:doi:10.1098/rstb.2019.0120
Seddon, N., Smith, A., Smith, P., Key, I., Chausson, A., Girardin, C., . . . Turner, B. (2021).
Getting the message right on nature-based solutions to climate change. Global Change
Biology, n/a(n/a). doi:https://doi.org/10.1111/gcb.15513
Seevam, P. N., Race, J. M., & Downie, M. J. (2010). Infrastructure and pipeline technology for
carbon dioxide (CO2) transport A2 - Maroto-Valer, M. Mercedes. In Developments and
Innovation in Carbon Dioxide (CO2) Capture and Storage Technology (Vol. 1, pp.
408-434): Woodhead Publishing.
Séférian, R., et al. . (2018). Constraints on biomass energy deployment in mitigation pathways:
the case of water scarcity. Environmental Research Letters, 13(5), 054011. Retrieved
from http://stacks.iop.org/1748-9326/13/i=5/a=054011
Seghetta, M., Tørring, D., Bruhn, A., & Thomsen, M. (2016). Bioextraction potential of seaweed
in Denmark — An instrument for circular nutrient management. Science of The Total
Environment, 563-564(Supplement C), 513-529. doi:https://doi.org/10.1016/
j.scitotenv.2016.04.010
Sehaqui, H., Gálvez, M. E., Becatinni, V., cheng Ng, Y., Steinfeld, A., Zimmermann, T., &
Tingaut, P. (2015). Fast and Reversible Direct CO2 Capture from Air onto All-Polymer
Nanofibrillated Cellulose—Polyethylenimine Foams. Environmental Science &
Technology, 49(5), 3167-3174. doi:10.1021/es504396v
Seifritz, W. (1990). CO
2
disposal by means of silicates. Nature, 345, 486.
doi:10.1038/345486b0
Seipp, C. A., Williams, N. J., Kidder, M. K., & Custelcean, R. (2016). CO2 Capture from Ambient
Air by Crystallization with a Guanidine Sorbent. Angewandte Chemie International
Edition, 56(4), 1042-1045. Retrieved from http://onlinelibrary.wiley.com/doi/10.1002/
anie.201610916/epdf
Sekar, S. (2012). The Effects of Biochar and Anaerobic Digester Effluent on Soil Quality and
Crop Growth in Karnataka, India. (Master of Science). Ohio State University, Retrieved
from http://rave.ohiolink.edu/etdc/view?acc_num=osu1343750717
Sekera, J., & Lichtenberger, A. (2020). Assessing Carbon Capture: Public Policy, Science, and
Societal Need. Biophysical Economics and Sustainability, 5(3), 14. doi:10.1007/
s41247-020-00080-5
Selfa, T., Bain, C., Moreno, R., Eastmond, A., Sweitz, S., Bailey, C., . . . Medeiros, R. J. E. M.
(2015). Interrogating Social Sustainability in the Biofuels Sector in Latin America:
Tensions Between Global Standards and Local Experiences in Mexico, Brazil, and
Colombia. Environmental Management, 56(6), 1315-1329. doi:10.1007/
s00267-015-0535-8
Sellens, R. (2017). Creating value from waste CO2. Pan European Networks. Retrieved from
http://www.paneuropeannetworks.com/science-technology/creating-value-from-waste-
co2/
Selmi, H. (2016). Effet de l'ajout de biochar sur la symbiose tripartite Ensifer meliloti-
Rhizophagus irregularis-luzerne (Medicago sativa L.), sur la production d'inocula
bactériens et envers la lutte aux agents pathogènes [Effect of adding biochar on tripartite
symbiosis. Université Laval, Retrieved from http://www.theses.ulaval.ca/
2016/32315/32315.pdf
Selosse, S. (2019). Chapter 12 - Bioenergy with carbon capture and storage: how carbon
storage and biomass resources potentials can impact the development of the BECCS. In
J. C. Magalhães Pires & A. L. D. Cunha Gonçalves (Eds.), Bioenergy with Carbon
Capture and Storage (pp. 237-256): Academic Press.
Selosse, S., & Ricci, O. (2014). Achieving negative emissions with BECCS (bioenergy with
carbon capture and storage) in the power sector: New insights from the TIAM-FR
(TIMES Integrated Assessment Model France) model. Energy, 76, 967-975. doi:10.1016/
j.energy.2014.09.014
Selvarajoo, A., & Hanson, S. (2014). Pyrolysis of Pineapple Peel. Paper presented at the Proc.
of the Second Intl. Conf. on Advances in Applied Science and Environmental
Engineering. http://www.seekdl.org/upload/files/20141225_103156.pdf
Semeniuk, I. (2016). Out Of Thin Air: Recapturing carbon from the atmosphere is one thing, but
a Canadian company wants to go one step further by turning that carbon into fuel. In the
process, it hopes to tranform the fight against climate change. The Globe & Mail
(Toronto). Retrieved from https://search.proquest.com/docview/1752820854?
accountid=14496
Semere, T., & Slater, F. M. (2007). Ground flora, small mammal and bird species diversity in
miscanthus (Miscanthus×giganteus) and reed canary-grass (Phalaris arundinacea)
fields. Biomass and Bioenergy, 31(1), 20-29. doi:http://dx.doi.org/10.1016/
j.biombioe.2006.07.001
Semida, W. M., Beheiry, H. R., Sétamou, M., Simpson, C. R., Abd El-Mageed, T. A., Rady, M.
M., & Nelson, S. D. (2019). Biochar implications for sustainable agriculture and
environment: A review. South African Journal of Botany, 127, 333-347. doi:https://doi.org/
10.1016/j.sajb.2019.11.015
Semroc, B. L., et al. (2012). Climate change mitigation in agroforestry systems: linking
smallholders to forest carbon markets. In E. Wollenberg, et al. (Ed.), Climate Change
Mitigation and Agriculture (pp. 360-369): ICRAF-CIAT.
Sen, A. D., Nafkote. (2021). Tightening the net: the implications of net zero climate targets for
land and food equity. Retrieved from https://www.oxfam.org/en/research/tightening-net-
implications-net-zero-climate-targets-land-and-food-equity
Sen, G. (2017). Carbon Sequestration and Utilization—India’s Energy Woes. In M. Goel & M.
Sudhakar (Eds.), Carbon Utilization: Applications for the Energy Industry (pp. 169-181).
Singapore: Springer Singapore.
Sen, R., Goeppert, A., Kar, S., & Prakash, G. K. S. (2020). Hydroxide Based Integrated CO2
Capture from Air and Conversion to Methanol. Journal of the American Chemical
Society, 142(10), 4544-4549. doi:10.1021/jacs.9b12711
Senftle, T. P., & Carter, E. A. (2017). The Holy Grail: Chemistry Enabling an Economically Viable
CO2 Capture, Utilization, and Storage Strategy. Accounts of Chemical Research, 50(3),
472-475. doi:10.1021/acs.accounts.6b00479
Senoo, K., et al. (2012). Carbon Sink Evaluation for Biochar Production Process. In M.
Matsumoto, et al. (Ed.), Design for Innovative Value Towards a Sustainable Society (pp.
724-729).
Sensoez, S., & Angin, D. (2008). Pyrolysis of safflower (charthamus tinctorius L.) seed press
cake: Part 1. the effects of pyrolysis parameters on the product yields. Bioresource
Technology, 99(13), 5492-5497. Retrieved from http://www.sciencedirect.com/science/
article/pii/S0960852407008899
Seo, K., Tsay, C., Hong, B., Edgar, T. F., Stadtherr, M. A., & Baldea, M. (2020). Rate-Based
Process Optimization and Sensitivity Analysis for Ionic-Liquid-Based Post-Combustion
Carbon Capture. ACS Sustainable Chemistry & Engineering, 8(27), 10242-10258.
doi:10.1021/acssuschemeng.0c03061
Seo, S., Lages, B., & Kim, M. (2020). Catalytic CO2 absorption in an amine solvent using nickel
nanoparticles for post-combustion carbon capture. Journal of CO2 Utilization, 36,
244-252. doi:https://doi.org/10.1016/j.jcou.2019.11.011
Šeremešic´, S. I., Živanov, M. S., Milošev, D. S., Vasin, J. R., C´iric´, V. I., Vasiljevic´, M. B., &
Vujic´, N. J. (2015). Effects of biochar application on morphological traits in maize and
soybean. Matica Srpska Journal for Natural Sciences, 129, 17-25. Retrieved from http://
www.cabdirect.org/abstracts/20163055618.html
Serrano, O., Almahasheer, H., Duarte, C. M., & Irigoien, X. (2018). Carbon stocks and
accumulation rates in Red Sea seagrass meadows. Scientific Reports, 8(1), 15037.
doi:10.1038/s41598-018-33182-8
Service, R. F. (2011). Turning Over a New Leaf. Science (News). Retrieved from http://
science.sciencemag.org/content/334/6058/925.full
Service, R. F. (2012). New CO
2
Sucker Could Help Clear the Air. Science (News). Retrieved
from http://www.sciencemag.org/news/2012/01/new-co2-sucker-could-help-clear-air
Service, R. F. (2018). Cost plunges for capturing carbon dioxide from the air. Science. Retrieved
from http://www.sciencemag.org/news/2018/06/cost-plunges-capturing-carbon-dioxide-
air
Service, R. F. (2019). New way to turn carbon dioxide into coal could ‘rewind the emissions
clock’. Science(February 19). Retrieved from https://www.sciencemag.org/news/
2019/02/liquid-metal-catalyst-turns-carbon-dioxide-coal
Service, R. F. (2020). Artificial chloroplasts turn sunlight and carbon dioxide into organic
compounds. Science. Retrieved from https://www.sciencemag.org/news/2020/05/
artificial-chloroplasts-turn-sunlight-and-carbon-dioxide-organic-compounds#
Service, R. F. (2020). The carbon vault. Science, 369(6508), 1156-1159. doi:10.1126/
science.369.6508.1156
Service, R. F. (2020). Industrial waste can turn planet-warming carbon dioxide into stone.
Science. Retrieved from https://www.sciencemag.org/news/2020/09/industrial-waste-
can-turn-planet-warming-carbon-dioxide-stone#
Service, R. F. (2021). Carbon capture marches toward practical use. Science, 371(6536),
1300-1300. doi:10.1126/science.371.6536.1300
Sessions, J., Smith, D., Trippe, K. M., Fried, J. S., Bailey, J. D., Petitmermet, J. H., . . .
Campbell, J. D. (2019). Can biochar link forest restoration with commercial agriculture?
Biomass and Bioenergy, 123, 175-185. doi:https://doi.org/10.1016/
j.biombioe.2019.02.015
Sessums, R. F. (2015). EFFECT OF BIOCHAR AND ACTIVATED CARBON AMENDMENTS ON
GASEOUS MERCURY EMISSIONS OF SOIL AND MERCURY METHYLATION RATES
IN SEDIMENT. University of Mississippi, Retrieved from http://thesis.honors.olemiss.edu/
386/1/Chem%20463%20Senior%20Thesis%20Final%20Draft.pdf
Sethi, V. K. (2017). Low Carbon Technologies (LCT) and Carbon Capture & Sequestration
(CCS)—Key to Green Power Mission for Energy Security and Environmental
Sustainability. In M. Goel & M. Sudhakar (Eds.), Carbon Utilization: Applications for the
Energy Industry (pp. 45-57). Singapore: Springer Singapore.
Setiawan, A. D. (2020). The influence of national culture on responsible innovation: A case of
CO2 utilisation in Indonesia. Technology in Society, 101306. doi:https://doi.org/10.1016/
j.techsoc.2020.101306
Setiawan, A. D., & Cuppen, E. (2013). Stakeholder perspectives on carbon capture and storage
in Indonesia. Energy Policy, 61, 1188-1199. doi:10.1016/j.enpol.2013.06.057
Severinsen, G. (2014). Constructing a Legal Framework for Carbon Capture and Storage in
New Zealand: Approaches to Legislative Design. Energy Procedia, 63, 6629-6661.
doi:http://dx.doi.org/10.1016/j.egypro.2014.11.699
Severinsen, G. (2017). Injecting Carbon Beneath the Seabed dumping, pollution, waste ... or
something else? Policy Quarterly, 13(2), 29-35. Retrieved from https://
www.victoria.ac.nz/__data/assets/pdf_file/0011/1224299/pq13-2-complete-issue.pdf
Severo, I. A., Deprá, M. C., Zepka, L. Q., & Jacob-Lopes, E. (2019). Chapter 8 - Carbon dioxide
capture and use by microalgae in photobioreactors. In J. C. Magalhães Pires & A. L. D.
Cunha Gonçalves (Eds.), Bioenergy with Carbon Capture and Storage (pp. 151-171):
Academic Press.
Sexton, S. E., et al. (2009). Biofuel policy must evaluate environmental,food security and energy
goals to maximize netbenefits. California Agriculture, 63(4), 191-198. Retrieved from
https://are.berkeley.edu/~dwrh/Docs/CalAg09.pdf
Seyed Hosseini, N., Shang, H., & Scott, J. A. (2018). Biosequestration of industrial off-gas CO2
for enhanced lipid productivity in open microalgae cultivation systems. Renewable and
Sustainable Energy Reviews, 92, 458-469. doi:https://doi.org/10.1016/j.rser.2018.04.086
Seymour, F. (2014). Reducing emission from palm oil cultivation in Indonesia. Retrieved from
https://www.packard.org/wp-content/uploads/2014/09/Palm-Oil-
Strategy_Final-8.27.14.pdf
Seysses, D. (2021). Carbon Capture During Fermentation Could Make Wine a Negative-
Emission Industry. SevenFiftyDaily. Retrieved from https://daily.sevenfifty.com/carbon-
capture-during-fermentation-could-make-wine-a-negative-emission-industry/
Sgouridis, S., Carbajales-Dale, M., Csala, D., Chiesa, M., & Bardi, U. (2019). Comparative net
energy analysis of renewable electricity and carbon capture and storage. Nature Energy.
doi:10.1038/s41560-019-0365-7
Sha, Z., Bai, Y., Lan, H., Liu, X., Li, R., & Xie, Y. (2020). Can more carbon be captured by
grasslands? A case study of Inner Mongolia, China. Science of The Total Environment,
723, 138085. doi:https://doi.org/10.1016/j.scitotenv.2020.138085
Shabangu, S., et al. . (2013). Techno-economic assessment of biomass slow pyrolysis into
different biochar and methanol concepts. Fuel, 117(Part A), 742-748. Retrieved from
http://www.sciencedirect.com/science/article/pii/S0016236113007813
Shackley, S., et al. (2009). The acceptability of CO
2
capture and storage (CCS) in Europe: An
assessmetn of the key determining factors. Part 2. The social acceptability of CCS and
the wider impacts and repercussions of its implementation. International Journal of
Greenhouse Gas Control, 3, 344-356.
Shackley, S., et al. (2011). Expert Perceptions of the Role of Biochar as a Carbon Abatement
Option with Ancillary Agronomic and Soil-Related Benefits. Journal Energy &
Environment, Volume 22, 167-188. doi:10.1260/0958-305x.22.3.167
Shackley, S., et al. . (2011). The feasibility and costs of biochar deployment in the UK. Carbon
Management, Vol. 2, 335-356. doi:10.4155/cmt.11.22
Shackley, S., et al. (2011). Sustainable gasification–biochar systems? A case-study of rice-husk
gasification in Cambodia, Part II: Field trial results, carbon abatement, economic
assessment and conclusions. Energy Policy, 41, 618-623. doi:10.1016/
j.enpol.2011.11.023
Shackley, S., et al. (2013). Biochar, Tool for Climate Change Mitigation and Soil Management. In
T. Lenton & N. Vaughan (Eds.), Geoengineering Responses to Climate Change:
Selected Entries from the Encyclopedia of Sustainability Science and Technology (pp.
73-140).
Shackley, S. (2014). Shifting chars? Aligning climate change, carbon abatement, agriculture,
land use and food safety and security policies. Carbon Management, 5(2), 119 - 121.
doi:10.1080/17583004.2014.912827
Shackley, S. (2016). The economic viability and prospects for biochar in Europe: Shifting
paradigms in uncertain times. In Biochar in European Soils and Agriculture: Science and
Practice.
Shackley, S., Hammond, J., Gaunt, J., & Ibarrola, R. (2011). The feasibility and costs of biochar
deployment in the UK. Carbon Management, 2(3), 335-356. doi:10.4155/cmt.11.22
Shackley, S., McLachlan, C., & Gough, C. (2004). The public perception of carbon dioxide
capture and storage in the UK: results from focus groups and a survey. Climate Policy,
4(4), 377-398. doi:10.1080/14693062.2004.9685532
Shackley, S., Ruysschaert, G., Zwart, K., & Glaser, B. (2016). BIOCHAR IN EUROPEAN SOILS
AND AGRICULTURE: SCIENCE AND PRACTICE.
Shackley, S., & Sohi, S. (2010). An Assessment of the Benefits and Issues Associated with the
Application of Biochar to Soil. Retrieved from https://www.academia.edu/11136737/
AN_ASSESSMENT_OF_THE_BENEFITS_AND_ISSUES_ASSOCIATED_WITH_THE_
APPLICATION_OF_BIOCHAR_TO_SOIL_A_report_commissioned_by_the_United_King
dom_Department_for_Environment_Food_and_Rural_Affairs_and_Department_of_Ener
gy_and_Climate_Change_Contributing_Authors?
auto=download&email_work_card=download-paper
Shackley, S., Sohi, S., Ibarrola, R., Hammond, J., Mašek, O., Brownsort, P., . . . Haszeldine, S.
(2013). Biochar, Tool for Climate Change Mitigation and Soil Management. In T. Lenton
& N. Vaughan (Eds.), Geoengineering Responses to Climate Change: Selected Entries
from the Encyclopedia of Sustainability Science and Technology (pp. 73-140). New York,
NY: Springer New York.
Shafie, S. T., et al. . (2012). Effect of pyrolysis temperature on the biochar nutrient and water
retention capacity. Journal of Purity, Utility Reaction and Environment, 1, 293-307.
Retrieved from https://www.researchgate.net/profile/Md_Rahman103/publication/
288128922_Effect_of_pyrolysis_temperature_on_the_biochar_nutrient_and_water_rete
ntion_capacity/links/5916eb114585152e19a0d75b/Effect-of-pyrolysis-temperature-on-
the-biochar-nutrient-and-water-retention-capacity.pdf
Shah, A., et al. . (2012). Physicochemical properties of bio-oil and biochar produced by fast
pyrolysis of stored single-pass corn stover and cobs. Bioresource Technology, 125,
348-352. Retrieved from http://www.sciencedirect.com/science/article/pii/
S096085241201406X
Shahbaz, M., AlNouss, A., Ghiat, I., McKay, G., Mackey, H., Elkhalifa, S., & Al-Ansari, T. (2021).
A comprehensive review of biomass based thermochemical conversion technologies
integrated with CO2 capture and utilisation within BECCS networks. Resources,
Conservation and Recycling, 173, 105734. doi:https://doi.org/10.1016/
j.resconrec.2021.105734
Shaheen, S. M., & Rinklebe, J. (2015). Impact of emerging and low cost alternative
amendments on the (im)mobilization and phytoavailability of Cd and Pb in a
contaminated floodplain soil. Ecological Engineering, 74, 319 - 326. doi:10.1016/
j.ecoleng.2014.10.024
Shaheen, S. M., Rinklebe, J., & Selim, M. H. (2014). Impact of various amendments on
immobilization and phytoavailability of nickel and zinc in a contaminated floodplain soil.
International Journal of Environmental Science and Technology, 12(9), 2765-2776.
doi:10.1007/s13762-014-0713-x
Shahid, A., Malik, S., Zhu, H., Xu, J., Nawaz, M. Z., Nawaz, S., . . . Mehmood, M. A. (2019).
Cultivating microalgae in wastewater for biomass production, pollutant removal, and
atmospheric carbon mitigation; a review. Science of The Total Environment, 135303.
doi:https://doi.org/10.1016/j.scitotenv.2019.135303
Shahkarami, S., Azargohar, R., Dalai, A. K., & Soltan, J. (2015). Breakthrough CO2 adsorption
in bio-based activated carbons. Journal of Environmental Sciences, 34, 68-76.
doi:10.1016/j.jes.2015.03.008
Shakoor, A., Arif, M. S., Shahzad, S. M., Farooq, T. H., Ashraf, F., Altaf, M. M., . . . Ashraf, M.
(2021). Does biochar accelerate the mitigation of greenhouse gaseous emissions from
agricultural soil? - A global meta-analysis. Environmental Research, 111789. doi:https://
doi.org/10.1016/j.envres.2021.111789
Shamsabadi, A. (2018). A New Pentiptycene-Based Dianhydride and Its High-Free-Volume
Polymer for Carbon Dioxide Removal. ChemSusChem, 11(2), 472-482.
Shan, D., Deng, S., Zhao, T., Wang, B., Wang, Y., Huang, J., . . . Wiesner, M. R. (2016).
Preparation of ultrafine magnetic biochar and activated carbon for pharmaceutical
adsorption and subsequent degradation by ball milling. Journal of Hazardous Materials,
305, 156 - 163. doi:10.1016/j.jhazmat.2015.11.047
Shan, J., et al. (2014). Effects of biochar and the geophagous earthworm Metaphire guillelmi on
fate of 14C-catechol in an agricultural soil. Chemosphere, 107, 109–114. Retrieved from
http://www.sciencedirect.com/science/article/pii/S0045653514003798
Shang, G., et al. . (2012). Effectiveness and mechanisms of hydrogen sulfide adsorption by
camphor-derived biochar. Journal of the Air & Waste Management Association, 62,
873-879. doi:10.1080/10962247.2012.686441
Shang, G., et al. . (2015). Adsorption of hydrogen sulfide by biochars derived from pyrolysis of
different agricultural/forestry wastes. Journal of the Air & Waste Management
Association, 66(1), 8-16. doi:10.1080/10962247.2015.1094429
Shang, J., et al. (2015). Effects of biochar on water thermal properties and aggregate stability of
Lou soil. Yingyong Shengtai Xuebao, 26(7), 1969-1976. Retrieved from http://
web.a.ebscohost.com/abstract?
direct=true&profile=ehost&scope=site&authtype=crawler&jrnl=10019332&AN=10868870
3&h=O9i1Gz5YBFfqfUajwCeujNMIdHQl99T7F0vfQwZOOY19pWV7AhXaBr0qLt8sj24l2
VeRNdofr40c0mOHBCVgMQ%3d%3d&crl=c&resultNs=AdminWebAuth&resultLocal=Err
Shang, J., Geng, Z.-c., Zhao, J., Geng, R., & Zhao, Y.-c. (2015). Effects of biochar on water
thermal properties and aggregate stability of Lou soil. Ying yong sheng tai xue bao = The
journal of applied ecology / Zhongguo sheng tai xue xue hui, Zhongguo ke xue yuan
Shenyang ying yong sheng tai yan jiu suo zhu ban, 26(7), 1969-1976. Retrieved from
http://europepmc.org/abstract/med/26710621
ShangQiang, L., et . (2015). Effect of biochar-based urea on yield and quality of celery and soil
NO3--N content. Journal of Agricultural Resources and Environment, 32(5), 443-448.
Retrieved from http://www.cabdirect.org/abstracts/20163033483.html
Shankleman, J. (2020). Companies Start Paying Off 'Carbon Debt' to Erase Past Sins. Yahoo!
Finance. Retrieved from https://ca.finance.yahoo.com/news/companies-start-paying-off-
carbon-060007050.html
Shankleman, J., & Rathi, A. (2021). Wall Street’s Favorite Climate Solution Is Mired in
Disagreements. Bloomberg Green. Retrieved from https://www.bloomberg.com/news/
features/2021-06-02/carbon-offsets-new-100-billion-market-faces-disputes-over-trading-
rules
Shankman, S. (2018). Capturing CO2 From Air: To Keep Global Warming Under 1.5°C,
Emissions Must Go Negative, IPCC Says. Inside Climate News. Retrieved from https://
insideclimatenews.org/news/12102018/global-warming-solutions-negative-emissions-
carbon-capture-technology-ipcc-climate-change-report
Shanmugam, S., & Abbott, L. K. (2015). Potential for Recycling Nutrients from Biosolids
Amended with Clay and Lime in Coarse-Textured Water Repellence, Acidic Soils of
Western Australia. Applied and Environmental Soil Science, 1-11. Retrieved from http://
www.hindawi.com/journals/aess/aa/541818/
Shao, J., Yuan, X., Leng, L., Huang, H., Jiang, L., Wang, H., . . . Zeng, G. (2015). The
comparison of the migration and transformation behavior of heavy metals during
pyrolysis and liquefaction of municipal sewage sludge, paper mill sludge, and
slaughterhouse sludge. Bioresource Technology, 198, 16 - 22. doi:10.1016/
j.biortech.2015.08.147
Shapouri, H., Duffield, J. A., & Wang, M. (2002). The Energy Balance of Corn Ethanol: An
Update. Retrieved from http://industrializedcyclist.com/Corn_Ethanol_E_Balance.pdf
Shariff, A., Aziz, N. S. M., & Abdullah, N. (2015). Slow Pyrolysis of Oil Palm Empty Fruit
Bunches for Biochar Production and Characterisation. Journal of Physical Science,
25(2), 97-112. Retrieved from http://web.usm.my/jps/25-2-14/25-2-8.pdf
Sharifian, R., Wagterveld, R. M., Digdaya, I. A., Xiang, C., & Vermaas, D. A. (2021).
Electrochemical carbon dioxide capture to close the carbon cycle. Energy &
Environmental Science, 14(2), 781-814. doi:10.1039/D0EE03382K
Sharkawi, H. M. E., Ahmed, M. A., & Hassanein, M. K. (2014). Development of Treated Rice
Husk as an Alternative Substrate Medium in Cucumber Soilless Culture. Journal of
Agriculture and Environmental Sciences, 3(4). doi:10.15640/jaes.v3n4a10
Sharma, A., et al. (2013). CFD modelling of mixing/segregation behaviour of biomass and
biochar particles in a bubbling fluidized bed. Chemical Engineering Science, 106,
264-274. Retrieved from http://www.sciencedirect.com/science/article/pii/
S0009250913007549
Sharma, A. (2014). Multi-scale modelling of biomass pyrolysis process. Curtin University,
Retrieved from http://espace.library.curtin.edu.au/R?func=dbin-jump-
full&object_id=200511
Sharma, A., et al. (2015). Multi-fluid reactive modeling of fluidized bed pyrolysis process.
Chemical Engineering Science, 123, 311 - 321. doi:10.1016/j.ces.2014.11.019
Sharma, A., Pareek, V., & Zhang, D. (2015). Biomass pyrolysis—A review of modelling, process
parameters and catalytic studies. Renewable and Sustainable Energy Reviews, 50,
1081 - 1096. doi:10.1016/j.rser.2015.04.193
Sharma, I., Friedrich, D., Golden, T., & Brandani, S. (2019). Exploring the opportunities for
carbon capture in modular, small-scale steam methane reforming: An energetic
perspective. International Journal of Hydrogen Energy, 44(29), 14732-14743. doi:https://
doi.org/10.1016/j.ijhydene.2019.04.080
Sharma, N. (2018). Silver bullet or bitter pill? Reassessing the scope of CO2 capture and
storage in India. Carbon Management, 9(4), 311-332.
doi:10.1080/17583004.2018.1518108
Sharma, N., Bohra, B., Pragya, N., Ciannella, R., Dobie, P., & Lehmann, S. (2016). Bioenergy
from agroforestry can lead to improved food security, climate change, soil quality, and
rural development. Food and Energy Security, 5(3), 165-183. doi:10.1002/fes3.87
Sharma, N., Nainwal, S., Jain, S., & Jain, S. (2015). Emerging biorefinery technologies for
Indian forest industry to reduce GHG emissions. Ecotoxicology and Environmental
Safety, 121, 105-109. doi:http://dx.doi.org/10.1016/j.ecoenv.2015.04.050
Sharma, S. (2020). Stripe launches world’s first product that enables online businesses to help
remove CO2 from atmosphere. Silicon Canals. Retrieved from https://siliconcanals.com/
news/startups/fintech/stripe-climate-co2/
Sharma, T., et al. (2015). Analysis and Comparison of Biochar From Pilot Scale Downdraft
Gasifier. ASME 2015 International Mechanical Engineering Congress and Exposition.
doi:10.1115/imece2015-52444
Sharma, T. (2015). Gasification and combustion of corn kernels in a pilot scale system.
University of Iowa, Retrieved from http://ir.uiowa.edu/etd/1750/
Sharp, C. E., Urschel, S., Dong, X. L., Brady, A. L., Slater, G. F., & Strous, M. (2017). Robust,
high-productivity phototrophic carbon capture at high pH and alkalinity using natural
microbial communities. Biotechnology for Biofuels, 10, 1-13. doi:10.1186/
s13068-017-0769-1
Sharrow, S. H., & Ismail, S. (2004). Carbon and nitrogen storage in agroforests, tree plantations,
and pastures in western Oregon, USA. Agroforestry Systems, 60(2), 123-130.
doi:10.1023/B:AGFO.0000013267.87896.41
Shaw, S., Marien, N., & Cadena, L. (2021). A Leap in the Dark: The Dangers of Bioenergy with
Carbon Capture and Storage (BECCS). Retrieved from https://www.foei.org/resources/
publications/publications-by-subject/climate-justice-energy-publications/beccs-carbon-
capture-dangers
Shayegh, S., Bosetti, V., & Tavoni, M. (2021). Future Prospects of Direct Air Capture
Technologies: Insights From an Expert Elicitation Survey. Frontiers in Climate, 3(46).
doi:10.3389/fclim.2021.630893
She, Y. L., & Chen, L. (2014). Prospects of Biochar Technology in China Based on SWOT
Analysis. Advanced Materials Research, 955-959, 1718 - 1721. doi:10.4028/
www.scientific.net/AMR.955-959.1718
Shea, S., Burgess, P., & Stanley, I. (2009). Project Rainbow Bee Eater: Special Project Report.
Retrieved from http://www.carbonedge.com.au/docs/CarbonEdge-CE2_Special_Report-
biochar.pdf
Shearer, D., & Gaunt, J. (2015).
Sheats, J. (2015). Performance Quantification of Extensive Green Roof Substrate Blend:
Expanded Shale and Biochar. James Madison University, Retrieved from http://
commons.lib.jmu.edu/master201019/3/
Sheehan, J., et al. (2003). Energy and Environmental Aspects of Using Corn Stover for Fuel
Ethanol. Journal of industrial Ecology, 7(3-4), 117-146. Retrieved from http://
onlinelibrary.wiley.com/doi/10.1162/108819803323059433/full
Sheffield, U. o. (2020). Applying rock dust to croplands could absorb up to 2 billion tonnes of
CO2 from the atmosphere. Phys.org. Retrieved from https://phys.org/news/2020-07-
croplands-absorb-billion-tonnes-co2.html
Shehzad, A., Bashir, M. J. K., Sethupathi, S., & Lim, J.-W. (2016). An insight into the
remediation of highly contaminated landfill leachate using sea mango based activated
bio-char: optimization, isothermal and kinetic studies. Desalination and Water Treatment,
1 - 14. doi:10.1080/19443994.2015.1130660
Sheil, D., et al. (2012). Do Anthropogenic Dark Earths Occur in the Interior of Borneo? Some
Initial Observations from East Kalimantan. Forests, 3(2), 207-229. doi:10.3390/f3020207
Sheil, D., Bargués-Tobella, A., Ilstedt, U., Ibisch, P. L., Makarieva, A., McAlpine, C., . . . van der
Ent, R. J. (2019). Forest restoration: Transformative trees. Science, 366(6463), 316-317.
doi:10.1126/science.aay7309
Shekhah, O., et al. (2013). Made-to-order metal-organic frameworks for trace carbon dioxide
removal and air capture. Nature Communications, 5, 1-8. Retrieved from https://
vincentguillerm.files.wordpress.com/2014/10/25-
shekhaheddaoudi_2014_natcommun_sifsix-3-cu.pdf
Shekhar, C. (2012). Putting It Back: Restoring Lost Soil Carbon Could Benefit Agriculture,
Ecosystems, and Climate. Chemistry & Biology, 19(5), 541-542. doi:https://doi.org/
10.1016/j.chembiol.2012.05.005
Shen, B., Chen, J., Yue, S., & Li, G. (2015). A comparative study of modified cotton biochar and
activated carbon based catalysts in low temperature SCR. Fuel, 156, 47 - 53.
doi:10.1016/j.fuel.2015.04.027
Shen, B., Li, G., Wang, F., Wang, Y., He, C., ZHANG, M., & Singh, S. (2015). Elemental mercury
removal by the modified bio-char from medicinal residues. Chemical Engineering
Journal, 272, 28 - 37. doi:10.1016/j.cej.2015.03.006
Shen, G., Ashworth, D. J., Gan, J., & Yates, S. R. (2016). Biochar Amendment to the Soil
Surface Reduces Fumigant Emissions and Enhances Soil Microorganism Recovery.
Environmental Science & Technology, 50(3), 1182-1189. doi:10.1021/acs.est.5b03958
Shen, J., et al. . (2013). A Comparison of Greenhouse Gas Emissions from a Paddy Field
Following Incorporation of Rice Straw and Straw-Based Biochar. In J. Xu, J. Wu, & Y. He
(Eds.), Functions of Natural Organic Matter in Changing Environment (pp. 1027-1031).
Shen, J., et al. . (2014). Contrasting effects of straw and straw-derived biochar amendments on
greenhouse gas emissions within double rice cropping systems. Agriculture, Ecosystems
& Environment, 188, 264–274. Retrieved from http://www.sciencedirect.com/science/
article/pii/S0167880914001121
Shen, L., & Murakami, K. (2014). Steam gasification of iron-loaded biochar and subbituminous
coal mixture. Paper presented at the 5th International Conference on Sustainable
Energy and Environment. http://www.see2014.com/UserFiles/File/
Full%20paper%20for%20website/E-007.pdf
Shen, L., & Murakami, K. (2015). No.57 Effect of iron catalyst on steam gasification of sub-
bituminous coal from Indonesia [in Japanese]. The Japan Institute of Energy, 114-115.
Retrieved from https://www.jstage.jst.go.jp/article/jiesekitanronbun/51/0/51_114/_pdf
Shen, X., Huang, D.-Y., Ren, X.-F., Zhu, H.-H., Wang, S., Xu, C., . . . Zhu, Q.-H. (2016).
Phytoavailability of Cd and Pb in crop straw biochar-amended soil is related to the heavy
metal content of both biochar and soil. Journal of Environmental Management, 168, 245
- 251. doi:10.1016/j.jenvman.2015.12.019
Shen, Y. (2015). Chars as carbonaceous adsorbents/catalysts for tar elimination during biomass
pyrolysis or gasification. Renewable and Sustainable Energy Reviews, 43, 281 - 295.
doi:10.1016/j.rser.2014.11.061
Shen, Y., Ding, M., Ge, X., & Chen, M. (2015). Catalytic CO2 Gasification of Rice Husk Char for
Syngas and Silica-Based Nickel Nanoparticles Production. Industrial & Engineering
Chemistry Research, 54(36), 8919 - 8928. doi:10.1021/acs.iecr.5b02677
Shen, Y., Linville, J. L., Ignacio-de Leon, P. A. A., Schoene, R. P., & Urgun-Demirtas, M. (2016).
Towards a sustainable paradigm of waste-to-energy process: Enhanced anaerobic
digestion of sludge with woody biochar. Journal of Cleaner Production, 135, 1054-1064.
doi:https://doi.org/10.1016/j.jclepro.2016.06.144
Shen, Y., Linville, J. L., Urgun-Demirtas, M., Schoene, R. P., & Snyder, S. W. (2015). Producing
pipeline-quality biomethane via anaerobic digestion of sludge amended with corn stover
biochar with in-situ CO2 removal. Applied Energy, 158, 300 - 309. doi:10.1016/
j.apenergy.2015.08.016
Shen, Y., Shi, W., Zhang, D., Na, P., & Fu, B. (2018). The removal and capture of CO2 from
biogas by vacuum pressure swing process using silica gel. Journal of CO2 Utilization,
27, 259-271. doi:https://doi.org/10.1016/j.jcou.2018.08.001
Shen, Y., Wang, J., Ge, X., & Chen, M. (2016). By-products recycling for syngas cleanup in
biomass pyrolysis – An overview. Renewable and Sustainable Energy Reviews, 59,
1246 - 1268. doi:10.1016/j.rser.2016.01.077
Shen, Z., Jin, F., Wang, F., McMillan, O., & Al-Tabbaa, A. (2015). Sorption of lead by Salisbury
biochar produced from British broadleaf hardwood. Bioresource Technology, 193, 553 -
556. doi:10.1016/j.biortech.2015.06.111
Shen, Z., Som, A. M. D., Wang, F., Jin, F., McMillan, O., & Al-Tabbaa, A. (2015). Long-term
impact of biochar on the immobilisation of nickel (II) and zinc (II) and the revegetation of
a contaminated site. Science of The Total Environment, 542(A), 771-776. Retrieved from
https://www.repository.cam.ac.uk/handle/1810/251418?show=full
Shenbagavalli, S., & Mahimairaja, S. (2012). Characterization and Effect of Biochar on Nitrogen
and Carbon Dynamics in Soil. International Journal of Advanced Biological Research,
2(2), 249-255. Retrieved from http://www.scienceandnature.org/IJABR_Vol2(2)2012/
IJABR_V2(2)13.pdf
Shenbagavalli, S., & Mahimairaja, S. (2012). Production and Characterization of Biochar from
Different Biological Wastes. International Journal of Plant, Animal, and Environmental
Sciences, 2(1), 197-201. Retrieved from https://www.researchgate.net/publication/
264890070_Production_and_characterization_of_biochar_from_different_biological_was
tes
Sheng, G. Y., Yang, Y. N., Huang, M. S., & Yang, K. (2005). Influence of pH on pesticide
sorption by soil containing wheat residue-derived char. Environmental Pollution, 134(3),
457-463. Retrieved from http://www.sciencedirect.com/science/article/pii/
S0269749104003811
ShengNan, L., et al. (2015). Effect of Se-enriched organic fertilizers on selenium accumulation
in corn and soil. Journal of Agricultural Resources and Environment, 32(6), 571-576.
Retrieved from http://www.cabdirect.org/abstracts/20163044524.html
Shenkman, E. G. (2021). United States: Helping Industry Adopt Carbon Capture And Storage
Technologies Retrieved from https://www.mondaq.com/unitedstates/climate-change/
1080456/helping-industry-adopt-carbon-capture-and-storage-technologies?
email_access=on
Shepherd, J. G., Sohi, S. P., & Heal, K. V. (2016). Optimising the recovery and re-use of
phosphorus from wastewater effluent for sustainable fertiliser development. Water
Research, 94, 155 - 165. doi:10.1016/j.watres.2016.02.038
Sheppard, M. C., & Socolow, R. H. (2007). Sustaining Fossil Fuel Use in aCarbon-Constrained
World by RapidCommercialization of Carbon Captureand Sequestration. AIChE Journal,
53(12), 3022-3028. Retrieved from http://onlinelibrary.wiley.com/doi/10.1002/aic.11356/
epdf
Sheps, K. M., Max, M. D., Osegovic, J. P., Tatro, S. R., & Brazel, L. A. (2009). A case for deep-
ocean CO2 sequestration. Energy Procedia, 1(1), 4961-4968. doi:http://dx.doi.org/
10.1016/j.egypro.2009.02.328
Sherwin, E. D. (2021). Electrofuel Synthesis from Variable Renewable Electricity: An
Optimization-Based Techno-Economic Analysis. Environmental Science & Technology.
doi:10.1021/acs.est.0c07955
Shi, G., et al. (2014). Molecular-Scale Hydrophilicity Induced by Solute: Molecular-thick
Charged Pancakes of Aqueous Salt Solution on Hydrophobic Carbon-based Surfaces.
Cornell University, Retrieved from http://arxiv.org/abs/1409.4493
Shi, K., Wu, T., Yan, J., Zhao, H., & Lester, E. (2013). Microwave enhanced pyrolysis of
gumwood. Paper presented at the 2013 International Conference on Materials for
Renewable Energy and Environment (ICMREE)2013 International Conference on
Materials for Renewable Energy and Environment, Chengdu, China. http://
ieeexplore.ieee.org/xpl/login.jsp?
tp=&arnumber=6893653&url=http%3A%2F%2Fieeexplore.ieee.org%2Fxpls%2Fabs_all.j
sp%3Farnumber%3D6893653
Shi, K., Xie, Y., & Qiu, Y. (2015). Natural oxidation of a temperature series of biochars: Opposite
effect on the sorption of aromatic cationic herbicides. Ecotoxicology and Environmental
Safety, 114, 102 - 108. doi:10.1016/j.ecoenv.2015.01.015
Shi, L., Feng, W., Xu, J., & Kuzyakov, Y. (2018). Agroforestry systems: Meta-analysis of soil
carbon stocks, sequestration processes, and future potentials. 29(11), 3886-3897.
doi:10.1002/ldr.3136
Shi, L., Zhang, G., Wei, D., Yan, T., Xue, X., Shi, S., & Wei, Q. (2014). Preparation and
utilization of anaerobic granular sludge-based biochar for the adsorption of methylene
blue from aqueous solutions. Journal of Molecular Liquids, 198, 334 - 340. doi:10.1016/
j.molliq.2014.07.023
Shi, X., Xiao, H., Azarabadi, H., Song, J., Wu, X., Chen, X., & Lackner, K. S. (2020). Sorbents
for Direct Capture of CO2 from Ambient Air. Angewandte Chemie International Edition,
59(18), 6984-7006. doi:10.1002/anie.201906756
Shi, X., Xiao, H., Kanamori, K., Yonezu, A., Lackner, K. S., & Chen, X. (2020). Moisture-Driven
CO2 Sorbents. Joule, 4(8), 1823-1837. doi:10.1016/j.joule.2020.07.005
Shi, X., Xiao, H., Lackner, K. S., & Chen, X. (2016). Capture CO
2
from Ambient Air Using
Nanoconfined Ion Hydration. Angewandte Chemie International Edition, 55(12),
4026-4029. Retrieved from http://onlinelibrary.wiley.com/doi/10.1002/anie.201507846/
abstract
Shi, Y., Sharma, T., Zang, G., & Ratner, A. (2014). Biomass Gasification in a Pilot-Scale Gasifier.
In.
Shi, Y., Zhang, L., & Zhao, M. (2015). Effect of Biochar Application on the Efficacy of the
Nitrification Inhibitor Dicyandiamide in Soils. BioResources. Retrieved from http://
ojs.cnr.ncsu.edu/index.php/BioRes/article/view/
BioRes_10_1_1330_Shi_Biochar_Application_Efficacy_Nitrification
Shieber, J. (2021). The carbon offset API developer Patch confirms a $4.5 million round led by
Andreessen Horowitz. TechCrunch. Retrieved from https://techcrunch.com/2021/02/24/
the-carbon-offset-api-developer-patch-confirms-a-4-5-million-round-led-by-andreessen-
horowitz/
Shieber, J. (2021). Two European companies are mapping a future service for direct air capture
to sequestration of CO2. Tech Crunch. Retrieved from https://techcrunch.com/
2021/03/09/two-european-companies-are-mapping-a-future-service-for-direct-air-
capture-to-sequestration-of-co2/
Shim, T., Yoo, J., Ryu, C., Park, Y.-K., & Jung, J. (2015). Effect of steam activation of biochar
produced from a giant Miscanthus on copper sorption and toxicity. Bioresource
Technology, 197, 85 - 90. doi:10.1016/j.biortech.2015.08.055
Shimabuku, K. K., et al. . (2016). Biochar sorbents for sulfamethoxazole removal from surface
water, stormwater, and wastewater effluent. Water Research, 96, 236-245. doi:10.1016/
j.watres.2016.03.049
Shin, J. (2015). Carbon Sequestration and Nitrogen Transformation in Soil Cooperated with
Organic Composts and Biochar during Corn (Zea mays) Cultivation. Journal of
Agricultural Chemistry and Environment, 04(04), 96 - 101. doi:10.4236/
jacen.2015.44010
Shin, J., Choi, Y.-S., & Kim, H. (2015). Predicting Greenhouse Gas Reduction and Profit
Analysis by Soil Carbon Sequestration in Corn Field with Different Application Rates of
Biochar during Cultivation Periods. Environment and Natural Resources Research, 5(1).
doi:10.5539/enrr.v5n1p22
Shin, J., Jang, E., Park, S., Ravindran, B., & Chang, S. W. (2019). Agro-environmental impacts,
carbon sequestration and profit analysis of blended biochar pellet application in the
paddy soil-water system. Journal of Environmental Management, 244, 92-98. doi:https://
doi.org/10.1016/j.jenvman.2019.04.099
Shin, J., Lee, S.-I., Park, W.-K., Choi, Y.-S., Hong, S.-G., & Park, S.-W. (2014). Carbon
Sequestration in Soil Cooperated with Organic Composts and Bio-Char during Corn
(Zea mays) Cultivation. Journal of Agricultural Chemistry and Environment, 03(04), 151 -
155. doi:10.4236/jacen.2014.34018
Shin, Y. S., Kim, J. Y. H., & Sim, S. J. (2018). Overview of Microalgae-Based Carbon Capture
and Utilization. In H. N. Chang (Ed.), Emerging Areas in Bioengineering (pp. 288-294).
Shindo, H. (1991). Elementary composition, humus composition, and decomposition in soil of
charred grassland plants. Soil Science and Plant Nutrition, 37(4), 651-657.
Shindo, H., & Nishimura, S. (2015). SSSA Special PublicationAgricultural and Environmental
Applications of Biochar: Advances and BarriersPyrogenic Organic Matter in Japanese
Andosols: Occurrence, Transformation, and Function: Soil Science Society of America,
Inc.
Shinogi, Y., & Kanri, Y. (2003). Pyrolysis of plant, animal and human waste: physical and
chemical characterization of the pyrolytic products. Bioresource Technology.
Shirato, Y. (2020). Use of models to evaluate carbon sequestration in agricultural soils. Soil
Science and Plant Nutrition, 66(1), 21-27. doi:10.1080/00380768.2019.1702477
Shirmohammadi, R., Aslani, A., & Ghasempour, R. (2020). Challenges of carbon capture
technologies deployment in developing countries. Sustainable Energy Technologies and
Assessments, 42, 100837. doi:https://doi.org/10.1016/j.seta.2020.100837
Shivaram, P., et al. (2012). Flow and yield stress behaviour of ultrafine Mallee biochar slurry
fuels: The effect of particle size distribution and additives. Fuel, 104, 326-332. Retrieved
from https://www.sciencedirect.com/science/article/pii/S0016236112007284
Shneour, E. A. (1966). Oxidation of graphitic carbon in certain soils. Science, 151(3713), 991.
Shoaf, N. L. (2014). Biochar and vermicompost amendments in vegetable cropping
systems:Impacts on soil quality, soil-borne pathogens and crop productivity. Purdue
University, Retrieved from http://gradworks.umi.com/15/65/1565253.html
Shoenfelt, E. M., Winckler, G., Lamy, F., Anderson, R. F., & Bostick, B. C. (2018). Highly
bioavailable dust-borne iron delivered to the Southern Ocean during glacial periods.
Proceedings of the National Academy of Sciences, 115(44), 11180-11185. doi:10.1073/
pnas.1809755115
Shoji, K., & Jones, I. S. F. (2001). The costing of carbon credits from ocean nourishment plants.
Science of The Total Environment, 277(1–3), 27-31. doi:http://dx.doi.org/10.1016/
S0048-9697(01)00832-4
Shonnard, D. R., et al. (2015). A Review of Environmental Life Cycle Assessments of Liquid
Transportation Biofuels in the Pan American Region. Environmental Management, 56(6),
1356-1376. Retrieved from http://link.springer.com/article/
10.1007%2Fs00267-015-0543-8
Shopify. (2021). How to Kick-Start the Carbon Removal Market: Shopify’s Playbook. Retrieved
from https://cdn.shopify.com/static/sustainability/How-to-Kick-Start-the-Carbon-Removal-
Market_Shopifys-Playbook.pdf
Showstack, R. (2019). Direct air capture offers some promise in reducing emissions. EOS.
Retrieved from https://eos.org/articles/direct-air-capture-offers-some-promise-in-
reducing-emissions
Shrestha, G., Traina, S. J., & Swanston, C. W. (2010). Black Carbons Properties and Role in the
Environment: A Comprehensive Review. Sustainability, 2, 294-320. Retrieved from
https://www.nrs.fs.fed.us/pubs/jrnl/2010/nrs_2010_shrestha_001.pdf
Shrum, T. R., et al. (2020). Behavioural frameworks to understand public perceptions of and risk
response to carbon dioxide removal. Interface Focus, 10(5), 20200002. doi:doi:10.1098/
rsfs.2020.0002
Shu, Q., Legrand, L., Kuntke, P., Tedesco, M., & Hamelers, H. V. M. (2020). Electrochemical
Regeneration of Spent Alkaline Absorbent from Direct Air Capture. Environmental
Science & Technology, 54(14), 8990-8998. doi:10.1021/acs.est.0c01977
Shu, R., Dang, F., & Zhong, H. (2016). Effects of incorporating differently-treated rice straw on
phytoavailability of methylmercury in soil. Chemosphere, 145, 457 - 463. doi:10.1016/
j.chemosphere.2015.11.037
Shue, H. (2017). Climate dreaming: negative emissions, risk transfer, and irreversibility. Journal
of Human Rights and the Environment, 8(2), 203-216.
Shuji, Y., & Tanaka, S. (2014). Biochar and compostization: maximization of carbon
sequestration with mitigating GHG emission in farmlands. In.
Shukla, S. P., Gita, S., Bharti, V. S., Bhuvaneswari, G. R., & Wikramasinghe, W. A. A. D. L.
(2017). Atmospheric Carbon Sequestration Through Microalgae: Status, Prospects, and
Challenges. In J. S. Singh & G. Seneviratne (Eds.), Agro-Environmental Sustainability:
Volume 1: Managing Crop Health (pp. 219-235). Cham: Springer International
Publishing.
Shvidenko, A., Nilsson, S., & Roshkov, V. (1997). Possibilities for increased carbon
sequestration through the implementation of rational forest management in Russia.
Water, Air, and Soil Pollution, 94(1), 137-162. doi:10.1007/bf02407099
Si, M., Wang, Z. F., Ji, W., Yang, G., Liu, L. S., Wu, J. X., . . . Gou, X. (2014). Comparison of De-
NOx Performance of Mn/AC and Mn/Bio-Char on Low-Temperature SCR. Applied
Mechanics and Materials, 694, 484 - 488. doi:10.4028/www.scientific.net/AMM.694.484
Sial, T. A., Khan, M. N., Lan, Z., Kumbhar, F., Ying, Z., Zhang, J., . . . Li, X. (2019). Contrasting
effects of banana peels waste and its biochar on greenhouse gas emissions and soil
biochemical properties. Process Safety and Environmental Protection, 122, 366-377.
doi:https://doi.org/10.1016/j.psep.2018.10.030
Sial, T. A., Lan, Z., Khan, M. N., Zhao, Y., Kumbhar, F., Liu, J., . . . Memon, M. (2019).
Evaluation of orange peel waste and its biochar on greenhouse gas emissions and soil
biochemical properties within a loess soil. Waste Management, 87, 125-134. doi:https://
doi.org/10.1016/j.wasman.2019.01.042
Sialve, B., Bernet, N., & Bernard, O. (2009). Anaerobic digestion of microalgae as a necessary
step to make microalgal biodiesel sustainable. Biotechnology Advances, 27(4), 409-416.
doi:https://doi.org/10.1016/j.biotechadv.2009.03.001
Sick, V. (2021). Spiers Memorial Lecture: CO2 utilization: why, why now, and how? Faraday
Discussions, 230(0), 9-29. doi:10.1039/D1FD00029B
Sick, V., Armstrong, K., Cooney, G., Cremonese, L., Eggleston, A., Faber, G., . . . Zimmermann,
A. (2020). The Need for and Path to Harmonized Life Cycle Assessment and Techno-
Economic Assessment for Carbon Dioxide Capture and Utilization. Energy Technology,
8(11), 1901034. doi:https://doi.org/10.1002/ente.201901034
Sidibe, M. (2014). Comparative study of bark, bio-char, activated charcoal filters for upgrading
grey-water. (MSc.). Institutionen för energi och teknik, Retrieved from http://
stud.epsilon.slu.se/6760/
Sieber, S., Jha, S., Tharayil Shereef, A.-B., Bringe, F., Crewett, W., Uckert, G., . . . Mueller, K.
(2015). Integrated assessment of sustainable agricultural practices to enhance climate
resilience in Morogoro, Tanzania. Regional Environmental Change, 15(7), 1281-1292.
doi:10.1007/s10113-015-0810-5
Siegel, D. A., DeVries, T., Doney, S., & Bell, T. (2021). Assessing the sequestration time scales
of some ocean-based carbon dioxide reduction strategies. Environmental Research
Letters. Retrieved from http://iopscience.iop.org/article/10.1088/1748-9326/ac0be0
Siegel, D. A., DeVries, T., Doney, S., & Bell, T. (2021). Assessing the sequestration time scales
of some ocean-based carbon dioxide reduction strategies. Environmental Research
Letters. Retrieved from http://iopscience.iop.org/article/10.1088/1748-9326/ac0be0
Siegel, J., & Smith, A. (2020). Daily on Energy: Crunching the numbers on carbon capture.
Washington Examiner. Retrieved from https://www.washingtonexaminer.com/policy/
energy/daily-on-energy-crunching-the-numbers-on-carbon-capture
Siegel, J., & Smith, A. (2021). Daily on Energy: White House commits to carbon capture in
climate agenda. Yahoo News! Retrieved from https://news.yahoo.com/daily-energy-
white-house-commits-162700910.html
Siegel, N. P., Miller, J. E., Ermanoski, I., Diver, R. B., & Stechel, E. B. (2013). Factors Affecting
the Efficiency of Solar Driven Metal Oxide Thermochemical Cycles. Ind. Eng. Chem.
Res., 52, 3276-3286.
Siegel, R. P. (2018). The Artificial Tree. Mechanical Engineering, 140(11), 34-39. Retrieved from
http://memagazineselect.asmedigitalcollection.asme.org/article.aspx?
articleid=2714566#Article
Siegel, R. P. (2018). Manufacturing Goes Carbon Negative. strategy + business. Retrieved from
https://www.strategy-business.com/article/Manufacturing-Goes-Carbon-Negative?
gko=4f10c
Siegel, R. P. (2020). Regenerative products just might save the planet – and the economy.
strategy + business. Retrieved from https://www.strategy-business.com/article/
Regenerative-products-just-might-save-the-planet-and-the-economy?gko=cb366
Siegelman, R. L., Milner, P. J., Kim, E. J., Weston, S. C., & Long, J. R. (2019). Challenges and
opportunities for adsorption-based CO2 capture from natural gas combined cycle
emissions. Energy & Environmental Science, 12(7), 2161-2173. doi:10.1039/
C9EE00505F
Sigfússon, B., Arnarson, M. Þ., Snæbjörnsdóttir, S. Ó., Karlsdóttir, M. R., Aradóttir, E. S., &
Gunnarsson, I. (2018). Reducing emissions of carbon dioxide and hydrogen sulphide at
Hellisheidi power plant in 2014-2017 and the role of CarbFix in achieving the 2040
Iceland climate goals. Energy Procedia, 146, 135-145. doi:https://doi.org/10.1016/
j.egypro.2018.07.018
Sigfusson, B., Gislason, S. R., Matter, J. M., Stute, M., Gunnlaugsson, E., Gunnarsson, I., . . .
Oelkers, E. H. (2015). Solving the carbon-dioxide buoyancy challenge: The design and
field testing of a dissolved CO2 injection system. International Journal of Greenhouse
Gas Control, 37, 213-219. doi:https://doi.org/10.1016/j.ijggc.2015.02.022
Sigua, G. C., Novak, J. M., & Watts, D. W. (2015). Ameliorating soil chemical properties of a
hard setting subsoil layer in Coastal Plain USA with different designer biochars.
Chemosphere, 142, 168-175. doi:10.1016/j.chemosphere.2015.06.016
Sigua, G. C., Novak, J. M., Watts, D. W., Cantrell, K. B., Shumaker, P. D., Szögi, A. A., &
Johnson, M. G. (2014). Carbon mineralization in two ultisols amended with different
sources and particle sizes of pyrolyzed biochar. Chemosphere, 103, 313-321. doi:https://
doi.org/10.1016/j.chemosphere.2013.12.024
Sigua, G. C., Novak, J. M., Watts, D. W., Johnson, M. G., & Spokas, K. (2015). Efficacies of
designer biochars in improving biomass and nutrient uptake of winter wheat grown in a
hard setting subsoil layer. Chemosphere, 142, 176-183. doi:10.1016/
j.chemosphere.2015.06.015
Sigua, G. C., Novak, J. M., Watts, D. W., Szögi, A. A., & Shumaker, P. D. (2016). Impact of
switchgrass biochars with supplemental nitrogen on carbon-nitrogen mineralization in
highly weathered Coastal Plain Ultisols. Chemosphere, 145, 135 - 141. doi:10.1016/
j.chemosphere.2015.11.063
Sigurdardottir, R., & Rathi, A. (2021). The Icelandic Startup Bill Gates Uses to Turn Carbon
Dioxide Into Stone. Retrieved from https://finance.yahoo.com/news/icelandic-startup-
transforming-carbon-dioxide-050005873.html
Sigurjonsson, H. Æ., Elmegaard, B., & Clausen, L. R. (2015). Climate Effect of Bioenergy and
Agriculture Integration Based on Lowtar Gasification of Wood Chips. Paper presented at
the Proceedings of ECOS. http://orbit.dtu.dk/ws/files/119761363/
CLIMATE_EFFECT_OF_BIOENERGY_AND_AGRICULTURE_INTEGRATION_BASED
_ON_LOWTAR_GASIFICATION_OF_WOOD_CHIPS.pdf
Sigurjonsson, H. Æ., Elmegaard, B., Clausen, L. R., & Ahrenfeldt, J. (2015). Climate effect of an
integrated wheat production and bioenergy system with Low Temperature Circulating
Fluidized Bed gasifier. Applied Energy, 160, 511 - 520. doi:10.1016/
j.apenergy.2015.08.114
Siikamäki, J., Sanchirico, J. N., & Jardine, S. L. (2012). Global economic potential for reducing
carbon dioxide emissions from mangrove loss. Proceedings of the National Academy of
Sciences, 109(36), 14369-14374. doi:10.1073/pnas.1200519109
siitindriani. (2020). What is Biochar? su.re.co. Retrieved from https://www.su-re.co/post/what-is-
biochar
Sika, M. P., & Hardie, A. G. (2013). Effect of pine wood biochar on ammonium nitrate leaching
and availability in a South African sandy soil. European Journal of Soil Science, 65(1),
113-119. Retrieved from http://onlinelibrary.wiley.com/doi/10.1111/ejss.12082/abstract
Silber, A., Levkovich, I., & Graber, E. R. (2010). pH-dependant mineral release and surface
properties of cornstraw biochar: agronomic implications. Environmental Science &
Technology, 44(24), 9318-9323. Retrieved from http://pubs.acs.org/doi/pdf/10.1021/
es101283d
Silivong, P., & Preston, T. (2015). Effect of water spinach and biochar on methane production in
an in vitro system with substrate of Bauhinia acuminata or Bitter Neem (Azadirachta
indica) leaves. Livestock Research for Rural Development, 27(3). Retrieved from http://
lrrd.cipav.org.co/lrrd27/3/sili27057.html
Sillman, J., Nygren, L., Kahiluoto, H., Ruuskanen, V., Tamminen, A., Bajamundi, C., . . . Ahola,
J. (2019). Bacterial protein for food and feed generated via renewable energy and direct
air capture of CO2: Can it reduce land and water use? Global Food Security, 22, 25-32.
doi:https://doi.org/10.1016/j.gfs.2019.09.007
Sills, D. L., Paramita, V., Franke, M. J., Johnson, M. C., Akabas, T. M., Greene, C. H., & Tester,
J. W. (2013). Quantitative Uncertainty Analysis of Life Cycle Assessment for Algal Biofuel
Production. Environmental Science & Technology, 47(2), 687-694. doi:10.1021/
es3029236
Silva, F. C., Borrego, C., Keizer, J. J., Amorim, J. H., & Verheijen, F. G. A. (2015). Effects of
moisture content on wind erosion thresholds of biochar. Atmospheric Environment, 123,
121 - 128. doi:10.1016/j.atmosenv.2015.10.070
Silva, J. H. d. (2014). Impact of the use of biochar on soil quality and Production cacao
(Theobroma cacao L.), Bribri Indian Reservation, agroforestry Talamanca, Costa Rica
(translated from Spanish Language). Repositorio Universidad Tecnológica de León
(Repository Technological University of León), Retrieved from http://
bibliotecadigital.catie.ac.cr:8080/repositorio/handle/123456789/2349
Silva Mendes, J. d., Chaves, L. H. G., Brito Chaves, I. d., Santos e Silva, F. d. A., & Fernandes,
J. D. (2015). Using Poultry Litter Biochar and Rock Dust MB-4 on Release Available
Phosphorus to Soils. Agricultural Sciences, 06(11), 1367 - 1374. doi:10.4236/
as.2015.611131
Silva, S., Soares, I., & Pinho, C. (2018). Renewable energy subsidies versus carbon capture
and sequestration support. Environment, Development and Sustainability, 20(3),
1213-1227. doi:10.1007/s10668-017-9935-7
Silva, S., Soares, I., & Pinho, C. (2018). Support to renewable energy sources and carbon
capture and sequestration: comparison of alternative green tax reforms. Applied
Economics Letters, 25(6), 425-428. doi:10.1080/13504851.2017.1329926
Silva, S., Soares, I., & Pinho, C. (2019). Green tax reforms with promotion of renewable energy
sources and carbon capture and sequestration: Comparison of different alternatives.
Energy Reports. doi:https://doi.org/10.1016/j.egyr.2019.09.036
Silvennoinen, E. (2015). Water retention performance of newly constructed green roofs in cold
climates. University of Helsinki, Retrieved from https://helda.helsinki.fi/handle/
10138/156612
Silver, M. W., Bargu, S., Coale, S. L., Benitez-Nelson, C. R., Garcia, A. C., Roberts, K. J., . . .
Coale, K. H. (2010). Toxic diatoms and domoic acid in natural and iron enriched waters
of the oceanic Pacific. Proceedings of the National Academy of Sciences, 107(48),
20762-20767. doi:10.1073/pnas.1006968107
Silver, W. (2019). Enhancing Carbon Sinks in Natural and Working Lands. In V. Ramanathan
(Ed.), Bending the Curve (pp. 641-678).
Silver, W. L., Kueppers, L. M., Lugo, A. E., Ostertag, R., & Matzek, V. (2004). Carbon
Sequestration and Plant Community Dynamics Following Reforestation of Tropical
Pasture. Ecological Applications, 14(4), 1115-1127. Retrieved from http://
onlinelibrary.wiley.com/doi/10.1890/03-5123/full
Silver, W. L., Ostertag, R., & Lugo, A. E. (2000). The Potential for Carbon Sequestration
Through Reforestation of Abandoned Tropical Agricultural and Pasture Lands.
Restoration Ecology, 8(4), 394-407. Retrieved from http://onlinelibrary.wiley.com/doi/
10.1046/j.1526-100x.2000.80054.x/
abstract;jsessionid=7F812EB450B689F387D6AEF2D3445060.d04t02?
userIsAuthenticated=false&deniedAccessCustomisedMessage=
Silverman-Roati, K., et al. (2021). Removing Carbon Dioxide Through Seaweed Cultivation:
Legal Challenges and Opportunities Retrieved from https://climate.law.columbia.edu/
sites/default/files/content/Silverman-Roati%20et%20al.,%20--
%20Removing%20CO2%20Through%20Seaweed%20Cultivation%20--%2009.2021.pdf
Simmons, A. (2021). US scheme used by Australian farmers reveals the dangers of trading soil
carbon to tackle climate change. The Conversation.
Simon, A. J., Kaahaaina, N. B., Friedmann, S. J., & Aines, R. D. (2011). Systems Analysis and
Cost Estimates for Large Scale Capture of Carbon Dioxide from Air. In J. Gale, C.
Hendriks, & W. Turkenberg (Eds.), 10th International Conference on Greenhouse Gas
Control Technologies (Vol. 4, pp. 2893-2900). Amsterdam: Elsevier Science Bv.
Simon, A. J., Kaahaaina, N. B., Julio Friedmann, S., & Aines, R. D. (2011). Systems analysis
and cost estimates for large scale capture of carbon dioxide from air. Energy Procedia,
4, 2893-2900. doi:https://doi.org/10.1016/j.egypro.2011.02.196
Simon, D., Tyner, W. E., & Jacquet, F. (2010). Economic analysis of the potential of cellulosic
biomass available in France from agricultural residue and energy crops. Bioenergy Res,
3. doi:10.1007/s12155-009-9061-y
Simon, F. (2020). Official: EU taking first steps to bring forestry into carbon market. Euractiv.
Retrieved from https://www.euractiv.com/section/energy-environment/interview/official-
eu-taking-first-steps-to-bring-forestry-into-carbon-market/
Simon, F. (2021). EU plans certification scheme for carbon dioxide removals. Retrieved from
https://www.euractiv.com/section/climate-environment/news/eu-plans-certification-
scheme-for-carbon-dioxide-removals/
Simon, M. (2021). Is It Time for an Emergency Rollout of Carbon-Eating Machines? Wired.
Retrieved from https://www.wired.com/story/is-it-time-for-an-emergency-rollout-of-
carbon-eating-machines/
Simpson, M. J., & Hatcher, P. G. (2004). Determination of black carbon in natural organic matter
by chemical oxidation and solid-state C-13 nuclear magnetic resonance spectroscopy.
Organic Geochemistry, 35(8), 923-935.
Simpson, M. J., & Hatcher, P. G. (2004). Overestimates of black carbon in soils and sediments.
Naturwissenschaften, 91(9), 436-440.
Simpson, T. W., et al. (2009). Chapter 9: Impact of Ethanol Production on Nutrient Cycles and
Water Quality: The United State and Brazil as Case Studies. Paper presented at the
Proceedings of the Scientific Committee on Problems of the Environment (SCOPE)
International Biofuels Project Rapid Assessment. https://cip.cornell.edu/DPubS/
Repository/1.0/Disseminate?view=body&id=pdf_1&handle=scope/1245782009
Sims, R. E. H. (2003). Bioenergy to Mitigate for Climate Change and Meet the Needs of
Societyl, the Economy, and the Environment. Mitigation Adapt. Strat. Global Change, 8,
349-370. Retrieved from https://www.academia.edu/attachments/53694774/
download_file?
s=work_strip&ct=MTUwMjY3OTUwMSwxNTAyNjgwNDUwLDI1NDM4NQ==
Sims, R. E. H., et al. (2006). Energy crops: current status and future prospects. Global Change
Biology, 12(11), 2054-2076. Retrieved from http://onlinelibrary.wiley.com/doi/10.1111/
j.1365-2486.2006.01163.x/abstract
Singapore, N. U. o. (2018). NUS study: Mangroves can help countries mitigate their carbon
emissions. EurkekaAlert! Retrieved from https://www.eurekalert.org/pub_releases/
2018-11/nuos-nsm110918.php
Singh, A., et al. (2013). Production Of Biochar From Mustard For Agriculture Use And Carbon
Sequestration. International Journal of ChemTech Research, 5, 844-848. Retrieved from
http://sphinxsai.com/2013/conf/PDFS%20ICGSEE%202013/
CT=46(844-848)ICGSEE.pdf
Singh, A., & Misha, R. (2013). Carbon dioxide capturing, storing & recycling: A alleviation
approach for climate change. Journal of Sustainable Environmental Research, 2(1),
121-124. Retrieved from https://www.academia.edu/attachments/54011023/
download_file?
s=work_strip&ct=MTUwMjY3OTUwMSwxNTAyNjgxNTY1LDI1NDM4NQ==
Singh, A., Nigam, P. S., & Murphy, J. D. (2011). Mechanism and challenges in commercialisation
of algal biofuels. Bioresource Technology, 102(1), 26-34. doi:https://doi.org/10.1016/
j.biortech.2010.06.057
Singh, A., Nigam, P. S., & Murphy, J. D. (2011). Renewable fuels from algae: An answer to
debatable land based fuels. Bioresource Technology, 102(1), 10-16. doi:https://doi.org/
10.1016/j.biortech.2010.06.032
Singh, B., et al. (2014). NEXAFS and XPS characterisation of carbon functional groups of fresh
and aged biochars. Organic Geochemistry, 77, 1 - 10. doi:10.1016/
j.orggeochem.2014.09.006
Singh, B., Singh, B. P., & Cowie, A. L. (2010). Characterisation and evaluation of biochars for
their application as a soil amendment. Australian Journal of Soil Research, 48(7),
516-525. Retrieved from http://www.publish.csiro.au/SR/SR10058
Singh, B. P., et al. (2015). In Situ Persistence and Migration of Biochar Carbon and Its Impact
on Native Carbon Emission in Contrasting Soils under Managed Temperate Pastures.
Plos One, 10(10), e0141560. doi:10.1371/journal.pone.0141560.s001
Singh, B. P., & Cowie, A. L. (2014). Long-term influence of biochar on native organic carbon
mineralisation in a low-carbon clayey soil. Scientific Reports, 4(3687), 1-9. Retrieved
from http://www.nature.com/srep/2014/140121/srep03687/full/srep03687.html
Singh, B. P., Cowie, A. L., & Smernik, R. J. (2012). Biochar carbon stability in a clayey soil as a
function of feedstock and pyrolysis temperature. Environmental Science & Technology,
46(21), 11770-11778. doi:10.1021/es302545b
Singh, B. P., Hatton, B. J., Singh, B., Cowie, A., & Kathuria, A. (2010). Influence of biochars on
nitrous oxide emission and nitrogen leaching from two contrasting soils. Journal of
Environmental Quality, 39(4), 1224-1235. Retrieved from https://search.proquest.com/
docview/747975900?accountid=14496
Singh, B. P., Setia, R., Wiesmeier, M., & Kunhikrishnan, A. (2018). Chapter 7 - Agricultural
Management Practices and Soil Organic Carbon Storage. In B. K. Singh (Ed.), Soil
Carbon Storage (pp. 207-244): Academic Press.
Singh, D., Croiset, E., Douglas, P. L., & Douglas, M. A. (2003). Techno-economic study of CO2
capture from an existing coal-fired power plant: MEA scrubbing vs. O2/CO2 recycle
combustion. Energy Conversion and Management, 44(19), 3073-3091. doi:https://
doi.org/10.1016/S0196-8904(03)00040-2
Singh, J., & Dhar, D. W. (2019). Overview of Carbon Capture Technology: Microalgal Biorefinery
Concept and State-of-the-Art. 6(29). doi:10.3389/fmars.2019.00029
Singh, J., & Gu, S. (2010). Commercialization potential of microalgae for biofuels production.
Renewable and Sustainable Energy Reviews, 14(9), 2596-2610. doi:https://doi.org/
10.1016/j.rser.2010.06.014
Singh, N., & Kookana, R. S. (2009). Organo-mineral interactions mask the true sorption
potential of biochars in soils. Journal Of Environmental Science And Health Part B-
Pesticides Food Contaminants And Agricultural Wastes, 44, 214--219.
Singh, R., Babu, J. N., Kumar, R., Srivastava, P., Singh, P., & Raghubanshi, A. S. (2015).
Multifaceted application of crop residue biochar as a tool for sustainable agriculture: An
ecological perspective. Ecological Engineering, 77, 324 - 347. doi:10.1016/
j.ecoleng.2015.01.011
Singh, R., Srivastava, P., Upadhyay, S., Singh, P., & Raghubanshi, A. S. (2015). INTEGRATING
BIOCHAR AS CONSERVATION AGRICULTURE TOOL UNDER CLIMATE CHANGE
MITIGATION SCENARIO. Retrieved from http://www.researchgate.net/profile/
Rishikesh_Singh4/publication/
280245125_Integrating_biochar_as_conservation_agriculture_tool_under_climate_chan
ge_mitigation_scenario/links/55af56d008aee0799220f8a3.pdf
Singh, S. K., et al. (2015). Carbon Sequestration in Terrestrial Ecosystems. In E. Lichtfouse, J.
Schwarzbauer, & R. Didier (Eds.), Hydrogen Production and Remediation of Carbon and
Pollutants (pp. 99-131).
Singh, S. K., Kotakonda, A., Kapardar, R. K., Kankipati, H. K., Rao, P. S., Sankaranarayanan, P.
M., . . . Shivaji, S. (2015). Response of bacterioplankton to iron fertilization of the
Southern Ocean, Antarctica. Frontiers in Microbiology, 6, 1-16. doi:10.3389/
fmicb.2015.00863
Singh, U., Rao, A. B., & Chandel, M. K. (2017). Economic Implications of CO2 Capture from the
Existing as Well as Proposed Coal-fired Power Plants in India under Various Policy
Scenarios. Energy Procedia, 114, 7638-7650. doi:https://doi.org/10.1016/
j.egypro.2017.03.1896
Singh, U. B., & Ahluwalia, A. S. (2013). Microalgae: a promising tool for carbon sequestration.
Mitigation and Adaptation Strategies for Global Change, 18(1), 73-95. doi:10.1007/
s11027-012-9393-3
Singh, Y., & Sidhu, H. S. (2014). Management of Cereal Crop Residues for Sustainable Rice-
Wheat Production System in the Indo-Gangetic Plains of India. Proc Indian Natn Sci
Acad, 80(1), 95-114. Retrieved from http://www.insa.nic.in/writereaddata/UpLoadedFiles/
PINSA/Vol80_2014_1_Art11_95_114.pdf
Singh, Y., Thind, H. S., & Sidhu, H. S. (2014). Management options for rice residues for
sustainable productivity of rice-wheat cropping system. J. Res. Punjab Agric. Univ., 51(3
& 4), 209-220. Retrieved from https://www.researchgate.net/publication/
306503565_Management_options_for_rice_residues_for_sustainable_productivity_of_ri
ce-wheat_cropping_system
Singla, A., Dubey, S. K., Singh, A., & Inubushi, K. (2014). Effect of biogas digested slurry-based
biochar on methane flux and methanogenic archaeal diversity in paddy soil. Agriculture,
Ecosystems & Environment, 197, 278 - 287. doi:10.1016/j.agee.2014.08.010
Singla, A., & Inubushi, K. (2014). Effect of biochar on CH4 and N2O emission from soils
vegetated with paddy. Paddy and Water Environment, 12(1), 239 - 243. doi:10.1007/
s10333-013-0357-3
Singla, A., Iwasa, H., & Inubushi, K. (2014). Effect of biogas digested slurry based-biochar and
digested liquid on N2O, CO2 flux and crop yield for three continuous cropping cycles of
komatsuna (Brassica rapa var. perviridis). Biology and Fertility of Soils, 50(8),
1201-1209. doi:10.1007/s00374-014-0950-7
Singlaa, A., & Inubushi, K. (2014). Biogas byproducts affecting N2O, CO2 and CH4 production
potential of Regosol soil under aerobic incubation. HortResearch, 68, 7-13. Retrieved
from www.researchgate.net/profile/Ankit_Singla4/publication/
265335560_Biogas_byproducts_affecting_N2O_CO2_and_CH4_production_potential_o
f_Regosol_soil_under_aerobic_incubation/links/548a62250cf2d1800d7aab09.pdf
Singleton, G. R. (2007). Geological Storage of Carbon Dioxide: Risk Analyses and Implications
for Public Acceptance. (MSc. Masters). University of Virginia, Retrieved from https://
sequestration.mit.edu/pdf/GregSingleton_Thesis.pdf
Sinha, A., Darunte, L. A., Jones, C. W., Realff, M. J., & Kawajiri, Y. (2017). Systems Design and
Economic Analysis of Direct Air Capture of CO2 through Temperature Vacuum Swing
Adsorption Using MIL-101(Cr)-PEI-800 and mmen-Mg2(dobpdc) MOF Adsorbents.
Industrial & Engineering Chemistry Research, 56(3), 750-764. doi:10.1021/
acs.iecr.6b03887
Sinha, R., Kumar, S., & Singh, R. K. (2013). Production of biofuel and biochar by thermal
pyrolysis of linseed seed. Biomass Conversion and Biorefinery, 3(4), 327-335. Retrieved
from http://link.springer.com/article/10.1007/s13399-013-0076-4
Sinha, V. R. P., Fraley, L., & Chowdhry, B. S. (2001). Carbon dioxide utilization and seaweed
production. Paper presented at the Proceedings of NETL: First National Conference on
Carbon Sequestration. https://pdfs.semanticscholar.org/
2270/8367d963973af4f81fabee9ee8ca23895e49.pdf
SIPA, C. L. S. C. (2020). Carbon Dioxide Removal Law. Retrieved from https://cdrlaw.org/.
https://cdrlaw.org/
Sipila, J., Teir, S., & Zevenhoven, R. (2008). Carbon dioxide sequestration by mineral
carbonation: Literature review update 2005–2007. Retrieved from http://users.abo.fi/
rzevenho/MineralCarbonationLiteratureReview05-07.pdf
Sisbudi Harsono, S., Grundmann, P., & Siahaan, D. (2015). Role of Biogas and Biochar Palm
Oil Residues for Reduction of Greenhouse Gas Emissions in the Biodiesel Production.
Paper presented at the Conference!and!Exhibition!Indonesia - New,!Renewable Energy
and Energy Conservation. www.indoebtke-conex.com/files/Rev_45.egypro_ebtke-
conex2014_Soni.doc
sitiindriani. (2021). What are the disadvantages of biochar? Retrieved from https://www.su-re.co/
post/what-are-the-disadvantages-of-biochar
Sivaniah, E. (2017). Carbon capture’s new material. Retrieved from http://www.power-
technology.com/features/featurecarbon-captures-new-material-5898533/
Six, J., Ogle, S. M., Jay breidt, F., Conant, R. T., Mosier, A. R., & Paustian, K. (2004). The
potential to mitigate global warming with no-tillage management is only realized when
practised in the long term. Global Change Biology, 10(2), 155-160. doi:10.1111/
j.1529-8817.2003.00730.x
Six, J., Ogle, S. M., Jay breidt, F., Conant, R. T., Mosier, A. R., & Paustian, K. (2004). The
potential to mitigate global warming with notillage management is only realized when
practised in the long term. Global Change Biology, 10(2), 155-160. doi:doi:10.1111/
j.1529-8817.2003.00730.x
Sizmur, T., Quilliam, R., Puga, A. P., Moreno-Jiménez, E., Beesley, L., & Gomez-Eyles, J. L.
(2015). SSSA Special PublicationAgricultural and Environmental Applications of Biochar:
Advances and BarriersApplication of Biochar for Soil Remediation: Soil Science Society
of America, Inc.
Sizmur, T., Wingate, J., Hutchings, T., & Hodson, M. E. (2011). Lumbricus terrestris L. does not
impact on the remediation efficiency of compost and Biochar amendments.
Pedobiologia, 54(Supplement), S211-S216. doi:10.1016/j.pedobi.2011.08.008
Skidmore, A. K., Wang, T., de Bie, K., & Pilesjö, P. (2019). Comment on “The global tree
restoration potential”. 366(6469), eaaz0111. doi:10.1126/science.aaz0111 %J Science
Skjånes, K., Lindblad, P., & Muller, J. (2007). BioCO2 - a multidisciplinary, biological approach
using solar energy to capture CO2 while producing H2 and high value products.
Biomolecular Engineering, 24(4), 405-413. Retrieved from https://www.ncbi.nlm.nih.gov/
pubmed/17662653
Skjemstad, J. O., Dalal, R. C., Janik, L. J., & McGowan, J. A. (2001). Changes in chemical
nature of soil organic carbon in Vertisols under wheat in south-eastern Queensland.
Australian Journal of Soil Research, 39(2), 343-359. Retrieved from http://
www.publish.csiro.au/SR/SR99138
Skjemstad, J. O., Reicosky, D. C., Wilts, A. R., & McGowan, J. A. (2002). Charcoal carbon in US
agricultural soils. Soil Science Society of America Journal, 66(4), 1249-1255. Retrieved
from https://www.google.com/url?
sa=t&rct=j&q=&esrc=s&source=web&cd=2&cad=rja&uact=8&ved=0ahUKEwjVp_CJkNL
SAhXJxlQKHWABB-8QFggkMAE&url=https%3A%2F%2Fpubag.nal.usda.gov%2Fpubag
%2FdownloadPDF.xhtml%3Fid%3D13040%26content%3DPDF&usg=AFQjCNGBqDXYp
u6E39rebaTznTMkp7wfXg&sig2=yxGTt72I3aqjMxVdElYbAg
Skjemstad, J. O., & Taylor, J. A. (1999). Does the walkley-black method determine soil
charcoal? Communications in Soil Science and Plant Analysis, 30(15-16), 2299-2310.
Retrieved from http://www.tandfonline.com/doi/abs/10.1080/00103629909370373
Skjemstad, J. O., Taylor, J. A., & Smernik, R. J. (1999). Estimation of charcoal (char) in soils.
Communications in Soil Science and Plant Analysis, 30(15-16), 2283-2298. Retrieved
from http://www.tandfonline.com/doi/abs/10.1080/00103629909370372
Skuce, A. (2015). The Road to Two Degrees, Part One: Feasible Emissions Pathways, Burying
our Carbon, and Bioenergy. Retrieved from https://skepticalscience.com/
TRTTDRCP26.html
Skuce, A. (2016). ‘We’d have to finish one new facility every working day for the next 70
years’—Why carbon capture is no panacea. Bulletin of Atomic Scientists. Retrieved from
https://thebulletin.org/%E2%80%98we%E2%80%99d-have-finish-one-new-facility-every-
working-day-next-70-years%E2%80%99%E2%80%94why-carbon-capture-no-
panacea9949
Skutsch, M., de los Rios, E., Solis, S., Riegelhaupt, E., Hinojosal, D., Gerfert, S., . . . Masera, O.
(2011). Jatropha in Mexico: Environmental and Social Impacts of an Incipient Biofuel
Program. Ecology and Society, 16(4), Article 11. doi:10.5751/ES-04448-160411
Slade, R., & Bauen, A. (2013). Micro-algae cultivation for biofuels: Cost, energy balance,
environmental impacts and future prospects. Biomass and Bioenergy, 53, 29-38.
doi:https://doi.org/10.1016/j.biombioe.2012.12.019
Slade, R., Bauen, A., & Gross, R. (2014). Global bioenergy resources. Nature Climate Change,
4(2), 99-105. doi:10.1038/nclimate2097
http://www.nature.com/nclimate/journal/v4/n2/abs/nclimate2097.html#supplementary-
information
Slav, I. (2017). Did This Startup Solve The Carbon Capture Challenge? Retrieved from http://
oilprice.com/The-Environment/Global-Warming/Did-This-Startup-Solve-The-Carbon-
Capture-Challenge.html
Slavin, T. (2021). Can corporates’ net-zero drive help put tropical countries on rapid road to
ending deforestation? Retrieved from https://www.reutersevents.com/sustainability/can-
corporates-net-zero-drive-help-put-tropical-countries-rapid-road-ending-deforestation?
utm_campaign=ETH%2030JUL21%20Newsletter%20Database&utm_medium=email&ut
m_source=Eloqua
Slaymaker, M. (2021). Gordon supports SCALE Act. Wyoming Livestock Roundup. Retrieved
from https://www.wylr.net/2021/03/26/gordon-supports-scale-act/
Slingenberg, Y. (2021). What does the EU have in store for Carbon removals: Negative
Emissions Platform.
Smal, I. M., Yu, Q., Veneman, R., Fränzel-Luiten, B., & Brilman, D. W. F. (2014). TG-FTIR
Measurement of CO2-H2O co-adsorption for CO2 air capture sorbent screening. Energy
Procedia, 63, 6834-6841. doi:http://dx.doi.org/10.1016/j.egypro.2014.11.717
Smebye, A., Alling, V., Vogt, R. D., Gadmar, T. C., Mulder, J., Cornelissen, G., & Hale, S. E.
(2015). Biochar amendment to soil changes dissolved organic matter content and
composition. Chemosphere, 142, 100-105. doi:10.1016/j.chemosphere.2015.04.087
Smeets, E. (2007). Interactive comment on “N2O release from agro-biofuel production negates
global warming reduction by replacing fossil fuels” by P. J. Crutzen et al. Atmospheric
Chemistry and Physics Discussions, 7, S4937-4941. Retrieved from http://www.atmos-
chem-phys-discuss.net/7/S4937/2007/acpd-7-S4937-2007.pdf
Smeets, E. M. W., & Faaij, A. P. C. (2007). Bioenergy potentials from forestry in 2050. Climatic
Change, 81(3), 353-390. doi:10.1007/s10584-006-9163-x
Smeets, E. M. W., & Faaij, A. P. C. (2010). The impact of sustainability criteria on the costs and
potentials of bioenergy production – Applied for case studies in Brazil and Ukraine.
Biomass and Bioenergy, 34(3), 319-333. doi:https://doi.org/10.1016/
j.biombioe.2009.11.003
Smeets, E. M. W., Faaij, A. P. C., Lewandowski, I. M., & Turkenburg, W. C. (2007). A bottom-up
assessment and review of global bio-energy potentials to 2050. Progress in Energy and
Combustion Science, 33(1), 56-106. doi:http://dx.doi.org/10.1016/j.pecs.2006.08.001
Smernik, R. J. (2005). A new way to use solid-state carbon-13 nuclear magnetic resonance
spectroscopy to study the sorption of organic compounds to soil organic matter. Journal
of Environmental Quality, 34(4), 1194-1204. Retrieved from https://www.ncbi.nlm.nih.gov/
pubmed/15942038
Smernik, R. J. (2009). Biochar and Sorption of Organic Compounds. In L. Johannes & J.
Stephen (Eds.), Biochar for Environmental Management: Science and Technology (pp.
289-300). London, UK: Earthscan.
Smetacek, V. (2008). Are Declining Antarctic Krill Stocks A Result of Global Warming or of the
Decimation of the Whales. In C. Duarte, M. (Ed.), Impacts of Global Warming on Global
Ecosystems (pp. 47-83).
Smetacek, V., et al. (2012). Deep carbon export from a Southern Ocean iron-fertilized diatom
bloom. Nature, 487, 313-319. Retrieved from http://www.nature.com/nature/journal/v487/
n7407/full/nature11229.html?WT.ec_id=NATURE-20120719
Smetacek, V., & Naqvi, S. W. A. (2008). The next generation of iron fertilization experiments in
the Southern Ocean. Philosophical Transactions of the Royal Society A, 366, 3947-3967.
Retrieved from http://rsta.royalsocietypublishing.org/content/roypta/
366/1882/3947.full.pdf
Smider, B., & Singh, B. (2014). Agronomic performance of a high ash biochar in two contrasting
soils. Agriculture, Ecosystems & Environment, 191, 99-107. doi:http://dx.doi.org/10.1016/
j.agee.2014.01.024
Smit, B., Park, A.-H. A., & Gadikota, G. (2014). The Grand Challenges in Carbon Capture,
Utilization, and Storage. Frontiers in Energy Research, 2(55), 1-3. doi:10.3389/
fenrg.2014.00055
Smith, A., & Blaustein-Rejto, D. (2020). The Limits of Soil Carbon Sequestration. Retrieved from
https://thebreakthrough.org/issues/food/carbon-farming
Smith, A., & Rejto, D. (2020). Viewpoint: Regenerative agriculture—An oversold sustainability
solution to climate change? Genetic Literacy Project. Retrieved from https://
geneticliteracyproject.org/2020/03/30/viewpoint-regenerative-agriculture-an-oversold-
solution-to-climate-change/
Smith, B. (2020). Microsoft will be carbon negative by 2030 [Press release]. Retrieved from
https://blogs.microsoft.com/blog/2020/01/16/microsoft-will-be-carbon-negative-by-2030/
Smith, B. (2021). One year later: The path to carbon negative – a progress report on our climate
‘moonshot’. Retrieved from https://blogs.microsoft.com/blog/2021/01/28/one-year-later-
the-path-to-carbon-negative-a-progress-report-on-our-climate-moonshot/
Smith, C. R., et al. (2013). Molecular Characterization of Inhibiting Biochar Water-Extractable
Substances using Electrospray Ionization Fourier Transform Ion Cyclotron Resonance
Mass Spectrometry. Environmental Science and Technology, 47(23), 13294-13302.
Retrieved from http://pubs.acs.org/doi/abs/10.1021/es4034777
Smith, J. L., Collins, H. P., & Bailey, V. L. (2010). The effect of young biochar on soil respiration.
Soil Biology and Biochemistry, 42, 2345-2347. doi:10.1016/j.soilbio.2010.09.013
Smith, J. U., Fischer, A., Hallett, P. D., Homans, H. Y., Smith, P., Abdul-Salam, Y., . . . Phimister,
E. (2015). Sustainable use of organic resources for bioenergy, food and water provision
in rural Sub-Saharan Africa. Renewable and Sustainable Energy Reviews, 50, 903 - 917.
doi:10.1016/j.rser.2015.04.071
Smith, J. W., Dorning, M., Shoemaker, D. A., Méley, A., Dupey, L., & Meentemeyer, R. K. (2017).
Payments for carbon sequestration to alleviate development pressure in a rapidly
urbanizing region. Forest Science, 63(3), 270-282. doi:10.5849/FS-2016-084R1
Smith, K. L., Milnes, A. R., & Eggleton, R. A. (1987). Weathering of Basalt: Formation of
Iddingsite. Clays and Clay Mineral, 35(6), 418-428. Retrieved from http://www.clays.org/
journal/archive/volume%2035/35-6-418.pdf
Smith, L., & Roberts, R. (2018). Our Carbon Future: Reversing global warming while delivering
shared prosperity. Retrieved from http://carbonproductivity.com/wp-content/uploads/Our-
Carbon-Future-White-Paper.pdf
Smith, L. G., & Lampkin, N. H. (2019). 19 - Greener farming: managing carbon and nitrogen
cycles to reduce greenhouse gas emissions from agriculture. In T. M. Letcher (Ed.),
Managing Global Warming (pp. 553-577): Academic Press.
Smith, M. (2017). Big oil invests in technologies to sequester CO2, increase engine efficiency.
JWN.
Smith, M. (2017). Oil majors aim to commercialize carbon storage, starting offshore Norway.
JWN. Retrieved from http://www.jwnenergy.com/article/2017/10/oil-majors-aim-
commercialize-carbon-storage-starting-offshore-norway/
Smith, P., et al. (2012). Towards an integrated global framework to assess the impacts of land
use and management change on soil carbon: current capability and future vision. Global
Change Biology, 18(7), 2089-2101. doi:doi:10.1111/j.1365-2486.2012.02689.x
Smith, P. (2016). Soil carbon sequestration and biochar as negative emission technologies.
Global Change Biology, 22(3), 1315-1324. doi:10.1111/gcb.13178
Smith, P., et al. (2019). Impacts of Land-Based Greenhouse Gas Removal Options on
Ecosystem Services and the United Nations Sustainable Development Goals. Annual
Review of Environment and Resources, 44(1), 255-286. doi:10.1146/annurev-
environ-101718-033129
Smith, P., et al. (2019). Land-Management Options for Greenhouse Gas Removal and Their
Impacts on Ecosystem Services and the Sustainable Development Goals. Annual
Review of Environment and Resources, 44(1), 255-286. doi:10.1146/annurev-
environ-101718-033129
Smith, P., Andrén, O., Karlsson, T., Perälä, P., Regina, K., Rounsevell, M., & Van Wesemael, B.
(2005). Carbon sequestration potential in European croplands has been overestimated.
11(12), 2153-2163. doi:doi:10.1111/j.1365-2486.2005.01052.x
Smith, P., & Canadell, P. (2015). Removing CO2 from the atmosphere won’t save us: we have to
cut emissions now. The Conversation. Retrieved from https://theconversation.com/
removing-co2-from-the-atmosphere-wont-save-us-we-have-to-cut-emissions-now-51684
Smith, P., Davis, S. J., Creutzig, F., Fuss, S., Minx, J., Gabrielle, B., . . . Cho, Y. (2016).
Biophysical and economic limits to negative CO
2
emissions. Nature Climate Change, 6,
42-50. doi:10.1038/nclimate2870
Smith, P., Goulding, K. W., Smith, K. A., Powlson, D. S., Smith, J. U., Falloon, P., & Coleman, K.
(2001). Enhancing the carbon sink in European agricultural soils: including trace gas
fluxes in estimates of carbon mitigation potential. Nutrient Cycling in Agroecosystems,
60(1), 237-252. doi:10.1023/a:1012617517839
Smith, P., Haberl, H., Popp, A., Erb, K.-h., Lauk, C., Harper, R., . . . Rose, S. (2013). How much
land-based greenhouse gas mitigation can be achieved without compromising food
security and environmental goals? Global Change Biology, 19(8), 2285-2302.
doi:10.1111/gcb.12160
Smith, P., Haszeldine, R. S., & Smith, S. M. (2016). Preliminary assessment of the potential for,
and limitations to, terrestrial negative emission technologies in the UK. Environmental
Science-Processes & Impacts, 18(11), 1400-1405. doi:10.1039/c6em00386a
Smith, P., Martino, D., Cai, Z., Gwary, D., Janzen, H., Kumar, P., . . . Smith, J. (2008).
Greenhouse gas mitigation in agriculture. Philosophical Transactions of the Royal
Society B: Biological Sciences, 363(1492), 789-813. doi:10.1098/rstb.2007.2184
Smith, P., & Olesen, J. E. (2010). Synergies between the mitigation of, and adaptation to,
climate change in agriculture. The Journal of Agricultural Science, 148(5), 543-552.
doi:10.1017/S0021859610000341
Smith, P., Soussana, J.-F., Angers, D., Schipper, L., Chenu, C., Rasse, D. P., . . . Klumpp, K.
(2020). How to measure, report and verify soil carbon change to realize the potential of
soil carbon sequestration for atmospheric greenhouse gas removal. Global Change
Biology, 26(1), 219-241. doi:10.1111/gcb.14815
Smith, R. G., Smith, I. J., & Smith, B. D. (2018). A novel strategy for sequestering atmospheric
CO2: The use of sealed microalgal cultures located in the open-oceans. Renewable and
Sustainable Energy Reviews, 83, 85-89. doi:https://doi.org/10.1016/j.rser.2017.10.001
Smith, S., & Kruger, T. (2020). Net zero emissions targets are everywhere – we need to sort the
genuine from the greenwash. The Conversation. Retrieved from https://
theconversation.com/amp/net-zero-emissions-targets-are-everywhere-we-need-to-sort-
the-genuine-from-the-greenwash-150127
Smith, S. L., Thelen, K. D., & MacDonald, S. J. (2013). Yield and quality analyses of bioenergy
crops grown on a regulatory brownfield. Biomass and Bioenergy, 49, 123-130.
doi:https://doi.org/10.1016/j.biombioe.2012.12.017
Smith, S. M. (2021). A case for transparent net-zero carbon targets. Communications Earth &
Environment, 2(1), 24. doi:10.1038/s43247-021-00095-w
Smith, S. V. (1981). Marine macrophytes as a global carbon sink. Science, 211, 838-840.
Retrieved from https://www.ncbi.nlm.nih.gov/pubmed/17740399
Smith, W. K., Zhao, M., & Running, S. W. (2012). Global Bioenergy Capacity as Constrained by
Observed Biospheric Productivity Rates. BioScience, 62(10), 911-922. doi:10.1525/
bio.2012.62.10.11
Smolker, R., & Ernsting, A. (2012). BECCS (Bioenergy with Carbon Capture and Storage):
Climate saviour or dangerous hype? Retrieved from http://www.biofuelwatch.org.uk/files/
BECCS-report.pdf
Smyth, C., Kurz, W. A., Rampley, G., Lemprière, T. C., & Schwab, O. (2017). Climate change
mitigation potential of local use of harvest residues for bioenergy in Canada. GCB
Bioenergy, 9(4), 817-832. doi:10.1111/gcbb.12387
Smytheman, T., Peter, A., Nishimura, A., & Kwong, C. W. (2015). Carbon dioxide reforming of
biomass tar using recycled material as catalyst supports. Paper presented at the Asia
Pacific Confederation of Chemical Engineering Congress. http://search.informit.com.au/
documentSummary;dn=732149469598522;res=IELENG
Snæbjörnsdóttir, S. Ó., & Gislason, S. R. (2016). CO2 Storage Potential of Basaltic Rocks
Offshore Iceland. Energy Procedia, 86, 371-380. doi:https://doi.org/10.1016/
j.egypro.2016.01.038
Snæbjörnsdóttir, S. Ó., Gislason, S. R., Galeczka, I. M., & Oelkers, E. H. (2018). Reaction path
modelling of in-situ mineralisation of CO2 at the CarbFix site at Hellisheidi, SW-Iceland.
Geochimica Et Cosmochimica Acta, 220, 348-366. doi:https://doi.org/10.1016/
j.gca.2017.09.053
Snæbjörnsdóttir, S. Ó., Oelkers, E. H., Mesfin, K., Aradóttir, E. S., Dideriksen, K., Gunnarsson,
I., . . . Gislason, S. R. (2017). The chemistry and saturation states of subsurface fluids
during the in situ mineralisation of CO2 and H2S at the CarbFix site in SW-Iceland.
International Journal of Greenhouse Gas Control, 58, 87-102. doi:https://doi.org/
10.1016/j.ijggc.2017.01.007
Snæbjörnsdóttir, S. Ó., Sigfússon, B., Marieni, C., Goldberg, D., Gislason, S. R., & Oelkers, E.
H. (2020). Carbon dioxide storage through mineral carbonation. Nature Reviews Earth &
Environment. doi:10.1038/s43017-019-0011-8
Snæbjörnsdóttir, S. Ó., Wiese, F., Fridriksson, T., Ármansson, H., Einarsson, G. M., & Gislason,
S. R. (2014). CO2 storage potential of basaltic rocks in Iceland and the oceanic ridges.
Energy Procedia, 63, 4585-4600. doi:https://doi.org/10.1016/j.egypro.2014.11.491
Sneath, H., Wingate, J., Hutchings, T., & De Leij, F. (2009). Remediation of metal, arsenic and
phenanthrene contaminated soil using charcoal and iron filings. Geochimica Et
Cosmochimica Acta, 73, A1243-A1243.
Sneath, H. E., Hutchings, T. R., & .de Leij, F. A. A. M. (2013). Assessment of biochar and iron
filing amendments for the remediation of a metal, arsenic and phenanthrene co-
contaminated spoil. Environmental Pollution, 178, 361–366. Retrieved from http://
www.sciencedirect.com/science/article/pii/S0269749113001267
Sneath, S. (2017). Here's how engineers are trying to hack climate change. New Orleans
Times-Picayune. Retrieved from http://www.nola.com/environment/index.ssf/2017/03/
can_geo-engineering_save_the_p.html
Sneed, A. (2020). Could Our Energy Come from Giant Seaweed Farms in the Ocean? Scientific
American. Retrieved from https://www.scientificamerican.com/article/could-our-energy-
come-from-giant-seaweed-farms-in-the-ocean/?
utm_source=newsletter&utm_medium=email&utm_campaign=earth&utm_content=link&
utm_term=2020-03-18_top-
stories&spMailingID=64329550&spUserID=NTY1OTMzMTQ5OAS2&spJobID=1842236
072&spReportId=MTg0MjIzNjA3MgS2
Snippe, J., & Tucker, O. (2014). CO2 Fate Comparison for Depleted Gas Field and Dipping
Saline Aquifer. Energy Procedia, 63, 5586-5601. doi:https://doi.org/10.1016/
j.egypro.2014.11.592
Snowdon, R. (2021). Drax to double biomass production with £436m deal to slash carbon
emissions. Yorkshire Post. Retrieved from https://www.yorkshirepost.co.uk/business/
drax-double-biomass-production-ps436m-deal-slash-carbon-emissions-3127244
Snyder, B. (2019). NETs Offering New Opportunities for Negative Emissions. Sustainable
Brands. Retrieved from https://sustainablebrands.com/read/cleantech/nets-offering-new-
opportunities-for-negative-emissions
Snyder, B. F. (2019). Beyond the social cost of carbon: Negative emission technologies as a
means for biophysically setting the price of carbon. Ambio. doi:10.1007/
s13280-019-01301-y
Snyder, B. F. (2020). Beyond the social cost of carbon: Negative emission technologies as a
means for biophysically setting the price of carbon. Ambio, 49(9), 1567-1580.
doi:10.1007/s13280-019-01301-y
Snyder, C. S., Bruulsema, T. W., Jensen, T. L., & Fixen, P. E. (2009). Review of greenhouse gas
emissions from crop production systems and fertilizer management effects. Agriculture,
Ecosystems & Environment, 133(3–4), 247-266. doi:http://dx.doi.org/10.1016/
j.agee.2009.04.021
Sobek, A., Stamm, N., & Bucheli, T. D. (2014). Sorption of Phenyl Urea Herbicides to Black
Carbon. Environmental Science & Technology, 43(21), 8147-8152. Retrieved from http://
pubs.acs.org/doi/pdf/10.1021/es901737f
Society, A. P. (2011). Direct Air Capture of CO2 with Chemicals. Retrieved from https://
www.aps.org/policy/reports/assessments/upload/dac2011.pdf
Society, M. C., & Britain, R. (2021). Blue carbon Ocean-based solutions to fight the climate
crisis. Retrieved from
Society, T. R. (2018). Greenhouse Gas Removal. Retrieved from https://royalsociety.org/~/
media/policy/projects/greenhouse-gas-removal/royal-society-greenhouse-gas-removal-
report-2018.pdf
Söderberg, C. (2013). Effects of biochar amendment in soils from Kisumu, Kenya. (Biology).
Swedish University of Agricultural Sciences, Uppsala. Retrieved from http://
stud.epsilon.slu.se/5218/1/soderberg_c_130124.pdf
Söderberg, C., & Eckerberg, K. (2013). Rising policy conflicts in Europe over bioenergy and
forestry. Forest Policy and Economics, 33, 112-119. doi:http://dx.doi.org/10.1016/
j.forpol.2012.09.015
Sohaimi, K. S. A., & Ngadi, N. (2016). Removal of Oil Using Activated Carbon from Textile
Sludge Biochars. Applied Mechanics and Materials, 818, 237 - 241. doi:10.4028/
www.scientific.net/AMM.818.237
Sohaimi, K. S. A., Ngadi, N., & Yaccob, N. A. N. (2014). SYNTHESIS AND
CHARACTERIZATION OF BIOCHARS FROM TEXTILE SLUDGE PRECURSORS. In.
Sohi, S., et al. (2009). Biochar, climate change and soil: a review to guide future research.
Retrieved from https://publications.csiro.au/publications/publication/
PIprocite:2ae8f78c-4b7e-4dfa-adbb-22d4b8385adb
Sohi, S. (2013). Pyrolysis bioenergy with biochar production – greater carbon abatement and
benefits to soil. GCB Bioenergy, 5(2), i-iii. Retrieved from http://onlinelibrary.wiley.com/
doi/10.1111/gcbb.12057/full
Sohi, S., Gaunt, J., & Atwood, J. (2013). Biochar in growing media: A sustainability and
feasibility assessment: Defra.
Sohi, S., Lopez-Capel, E., Krull, E., & Bol, R. (2009). Biochar, climate change and soil: A review
to guide future research (CSIRO Land and Water Science Report series ISSN:
1834-6618). Retrieved from http://s3.amazonaws.com/academia.edu.documents/
46053906/Biochar_Climate_Change_and_Soil_A_Review20160529-723-l3ub64.pdf?
AWSAccessKeyId=AKIAIWOWYYGZ2Y53UL3A&Expires=1485140883&Signature=RZ6
csTq09QSkWq%2F8Nbc2QyvJn4U%3D&response-content-
disposition=inline%3B%20filename%3DBiochar_climate_change_and_soil_A_review.pdf
Sohi, S. P. (2012). Carbon Storage with Benefits. Science, 338(6110), 1034-1035. doi:10.1126/
science.1225987
Sohi, S. P. (2013). Pyrolysis bioenergy with biochar production-greater carbon abatement and
benefits to soil. GCB Bioenergy, 5(2), i-iii. doi:10.1111/gcbb.12057
Sohi, S. P., Krull, E., Lopez-Capel, E., & Bol, R. (2010). Chapter 2 - A Review of Biochar and Its
Use and Function in Soil. In Advances in Agronomy (Vol. 105, pp. 47-82): Academic
Press.
Sohi, S. P., Krull, E., Lopez-Capel, E., & Bol, R. (2010). A review of biochar and its use and
funnction in soil. Advances in Agronomy, 105, 47-82. Retrieved from http://
www.sciencedirect.com/science/article/pii/S0065211310050029
Sohngen, B., & Mendelsohn, R. (2003). An Optimal Control Model of Forest Carbon
Sequestration. American Journal of Agricultural Economics, 85(2), 448. Retrieved from
https://academic.oup.com/ajae/article/85/2/448/122256/An-Optimal-Control-Model-of-
Forest-Carbon
Sohngen, B., & Sedjo, R. (2006). Carbon Sequestration in Global Forests Under Different
Carbon Price Regimes. The Energy Journal, 27, 109-126. Retrieved from http://
www.jstor.org/stable/23297078?seq=1#page_scan_tab_contents
Soimakallio, S. (2014). Toward a More Comprehensive Greenhouse Gas Emissions
Assessment of Biofuels: The Case of Forest-Based Fischer-Tropsch Diesel Production
in Finland. Environmental Science & Technology, 48(5), 3031-3038. doi:10.1021/
es405792j
Soimakallio, S., Kalliokoski, T., Lehtonen, A., & Salminen, O. (2021). On the trade-offs and
synergies between forest carbon sequestration and substitution. Mitigation and
Adaptation Strategies for Global Change, 26(1), 4. doi:10.1007/s11027-021-09942-9
Soimakallio, S., Saikku, L., Valsta, L., & Pingoud, K. (2016). Climate Change Mitigation
Challenge for Wood Utilization—The Case of Finland. Environmental Science &
Technology, 50(10), 5127-5134. doi:10.1021/acs.est.6b00122
Soinne, H., et al. . (2014). Effect of biochar on phosphorus sorption and clay soil aggregate
stability. Geoderma, 219–220, 162-167. Retrieved from http://www.sciencedirect.com/
science/article/pii/S0016706113004503
Sokchea, H., Borin, K., & Preston, T. (2016). Carry-over effects of biochar on yield of Mustard
Green vegetable (Brassica juncea) and on soil fertility. Livestock Research for Rural
Development, 27(9). Retrieved from http://www.lrrd.org/lrrd27/9/sock27184.html
Sokchea, H., & Preston, T. (2011). Growth of maize in acid soil amended with biochar, derived
from gasifier reactor and gasifier stove, with or without organic fertilizer (biodigester
effluent). Livestock Research for Rural Development, 23(4), Artilce 69. Retrieved from
http://www.lrrd.org/lrrd23/4/sokc23069.htm
Sokolov, S., & Rintoul, S. R. (2007). On the relationship between fronts of the Antarctic
Circumpolar Current and surface chlorophyll concentrations in the Southern Ocean.
Journal of Geophysical Research: Oceans, 112(C7), n/a-n/a.
doi:10.1029/2006JC004072
Solaiman, Z. M., & Anawar, H. M. (2015). Application of Biochars for Soil Constraints:
Challenges and Solutions. Pedosphere, 25(5), 631 - 638. doi:10.1016/
s1002-0160(15)30044-8
Solaiman, Z. M., Blackwell, P., Abbott, L. K., & Storer, P. (2010). Direct and residual effect of
biochar application on mycorrhizal root colonisation, growth and nutrition of wheat.
Australian Journal of Soil Research, 48(6), 546-554. Retrieved from https://
www.researchgate.net/publication/
201910205_Direct_and_residual_effect_of_biochar_application_on_mycorrhizal_root_co
lonisation_growth_and_nutrition_of_wheat
Solano Rodriguez, B., Drummond, P., & Ekins, P. (2017). Decarbonizing the EU energy system
by 2050: an important role for BECCS. Climate Policy, 17(sup1), S93-S110.
doi:10.1080/14693062.2016.1242058
Solomon, D., et al. (2005). Carbon K-Edge NEXAFS and FTIR-ATR Spectroscopic Investigation
of Organic Carbon Speciation in Soils. Soil Science Society of America Journal, 69(1),
107-119. Retrieved from https://dl.sciencesocieties.org/publications/sssaj/abstracts/
69/1/0107
Solomon, D., et al. . (2007). Long-term Impacts of Anthropogenic Perturbations on the
Dynamics and Molecular Speciation of Organic Carbon in Tropical Forest and
Subtropical Grassland Ecosystems. Global Change Biology, 13(2), 511-530. Retrieved
from http://onlinelibrary.wiley.com/doi/10.1111/j.1365-2486.2006.01304.x/abstract
Solomon, D., et al. . (2007). Molecular Signature and Sources of Biochemical Recalcitrance of
Organic C in Amazonian Dark Earths. Geochimica Et Cosmochimica Acta, 71(9),
2285-2298. Retrieved from http://www.sciencedirect.com/science/article/pii/
S0016703707001007
Solomon, D., Lehmann, J., Fraser, J. A., Leach, M., Amanor, K., Frausin, V., . . . Fairhead, J.
(2016). Indigenous African soil enrichment as a climate-smart sustainable agriculture
alternative. Frontiers in Ecology and the Environment, 14(2), 71-76. doi:10.1002/
fee.1226
Solomon, D., Lehmann, J., & Zech, W. (2000). Land Use Effects on Soil Organic Matter
Properties of Chromic Luvisols in the Semiarid Tropics: Carbon, Nitrogen, Lignin and
Carbohydrates. Agriculture, Ecosystems and Environment, 78, 203-213. Retrieved from
https://pdfs.semanticscholar.org/abad/5da24db8c999333c4e65ed1d654bb6a812e9.pdf
Solomon, S., & Flach, T. (2010). Carbon dioxide (CO2) injection processes and technology A2 -
Maroto-Valer, M. Mercedes. In Developments and Innovation in Carbon Dioxide (CO2)
Capture and Storage Technology (Vol. 1, pp. 435-466): Woodhead Publishing.
Soltanian, M. R., & Dai, Z. (2017). Geologic CO2 sequestration: progress and challenges.
Geomechanics and Geophysics for Geo-Energy and Geo-Resources, 3(3), 221-223.
doi:10.1007/s40948-017-0066-2
Soltoff, B. (2021). Want to get serious on net zero? Look to the startups. GreenBiz. Retrieved
from https://www.greenbiz.com/article/want-get-serious-net-zero-look-startups?
utm_source=newsletter&utm_medium=email&utm_campaign=greenbuzz&utm_content=
2021-08-09&mkt_tok=MjExLU5KWS0xNjUAAAF-
yftIoqTiOmcoQBsM5PJlqo9scLLoUuV675bVsLZDyW5BD9Z3DeeIX82RHOTOZvSk-
FChnLdzbrDNOKOhBxF9ZEluD0s8et6_Y1NnF6Dk_Dy_mhs
Somarriba, E., Cerda, R., Orozco, L., Cifuentes, M., Dávila, H., Espin, T., . . . Deheuvels, O.
(2013). Carbon stocks and cocoa yields in agroforestry systems of Central America.
Agriculture, Ecosystems & Environment, 173, 46-57. doi:https://doi.org/10.1016/
j.agee.2013.04.013
Sombroek, W., et al. (2003). Amazonian Dark Earths as Carbon Stores and Sinks. In J.
Lehmann, et al. (Ed.), Amazonian Dark Earths: Origin, Properties, Management (pp.
125-139).
Sombroek, W., Nachtergaele, F. O., & Hegel, A. (1993). Amounts, dynamics and sequestering of
carbon in tropical and subtropical soil. Ambio, 22, 417-426.
Someus, E. (2015). REFERTIL: reducing mineral fertilizers and chemicals use in agriculture by
recycling treated organic waste as compost and bio-char products. In.
Sommer, R., & Bossio, D. (2014). Dynamics and climate change mitigation potential of soil
organic carbon sequestration. Journal of Environmental Management, 144, 83-87.
doi:https://doi.org/10.1016/j.jenvman.2014.05.017
Sondak, C. F. A., Ang, P. O., Beardall, J., Bellgrove, A., Boo, S. M., Gerung, G. S., . . . Chung, I.
K. (2017). Carbon dioxide mitigation potential of seaweed aquaculture beds (SABs).
Journal of Applied Phycology, 29(5), 2363-2373. doi:10.1007/s10811-016-1022-1
Sondak, C. F. A., & Chung, I. K. (2015). Potential blue carbon from coastal ecosystems in the
Republic of Korea. Ocean Science Journal, 50(1), 1-8. doi:10.1007/s12601-015-0001-9
Song, J., Liu, J., Zhao, W., Chen, Y., Xiao, H., Shi, X., . . . Chen, X. (2018). Quaternized
Chitosan/PVA Aerogels for Reversible CO2 Capture from Ambient Air. Industrial &
Engineering Chemistry Research. doi:10.1021/acs.iecr.8b00064
Song, J. Z., Peng, P. A., & Huang, W. L. (2002). Black carbon and kerogen in soils and
sediments. 1. quantification and characterization. Environmental Science & Technology,
36(18), 3960-3967. Retrieved from http://pubs.acs.org/doi/abs/10.1021/es025502m
Song, L. (2019). An Even More Inconvenient Truth: Why Carbon Credits For Forest
Preservation May Be Worse Than Nothing. Retrieved from https://
features.propublica.org/brazil-carbon-offsets/inconvenient-truth-carbon-credits-dont-
work-deforestation-redd-acre-cambodia/
Song, L., & Temple, J. (2021). The Climate Solution Actually Adding Millions of Tons of CO2 Into
the Atmosphere. Retrieved from https://www.propublica.org/article/the-climate-solution-
actually-adding-millions-of-tons-of-co2-into-the-atmosphere
Song, M., Pham, H. D., Seon, J., & Woo, H. C. (2015). Overview of anaerobic digestion process
for biofuels production from marine macroalgae: A developmental perspective on brown
algae. Korean Journal of Chemical Engineering, 32(4), 567-575. doi:10.1007/
s11814-015-0039-5
Song, W., & Guo, M. (2011). Quality variations of poultry litter biochar generated at different
pyrolysis temperatures. Journal of Analytical and Applied Pyrolysis, 94, 138-145.
Retrieved from http://dx.doi.org/10.1016/j.jaap.2011.11.018
Song, W., Ogunbanwo, F., Steinsbø, M., Fernø, M. A., & Kovscek, A. R. (2018). Mechanisms of
multiphase reactive flow using biogenically calcite-functionalized micromodels. Lab on a
Chip, 18(24), 3881-3891. doi:10.1039/C8LC00793D
Song, X., Pan, G., zhang, C., Zhang, L., & Wang, H. (2016). Effects of biochar application on
fluxes of three biogenic greenhouse gases: a meta-analysis. Ecosystem Health and
Sustainability, 2(2), n/a - n/a. doi:10.1002/ehs2.1202
Song, X. D. e. a. (2014). Application of biochar from sewage sludge to plant cultivation:
Influence of pyrolysis temperature and biochar-to-soil ratio on yield and heavy metal
accumulation. Chemosphere, 109, 213-220. Retrieved from https://
www.ncbi.nlm.nih.gov/pubmed/24582602
Song, Y., et al. . (2012). Bioavailability assessment of hexachlorobenzene in soil as affected by
wheat straw biochar. Journal of Hazardous Materials, 217-218, 391-397. Retrieved from
https://www.ncbi.nlm.nih.gov/pubmed/22483599
Song, Y., et al. (2013). Biochar addition affected the dynamics of ammonia oxidizers and
nitrification in microcosms of a coastal alkaline soil. Biology and Fertility of Soils, 50(2),
321-332. Retrieved from https://link.springer.com/article/10.1007/s00374-013-0857-8
Song, Y., et al. . (2013). Immobilization of Chlorobenzenes in Soil Using Wheat Straw Biochar.
Journal of Agricultural and Food Chemistry, 61(18), 4210-4217. Retrieved from http://
pubs.acs.org/doi/abs/10.1021/jf400412p
Song, Z., et al. (2014). Synthesis and characterization of a novel MnOx-loaded biochar and its
adsorption properties for Cu2+ in aqueous solution. Chemical Engineering Journal, 242,
36-42. Retrieved from http://www.sciencedirect.com/science/article/pii/
S1385894713016422
Soni, N., Leon, R. G., Erickson, J. E., Ferrell, J. A., & Silveira, M. L. (2015). Biochar Decreases
Atrazine and Pendimethalin Preemergence Herbicidal Activity. Weed Technology, 29(3),
359-366. doi:10.1614/wt-d-14-00142.1
Soni, N., Leon, R. G., Erickson, J. E., Ferrell, J. A., Silveira, M. L., & Giurcanu, M. C. (2014).
Vinasse and Biochar Effects on Germination and Growth of Palmer Amaranth
(Amaranthus palmeri), Sicklepod (Senna obtusifolia), and Southern Crabgrass (Digitaria
ciliaris). Weed Technology, 28(4), 694 - 702. doi:10.1614/wt-d-14-00044.1
Sonntag, S., Pongrantz, J., Reick, C. H., & Schmidt, H. (2016). Reforestation in a high-CO2
world—Higher mitigation potential than expected, lower adaptation potential than hoped
for. Geophysical Research Letters, 43(12), 6546-6553. Retrieved from http://
onlinelibrary.wiley.com/doi/10.1002/2016GL068824/epdf
Sonoki, T., et al. (2012). Influence of biochar addition on methane metabolism during
thermophilic phase of composting. Journal of Basic Microbiology, 53(7), 617-621.
doi:10.1002/jobm.201200096
Sopeña, F., et al. (2012). Assessing the chemical and biological accessibility of the herbicide
isoproturon in soil amended with biochar. Chemosphere, 88(1), 77-83. Retrieved from
https://www.ncbi.nlm.nih.gov/pubmed/22464863
Sopeña, F., & Bending, G. D. (2013). Impacts of biochar on bioavailability of the fungicide
azoxystrobin: A comparison of the effect on biodegradation rate and toxicity to the fungal
community. Chemosphere, 91(11), 1525-1533. Retrieved from http://
www.sciencedirect.com/science/article/pii/S0045653512015329
Sorda, G., Banse, M., & Kemfert, C. (2010). An overview of biofuel policies across the world.
Energy Policy, 38(11), 6977-6988. doi:https://doi.org/10.1016/j.enpol.2010.06.066
Soria, A. J., McDonald, A. G., & Shook, S. R. (2008). Wood solubilization and depolymerization
using supercritical methanol. part 1: Process optimization and analysis of methanol
insoluble components (bio-char). Holzforschung, 62(4), 402-408. Retrieved from https://
www.degruyter.com/downloadpdf/j/hfsg.2008.62.issue-4/hf.2008.067/hf.2008.067.pdf
Soto-Navarro, C., et al. (2020). Mapping co-benefits for carbon storage and biodiversity to
inform conservation policy and action. Philosophical Transactions of the Royal Society B:
Biological Sciences, 375(1794), 20190128. doi:doi:10.1098/rstb.2019.0128
Soudek, P., Petrová, Š., & Vaněk, T. (2014). Increase of Metal Accumulation in Plants Grown on
Biochar–Biochar Ecotoxicity for Germinating Seeds. International Journal of
Environmental Science and Development, 6(7), 508-511. doi:10.7763/ijesd.2015.v6.646
Soudek, P., Rodriguez Valseca, I. M., Petrova, S., & Vanek, T. (2014). The accumulation of
heavy metals by Sorghum plants cultivated in biochar present. In Z. Hu (Ed.),
Legislation, Technology and Practice of Mine Land Reclamation (pp. 183-187).
Sousa, A. A. T. C., & Figueiredo, C. C. (2015). Sewage sludge biochar: effects on soil fertility
and growth of radish. Biological Agriculture & Horticulture, 32(2), 1 - 12.
doi:10.1080/01448765.2015.1093545
Soussana, J.-F., et al. (2017). Matching policy and science: Rationale for the ‘4 per 1000 - soils
for food security and climate’ initiative. Soil Tillage Research, 188, 3-15. Retrieved from
https://cgspace.cgiar.org/handle/10568/93146
Southavong, S., & Preston, T. R. (2011). Growth of rice in acid soils amended with biochar from
gasifier or TLUD stove, derived from rice husks, with or without biodigester effluent.
Livestock Research for Rural Development, 23(2). Retrieved from http://www.lrrd.org/
lrrd23/2/siso23032.htm
Southavong, S., Preston, T. R., & Man, N. V. (2012). Effect of biochar and charcoal with
staggered application of biodigester effluent on growth of water spinach (Ipomoea
aquatica). Livestock Research for Rural Development, 24(2). Retrieved from http://
www.lrrd.org/lrrd24/2/siso24039.htm
Souza, G. M., et al. (2015). Bioenergy & Sustainability: Bridging the Gaps. Retrieved from http://
bioenfapesp.org/scopebioenergy/images/chapters/bioen-scope_introducao.pdf
Souza, G. M., Ballester, M. V. R., de Brito Cruz, C. H., Chum, H., Dale, B., Dale, V. H., . . . Van
der Wielen, L. (2017). The role of bioenergy in a climate-changing world. Environmental
Development, 23, 57-64. doi:https://doi.org/10.1016/j.envdev.2017.02.008
Sovacool, B. K. (2021). Reckless or righteous? Reviewing the sociotechnical benefits and risks
of climate change geoengineering. Energy Strategy Reviews, 35, 100656. doi:https://
doi.org/10.1016/j.esr.2021.100656
Sovu, T., M., Savadago, P., & Odén, P. C. (2012). Facilitation of forest landscape restoration on
abandoned swidden fallows in Laos using mixed-species planting and biochar
application. Silva Fennica, 46, 39–51. Retrieved from http://www.metla.fi/silvafennica/full/
sf46/sf461039.pdf
Spaeth, A. (2013). Biochar Policy Analysis. OPAL- OSU Policy Analysis Laboratory. Retrieved
from http://oregonstate.edu/opal/sites/default/files/biochar_brief.pdf
Sparkes, J., & Stoutjesdijk, P. (2011). Biochar: implications for agricultural productivity.
Retrieved from https://www.researchgate.net/profile/Jessica_Sparkes2/publication/
237079673_B_iochar_implications_for_agricultural_productivity/links/
5441e04e0cf2e6f0c0f667bf/B-iochar-implications-for-agricultural-productivity.pdf
Sparks, D. (2021). Carbon sequestration. Retrieved from https://www.aginfo.net/report/48491/
Line-on-Agriculture/Carbon-sequestration
Sparrevik, M., et al. (2012). Life cycle assessment to evaluate the environmental impact of
biochar implementation in conservation agriculture in Zambia. Environmental Science &
Technology, 47(3), 1206-1215. Retrieved from http://pubs.acs.org/doi/abs/10.1021/
es302720k
Sparrevik, M., et al. . (2014). Emissions of gases and particles from charcoal/biochar production
in rural areas using medium-sized traditional and improved “retort” kilns. Biomass and
Bioenergy, 72, 65-73. doi:10.1016/j.biombioe.2014.11.016
Sparrevik, M., et al. . (2014). Environmental and socio-economic impacts of utilizing waste for
biochar in rural areas in Indonesia – a systems perspective. Environmental Science &
Technology, 48(9), 4664-4671. Retrieved from http://pubs.acs.org/doi/abs/10.1021/
es405190q
Spatari, S., Zhang, Y., & MacLean, H. L. (2005). Life Cycle Assessment of Switchgrass- and
Corn Stover-Derived Ethanol-Fueled Automobiles. Environmental Science & Technology,
39(24), 9750-9758. doi:10.1021/es048293+
Specter, M. (2012). The First Geo-Vigilante. The New Yorker, (October 18). Retrieved from
http://www.newyorker.com/news/news-desk/the-first-geo-vigilante
Spector, N. A., & Dodge, B. F. (1946). Removal of carbon dioxide from atmospheric air. Trans.
Am. Inst. Chem. Eng., 42(56), 827-848.
Spence, E., Cox, E., & Pidgeon, N. (2021). Exploring cross-national public support for the use of
enhanced weathering as a land-based carbon dioxide removal strategy. Climatic
Change, 165(1), 23. doi:10.1007/s10584-021-03050-y
Spohn, M. (2020). Increasing the organic carbon stocks in mineral soils sequesters large
amounts of phosphorus. Global Change Biology, 26(8), 4169-4177. doi:10.1111/
gcb.15154
Spokas, K. (2011). Impacts of biochar additions on soil microbial processes and nitrogen
cycling. Paper presented at the HUMICSCIENCE & TECHNOLOGY FOURTEEN March
9-11, 2011, Boston, MA. http://afrsweb.usda.gov/SP2UserFiles/person/41695/
Presentations/Spokas_March2011.pdf
Spokas, K. A. (2010). Review of the stability of biochar in soils: predictability of O:C molar ratios.
Carbon Management, 1, 289–303. Retrieved from http://www.future-science.com/doi/
pdfplus/10.4155/cmt.10.32
Spokas, K. A. (2013). Impact of biochar field aging on laboratory greenhouse gas production
potentials. GCB Bioenergy, 5(2), 165-176. doi:10.1111/gcbb.12005
Spokas, K. A., et al. , & . (2014). Manure and fertilizer effects on carbon balance and organic
and inorganic carbon losses for an irrigated corn field. NWISRL Publications, 987-1002.
Retrieved from http://eprints.nwisrl.ars.usda.gov/1547/
Spokas, K. A., Baker, J. M., & Reicosky, D. C. (2010). Ethylene: potential key for biochar
amendment impacts. Plant and Soil, 333, 443-452. doi:10.1007/s11104-010-0359-5.
Spokas, K. A., Cantrell, K. B., Novak, J. M., Archer, D. W., Ippolito, J. A., Collins, H. P., . . .
Nichols, K. A. (2012). Biochar: A synthesis of its agronomic impact beyond carbon
sequestration. Journal of Environmental Quality, 41(4), 973-989. doi:10.2134/
jeq2011.0069
Spokas, K. A., Koskinen, W. C., Baker, J. M., & Reicosky, D. C. (2009). Impacts of woodchip
biochar additions on greenhouse gas production and sorption/degradation of two
herbicides in a Minnesota soil. Chemosphere, 77(4), 574–581. Retrieved from http://
www.sciencedirect.com/science/article/pii/S0045653509007619
Spokas, K. A., & Reicosky, D. C. (2009). Impacts of Sixteen Different Biochars on Soil
Greenhouse Gas Production. Annals of Environmental Science, 3, 179-193. Retrieved
from https://pubag.nal.usda.gov/pubag/downloadPDF.xhtml?id=47667&content=PDF
Spreng, D., Marland, G., & Weinberg, A. M. (2007). CO
2
capture and storage: anotehr Faustian
Bargain? Energy Policy, 35, 850-854. Retrieved from http://citeseerx.ist.psu.edu/
viewdoc/download?doi=10.1.1.508.375&rep=rep1&type=pdf
Sreedhar, I., Nahar, T., Venugopal, A., & Srinivas, B. (2017). Carbon capture by absorption –
Path covered and ahead. Renewable and Sustainable Energy Reviews, 76, 1080-1107.
doi:https://doi.org/10.1016/j.rser.2017.03.109
Srinivasan, P., & Sarmah, A. K. (2014). Characterisation of agricultural waste-derived biochars
and their sorption potential for sulfamethoxazole in pasture soil: A spectroscopic
investigation. Science of The Total Environment, 502, 471 - 480. doi:10.1016/
j.scitotenv.2014.09.048
Srinivasan, P., Sarmah, A. K., Smernik, R., Das, O., Farid, M., & Gao, W. (2015). A feasibility
study of agricultural and sewage biomass as biochar, bioenergy and biocomposite
feedstock: Production, characterization and potential applications. Science of The Total
Environment, 512-513, 495 - 505. doi:10.1016/j.scitotenv.2015.01.068
Srinivasarao, C., et al. (2013). Use of Biochar for Soil Health Enhancement and Greenhouse
Gas Mitigation in India:Potential and Constraints. Retrieved from Hyderabad: http://
www.nicra-icar.in/nicrarevised/images/publications/Biochor%20Bulletin.pdf
Srinvasagam, K., Selvan, R. K., Natarajan, M., & Karuppasamy, K. S. (2013). Biochar-boon to
soil health and crop production. African Journal of Agricultural Research, 8, 4726-4739.
Retrieved from http://www.academicjournals.org/aJaR/E-books/2013/3Oct/AJAR-
%203October%202013%20Issue.pdf#page=45
Stabinsky, D. (2021). "Nature-Based Solutions" and the Biodiversity and Climate Crises.
Retrieved from https://twn.my/title/end/pdf/end21.pdf
Staff, C. (2016). Explainer: 10 ways ‘negative emissions’ could slow climate change.
CarbonBrief. Retrieved from https://www.carbonbrief.org/explainer-10-ways-negative-
emissions-could-slow-climate-change
Staff, D. O. (2020). Amazon invests in green startups to support development of sustainable
technologies. Retrieved from https://blog.aboutamazon.com/sustainability/amazon-
invests-in-green-startups-to-support-development-of-sustainable-technologies?
utm_source=social&utm_medium=tw&utm_term=amznnews&utm_content=climate_pled
ge_fund&linkId=99838384
Staff, E. (2020). Pulling carbon from the sky is necessary, but not sufficient. Nature, 583(July 9).
Retrieved from https://www.nature.com/articles/d41586-020-02001-4
Staff, S. F. (2020). Shopify is First High-Volume Corporate Buyer of Carbon Credits. Successful
Farming. Retrieved from https://www.agriculture.com/news/crops/shopify-is-first-high-
volume-corporate-buyer-of-carbon-credits
Stainforth, D. (2021). ‘Polluter pays’ policy could speed up emission reductions and removal of
atmospheric CO2. Nature Retrieved from https://www.nature.com/articles/
d41586-021-02192-4
Stallard, R. F., & Edmond, J. M. (1983). Geochemistry of the Amazon: 2. The influence of
geology and weathering environment on the dissolved load. Journal of Geophysical
Research: Oceans, 88(C14), 9671-9688. doi:10.1029/JC088iC14p09671
Stampi-Bombelli, V., van der Spek, M., & Mazzotti, M. (2020). Analysis of direct capture of $$
{\hbox {CO}}_{2}$$CO2from ambient air via steam-assisted temperature–vacuum swing
adsorption. Adsorption, 26(7), 1183-1197. doi:10.1007/s10450-020-00249-w
Standish, R. J., & Hulvey, K. B. (2014). Co-benefits of planting species mixes in carbon projects.
Ecological Management & Restoration, 15(1), 26-29. Retrieved from https://
www.cabdirect.org/cabdirect/abstract/20143087975
Stangeland, A. (2007). A model for the CO2 capture potential. International Journal of
Greenhouse Gas Control, 1(4), 418-429. doi:http://dx.doi.org/10.1016/
S1750-5836(07)00087-4
Stanger, R., et al. (2013). Dynamic Elemental Thermal Analysis (DETA) – A characterisation
technique for the production of biochar and bio-oil from biomass resources. Fuel, 108,
656-667. Retrieved from http://www.sciencedirect.com/science/article/pii/
S0016236113001671
Stanger, R., Wall, T., Spörl, R., Paneru, M., Grathwohl, S., Weidmann, M., . . . Santos, S.
(2015). Oxyfuel combustion for CO2 capture in power plants. International Journal of
Greenhouse Gas Control, 40, 55-125. doi:https://doi.org/10.1016/j.ijggc.2015.06.010
Stankiewicz, K. (2021). Planting trees is not enough, says Logitech CEO, pledging major carbon
reduction effort. Retrieved from https://www.cnbc.com/2021/09/09/planting-trees-not-
enough-to-reduce-carbon-emissions-logitech-ceo.html
Stanley, P. L., Rowntree, J. E., Beede, D. K., DeLonge, M. S., & Hamm, M. W. (2018). Impacts
of soil carbon sequestration on life cycle greenhouse gas emissions in Midwestern USA
beef finishing systems. Agricultural Systems, 162, 249-258. doi:https://doi.org/10.1016/
j.agsy.2018.02.003
Stanmore, B. R., & Gilot, P. (2005). Review—calcination and carbonation of limestone during
thermal cycling for CO2 sequestration. Fuel Processing Technology, 86(16), 1707-1743.
doi:https://doi.org/10.1016/j.fuproc.2005.01.023
Stanton, C. Y., Mach, K. J., Turner, P. A., Lalonde, S. J., Sanchez, D. L., & Field, C. B. (2018).
Managing cropland and rangeland for climate mitigation: an expert elicitation on soil
carbon in California. Climatic Change, 147(3), 633-646. doi:10.1007/s10584-018-2142-1
Stanton, T. P., Law, C. S., & Watson, A. J. (1998). Physical evolution of the IronEx-I open ocean
tracer patch. Deep Sea Research Part II: Topical Studies in Oceanography, 45(6),
947-975. doi:https://doi.org/10.1016/S0967-0645(98)00018-6
Stars, I. (2021). Catalytic Capital for Ocean & Climate Impact. Retrieved from https://
www.impactstars.com/ocean-climate-catalytic-capital-august-2021-pdf?
ss_source=sscampaigns&ss_campaign_id=6127348aa895eb29f46b6c27&ss_email_id=
612ab7492a6849258c94bd97&ss_campaign_name=As+Requested%3A+Catalytic+Capi
tal+for+Ocean+
%2B+Climate+Impact+Report&ss_campaign_sent_date=2021-08-28T22%3A23%3A11Z
Stars, I. (2021). Foundations Catalyzing Regenerative Ag + Food Systems. Retrieved from
https://www.impactstars.com/funders-for-regenerative-agriculture
Stattman, S. L., & Mol, A. P. J. (2014). Social sustainability of Brazilian biodiesel: The role of
agricultural cooperatives. Geoforum, 54, 282-294. doi:https://doi.org/10.1016/
j.geoforum.2014.04.001
Stavi, I. (2013). Biochar use in forestry and tree-based agro-ecosystems for increasing climate
change mitigation and adaptation. International Journal of Sustainable Development &
World Ecology, 20(2), 166-181. Retrieved from http://www.tandfonline.com/doi/pdf/
10.1080/13504509.2013.773466?needAccess=true
Stavi, I., & Lal, R. (2012). Agroforestry and biochar to offset climate change: a review.
Biomedical and Life Sciences Agronomy for Sustainable Development, 33(1), 81-96.
doi:10.1007/s13593-012-0081-1
Stavia, I. (2012). The potential use of biochar in reclaiming degraded rangelands. Journal of
Environmental Planning and Management, 55(5), 657-665.
doi:10.1080/09640568.2011.620333
Stavrakas, V., Spyridaki, N.-A., & Flamos, A. (2018). Striving towards the Deployment of Bio-
Energy with Carbon Capture and Storage (BECCS): A Review of Research Priorities and
Assessment Needs. 10(7), 2206. Retrieved from http://www.mdpi.com/
2071-1050/10/7/2206
Stechel, E. B., & Miller, J. E. (2013). Re-energizing CO2 to fuels with the sun: Issues of
efficiency, scale, and economics. Journal of CO2 Utilization, 1, 28-36. doi:http://
dx.doi.org/10.1016/j.jcou.2013.03.008
Stechow, C. v. (2016). 2 °C and SDGs: united they stand, divided they fall? Environmental
Research Letters, 11(3), 034022. Retrieved from http://stacks.iop.org/1748-9326/11/i=3/
a=034022
Stein, R. S., & Wysocki, T., S. (2015). Curing Sick Soil through Chemistry. In T. Goreau, R.
Larson, & J. Campe (Eds.), Geotherapy: Innovative Methods of Soil Fertility Restoration,
Carbon Sequestration, and Reversing CO2 Increase (pp. 111-120).
Steinbeiss, S., Gleixner, G., & Antonietti, M. (2009). Effect of biochar amendment on soil carbon
balance and soil microbial activity. Soil Biology and Biochemistry, 41(6), 1301-1310.
doi:http://dx.doi.org/10.1016/j.soilbio.2009.03.016
Steinberg, P. A., Millero, F. J., & Zhu, X. (1998). Carbonate system response to iron enrichment.
Marine Chemistry, 62(1), 31-43. doi:https://doi.org/10.1016/S0304-4203(98)00031-0
Steiner, C., et al. (2004). Microbial response to charcoal amendments of highly weathered soils
and Amazonian Dark Earths in central Amazonia. In B. Glaser & W. I. Woods (Eds.),
Amazonian Dark Earths: Explorations in Space and Time. (pp. 195). Berlin: Springer-
Verlag.
Steiner, C., et al. (2007). Long term effects of manure, charcoal and mineral fertilization on crop
production and fertility on a highly weathered Central Amazonian upland soil. Plant and
Soil, 291(1), 275-290.
Steiner, C., et al. (2008). Charcoal and smoke extract stimulate the soil microbial community in
a highly weathered xanthic ferralsol. Pedobiologia, 51(5-6), 359-366. Retrieved from
http://www.sciencedirect.com/science/article/pii/S0031405607000790
Steiner, C., et al. (2008). Nitrogen Retention and Plant Uptake on a Highly Weathered Central
Amazonian Ferralsol Amended with Compost and Charcoal. Journal of Plant Nutrition
and Soil Science, 171, 893-899.
Steiner, C. (2010). Biochar prospects and challenges: summary of the recent US Biochar
Initiative Conference. Carbon Management, 1(1), 23 - 25. Retrieved from http://
www.future-science.com/doi/pdf/10.4155/cmt.10.3
Steiner, C., et al. (2010). Reducing Nitrogen Loss during Poultry Litter Composting Using
Biochar. Journal of Environmental Quality, 39(4), 1236-1242. doi:10.2134/jeq2009.0337
Steiner, C., et al. (2010). U.S. Focused Biochar Report: Assessment of Biochar's Benefits for the
United States of America. Retrieved from http://www.biochar-us.org/pdf%20files/
biochar_report_lowres.pdf
Steiner, C., et al. (2011). Biochar as bulking agent for poultry litter composting. Carbon
Management, Vol. 2, 227-230. doi:10.4155/cmt.11.15
Steiner, C. (2015). Considerations in Biochar Characterization. In M. Guo, Z. He, & M. Uchimiya
(Eds.), Agricultural and Environmental Applications of Biochar: Advances and Barriers
(pp. 87-102): Soil Science Society of America, Inc.
Steiner, C., Bayode, A. O., & Ralebitso-Senior, T. K. (2016). Chapter 2 - Feedstock and
Production Parameters: Effects on Biochar Properties and Microbial Communities. In
Biochar Application (pp. 41-54): Elsevier.
Steiner, C., & Harttung, T. (2014). Biochar as growing media additive and peat substitute. Solid
Earth Discussions, 5(2), 995-999. Retrieved from http://search.proquest.com/openview/
189c150bb08c9c278304537748161c44/1?pq-origsite=gscholar&cbl=2037675
Steiner, C., Rodrigues de Arruda, M., Teixeira, W. G., & Zech, W. (2007). Soil respiration curves
as soil fertility indicators in perennial central Amazonian plantations treated with
charcoal, and mineral or organic fertilisers. Tropical Science, 47, 218 - 230. Retrieved
from http://onlinelibrary.wiley.com/doi/10.1002/ts.216/abstract
Steiner, C., Teixeira, W. G., Lehmann, J., Nehls, T., Macedo, J. L. V., Blum, W. E. H., & Zech, W.
(2007). Long-Term Effects of Manure, Charcoal and Mineral Fertilization on Crop
Production and Fertility on a Highly Weathered Central Amazonian Upland Soil. Plant
and Soil, 291(1), 275-290. Retrieved from http://link.springer.com/article/10.1007/
s11104-007-9193-9
Steiner, N., Denman, K., McFarlane, N., & Solheim, L. (2006). Simulating the coupling between
atmosphere–ocean processes and the planktonic ecosystem during SERIES. Deep Sea
Research Part II: Topical Studies in Oceanography, 53(20–22), 2434-2454. doi:http://
dx.doi.org/10.1016/j.dsr2.2006.05.030
Stella, M., G., Sugumaran, P., Niveditha, S., Ramalakshmi, B., Ravichandran, P., & Seshadri, S.
(2016). Production, characterization and evaluation of biochar from pod (Pisum sativum),
leaf (Brassica oleracea) and peel (Citrus sinensis) wastes. International Journal of
Recycling of Organic Waste in Agriculture, 5(1), 43-53. doi:10.1007/s40093-016-0116-8
Stengl, S., Koch, C., Stadlbauer, E. A., Scheer, J., Weber, B., Strohal, U., & Fey, J. (2012).
BIOMASS-DERIVED CARBONACEOUS MATERIALS AS COMPONENTS IN WOOD
BRIQUETTES. Paper presented at the WORLD BIOENERGY 2012. http://
www.researchgate.net/profile/Sabrina_Eichenauer/publication/273762193_Biomass-
derived_carbonaceous_materials_as_components_in_wood-briquettes/links/
550af1490cf290bdc11153ac.pdf
Stenzel, F., Gerten, D., Werner, C., & Jägermeyr, J. (2019). Freshwater requirements of large-
scale bioenergy plantations for limiting global warming to 1.5 °C. Environmental
Research Letters, 14(8), 084001. doi:10.1088/1748-9326/ab2b4b
Stenzel, F., Greve, P., Lucht, W., Tramberend, S., Wada, Y., & Gerten, D. (2021). Irrigation of
biomass plantations may globally increase water stress more than climate change.
Nature Communications, 12(1), 1512. doi:10.1038/s41467-021-21640-3
Stepan, D. J., et al. . (2001). Carbon dioxide sequestering using microalgal systems.
Retrieved from https://www.osti.gov/servlets/purl/882000
Stephens, J. C. (2015). Carbon capture and storage: A controversial climate mitigation
approach. International Spectator, 50, 74-84. Retrieved from http://blog.uvm.edu/
jstephe1/files/2012/03/Stephens-2015-CCS-A-Controversial-Climate-Mitigation-
Approach.pdf
Stephens, J. C., Bielicki, J., & Rand, G. M. (2009). Learning about carbon capture and storage:
Changing stakeholder perceptions with expert information. Energy Procedia, 1(1),
4655-4663. doi:http://dx.doi.org/10.1016/j.egypro.2009.02.288
Stephens, J. C., & Keith, D. W. (2008). Assessing geochemical carbon management. Climatic
Change, 90(3), 217. doi:10.1007/s10584-008-9440-y
Stephenson, A. L., & MacKay, D. J. C. (2014). Life Cycle Impacts of Biomass Electricity in 2020.
Retrieved from https://assets.publishing.service.gov.uk/government/uploads/system/
uploads/attachment_data/file/349024/BEAC_Report_290814.pdf
Sterman, J. D., Lori, S., & Juliette, N. R.-V. (2018). Does replacing coal with wood lower CO 2
emissions? Dynamic lifecycle analysis of wood bioenergy. Environmental Research
Letters, 13(1), 015007. Retrieved from http://stacks.iop.org/1748-9326/13/i=1/a=015007
Stern, M. C., Simeon, F., Hammer, T., Landes, H., Herzog, H. J., & Alan Hatton, T. (2011).
Electrochemically mediated separation for carbon capture. Energy Procedia, 4, 860-867.
doi:https://doi.org/10.1016/j.egypro.2011.01.130
Stern, T., et al. (2015). Biorefineries' impacts on the Austrian forest sector: A system dynamics
approach. Technological Forecasting and Social Change, 91(C), 311-326. Retrieved
from http://www.sciencedirect.com/science/article/pii/S004016251400122X
Stevanović, M., Popp, A., Bodirsky, B. L., Humpenöder, F., Müller, C., Weindl, I., . . . Wang, X.
(2017). Mitigation Strategies for Greenhouse Gas Emissions from Agriculture and Land-
Use Change: Consequences for Food Prices. Environmental Science & Technology,
51(1), 365-374. doi:10.1021/acs.est.6b04291
Stevens, C., Ward, B., Law, C., & Walkington, M. (2011). Surface layer mixing during the SAGE
ocean fertilization experiment. Deep Sea Research Part II: Topical Studies in
Oceanography, 58(6), 776-785. doi:https://doi.org/10.1016/j.dsr2.2010.10.017
Stevens, J. G., Gómez, P., Bourne, R. A., Drage, T. C., George, M. W., & Poliakoff, M. (2011).
Could the energy cost of using supercritical fluids be mitigated by using CO2 from
carbon capture and storage (CCS)? Green Chemistry, 13(10), 2727-2733. doi:10.1039/
C1GC15503B
Stewart, C., & Hessami, M.-A. (2005). A study of methods of carbon dioxide capture and
sequestration––the sustainability of a photosynthetic bioreactor approach. Energy
Conversion and Management, 46(3), 403-420. doi:https://doi.org/10.1016/
j.enconman.2004.03.009
Stewart, C. E., et al. (2012). Co-generated fast pyrolysis biochar mitigates green-house gas
emissions and increases carbon sequestration in temperate soils. GCB Bioenergy, 5(2),
153-164. doi:10.1111/gcbb.12001
Stewart, C. E., Paustian, K., Conant, R. T., Plante, A. F., & Six, J. (2007). Soil carbon saturation:
concept, evidence and evaluation. Biogeochemistry, 86(1), 19-31. doi:10.1007/
s10533-007-9140-0
Stewart, J. (2020). Advancing Carbon Dioxide Catalysis. UDaily. Retrieved from https://
www.udel.edu/udaily/2020/september/feng-jiao-department-energy-funding-carbon-
dioxide-removal/
Stewart, K. J., & Janin, A. (2014). Leonardite and biochar for mine impacted water and soils.
Paper presented at the British Columbia Mine Reclamation Symposium. https://
circle.ubc.ca/handle/2429/51130?show=full
Stewart, K. J., & Siciliano, S. D. (2015). Potential Contribution of Native Herbs and Biological
Soil Crusts to Restoration of the Biogeochemical Nitrogen Cycle in Mining Impacted
Sites in Northern Canada. Ecological Restoration, 33(1), 30 - 42. doi:10.3368/er.33.1.30
Stewart, M. (2014). Removal of Organic and Inorganic Contaminants from Oil Sands Tailings
using Carbon Based Adsorbents and Native Sediment. University of Alberta, Retrieved
from https://era.library.ualberta.ca/public/view/item/uuid:11771ad2-
e7a0-45d2-8f71-6f2991cbc949/DS1/Stewart_Matthew_Fall%202013.pdf
Stewart, R. J., & Haszeldine, R. S. (2015). Can Producing Oil Store Carbon? Greenhouse Gas
Footprint of CO2EOR, Offshore North Sea. Environmental Science & Technology, 49(9),
5788-5795. doi:10.1021/es504600q
Stiffler, L. (2020). Climate change reversal startup Nori raises $4M for its CO2 offsets
marketplace. Geek Wire. Retrieved from https://www.geekwire.com/2020/climate-
change-reversal-startup-nori-raises-4m-co2-offsets-marketplace/
Stiffler, L. (2021). As worries spark over the carbon impacts of NFTs, some unexpected boosters
come to their defense. Geek Wire. Retrieved from https://www.geekwire.com/2021/
worries-spark-carbon-impacts-nfts-unexpected-boosters-come-defense/?
utm_medium=email&_hsmi=118979859&_hsenc=p2ANqtz-9my6XPI6aeTl8pGFTaElL1A
cOwLW6R0mOhyW2HfniJ3xaMX7EJsi-
Iw6manc0YvnrQYbZA4DhfV5jnp1XtmFFrY11OUg&utm_content=118980047&utm_sourc
e=hs_email
Stigson, P., Haikola, S., Hansson, A., & Buhr, K. (2016). Prospects for Swedish acceptance of
carbon dioxide storage in the Baltic Sea: Learning from other energy projects.
Greenhouse Gases: Science and Technology, 6(2), 188-196. doi:https://doi.org/10.1002/
ghg.1585
Stigson, P., Hansson, A., & Lind, M. (2012). Obstacles for CCS deployment: an analysis of
discrepancies of perceptions. Mitigation and Adaptation Strategies for Global Change,
17(6), 601-619. doi:10.1007/s11027-011-9353-3
Stigson, P., Hansson, A., & Lind, M. (2012). Obstacles for CCS deployment: an analysis of
discrepancies of perceptions. Mitigation and Adaptation Strategies for Global Change,
17(6), 601-619. doi:10.1007/s11027-011-9353-3
Stine, L. (2020). Carbon harvest: Indigo Ag, Nori announce first corporate carbon credit buyers.
Retrieved from https://agfundernews.com/carbon-harvest-indigo-ag-nori-announce-first-
corporate-carbon-credit-buyers.html
Stöckle, C., et al. (2012). Carbon storage and nitrous oxide emissions of cropping systems in
eastern Washington: A simulation study. Journal of Soil and Water Conservation, 67(5),
365-377. Retrieved from http://www.jswconline.org/content/67/5/365.full.pdf+html
Stockmann, G. (2012). Experimental Study of Basalt Carbonatization. (Ph.D.). University of
Toulouse, Retrieved from https://www.researchgate.net/publication/
270884047_Experimental_Study_of_Basalt_Carbonatization
Stockmann, U., Adams, M. A., Crawford, J. W., Field, D. J., Henakaarchchi, N., Jenkins, M., . . .
Zimmermann, M. (2013). The knowns, known unknowns and unknowns of sequestration
of soil organic carbon. Agriculture, Ecosystems & Environment, 164, 80-99. doi:https://
doi.org/10.1016/j.agee.2012.10.001
Stockmann, U., Padarian, J., McBratney, A., Minasny, B., de Brogniez, D., Montanarella, L., . . .
Field, D. J. (2015). Global soil organic carbon assessment. Global Food Security, 6,
9-16. doi:https://doi.org/10.1016/j.gfs.2015.07.001
Stolaroff, J., Keith, D., & Lowry, G. (2008). Carbon dioxide capture from atmospheric air using
sodium hydroxide spray. Environmental Science & Technology, 42, 2728-2735.
Retrieved from /files/tkg/files/97.stolaroff.aircapturecontactor.e.pdf
Stolaroff, J. K., Bhattacharyya, S., Smith, C. A., Bourcier, W. L., Cameron-Smith, P. J., & Aines,
R. D. (2012). Review of Methane Mitigation Technologies with Application to Rapid
Release of Methane from the Arctic. Environmental Science & Technology, 46(12),
6455-6469. doi:10.1021/es204686w
Stolaroff, J. K., Keith, D. W., & Lowry, G. V. (2008). Carbon Dioxide Capture from Atmospheric
Air Using Sodium Hydroxide Spray. Environmental Science & Technology, 42(8),
2728-2735. doi:10.1021/es702607w
Stolaroff, J. K., Lowry, G. V., & Keith, D. W. (2005). Using CaO- and MgO-rich industrial waste
streams for carbon sequestration. Energy Conversion and Management, 46(5), 687-699.
doi:https://doi.org/10.1016/j.enconman.2004.05.009
Stolaroff, J. K., Pang, S. H., Li, W., Kirkendall, W. G., Goldstein, H. M., Aines, R. D., & Baker, S.
E. (2021). Transport Cost for Carbon Removal Projects With Biomass and CO2 Storage.
Frontiers in Energy Research, 9(165). doi:10.3389/fenrg.2021.639943
Stone, A. (2019). IEA Challenged to Address Limits to Negative Emissions. Forbes, (April 16).
Retrieved from https://www.forbes.com/sites/andystone/2019/04/15/iea-challenged-to-
address-limits-of-negative-emissions/#508e70342364
Stone, E. J., Lowe, J. A., & Shine, K. P. (2009). The impact of carbon capture and storage on
climate. Energy & Environmental Science, 2(1), 81-91. doi:10.1039/B807747A
Stone, K. C., et al. (2013). Biomass Feedstock Production Impact on Water Resource
Availability. In B. P. Singh (Ed.), Biofuel Crop Sustainability (pp. 239-260).
Stone, M. (2019). How much is a whale worth? Retrieved from https://
relay.nationalgeographic.com/proxy/distribution/public/amp/environment/2019/09/how-
much-is-a-whale-worth
Stonor, M. R., Chen, J. G., & Park, A.-H. A. (2017). Bio-Energy with Carbon Capture and
Storage (BECCS) potential: Production of high purity H2 from cellulose via Alkaline
Thermal Treatment with gas phase reforming of hydrocarbons over various metal
catalysts. International Journal of Hydrogen Energy, 42(41), 25903-25913. doi:https://
doi.org/10.1016/j.ijhydene.2017.08.059
Stoof, C. R., Richards, B. K., Woodbury, P. B., Fabio, E. S., Brumbach, A. R., Cherney, J., . . .
Steenhuis, T. S. (2015). Untapped Potential: Opportunities and Challenges for
Sustainable Bioenergy Production from Marginal Lands in the Northeast USA.
BioEnergy Research, 8(2), 482-501. doi:10.1007/s12155-014-9515-8
Storey, J. (2021). Can an Australian start-up create a US$100 billion ocean carbon credit
industry? LinkedIn: Creating Ocean Credits. Retrieved from https://www.linkedin.com/
pulse/can-australian-start-up-create-us100-billion-ocean-carbon-jill-storey/
Storrow, B. (2021). X-Prize Winners Use CO2 Emissions to Make Concrete. Scientific American.
Retrieved from https://www.scientificamerican.com/article/x-prize-winners-use-co2-
emissions-to-make-concrete/
Stower, H. (2021). Unlocking Blue Carbon Offsets – The problems and solutions for ocean-
based carbon removal. Retrieved from https://www.cleantech.com/unlocking-blue-
carbon-offsets-the-problems-and-solutions-for-ocean-based-carbon-removal/
Stoy, P. C., Ahmed, S., Jarchow, M., Rashford, B., Swanson, D., Albeke, S., . . . Poulter, B.
(2018). Opportunities and Trade-offs among BECCS and the Food, Water, Energy,
Biodiversity, and Social Systems Nexus at Regional Scales. BioScience, bix145-bix145.
doi:10.1093/biosci/bix145
Stoyle, A. (2011). BIOCHAR PRODUCTION FOR CARBON SEQUESTRATION. (Bachelor of
Science). Worcester Polytechnic Institute, Worcester. Retrieved from https://
www.wpi.edu/Pubs/E-project/Available/E-project-031111-153641/unrestricted/
BIOCHAR_CO2SEQ.pdf
Strand, S. E., & Benford, G. (2009). Ocean Sequestration of Crop Residue Carbon: Recycling
Fossil Fuel Carbon Back to Deep Sediments. Environmental Science & Technology,
43(4), 1000-1007. doi:10.1021/es8015556
Strassburg, B. B. N., et al. (2010). Global congruence of carbon storage and biodiversity in
terrestrial ecosystems. Conservation Letters, 3(2), 98-105. Retrieved from http://
onlinelibrary.wiley.com/doi/10.1111/j.1755-263X.2009.00092.x/abstract
Strawn, D. G., Rigby, A. C., Baker, L. L., Coleman, M. D., & Koch, I. (2015). Biochar Soil
Amendment Effects on Arsenic Availability to Mountain Brome (Bromus marginatus).
Journal of Environment Quality, 44, 1315-1320. doi:10.2134/jeq2014.11.0477
Street, T. A., Doyle, R. B., & Close, D. C. (2014). Biochar Media Addition Impacts Apple
Rootstock Growth and Nutrition. HortScience, 49(9), 1188-1193. Retrieved from http://
hortsci.ashspublications.org/content/49/9/1188.short
Strefler, J., et a. (2015). Integrated assessment of enhanced weathering. Paper presented at the
International Energy Workshop, Abu Dhabi. https://irena.org/EventDocs/
Session%204_Jessica%20Strefler_WEB.pdf
Strefler, J., et al. (2018). Between Scylla and Charybdis: Delayed mitigation narrows the
passage between large-scale CDR and high costs. Environmental Research Letters,
13(4), 044015. Retrieved from http://stacks.iop.org/1748-9326/13/i=4/a=044015
Strefler, J., et al. (2018). Potential and costs of carbon dioxide removal by enhanced weathering
of rocks. Environmental Research Letters, 13(3), 034010. Retrieved from http://
stacks.iop.org/1748-9326/13/i=3/a=034010
Strengers, B., et. (2018). Negative emissions - Technical potential, realistic potential and costs
for the Netherlands. Retrieved from http://www.clingendaelenergy.com/files.cfm?
event=files.download&ui=DE7BA681-5254-00CF-FD03A619D7811078
Strengers, B. J., Van Minnen, J. G., & Eickhout, B. (2008). The role of carbon plantations in
mitigating climate change: potentials and costs. Climatic Change, 88(3), 343-366.
doi:10.1007/s10584-007-9334-4
Streubel, J. D., Ph.D. (2011). Biochar: Its characterization and utility for recovering phosphorus
from anaerobic digested dairy effluent. WASHINGTON STATE UNIVERSITY, Retrieved
from http://gradworks.umi.com/34/60/3460438.html
Streubel, J. D., et al. (2012). Biochar Produced from Anaerobically Digested Fiber Reduces
Phosphorus in Dairy Lagoons. Journal of Environmental Quality, 41, 1166 - 1174.
doi:10.2134/jeq2011.0131
Stringer, L. C., Dougill, A. J., Thomas, A. D., Spracklen, D. V., Chesterman, S., Speranza, C.
I., . . . Kopolo, G. (2012). Challenges and opportunities in linking carbon sequestration,
livelihoods and ecosystem service provision in drylands. Environmental Science &
Policy, 19-20, 121-135. doi:https://doi.org/10.1016/j.envsci.2012.02.004
Stripe. (2021). Stripe commits $8M to six new carbon removal companies. Retrieved from
https://stripe.com/newsroom/news/spring-21-carbon-removal-purchases
Ströhle, J., Lasheras, A., Galloy, A., & Epple, B. (2009). Simulation of the Carbonate Looping
Process for Post-Combustion CO2 Capture from a Coal-Fired Power Plant. Chemical
Engineering & Technology, 32(3), 435-442. doi:10.1002/ceat.200800569
Strong, A., Chisholm, S., Miller, C., & Cullen, J. (2009). Ocean fertilization: time to move on.
Nature, 461, 347. doi:10.1038/461347a
Strong, A. L., Cullen, J. J., & Chishom, S. W. (2009). Ocean fertilization: Science, policy, and
commerce. Oceanography, 22(3), 236-261. Retrieved from http://tos.org/oceanography/
assets/docs/22-3_strong.pdf
Struck, D. (2010). Carbon offsets: How a Vatican forest failed to reduce global warming.
Christian Science Monitor. Retrieved from https://www.csmonitor.com/Environment/
2010/0420/Carbon-offsets-How-a-Vatican-forest-failed-to-reduce-global-warming
Strzalka, R., Schneider, D., & Eicker, U. (2015). Bioenergy in Germany: Technology Overview,
Practical Experience, Economical Feasibility and Future Perspectives. Paper presented
at the Bioenergy 2013 - Book of Proceedings.
Stuart, D., Gunderson, R., & Petersen, B. (2020). Carbon Geoengineering and the Metabolic
Rift: Solution or Social Reproduction? Critical Sociology, 46(7-8), 1233-1249.
doi:10.1177/0896920520905074
Stuckert, N. R., & Yang, R. T. (2011). CO2 Capture from the Atmosphere and Simultaneous
Concentration Using Zeolites and Amine-Grafted SBA-15. Environmental Science &
Technology, 45(23), 10257-10264. doi:10.1021/es202647a
Stucley, C., et al. (2012). BioEnergy in Australia: Status and Opportunities. Retrieved from http://
www.fwpa.com.au/images/webinars/FWPA_Bioenergy_Webinar_Stucley_5Jun13.pdf
Stutter, M. I. (2015). The composition, leaching, and sorption behavior of some alternative
sources of phosphorus for soils. Ambio, 44(S2), 207 - 216. doi:10.1007/
s13280-014-0615-7
Styring, P., & Armstrong, K. (2018). Editorial: Carbon Dioxide Utilization. 6(78). doi:10.3389/
fenrg.2018.00078
Su, P., Lou, J., Brookes, P. C., Luo, Y., He, Y., & Xu, J. (2015). Taxon-specific responses of soil
microbial communities to different soil priming effects induced by addition of plant
residues and their biochars. Journal of Soils and Sediments, 1-11. doi:10.1007/
s11368-015-1238-8
Su, T.-H., Yang, H.-J., Shau, Y.-H., Takazawa, E., & Lee, Y.-C. (2016). CO2 sequestration
utilizing basic-oxygen furnace slag: Controlling factors, reaction mechanisms and V–Cr
concerns. Journal of Environmental Sciences, 41, 99-111. doi:https://doi.org/10.1016/
j.jes.2015.06.012
Su, Y., Cestellos-Blanco, S., Kim, J. M., Shen, Y.-x., Kong, Q., Lu, D., . . . Yang, P. (2020).
Close-Packed Nanowire-Bacteria Hybrids for Efficient Solar-Driven CO2 Fixation. Joule.
doi:https://doi.org/10.1016/j.joule.2020.03.001
Su, Y., Song, K., Zhang, P., Su, Y., Cheng, J., & Chen, X. (2017). Progress of microalgae
biofuel’s commercialization. Renewable and Sustainable Energy Reviews, 74, 402-411.
doi:https://doi.org/10.1016/j.rser.2016.12.078
Su, Z., Qiu, G., Fan, H., & Fang, C. (2020). Seagrass beds store less carbon but support more
macrobenthos than mangrove forests. Marine Environmental Research, 162, 105162.
doi:https://doi.org/10.1016/j.marenvres.2020.105162
Suárez, A., M., Kaal, J., Knicker, H., Camps Arbestain, M., & Macias, F. (2014). Biochar
determination in soils by applying pyrolysis GC-MS analysis and Black Carbon (BC)
concentration trough dichromate and permanganate oxidation. Paper presented at the
Open Science. http://digital.csic.es/handle/10261/98482
Suarez, V. (2021). A nature-based negative emissions technology able to remove atmospheric
methane and other greenhouse gases The Hill. Retrieved from https://thehill.com/
opinion/energy-environment/555267-carbon-removal-can-and-must-be-part-of-the-
climate-justice-agenda
Subedi, R. (2012). Effects of Biochar on Soil Phosphorus and Interaction with Phosphate
Solubilizing Bacteria. Ghent University, Retrieved from http://lib.ugent.be/fulltxt/
RUG01/001/894/528/RUG01-001894528_2012_0001_AC.pdf
Subedi, R., Kammann, C., Pelissetti, S., Sacco, D., Grignani, C., & Monaco, S. (2013). Use of
biochar and hydrochar to reduce ammonia emissions from soils fertilized with pig slurry.
Retrieved from http://www.ramiran.net/doc13/Proceeding_2013/documents/S9.16..pdf
Subedi, R., Kammann, C., Pelissetti, S., Taupe, N., Bertora, C., Monaco, S., & Grignani, C.
(2015). Does soil amended with biochar and hydrochar reduce ammonia emissions
following the application of pig slurry? European Journal of Soil Science, 66(6), 1044 -
1053. doi:10.1111/ejss.12302
Subedi, R., Taupe, N., Ikoyi, I., Bertora, C., Zavattaro, L., Schmalenberger, A., . . . Grignani, C.
(2015). Manure-derived biochars behave also as fertilizer. Paper presented at the
RAMIRAN 2015 – 16th International Conference. http://www.researchgate.net/profile/
Chiara_Bertora/publication/282003596_Manure-
derived_biochars_behave_also_as_fertilizer/links/5603cd8808ae460e2704fab4.pdf
Subedi, R., Taupe, N., Ikoyi, I., Bertora, C., Zavattaro, L., Schmalenberger, A., . . . Grignani, C.
(2016). Chemically and biologically-mediated fertilizing value of manure-derived biochar.
Science of The Total Environment, 550, 924 - 933. doi:10.1016/j.scitotenv.2016.01.160
Subedi, R., Taupe, N., Pelissetti, S., Petruzzelli, L., Bertora, C., Leahy, J. J., & Grignani, C.
(2016). Greenhouse gas emissions and soil properties following amendment with
manure-derived biochars: Influence of pyrolysis temperature and feedstock type. Journal
of Environmental Management, 166, 73 - 83. doi:10.1016/j.jenvman.2015.10.007
Subhas, A. V., et al. (2018).
Subramanian, N. S. (2020). Powering the Future: An Inclusive National Clean Energy Standard
with Negative Emissions Technologies. Columbia Journal of Environmental Law, 45(2).
doi:10.7916/cjel.v45i2.6158
Suddapuli Hewage, R. P. (2016). Effect of charred digestate (biochar) and digestate on soil
organic carbon and nutrients in temperate bioenergy crop production systems. (PhD).
Hamburg : Staats- und Universitätsbibliothek Hamburg, Hamburg, Germany. Retrieved
from http://ediss.sub.uni-hamburg.de/volltexte/2016/7828/
Suddick, E. C., & Six, J. (2013). An estimation of annual nitrous oxide emissions and soil quality
following the amendment of high temperature walnut shell biochar and compost to a
small scale vegetable crop rotation. Science of The Total Environment, 465, 298-307.
Retrieved from http://www.sciencedirect.com/science/article/pii/S0048969713001563
Sudhakar, K., et al. (2011). An Overview of CO2 Mitigation Using Algae Cultivation Technology.
International Journal of Chemical Research, 3(3), 110-117. Retrieved from https://
s3.amazonaws.com/academia.edu.documents/23606270/
An_overview_of_CO2_mitigation_using_Algal_Cultivation_Technology.pdf?
AWSAccessKeyId=AKIAIWOWYYGZ2Y53UL3A&Expires=1538871028&Signature=4aP
aW1C9TATFC8Ln%2FViLjZtijAM%3D&response-content-
disposition=inline%3B%20filename%3DAn_overview_of_CO2_mitigation_using_Alga.pd
f
Sudhakar, K., & Soni, R. A. (2017). Carbon Sequestration Through Solar Bioreactors: Industrial
Strategies. In M. Goel & M. Sudhakar (Eds.), Carbon Utilization: Applications for the
Energy Industry (pp. 143-155). Singapore: Springer Singapore.
Suer, U., Naehring, F., & Balachandra, G. (2012). A Smart Technology of Carbon Sequestration
by the Use of Biochar. Paper presented at the CLIMATE 2012 Conference.
klima2012.de/en/start
Suganthi, K., Rajiv Das, K., Selvaraj, M., Kurinji, S., Goel, M., & Govindaraju, M. (2017).
Assessment of Altitudinal Mediated Changes of CO2 Sequestration by Trees at
Pachamalai Reserve Forest, Tamil Nadu, India. In M. Goel & M. Sudhakar (Eds.),
Carbon Utilization: Applications for the Energy Industry (pp. 89-99). Singapore: Springer
Singapore.
Suganya, T., Varman, M., Masjuki, H. H., & Renganathan, S. (2016). Macroalgae and
microalgae as a potential source for commercial applications along with biofuels
production: A biorefinery approach. Renewable and Sustainable Energy Reviews, 55,
909-941. doi:https://doi.org/10.1016/j.rser.2015.11.026
Sugiura, G. (1984). About charcoal: To a sphere of Japanese charcoal and microorganisms.
Jozo Kyokaishi (Japanese Brewing Society), 7, 479-484.
Sugiyama, M. (2020). The fine print of Japan’s commitment to carbon neutrality. East Asia
Forum. Retrieved from https://www.eastasiaforum.org/2020/11/18/the-fine-print-of-
japans-commitment-to-carbon-neutrality/
Suguihiro, T. M., et al. (2013). An Electroanalytical approach for evaluation of biochar adsorption
characteristics and its application for Lead and Cadmium determination. Bioresource
Technology, 143, 40-45. Retrieved from http://www.sciencedirect.com/science/article/pii/
S0960852413008754
Suh, D. J., Choi, J. H., & Woo, H. C. (2014). Pyrolysis of Seaweeds for Bio-oil and Bio-char
Production. Chemical Engineering Transactions, 37(121-126). doi:10.3303/cet1437021
Sui, H., Wang, X., & Chen, H. (2015). Rheological Behavior and Steam Gasification of Bio-
slurry. Energy Procedia, 75, 220 - 225. doi:10.1016/j.egypro.2015.07.310
Sui, Y., Gao, J. P., Liu, C., Zhang, W., Lan, Y., Li, S., . . . Tang, L. (2016). Interactive effects of
straw-derived biochar and N fertilization on soil C storage and rice productivity in rice
paddies of Northeast China. Science of The Total Environment, 544, 203 - 210.
doi:10.1016/j.scitotenv.2015.11.079
Sujan, A., Pang, S. H., Zhu, G., Jones, C. W., & Lively, R. P. (2019). Direct CO2 capture from air
using poly(ethyleneimine)-loaded polymer/silica fiber sorbents. ACS Sustainable
Chemistry & Engineering. doi:10.1021/acssuschemeng.8b06203
Sujan, A. R., Pang, S. H., Zhu, G., Jones, C. W., & Lively, R. P. (2019). Direct CO2 Capture from
Air using Poly(ethylenimine)-Loaded Polymer/Silica Fiber Sorbents. ACS Sustainable
Chemistry & Engineering, 7(5), 5264-5273. doi:10.1021/acssuschemeng.8b06203
Sujana, I. P. (2015). The Effect Combination of Dose Biochar with Dose Organic Matters on Soil
Characteristics and Maize Plants Growth on Land Degraded by Garments Liquid Waste.
International Journal of Research in Agriculture and Forestry, 2(8), 49-54. Retrieved from
http://www.ijraf.org/pdf/v2-i8/7.pdf
Sujana, I. P. (2015). PENGELOLAAN TANAH ULTISOL DENGAN PEMBERIAN PEMBENAH
ORGANIK BIOCHAR MENUJU PERTANIAN BERKELANJUTAN (ULTISOL
MANAGEMENT WITH THE PROVISION OF ORGANIC PEMBENAH BIOCHAR
TOWARDS SUSTAINABLE AGRICULTURE). Jurnal Agrimeta UNMAS. Retrieved from
http://jurnal.unmas.ac.id/index.php/agrimeta/article/view/90
Sujana, I. P., et al. , & I. (2014). The Effect of Dose Biochar and Organic Matters on Soil
Characteristic and Corn Plants Growth on the Land Degraded by Garment Liquid Waste.
Journal of Biology, Agriculture and Healthcare, 4(5), 77-88. Retrieved from http://
www.iiste.org/Journals/index.php/JBAH/article/download/11243/11531
Sukartono, Utomo, W. H., Kusuma, Z., & Nugroho, W. H. (2011). Soil fertility status, nutrient
uptake, and maize (Zea mays L.) yield following biochar and cattle manure application
on sandy soils of Lombok, Indonesia. Journal of Tropical Agriculture, 49, 47-52.
Retrieved from http://jtropag.in/index.php/ojs/article/viewFile/1036/263
Sukartono, Utomo, W. H., Nugroho, W. H., & Kusuma, Z. (2011). Simple Biochar Production
Generated From Cattle Dung and Coconut Shell. Journal of Basic and Applied Scientific
Research, 1, 1680-1685. Retrieved from http://www.textroad.com/pdf/JBASR/J.
%20Basic.%20Appl.%20Sci.%20Res.,%201(10)1680-1685,%202011.pdf
Suksabye, P., Pimthong, A., Dhurakit, P., Mekvichitsaeng, P., & Thiravetyan, P. (2015). Effect of
biochars and microorganisms on cadmium accumulation in rice grains grown in Cd-
contaminated soil. Environmental Science and Pollution Research. doi:10.1007/
s11356-015-4590-8
Suliman, W., Harsh, J. B., Abu-Lail, N. I., Fortuna, A.-M., Dallmeyer, I., & Garcia-Perez, M.
(2016). Modification of biochar surface by air oxidation: Role of pyrolysis temperature.
Biomass and Bioenergy, 85, 1 - 11. doi:10.1016/j.biombioe.2015.11.030
Suliman, W. S. O. (2016). Toward an understanding of the role of biochar as an agro-
environmental tool: Potential for control water release, bacterial retention, and
greenhouse gas emissions. Washington State University, Retrieved from http://
gradworks.umi.com/37/32/3732840.html
Sulistyorini, L. D. (2015). Pemanfaatan Kulit Siwalan (Borassus Flabellifer) Sebagai Biochar
Dengan Pengaruh Konsentrasi Dan Lama Perendaman HCL Pada Proses Aktivasi.
Journal Bioproses Komoditas Tropis (Bioprocess Journal of Tropical Commodities), 3(2),
74-80. Retrieved from http://www.jbkt.ub.ac.id/index.php/jbkt/article/view/189
Sullivan, P. (2019). Climate change is an engineering challenge. Anchorage Daily News.
Retrieved from https://www.adn.com/opinions/2019/12/31/climate-change-is-an-
engineering-challenge/
Sulpis, O., Boudreau, B. P., Mucci, A., Jenkins, C., Trossman, D. S., Arbic, B. K., & Key, R. M.
(2018). Current CaCO<sub>3</sub> dissolution at the seafloor caused by
anthropogenic CO<sub>2</sub>. Proceedings of the National Academy of Sciences.
doi:10.1073/pnas.1804250115
Sumida, K., Rogow, D. L., Mason, J. A., McDonald, T. M., Bloch, E. D., Herm, Z. R., . . . Long, J.
R. (2012). Carbon Dioxide Capture in Metal–Organic Frameworks. Chemical Reviews,
112(2), 724-781. doi:10.1021/cr2003272
Summer, R. (2017). Sink it or lose it: the carbon trade-off. Thomson Reuters Foundation News,
(March 20). Retrieved from http://news.trust.org/item/20170320092650-mah1r
Sun, A., Davis, R., Starbuck, M., Ben-Amotz, A., Pate, R., & Pienkos, P. T. (2011). Comparative
cost analysis of algal oil production for biofuels. Energy, 36(8), 5169-5179. doi:https://
doi.org/10.1016/j.energy.2011.06.020
Sun, D. Q., et al. (2012). Implication of Temporal Dynamics of Microbial Abundance and
Nutrients to Soil Fertility under Biochar Application – Field Experiments Conducted in a
Brown Soil Cultivated with Soybean, North China. Journal Advanced Materials
Research, 518 - 523, 384-394. doi:10.4028/www.scientific.net/AMR.518-523.384
Sun, D. Q., et al. (2014). Effect of volatile organic compounds absorbed to fresh biochar on
survival of Bacillus mucilaginosus and structure of soil microbial communities. Journal of
Soils and Sediments, 15(2), 271-281. doi:10.1007/s11368-014-0996-z
Sun, D. Q., et al. (2016). Microbial community structure and predicted bacterial metabolic
functions in biochar pellets aged in soil after 34 months. Applied Soil Ecology, 100, 135 -
143. doi:10.1016/j.apsoil.2015.12.012
Sun, D. Q., Hale, L., & Crowley, D. (2016). Nutrient supplementation of pinewood biochar for
use as a bacterial inoculum carrier. Biology and Fertility of Soils, 52(4), 515-522.
doi:10.1007/s00374-016-1093-9
Sun, D. Q., Meng, J., & Chen, W. F. (2013). Effects of abiotic components induced by biochar
on microbial communities. Acta Agriculturae Scandinavica, Section B - Soil & Plant
Science, 63(7), 633-641. Retrieved from http://www.tandfonline.com/doi/abs/
10.1080/09064710.2013.838991
Sun, H., Brewer, C. E., Masiello, C. A., & Zygourakis, K. (2015). Nutrient Transport in Soils
Amended with Biochar: A transient model with two stationary phases and intraparticle
diffusion. Industrial & Engineering Chemistry Research, 150121153921001. doi:10.1021/
ie503893t
Sun, H., Zhang, H., Min, J., Feng, Y., & Shi, W. (2015). Controlled-release fertilizer, floating
duckweed, and biochar affect ammonia volatilization and nitrous oxide emission from
rice paddy fields irrigated with nitrogen-rich wastewater. Paddy and Water Environment.
doi:10.1007/s10333-015-0482-2
Sun, J., He, F., Zhang, Z., Shao, H., & Xu, G. (2016). Temperature and moisture responses to
carbon mineralization in the biochar-amended saline soil. Science of The Total
Environment, 569-570, 390-394. doi:https://doi.org/10.1016/j.scitotenv.2016.06.082
Sun, K., et al. (2013). Impact of De-Ashing Treatment on Biochar Structural Properties and
Potential Sorption Mechanisms of Phenanthrene. Environmental Science and
Technology, 47, 11473–11481. Retrieved from http://pubs.acs.org/doi/abs/10.1021/
es4026744
Sun, K., et al. (2015). Variation in sorption of propiconazole with biochars: The effect of
temperature, mineral, molecular structure, and nano-porosity. Chemosphere, 142, 56-63.
doi:10.1016/j.chemosphere.2015.07.018
Sun, L., Chen, D., Wan, S., & Yu, Z. (2015). Performance, kinetics, and equilibrium of methylene
blue adsorption on biochar derived from eucalyptus saw dust modified with citric, tartaric,
and acetic acids. Bioresource Technology, 198, 300 - 308. doi:10.1016/
j.biortech.2015.09.026
Sun, L., Li, L., Chen, Z., Wang, J., & Xiong, Z. (2014). Combined effects of nitrogen deposition
and biochar application on emissions of N2O, CO2 and NH3 from agricultural and forest
soils. Soil Science and Plant Nutrition. Retrieved from http://www.tandfonline.com/doi/
abs/10.1080/00380768.2014.885386#.U6ALF5SSzkI
Sun, P., Hui, C., Azim Khan, R., Du, J., Zhang, Q., & Zhao, Y.-H. (2015). Efficient removal of
crystal violet using Fe3O4-coated biochar: the role of the Fe3O4 nanoparticles and
modeling study their adsorption behavior. Scientific Reports, 5, 12638. doi:10.1038/
srep12638
Sun, R., Li, Y., Liu, C., Xie, X., & Lu, C. (2013). Utilization of lime mud from paper mill as CO2
sorbent in calcium looping process. Chemical Engineering Journal, 221, 124-132.
doi:https://doi.org/10.1016/j.cej.2013.01.068
Sun, W., Canadell, J. G., Yu, L., Yu, L., Zhang, W., Smith, P., . . . Huang, Y. (2020). Climate
drives global soil carbon sequestration and crop yield changes under conservation
agriculture. Global Change Biology, 26(6), 3325-3335. doi:10.1111/gcb.15001
Sun, W., Lipka, S. M., Swartz, C., Williams, D., & Yang, F. (2016). Hemp-derived activated
carbons for supercapacitors. Carbon, 103, 181 - 192. doi:10.1016/j.carbon.2016.02.090
Sun, Y., et al. (2013). Effects of feedstock type, production method, and pyrolysis temperature
on biochar and hydrochar properties. Chemical Engineering Journal, 240, 574-578.
Retrieved from http://www.sciencedirect.com/science/article/pii/S1385894713014101
Sun, Y., Li, Y., Cai, B.-f., & Li, Q. (2020). Comparing the explicit and implicit attitudes of energy
stakeholders and the public towards carbon capture and storage. Journal of Cleaner
Production, 120051. doi:https://doi.org/10.1016/j.jclepro.2020.120051
Sun, Y., Zhang, J. P., Wen, C., & Zhang, L. (2016). An enhanced approach for biochar
preparation using fluidized bed and its application for H2S removal. Chemical
Engineering and Processing: Process Intensification, 104, 1 - 12. doi:10.1016/
j.cep.2016.02.006
Sun, Z., et al. (2014). Effect of biochar on aerobic processes, enzyme activity, and crop yields in
two sandy loam soils. Biology and Fertility of Soils, 50(7), 1087-1097. doi:10.1007/
s00374-014-0928-5
Sun, Z., et al. . (2014). Pore structure characteristics after two years biochar application to a
sandy loam field. Journal of Soil Science, 180(2), 41-46. Retrieved from http://
forskningsbasen.deff.dk/Share.external?sp=Sfe2180d2-45f4-4fd3-add7-
fa220367cb01&sp=Sau
Sun, Z., et al. (2015). Effect of biochar on soil structural characteristics: water retention and gas
transport. Paper presented at the Danish National Research Database. http://
forskningsbasen.deff.dk/Share.external?sp=Sfb0d3792-27e7-4846-924f-
a364153b2258&sp=Sau
Sun, Z., Sänger, A., Rebensburg, P., Lentzsch, P., Wirth, S., Kaupenjohann, M., & Meyer-Aurich,
A. (2017). Contrasting effects of biochar on N2O emission and N uptake at different N
fertilizer levels on a temperate sandy loam. Science of The Total Environment, 578,
557-565. doi:https://doi.org/10.1016/j.scitotenv.2016.10.230
Sundberg, C., Karltun, E., Gitau, J. K., Kätterer, T., Kimutai, G. M., Mahmoud, Y., . . . Sieber, P.
(2020). Biochar from cookstoves reduces greenhouse gas emissions from smallholder
farms in Africa. Mitigation and Adaptation Strategies for Global Change, 25(6), 953-967.
doi:10.1007/s11027-020-09920-7
Supekar, S. D., Lim, T.-H., & Skerlos, S. J. (2019). Costs to achieve target net emissions
reductions in the US electric sector using direct air capture. Environmental Research
Letters, 14(8), 084013. doi:10.1088/1748-9326/ab30aa
Supriyadi, S., et al. (2012). Effect of biochar on P uptake from two acid soils. 16 Australian
Agronomy Conference, 2012. Retrieved from http://www.regional.org.au/au/asa/2012/
nutrition/8497_slamet.htm
Suroshe, P., & Pramanik, H. (2015). Recovery of valuable bio-oil and char via pyrolysis of
Sugarcane Bagasse. International Journal of Chemical and Environmental Engineering,
6(3), 137-141. Retrieved from http://www.cabdirect.org/abstracts/20153347243.html
(2021, May 25 ). Paying for Carbon: Measuring Climate Solutions in Agriculture [Retrieved from
https://www.youtube.com/watch?v=Il7otG5sRRA
Sut, D., Chutia, R. S., Bordoloi, N., Narzari, R., & Kataki, R. (2016). Complete utilization of non-
edible oil seeds of Cascabela thevetia through a cascade of approaches for biofuel and
by-products. Bioresource Technology. doi:10.1016/j.biortech.2016.02.066
Sutcu, H. (2008). Pyrolysis of phragmites australis and characterization of liquid and solid
products. Journal of Industrial and Engineering Chemistry, 14(5), 573-577.
Sutherland, B. R. (2019). Pricing CO2 Direct Air Capture. Joule, 3(7), 1571-1573. doi:https://
doi.org/10.1016/j.joule.2019.06.025
Suzuki, K., Hinuma, A., Saito, H., Kiyosawa, H., Liu, H., Saino, T., & Tsuda, A. (2005).
Responses of phytoplankton and heterotrophic bacteria in the northwest subarctic
Pacific to in situ iron fertilization as estimated by HPLC pigment analysis and flow
cytometry. Progress in Oceanography, 64(2–4), 167-187. doi:http://dx.doi.org/10.1016/
j.pocean.2005.02.007
Swain, F. (2021). The device that reverses CO2 emissions. BBC Future Planet. Retrieved from
https://www.bbc.com/future/article/20210310-the-trillion-dollar-plan-to-capture-co2
Swaine, M., et al. . (2013). Biochar Alteration of the Sorption of Substrates and Products in Soil
Enzyme Assays. Applied and Environmental Soil Science, 1-5.
Swaminathan, R., & Amupolo, H. (2014). Design and Testing of Biochar Stoves. Open Journal
of Applied Sciences, 04(14), 567 - 572. doi:10.4236/ojapps.2014.414056
Swanson, J. (2013). Climate-Change Mitigation Potential of Biochar: A Review and Framework
for Carbon Accounting. (Masters). Duke, Retrieved from http://dukespace.lib.duke.edu/
dspace/bitstream/handle/10161/6842/Swanson%20MP%20Biochar%20final.pdf?
sequence=1
Swanson, J. (2018). Capturing Carbon. In Geoengineering Earth's Climate: Resetting the
Thermostat (pp. 32-46).
Sweet, A. (2015). Buffers and Biochar: Influences on Surface Water Quality in Agricultural
Systems. Southern Illinois University Carbondale, Retrieved from http://
opensiuc.lib.siu.edu/theses/1633/
Sweet, S. K., Schuldt, J. P., Lehmann, J., Bossio, D. A., & Woolf, D. (2021). Perceptions of
naturalness predict US public support for Soil Carbon Storage as a climate solution.
Climatic Change, 166(1), 22. doi:10.1007/s10584-021-03121-0
Swennenhuis, F., Mabon, L., Flach, T. A., & de Coninck, H. (2020). What role for CCS in
delivering just transitions? An evaluation in the North Sea region. International Journal of
Greenhouse Gas Control, 94, 102903. doi:https://doi.org/10.1016/j.ijggc.2019.102903
Swisher, J. N. (1997). Incremental costs of carbon storage in forestry, bioenergy and landuse.
Critical Reviews in Environmental Science and Technology, 27(sup001), 335-350.
doi:10.1080/10643389709388530
Syahri, M. (2015). Pembuatan Biobriket dari Limbah Organik (Biobriket manufacture of Organic
Waste). Paper presented at the Seminar Nasional Teknik Kimia Kejuangan (Chemical
Engineering National Seminar Kejuangan). http://jurnal.upnyk.ac.id/index.php/
kejuangan/article/view/500
Syairah, N., & Aziz, M. (2015). Biochar From Oil Palm Empty Fruit Bunches And Oil Palm Shells
Via Slow Pyrolysis. Universiti Sains Malaysia, Retrieved from http://eprints.usm.my/
28968/
Syed, R., et al. (2015). Assessment of Potential Biofilter Materials to Mitigate Methane
Emissions. In.
Sykes, A. J., Macleod, M., Eory, V., Rees, R. M., Payen, F., Myrgiotis, V., . . . Smith, P. (2020).
Characterising the biophysical, economic and social impacts of soil carbon sequestration
as a greenhouse gas removal technology. Global Change Biology, 26(3), 1085-1108.
doi:10.1111/gcb.14844
Symonds, R. T., et al. (2011). Pilot-Scale Study of CO2 Capture by CaO-Based Sorbents in the
Presence of Steam and SO2. I&EC Research, 51, 7177-7187. Retrieved from https://
www.academia.edu/attachments/53802133/download_file?
s=work_strip&ct=MTUwMjY3OTUwMSwxNTAyNjgwNjY1LDI1NDM4NQ==
Tabari, M., & Salehi, A. (2008). Soil Carbon Sequestration Potential of Eldar Pine and Black
Locust Afforestation in a Semi-Arid Zone of Iran. Research Journal of Environmental
Sciences, 2(6), 483-490. Retrieved from http://www.scialert.net/abstract/?
doi=rjes.2008.483.490
Tabatabaei, M., Loomis, J. B., & Mccollum, D. W. (2015). Non-Market Benefits of Reducing
Environmental Effects of Potential Wildfires in Beetle-Killed Trees: A Contingent
Valuation Study. Journal of Sustainable Forestry, 150422105932004.
doi:10.1080/10549811.2015.1034282
Taccardi, N., Grabau, M., Debuschewitz, J., Distaso, M., Brandl, M., Hock, R., . . .
Wasserscheid, P. (2017). Gallium-rich Pd–Ga phases as supported liquid metal
catalysts. Nature Chemistry, 9, 862. doi:10.1038/nchem.2822
https://www.nature.com/articles/nchem.2822#supplementary-information
Taft, M. (2021). The Only Carbon Capture Plant in the U.S. Just Closed. Gizmodo. Retrieved
from https://earther.gizmodo.com/the-only-carbon-capture-plant-in-the-u-s-just-
closed-1846177778
Taghizadeh-Toos, A., et al. . (2011). Biochar Incorporation into Pasture Soil Suppresses in situ
Nitrous Oxide Emissions from Ruminant Urine Patches. Journal of Environmental
Quality, 40(2), 468-476. doi:doi:10.2134/jeq2010.0419
Taghizadeh-Toosi, A., et al. . (2011). Biochar adsorbed ammonia is bioavailable. Plant and Soil,
350(1), 57-69. doi:10.1007/s11104-011-0870-3
Taghizadeh-Toosi, A., et al. . (2011). A wood based low-temperature biochar captures NH3-N
generated from ruminant urine-N, retaining its bioavailability. Plant and Soil, 353(1),
73-84. doi:10.1007/s11104-011-1010-9
Taghizadeh-Toosik, A. (2011). Ammonia and nitrous oxide emissions from soils under ruminant
urine patches and the effects of biochar amendment on these emissions and plant
nitrogen uptake. (Doctor of Philosophy). Lincoln University, Retrieved from http://
hdl.handle.net/10182/4020
Tagliabue, A., Bowie, A. R., Boyd, P. W., Buck, K. N., Johnson, K. S., & Saito, M. A. (2017). The
integral role of iron in ocean biogeochemistry. Nature, 543(7643), 51-59. doi:10.1038/
nature21058
Tagoe, S. O., Horiuchi, T., & Matsui, T. (2008). Preliminary evaluation of the effects of
carbonized chicken manure, refuse derived fuel and K fertilizer application on the
growth, nodulation, yield, N and P contents of soybean and cowpea in the greenhouse.
African Journal of Agricultural Research, 3, 759-774.
Taha, S. M., Amer, M. E., Elmarsafy, A. E., & Elkady, M. Y. (2014). Adsorption of 15 different
pesticides on untreated and phosphoric acid treated biochar and charcoal from water.
Journal of Environmental Chemical Engineering, 2(4), 2013 - 2025. doi:10.1016/
j.jece.2014.09.001
Taillardat, P., et al. (2020). Climate change mitigation potential of wetlands and the cost-
effectiveness of their restoration. Interface Focus, 10(5), 20190129. doi:doi:10.1098/
rsfs.2019.0129
Taillardat, P., et al., Thompson, B. S., Garneau, M., Trottier, K., & Friess, D. A. (2020). Climate
change mitigation potential of wetlands and the cost-effectiveness of their restoration.
Interface Focus, 10(5), 20190129. doi:doi:10.1098/rsfs.2019.0129
Tait, C. D., Van Thorre, D. M., Catto, M. L., & Scalzo, P. J. (2015).
Tait, D. R., Shepherd, B. O., Befus, K. M., & Erler, D. V. (2015). Nutrient and greenhouse gas
dynamics through a range of wastewater-loaded carbonate sand treatments. Ecological
Engineering, 82, 126 - 137. doi:10.1016/j.ecoleng.2015.04.082
Táíwò, O. m. O., & Buck, H. J. (2019). Capturing carbon to fight climate change is dividing
environmentalists. The Conversation. Retrieved from https://theconversation.com/
capturing-carbon-to-fight-climate-change-is-dividing-environmentalists-110142
Takaya, C. A., Fletcher, L. A., Singh, S., Anyikude, K. U., & Ross, A. B. (2016). Phosphate and
ammonium sorption capacity of biochar and hydrochar from different wastes.
Chemosphere, 145, 518 - 527. doi:10.1016/j.chemosphere.2015.11.052
Takaya, C. A., Fletcher, L. A., Singh, S., Okwuosa, U. C., & Ross, A. B. (2016). Recovery of
phosphate with chemically modified biochars. Journal of Environmental Chemical
Engineering, 4(1), 1156 - 1165. doi:10.1016/j.jece.2016.01.011
Takeda, S., & Obata, H. (1995). Response of equatorial Pacific phytoplankton to subnanomolar
Fe enrichment. Marine Chemistry, 50(1), 219-227. doi:https://doi.org/
10.1016/0304-4203(95)00037-R
Takeda, S., & Tsuda, A. (2005). An in situ iron-enrichment experiment in the western subarctic
Pacific (SEEDS): Introduction and summary. Progress in Oceanography, 64(2), 95-109.
doi:https://doi.org/10.1016/j.pocean.2005.02.004
Takeda, S., Yoshie, N., Boyd, P. W., & Yamanaka, Y. (2006). Modeling studies investigating the
causes of preferential depletion of silicic acid relative to nitrate during SERIES, a
mesoscale iron enrichment in the NE subarctic Pacific. Deep Sea Research Part II:
Topical Studies in Oceanography, 53(20–22), 2297-2326. doi:http://dx.doi.org/10.1016/
j.dsr2.2006.05.027
Taki, J. (2021). Making Japan carbon neutral by 2050 is huge challenge. Nikkei Asia. Retrieved
from.https://asia.nikkei.com/Spotlight/Comment/Making-Japan-carbon-neutral-by-2050-
is-huge-challenge
Takimoto, A., Nair, P. K. R., & Nair, V. D. (2008). Carbon stock and sequestration potential of
traditional and improved agroforestry systems in the West African Sahel. Agriculture,
Ecosystems & Environment, 125(1), 159-166. doi:https://doi.org/10.1016/
j.agee.2007.12.010
Takolpuckdee, P. (2014). Transformation of Agricultural Market Waste Disposal to Biochar Soil
Amendments. Procedia Environmental Sciences, 20, 64-70. doi:http://dx.doi.org/
10.1016/j.proenv.2014.03.010
Tamersit, S., & Bouhidel, K.-E. (2020). Treatment of tannery unhairing wastewater using carbon
dioxide and zinc cations for greenhouse gas capture, pollution removal and water
recycling. Journal of Water Process Engineering, 34, 101120. doi:https://doi.org/10.1016/
j.jwpe.2019.101120
Tamilselvi Dananjayan, R. R., Kandasamy, P., & Andimuthu, R. (2016). Direct mineral
carbonation of coal fly ash for CO2 sequestration. Journal of Cleaner Production, 112,
4173-4182. doi:https://doi.org/10.1016/j.jclepro.2015.05.145
Tamme, E. (2021). Carbon Removal with CCS Technologies. Retrieved from
Tammeorg, P., et al. . (2012). Nitrogen mineralization dynamics of meat bone meal and cattle
manure as affected by the application of softwood chips biochar in soil. Earth and
Environmental Science Transactions of the Royal Society of Edinburgh, 103, 19-30.
Retrieved from http://journals.cambridge.org/action/displayAbstract?
fromPage=online&aid=8906512&fulltextType=RA&fileId=S1755691012000047
Tammeorg, P., et al. (2013). Biochar application to a fertile sandy clay loam in boreal conditions:
effects on soil properties and yield formation of wheat, turnip rape and faba bean. Plant
and Soil, 374(1), 89-107. Retrieved from https://link.springer.com/article/10.1007/
s11104-013-1851-5
Tammeorg, P., Parviainen, T., Nuutinen, V., Simojoki, A., Vaara, E., & Helenius, J. (2014).
Effects of biochar on earthworms in arable soil: avoidance test and field trial in boreal
loamy sand. Agriculture, Ecosystems & Environment, 191, 150-157. doi:http://dx.doi.org/
10.1016/j.agee.2014.02.023
Tammeorg, P., Simojoki, A., Mäkelä, P., Stoddard, F. L., Alakukku, L., & Helenius, J. (2014).
Short-term effects of biochar on soil properties and wheat yield formation with meat bone
meal and inorganic fertiliser on a boreal loamy sand. Agriculture, Ecosystems &
Environment, 191, 108-116. doi:http://dx.doi.org/10.1016/j.agee.2014.01.007
Tan, G., Wang, H., Xu, N., Junaid, M., Liu, H., & Zhai, L. (2019). Effects of biochar application
with fertilizer on soil microbial biomass and greenhouse gas emissions in a peanut
cropping system. Environmental Technology, 1-11. doi:10.1080/09593330.2019.1620344
Tan, R. R. (2016). A multi-period source–sink mixed integer linear programming model for
biochar-based carbon sequestration systems. Sustainable Production and Consumption,
8, 57-63. doi:http://dx.doi.org/10.1016/j.spc.2016.08.001
Tan, R. R. (2019). Data challenges in optimizing biochar-based carbon sequestration.
Renewable and Sustainable Energy Reviews, 104, 174-177. doi:https://doi.org/10.1016/
j.rser.2019.01.032
Tan, R. R., & Aviso, K. B. (2019). A linear program for optimizing enhanced weathering
networks. Results in Engineering, 3, 100028. doi:https://doi.org/10.1016/
j.rineng.2019.100028
Tan, R. R., & Aviso, K. B. (2021). On life-cycle sustainability optimization of enhanced
weathering systems. Journal of Cleaner Production, 289, 125836. doi:https://doi.org/
10.1016/j.jclepro.2021.125836
Tan, R. R., Aviso, K. B., Foo, D. C. Y., Lee, J.-Y., & Ubando, A. T. (2019). Optimal synthesis of
negative emissions polygeneration systems with desalination. Energy, 187, 115953.
doi:https://doi.org/10.1016/j.energy.2019.115953
Tan, R. R., Bandyopadhyay, S., & Foo, D. C. Y. (2018). Graphical Pinch Analysis for Planning
Biochar-Based Carbon Management Networks. Process Integration and Optimization for
Sustainability. doi:10.1007/s41660-018-0033-6
Tan, X., Liu, Y., Gu, Y., Zeng, G., Hu, X., Wang, X., . . . Sun, Z. (2015). Biochar amendment to
lead contaminated soil: Effects on the fluorescein diacetate hydrolytic activity and
phytotoxicity to rice. Environmental Toxicology and Chemistry, 34(9), 1962-1968.
doi:10.1002/etc.3023
Tan, X., Liu, Y., Gu, Y., Zeng, G., Wang, X., Hu, X., . . . Yang, Z. (2015). Immobilization of Cd(II)
in acid soil amended with different biochars with a long term of incubation.
Environmental Science and Pollution Research, 22(16), 12597-12604. doi:10.1007/
s11356-015-4523-6
Tan, X., Liu, Y., Zeng, G., Wang, X., Hu, X., Gu, Y., & Yang, Z. (2015). Application of biochar for
the removal of pollutants from aqueous solutions. Chemosphere, 125, 70-85.
doi:10.1016/j.chemosphere.2014.12.058
Tan, Z., Lin, C. S. K., Ji, X., & Rainey, T. J. (2017). Returning biochar to fields: A review. Applied
Soil Ecology, 116, 1-11. doi:https://doi.org/10.1016/j.apsoil.2017.03.017
Tanaka, H., Kyaw, K. M., Toyota, K., & Motobayashi, T. (2006). Influence of application of rice
straw, farmyard manure, and municipal biowastes on nitrogen fixation, soil microbial
biomass N, and mineral N in a model paddy microcosm. Biology and Fertility of Soils,
42, 501-505.
Tanaka, K., Okawa, H., Hashimoto, K., Takahashi, R., Imai, A., & Sugawara, K. (2016). Effect of
NO2 in exhaust gas from an oxyfuel combustion system on the cap rock of a proposed
CO2 injection site. Applied Geochemistry, 70(Supplement C), 17-26. doi:https://doi.org/
10.1016/j.apgeochem.2016.04.007
Tanaka, S., Fujioka, K., Kokubun, T., Ohata, M., Yoshizawa, S., & Mineki, S. (2005, 07/2005).
Proliferation of microorganisms in compost by addition of various charcoals. Paper
presented at the Carbon 2005, Gyeongju, Korea.
Tanaka, Y., Sawada, Y., Tanase, D., Tanaka, J., Shiomi, S., & Kasukawa, T. (2017). Tomakomai
CCS Demonstration Project of Japan, CO2 Injection in Process. Energy Procedia, 114,
5836-5846. doi:https://doi.org/10.1016/j.egypro.2017.03.1721
Tang, J., et al. . (2013). Characteristics of biochar and its application in remediation of
contaminated soil. Journal of Bioscience and Bioengineering, 116(6), 653-659. Retrieved
from http://www.sciencedirect.com/science/article/pii/S138917231300217X
Tang, J., Lv, H., Gong, Y., & Huang, Y. (2015). Preparation and characterization of a novel
graphene/biochar composite for aqueous phenanthrene and mercury removal.
Bioresource Technology, 196, 355 - 363. doi:10.1016/j.biortech.2015.07.047
Tang, Q., Zhang, J., & Fang, J. (2011). Shellfish and seaweed mariculture increase atmospheric
CO2 absorption by coastal ecosystems. Marine Ecology Progress Series, 427, 97-105.
Retrieved from https://www.researchgate.net/publication/
272863933_Shellfish_and_seaweed_mariculture_increase_atmospheric_CO2_absorptio
n_by_coastal_ecosystems
Tang, W., Guo, Y., Wu, J.-G., Huang, Z.-Q., & Dai, J.-Y. (2014). Structural changes of aged
biochar and the influence on phenanthrene adsorption. Huan Jing Ke Xue, 35(7),
2604-2611. Retrieved from http://europepmc.org/abstract/med/25244844
Tank, E. P. T. (2021). Carbon dioxide removal: Nature-based and technological solutions
Retrieved from https://www.europarl.europa.eu/thinktank/en/document.html?
reference=EPRS_BRI(2021)689336
Tanzer, S. E., Blok, K., & Ramírez, A. (2021). Curing time: a temporally explicit life cycle CO2
accounting of mineralization, bioenergy, and CCS in the concrete sector. Faraday
Discussions, 230(0), 271-291. doi:10.1039/D0FD00139B
Tanzer, S. E., & Ramírez, A. (2019). When are negative emissions negative emissions? Energy
& Environmental Science, 12, 1210-1219. doi:10.1039/C8EE03338B
Tapia, J. F. D. (2021). Evaluating negative emissions technologies using neutrosophic data
envelopment analysis. Journal of Cleaner Production, 286, 125494. doi:https://doi.org/
10.1016/j.jclepro.2020.125494
Tapia, J. F. D., Lee, J.-Y., Ooi, R. E. H., Foo, D. C. Y., & Tan, R. R. (2016). Planning and
scheduling of CO2 capture, utilization and storage (CCUS) operations as a strip packing
problem. Process Safety and Environmental Protection, 104(Part A), 358-372. doi:http://
dx.doi.org/10.1016/j.psep.2016.09.013
Tarantola, A. (2018). These robotic 'trees' can turn CO2 into concrete. engadget. Retrieved from
https://www.engadget.com/2018/09/11/robot-trees-co2-into-concrete-climate-change/
Tarasawatpipat, C., Kreetachat, T., Mekhum, W., & Suwannahong, K. (2014). Biochar
Production from Agricultural Waste in Amphawa District, Samutsongkram Province
Thailand. Advanced Materials Research, 1051, 388 - 391. doi:10.4028/
www.scientific.net/AMR.1051.388
Targets, S. B. (2021). Ambitious Corporate Climte Action. Retrieved from https://
sciencebasedtargets.org/
Tarves, P. C., Mullen, C. A., & Boateng, A. A. (2016). Effects of Various Reactive Gas
Atmospheres on the Properties of Bio-Oils Produced Using Microwave Pyrolysis. ACS
Sustainable Chemistry & Engineering, 4(3), 930-936. doi:10.1021/
acssuschemeng.5b01016
Tatarková, V., Hiller, E., & Vaculík, M. (2013). Impact of wheat straw biochar addition to soil on
the sorption, leaching, dissipation of the herbicide (4-chloro-2-methylphenoxy)acetic acid
and the growth of sunflower (Helianthus annuus L.). Ecotoxicology and Environmental
Safety, 92, 215-221. Retrieved from http://www.sciencedirect.com/science/article/pii/
S0147651313000511
Taulbee, D., Hodgen, R., & Aden, N. (2012). Co-Briquetting of Coal and Biomass. Paper
presented at the 2012 International Pittsburgh Coal conference. www.researchgate.net/
profile/Darrell_Taulbee/publication/264551732_Co-Briquetting_of_Coal_and_Biomass/
links/546e09600cf2b5fc1760324f.pdf
Taupe, N. C., Lynch, D., Wnetrzak, R., Kwapinska, M., Kwapinski, W., & Leahy, J. J. (2016).
Updraft gasification of poultry litter at farm-scale – A case study. Waste Management, 50,
324 - 333. doi:10.1016/j.wasman.2016.02.036
Tausz, M., & MacKenzie, R. (2017). Using forests to manage carbon: a heated debate. The
Conversation. Retrieved from https://theconversation.com/using-forests-to-manage-
carbon-a-heated-debate-81363?utm_source=linkedin&utm_medium=linkedinbutton
Tavoni, M., & Socolow, R. (2013). Modeling meets science and technology: an introduction to a
special issue on negative emissions. Climatic Change, 118(1), 1-14. doi:10.1007/
s10584-013-0757-9
Tavoni, M., Sohngen, B., & Bosetti, V. (2007). Forestry and the carbon market response to
stabilize climate. Energy Policy, 35(11), 5346-5353. doi:https://doi.org/10.1016/
j.enpol.2006.01.036
Tay, V., et al. (2013). Leaching Properties of a Biochar Derived from a Western Australia Pine
Plantation. Proceedings of Chemeca 2013: Challenging Tomorrow, 1. Retrieved from
http://www.conference.net.au/chemeca2013/papers/30426.pdf
Taylor, A. M. (2013). A life cycle inventory for switchgrass fuel pellets. Retrieved from https://
ag.tennessee.edu/sungrant/Documents/Research%20Grants/
SE%20Sun%20Grant%20Center%20UT%20Internal%20Competitive%20Grants%20Pro
gram/2009%20Funded%20Projects/A.%20Taylor/Taylor_FinalReport.pdf
Taylor, C. (2021). Fight Carbon. With Coin. Retrieved from https://mashable.com/feature/carbon-
coin-climate-change-crypto/
Taylor, D. (2010). Biomass burning, humans and climate change in Southeast Asia. Biodiversity
and Conservation, 19(4), 1025-1042. Retrieved from https://link.springer.com/article/
10.1007/s10531-009-9756-6
Taylor, G., & Jenkins, J. (2014). Biochar Alters the Soil Microbiome: Results from Amplicon
Surveys of Three European Field. Paper presented at the Plant & Animal Genome XXIII.
https://pag.confex.com/pag/xxiii/webprogram/Paper17533.html
Taylor, L. L., et al. (2017). Simulating carbon capture by enhanced weathering with croplands:
an overview of key processes highlighting areas of future model development. Biology
Letters, 13(4), 1-8. Retrieved from http://rsbl.royalsocietypublishing.org/content/
roybiolett/13/4/20160868.full.pdf
Taylor, L. L., Driscoll, C. T., Groffman, P. M., Rau, G. H., Blum, J. D., & Beerling, D. J. (2020).
Increased carbon capture by a silicate-treated forested watershed affected by acid
deposition. Biogeosciences Discuss., 2020, 1-29. doi:10.5194/bg-2020-288
Taylor, L. L., Leake, J. R., Quirk, J., Hardy, K., Banwart, S. A., & Beerling, D. J. (2009).
Biological weathering and the long-term carbon cycle: integrating mycorrhizal evolution
and function into the current paradigm. Geobiology, 7(2), 171-191. doi:10.1111/
j.1472-4669.2009.00194.x
Taylor, L. L., Quirk, J., Thorley, R. M. S., Kharecha, P. A., Hansen, J., Ridgwell, A., . . . Beerling,
D. J. (2016). Enhanced weathering strategies for stabilizing climate and averting ocean
acidification. Nature Climate Change, 6(4), 402-406. doi:10.1038/nclimate2882
http://www.nature.com/nclimate/journal/v6/n4/abs/nclimate2882.html#supplementary-
information
Taylor, M. (2020). Governments urged to go beyond net zero climate targets. The Guardian.
Retrieved from https://www.theguardian.com/environment/2020/nov/13/governments-
urged-to-go-beyond-net-zero-climate-targets
Taylor, P. (2010). The Biochar Revolution.
Tcvetkov, P., Cherepovitsyn, A., & Fedoseev, S. (2019). Public perception of carbon capture and
storage: A state-of-the-art overview. Heliyon, 5(12). doi:10.1016/j.heliyon.2019.e02845
Teague, C. M., et al. (2019). Microporous and hollow carbon spheres derived from soft drinks:
Promising CO2 separation materials. Microporous and Mesoporous Materials, 286,
199-206. Retrieved from https://www.sciencedirect.com/science/article/abs/pii/
S1387181119302173?via%3Dihub#!
Team, E. (2020). Chasing Carbon. One Earth, 3(2), 135-136. doi:10.1016/j.oneear.2020.08.005
Teat, A. L., Neufeld, H. S., Gehl, R. J., & Gonzales, E. (2014). Growth and yield of Miscanthus ×
giganteus grown in fertilized and biochar-amended soils in the Western North Carolina
Mountains. In.
Technologies, L. (2020). Wyoming Carbon Capture, Utilization, and Storage (CCUS) Study.
Retrieved from https://drive.google.com/file/d/1s-
OmVyc9QSE795aqFGLWexFYZ6k_VhKu/view
Technology, C. U. o. (2018). Plenary Presentations: International Conference on Negative CO
2
Emissions. Retrieved from http://www.entek.chalmers.se/lyngfelt/presentations/
Plenaries.html
Technology, K. I. o. (2020). From Greenhouse Gas to a High-tech Resource
Technologies for Negative Greenhouse Gas Emissions: Within the NECOC Research Project, a
Test Facility for Conversion of CO2 from the Air into Solid Carbon is being built at KIT
[Press release]. Retrieved from https://www.kit.edu/kit/english/pi_2020_019_from-
greenhouse-gas-to-a-high-tech-resource.php
Teel, W. S. (2012). Capturing Heat from a Batch Biochar Production System for Use in
Greenhouses and Hoop Houses. Journal of Agricultural Science and Technology A, 2,
1332-1342. Retrieved from http://www.davidpublishing.com/davidpublishing/Upfile/
1/15/2013/2013011573763825.pdf
Teichmann, I. (2014). Climate Protection Through Biochar in German Agriculture: Potentials and
Costs. DIW Economic Bulletin, 4, 4-26. Retrieved from http://www.diw.de/documents/
publikationen/73/diw_01.c.442766.de/diw_econ_bull_2014-04-3.pdf
Teichmann, I. (2014). Technical Greenhouse-Gas Mitigation Potentials of Biochar Soil
Incorporation in Germany. Retrieved from http://ideas.repec.org/p/diw/diwwpp/
dp1406.html
Teichmann, I. (2015). An Economic Assessment of Soil Carbon Sequestration with Biochar in
Germany. Deutsches Institut für Wirtschaftsforschung (German Institute for Economic
Research), 1476, 1-99. Retrieved from http://www.soep.de/documents/publikationen/73/
diw_01.c.502971.de/dp1476.pdf
Teir, S., Auvinen, T., Said, A., Kotiranta, T., & Peltola, H. (2016). Performance of Separation
Processes for Precipitated Calcium Carbonate Produced with an Innovative Method from
Steelmaking Slag and Carbon Dioxide. 4(6). doi:10.3389/fenrg.2016.00006
Teixidó, M., et al. . (2011). Speciation of the Ionizable Antibiotic Sulfamethazine on Black
Carbon (Biochar). Environmental Science and Technology, 45(23), 10020-10027.
doi:10.1021/es202487h
Teixidó, M., et al. . (2013). Predicting Contaminant Adsorption in Black Carbon (Biochar)-
Amended Soil for the Veterinary Antimicrobial Sulfamethazine. Environmental Science
and Technology, 47(12), 6197-6205. Retrieved from http://pubs.acs.org/doi/abs/10.1021/
es400911c
Teixido, M., & Pignatello, J. J. (2011). Sorption of the antimicrobial sulfamethazine to biochar.
Tejada, L., & Rist, S. (2017). Seeing land deals through the lens of the ‘land–water nexus’: the
case of biofuel production in Piura, Peru. The Journal of Peasant Studies, 1-24.
doi:10.1080/03066150.2016.1259220
Tejada, L., & Rist, S. (2018). Seeing land deals through the lens of the ‘land–water nexus’: the
case of biofuel production in Piura, Peru. The Journal of Peasant Studies, 45(7),
1247-1271. doi:10.1080/03066150.2016.1259220
Tejerina, M. R. (2010). Biochar as a strategy for sustainable land management, poverty
reduction and climate change mitigation/adaptation? Thermolysis of lignin for value-
added products. (MSc Environment and Resource Management). Vrije Universiteit,
Retrieved from https://www.osti.gov/etdeweb/biblio/21338958
Temperton, V. M., Buchmann, N., Buisson, E., Durigan, G., Kazmierczak, Ł., Perring, M. P., . . .
Overbeck, G. E. (2019). Step back from the forest and step up to the Bonn Challenge:
how a broad ecological perspective can promote successful landscape restoration.
Restoration Ecology, 27(4), 705-719. doi:10.1111/rec.12989
Temple, J. (2017). Potential Carbon Capture Game Changer Nears Completion. MIT Technology
Review. Retrieved from https://www.technologyreview.com/s/608755/potential-carbon-
capture-game-changer-nears-completion/
Temple, J. (2019). Carbon farming is the hot (and overhyped) tool to fight climate change. MIT
Technology Review. Retrieved from https://www.technologyreview.com/s/613850/
carbon-farming-is-the-hot-and-overhyped-tool-to-fight-climate-change/
Temple, J. (2019). Turning one greenhouse gas into another could combat climate change. MIT
Technology Review. Retrieved from https://www.technologyreview.com/s/613556/
turning-one-greenhouse-gas-into-another-could-combat-climate-change/
Temple, J. (2019). Why the world’s biggest CO2-sucking plant would be used to … err, dig up
more oil? MIT Technology Review, (May 27). Retrieved from https://
www.technologyreview.com/s/613579/why-the-worlds-biggest-cosub2-sub-sucking-plant-
would-be-used-to-err-dig-up-more-oil/
Temple, J. (2020). Asbestos could be a powerful weapon against climate change (you read that
right). MIT Technology Review. Retrieved from https://www.technologyreview.com/
2020/10/06/1009374/asbestos-could-be-a-powerful-weapon-against-climate-change-
you-read-that-right/amp/
Temple, J. (2020). Biden calls for major investments into carbon removal tech. MIT Technology
Review. Retrieved from https://www.technologyreview.com/2020/11/09/1011859/biden-
calls-for-major-investments-into-carbon-removal-tech/
Temple, J. (2020). How Amazon’s offsets could exaggerate its progress toward “net zero”
emissions. MIT Technology Review. Retrieved from https://www.technologyreview.com/
2020/11/02/1011500/amazon-forestry-offsets-net-zero-carbon-climate-change/amp/
Temple, J. (2020). How green sand could capture billions of tons of carbon dioxide. MIT
Technology Review. Retrieved from https://www.technologyreview.com/
2020/06/22/1004218/how-green-sand-could-capture-billions-of-tons-of-carbon-dioxide/
Temple, J. (2020). Why we can’t count on carbon-sucking farms to slow climate change.
Retrieved from https://www.technologyreview.com/2020/06/03/1002484/why-we-cant-
count-on-carbon-sucking-farms-to-slow-climate-change/
Temple, J. (2021). Carbon removal hype is becoming a dangerous distraction. MIT Technology
Review. Retrieved from https://www.technologyreview.com/2021/07/08/1027908/carbon-
removal-hype-is-a-dangerous-distraction-climate-change
Temple, J. (2021). Companies hoping to grow carbon-sucking kelp may be rushing ahead of the
science. MIT Technology Review. Retrieved from https://www.technologyreview.com/
2021/09/19/1035889/kelp-carbon-removal-seaweed-sinking-climate-change/
Temple, J. (2021). Here’s Biden’s plan to reboot climate innovation. MIT Technology Review.
Retrieved from https://www.technologyreview.com/2021/02/11/1018134/heres-bidens-
plan-to-reboot-climate-innovation/amp/
ten Berge, H. F. M., et al. (2012). Olivine Weathering in Soil, and Its Effects on Growth and
Nutrient Uptake in Ryegrass (Lolium perenne L.): A Pot Experiment. Plos One, 7(8), 1-8.
Retrieved from http://journals.plos.org/plosone/article/file?id=10.1371/
journal.pone.0042098&type=printable
Tenenbaum, D. J. (2009). Biochar: Carbon Mitigation from the Ground Up. Environmental
Health Perspectives, 117(2), A70-A73. Retrieved from https://www.ncbi.nlm.nih.gov/pmc/
articles/PMC2649247/
Tenenbaum, D. J. (2009). Mitigation from the Ground Up. Environmental Health Perspectives,
117(2), A70-A73. Retrieved from http://www.ehponline.org/docs/2009/117-2/innovations-
abs.html
Tepe, J. B., & Dodge, B. F. (1943). Absorption of carbon dioxide by sodium hydroxide solutions
in a packed column. Trans. Am. Inst. Chem. Eng., 39, 255-276. Retrieved from http://
refhub.elsevier.com/S2542-4351(18)30225-3/sref29
Terasawa, K. (2021). As A Proven And Flexible Technology, Carbon Capture Can Help Enable
Net Zero – If We Support It. Forbes. Retrieved from https://www.forbes.com/sites/
mitsubishiheavyindustries/2021/06/08/as-a-proven-and-flexible-technology-carbon-
capture-can-help-enable-net-zero--if-we-support-it/?sh=27aa3d8c6ea7
Terlouw, T., Bauer, C., Rosa, L., & Mazzotti, M. (2021). Life cycle assessment of carbon dioxide
removal technologies: a critical review. Energy & Environmental Science. doi:10.1039/
D0EE03757E
Terlouw, T., Treyer, K., Bauer, C., & Mazzotti, M. (2021). Life Cycle Assessment of Direct Air
Carbon Capture and Storage with Low-Carbon Energy Sources. Environmental Science
& Technology. doi:10.1021/acs.est.1c03263
Ter-Mikaelian, M. T., Colombo, S. J., & Chen, J. (2015). The Burning Question: Does Forest
Bioenergy Reduce Carbon Emissions? A Review of Common Misconceptions about
Forest Carbon Accounting. Journal of Forestry, 113(1), 57-68. doi:10.5849/jof.14-016
Terrer, C., Jackson, R. B., Prentice, I. C., Keenan, T. F., Kaiser, C., Vicca, S., . . . Franklin, O.
(2019). Nitrogen and phosphorus constrain the CO2 fertilization of global plant biomass.
Nature Climate Change, 9(9), 684-689. doi:10.1038/s41558-019-0545-2
Terrer, C., Phillips, R. P., Hungate, B. A., Rosende, J., Pett-Ridge, J., Craig, M. E., . . . Jackson,
R. B. (2021). A trade-off between plant and soil carbon storage under elevated CO2.
Nature, 591(7851), 599-603. doi:10.1038/s41586-021-03306-8
Terwel, B. W., & Daamen, D. D. L. (2012). Initial public reactions to carbon capture and storage
(CCS): differentiating general and local views. Climate Policy, 12(3), 288-300.
doi:10.1080/14693062.2011.637819
Terwel, B. W., Harinck, F., Ellemers, N., & Daamen, D. D. L. (2009). Competence-Based and
Integrity-Based Trust as Predictors of Acceptance of Carbon Dioxide Capture and
Storage (CCS). Risk Analysis, 29(8), 1129-1140. doi:https://doi.org/10.1111/
j.1539-6924.2009.01256.x
Terwel, B. W., Harinck, F., Ellemers, N., & Daamen, D. D. L. (2011). Going beyond the
properties of CO2 capture and storage (CCS) technology: How trust in stakeholders
affects public acceptance of CCS. International Journal of Greenhouse Gas Control,
5(2), 181-188. doi:https://doi.org/10.1016/j.ijggc.2010.10.001
Terwel, B. W., ter Mors, E., & Daamen, D. D. L. (2012). It's not only about safety: Beliefs and
attitudes of 811 local residents regarding a CCS project in Barendrecht. International
Journal of Greenhouse Gas Control, 9, 41-51. doi:https://doi.org/10.1016/
j.ijggc.2012.02.017
Tesfaye, T., & Ramayya, V. (2015). Experimental Testing and Comparative Evaluation of
Different Pyrolysis Cook Stove. In.
Thakkar, J., Kumar, A., Ghatora, S., & Canter, C. (2016). Energy balance and greenhouse gas
emissions from the production and sequestration of charcoal from agricultural residues.
Renewable Energy, 94, 558-567. doi:https://doi.org/10.1016/j.renene.2016.03.087
Thammasom, N., Vityakon, P., Lawongsa, P., & Saenjan, P. (2016). Biochar and rice straw have
different effects on soil productivity, greenhouse gas emission and carbon sequestration
in Northeast Thailand paddy soil. Agriculture and Natural Resources, 50(3), 192-198.
doi:http://dx.doi.org/10.1016/j.anres.2016.01.003
Thamo, T., & Pannell, D. J. (2016). Challenges in developing effective policy for soil carbon
sequestration: perspectives on additionality, leakage, and permanence. Climate Policy,
16(8), 973-992. doi:10.1080/14693062.2015.1075372
Thangalazhy-Gopakumar, S., Al-Nadheri, W. M. A., Jegarajan, D., Sahu, J. N., Mubarak, N. M.,
& Nizamuddin, S. (2014). Utilization of palm oil sludge through pyrolysis for bio-oil and
bio-char production. Bioresource Technology, 178, 65-69. doi:10.1016/
j.biortech.2014.09.068
Thangarajan, R., Bolan, N., & Mandal, S. (2015). Biochar for inorganic contaminant
Management in Soil. In Biochar: Production, Characterization, and Applications.
Thangata, P. H., & Hildebrand, P. E. (2012). Carbon stock and sequestration potential of
agroforestry systems in smallholder agroecosystems of sub-Saharan Africa:
Mechanisms for ‘reducing emissions from deforestation and forest
degradation’ (REDD+). Agriculture, Ecosystems & Environment, 158, 172-183.
doi:https://doi.org/10.1016/j.agee.2012.06.007
Theeba, M., Bachmann, R. T., Z.I, I., M, Z., M.H., H., & A.W, S. (2012). Characterization of Local
Mill Rice Husk Charcoal and Its Effect on Compost Properties. Malaysian Journal of Soil
Science, 16, 89-102. Retrieved from http://www.msss.com.my/mjss/Full%20Text/
Vol%2016/Theeba.pdf
Theis, J. E., Rillig, M. C., & .Graber, E. R. (2015). Biochar effects on the abundance , activity
and diversity of the soil biota. In Biochar for Environmental Management: Science and
Technology and Implementation.
Theo, W. L., Lim, J. S., Hashim, H., Mustaffa, A. A., & Ho, W. S. (2016). Review of pre-
combustion capture and ionic liquid in carbon capture and storage. Applied Energy, 183,
1633-1663. doi:http://dx.doi.org/10.1016/j.apenergy.2016.09.103
Thiele, S., Fuchs, B. M., Ramaiah, N., & Amann, R. (2012). Microbial Community Response
during the Iron Fertilization Experiment LOHAFEX. Applied and Environmental
Microbiology, 78(24), 8803-8812. doi:10.1128/aem.01814-12
Thiele, S., Wolf, C., Schulz, I. K., Assmy, P., Metfies, K., & Fuchs, B. M. (2014). Stable
Composition of the Nano- and Picoplankton Community during the Ocean Iron
Fertilization Experiment LOHAFEX. Plos One, 9(11), 9. doi:10.1371/
journal.pone.0113244
Thies, J. E., & Rillig, M. C. (2009). Characteristics of Biochar - Biological Properties. In J.
Lehmann & S. Joseph (Eds.), Biochar for Environmental Management: Science and
Technology (pp. 85-106). London, UK: Earthscan.
Thies, J. E., & Rilliz, M. C. (2009). Characteristics of Biochar: Biological Properties. In S.
Lehmann & J. P. Joseph (Eds.), Biochar for Environmental Management (pp. 85-106).
ThiLan Anh, M., et al. (2015). Effect of enhanced biochar on green house gas emission and
paddy rice yield from loamy sand soil after first year trial in Thai Nguyen, Viet Nam. In.
Thiruvenkatachari, R., Su, S., An, H., & Yu, X. X. (2009). Post combustion CO2 capture by
carbon fibre monolithic adsorbents. Progress in Energy and Combustion Science, 35(5),
438-455. doi:https://doi.org/10.1016/j.pecs.2009.05.003
Thomas, D. M., Mechery, J., & Paulose, S. V. (2016). Carbon dioxide capture strategies from
flue gas using microalgae: a review. Environmental Science and Pollution Research,
23(17), 16926-16940. doi:10.1007/s11356-016-7158-3
Thomas, G., Pidgeon, N., & Roberts, E. (2018). Ambivalence, naturalness and normality in
public perceptions of carbon capture and storage in biomass, fossil energy, and
industrial applications in the United Kingdom. Energy Research & Social Science, 46,
1-9. doi:https://doi.org/10.1016/j.erss.2018.06.007
Thomas, H., Schiettecatte, L. S., Suykens, K., Koné, Y. J. M., Shadwick, E. H., Prowe, A. E.
F., . . . Borges, A. V. (2009). Enhanced ocean carbon storage from anaerobic alkalinity
generation in coastal sediments. Biogeosciences, 6(2), 267-274. doi:10.5194/
bg-6-267-2009
Thomas, S. (2014). Blue carbon: Knowledge gaps, critical issues, and novel approaches.
Ecological Economics, 107, 22-38. doi:https://doi.org/10.1016/j.ecolecon.2014.07.028
Thomas, S. C., & Gale, N. (2015). Biochar and forest restoration: a review and meta-analysis of
tree growth responses. New Forests, 46(5), 931-946. doi:10.1007/s11056-015-9491-7
Thomas, W. R. P., & Timothy, M. L. (2013). Scenarios for future biodiversity loss due to multiple
drivers reveal conflict between mitigating climate change and preserving biodiversity.
Environmental Research Letters, 8(2), 1-10. Retrieved from http://stacks.iop.org/
1748-9326/8/i=2/a=025024
Thomazini, A., Spokas, K., Hall, K., Ippolito, J., Lentz, R., & Novak, J. (2015). GHG impacts of
biochar: Predictability for the same biochar. Agriculture, Ecosystems & Environment,
207, 183 - 191. doi:10.1016/j.agee.2015.04.012
Thompson, A. (2017). The New Plants That Could Save Us From Climate Change. Popular
Mechanics. Retrieved from http://www.popularmechanics.com/science/green-tech/
a14000753/the-plants-that-could-save-us-from-climate-change/
Thompson, A. (2017). The World's First Negative Emissions Plant Is Now Online. Popular
Mechanics. Retrieved from http://www.popularmechanics.com/science/green-tech/news/
a28629/first-negative-emissions-plant/
Thompson, J., & Beck, L. (2021). Scaling Up Climate Ambition: Carbon Capture, Removal, and
Storage Priorities in the 117th Congress. Retrieved from https://www.catf.us/2021/05/
scaling-up-climate-ambition-carbon-capture-removal-and-storage-priorities-in-the-117th-
congress/
Thompson, K., et al. (2017). Storage of carbon by marine ecosystems and their contribution to
climate change mitigation. Retrieved from http://www.greenpeace.to/greenpeace/wp-
content/uploads/2017/05/Carbon-in-Marine-Ecosystems-Technical-Report-March-2017-
GRL-TRR-03-2017.pdf
Thompson, W., Whistance, J., & Meyer, S. (2011). Effects of US biofuel policies on US and
world petroleum product markets with consequences for greenhouse gas emissions.
Energy Policy, 39(9), 5509-5518. doi:https://doi.org/10.1016/j.enpol.2011.05.011
Thomson, A. M., César Izaurralde, R., Smith, S. J., & Clarke, L. E. (2008). Integrated estimates
of global terrestrial carbon sequestration. Global Environmental Change, 18(1), 192-203.
doi:https://doi.org/10.1016/j.gloenvcha.2007.10.002
Thomson, L. (2021). Aggressive Approaches Needed to Curtail CO2 Emissions. AZO
Cleantech. Retrieved from https://www.azocleantech.com/news.aspx?newsID=29862
Thoni, T., Beck, S., Borchers, M., Förster, J., Görl, K., Hahn, A., . . . Thrän, D. (2020).
Deployment of Negative Emissions Technologies at the National Level: A Need for
Holistic Feasibility Assessments. Frontiers in Climate, 2(12). doi:10.3389/
fclim.2020.590305
Thorley, R. M. S., Taylor, L. L., Banwart, S. A., Leake, J. R., & Beerling, D. J. (2015). The role of
forest trees and their mycorrhizal fungi in carbonate rock weathering and its significance
for global carbon cycling. Plant, Cell & Environment, 38(9), 1947-1961. doi:10.1111/
pce.12444
Thornley, P., et al. . (2015). Maximizing the greenhouse gas reductions from biomass: The role
of life cycle assessment. Biomass and Bioenergy, 81, 35 - 43. doi:10.1016/
j.biombioe.2015.05.002
Thornley, P., & Cooper, D. (2008). The effectiveness of policy instruments in promoting
bioenergy. Biomass and Bioenergy, 32(10), 903-913. doi:https://doi.org/10.1016/
j.biombioe.2008.01.011
Thornley, P., Gilbert, P., Shackley, S., & Hammond, J. (2015). Maximizing the greenhouse gas
reductions from biomass: The role of life cycle assessment. Biomass and Bioenergy, 81,
35-43. doi:https://doi.org/10.1016/j.biombioe.2015.05.002
Thornley, P., Upham, P., & Tomei, J. (2009). Sustainability constraints on UK bioenergy
development. Energy Policy, 37(12), 5623-5635. doi:https://doi.org/10.1016/
j.enpol.2009.08.028
Thrän, D., Schaldach, R., Millinger, M., Wolf, V., Arendt, O., Ponitka, J., . . . Schüngel, J. (2016).
The MILESTONES modeling framework: An integrated analysis of national bioenergy
strategies and their global environmental impacts. Environmental Modelling & Software,
86, 14-29. doi:https://doi.org/10.1016/j.envsoft.2016.09.005
Thrän, D., Seidenberger, T., Zeddies, J., & Offermann, R. (2010). Global biomass potentials —
Resources, drivers and scenario results. Energy for Sustainable Development, 14(3),
200-205. doi:https://doi.org/10.1016/j.esd.2010.07.004
Thu, T. N., Phuong, L. B. T., Van, T. M., & Hong, S. N. (2015). Effect of Water Regimes and
Organic Matter Strategies on Mitigating Green House Gas Emission from Rice
Cultivation and Co-benefits in Agriculture in Vietnam. In.
Thuncher, J. (2020). Carbon capture firm grows. Castanet.net. Retrieved from https://
www.castanet.net/news/BC/311010/Carbon-Engineering-There-it-grows-again
Tian, J., Miller, V., Chiu, P. C., Maresca, J. A., Guo, M., & Imhoff, P. T. (2016). Nutrient release
and ammonium sorption by poultry litter and wood biochars in stormwater treatment.
Science of The Total Environment, 553, 596 - 606. doi:10.1016/j.scitotenv.2016.02.129
Tian, Y., et al. . (2012). Biochar made from green waste as peat substitute in growth media for
Calathea rotundifola cv. Fasciata. Scientia Horticulturae, 143, 15–18. Retrieved from
http://www.sciencedirect.com/science/article/pii/S030442381200249X
Tickell, O. (2015). Olivine: Time for Action. In T. Goreau, R. Larson, & J. Campe (Eds.),
Geotherapy: Innovative Methods of Soil Fertility Restoration, Carbon Sequestration, and
Reversing CO2 Increase (pp. 153-194).
Tide, R. (2021). Leading Ocean Scientists to Advise, Evaluate Running Tide's Ocean-Based
Climate Solution Retrieved from https://www.wfmz.com/news/pr_newswire/
pr_newswire_technology/leading-ocean-scientists-to-advise-evaluate-running-tides-
ocean-based-climate-solution/article_3264b02e-91f8-5381-b78a-43e3db30ebeb.html
Tidy, J. (2018). Company captures carbon dioxide from the air in quest to avoid CO2 shortages.
SkyNews. Retrieved from https://news.sky.com/story/company-captures-carbon-dioxide-
from-the-air-in-quest-to-avoid-co2-shortages-11446011
TieZheng, M., et al. . (2015). Remediation of biological organic fertilizer and biochar in paddy
soil contaminated by Cd and Pb. Journal of Agricultural Resources and Environment,
32(1), 14-19. Retrieved from http://www.cabdirect.org/abstracts/20153202407.html
Tiilikkala, K. (2016). Opportunities for biochar production and use in Finland - peat replacement?
Retrieved from https://jukuri.luke.fi/bitstream/handle/10024/531175/
Opportunities%20for%20Biochar%20use%20in%20Finland.pdf?sequence=1
Tilman, D., et al. (2009). Beneficial Biofuels—The Food, Energy, and Environment Trilemma.
Science, 325, 270-271. Retrieved from http://www.usclimatenetwork.org/resource-
database/Tilman%20et%20al%202009.pdf
Tilman, D., Balzer, C., Hill, J., & Befort, B. L. (2011). Global food demand and the sustainable
intensification of agriculture. Proceedings of the National Academy of Sciences, 108(50),
20260-20264. doi:10.1073/pnas.1116437108
Tilman, D., Hill, J., & Lehman, C. (2006). Carbon-negative biofuels from low-input high-diversity
grassland biomass. Science, 325, 270-271. Retrieved from http://tamu.edu/faculty/tpd8/
BICH407/1598.pdf
Timmer, J. (2017). Bacteria under pressure run reaction in reverse to sequester carbon. ARS
Technica. Retrieved from https://arstechnica.com/science/2017/12/bacteria-under-
pressure-run-reaction-in-reverse-to-sequester-carbon/
Timothy, D. A., Wong, C. S., Nojiri, Y., Ianson, D. C., & Whitney, F. A. (2006). The effects of
patch expansion on budgets of C, N and Si for the Subarctic Ecosystem Response to
Iron Enrichment Study (SERIES). Deep Sea Research Part II: Topical Studies in
Oceanography, 53(20), 2034-2052. doi:https://doi.org/10.1016/j.dsr2.2006.05.042
Ting-Ting, Q., Li, D.-C., & Jiang, H. (2014). Thermochemical Behavior of Tris(2-Butoxyethyl)
Phosphate (TBEP) during Co-pyrolysis with Biomass. Environmental Science &
Technology, 48(18), 10734 - 10742. doi:10.1021/es502669s
Tinsley, D., & Ennis, J. (2015).
Tinwala, F., Joshi, A. K., Yadav, S., & Mohanty, P. (2015). Thermo-chemical conversion of
sawdust through in-situ quenching of pyro-vapor for green fuel. Industrial Crops and
Products, 77, 560 - 564. doi:10.1016/j.indcrop.2015.09.024
Tinwala, F., Mohanty, P., Parmar, S., Patel, A., & Pant, K. K. (2015). Intermediate pyrolysis of
agro-industrial biomasses in bench-scale pyrolyser: Product yields and its
characterization. Bioresource Technology, 188, 258-264. doi:10.1016/
j.biortech.2015.02.006
Tipper, E. T., Stevenson, E. I., Alcock, V., Knight, A. C. G., Baronas, J. J., Hilton, R. G., . . .
Hughes, G. (2021). Global silicate weathering flux overestimated because of sediment–
water cation exchange. Proceedings of the National Academy of Sciences, 118(1),
e2016430118. doi:10.1073/pnas.2016430118
Titiladunayo, I. F., McDonald, A. G., & Olorunnisola, P. F. (2012). Effect of Temperature on
Biochar Product Yield from Selected Lignocellulosic Biomass in a Pyrolysis Process.
Waste and Biomass Valorization, 3(3), 311-318. doi:10.1007/s12649-012-9118-6
Tiwari, D., Goel, C., Bhunia, H., & Bajpai, P. K. (2017). Dynamic CO2 capture by carbon
adsorbents: kinetics, isotherm and thermodynamic studies. Separation and Purification
Technology. doi:http://dx.doi.org/10.1016/j.seppur.2017.03.014
Todd, A. C. (2011). CCS – A multidisciplinary global activity for a global challenge. Chemical
Engineering Research and Design, 89(9), 1443-1445. doi:http://doi.org/10.1016/
j.cherd.2011.04.018
Todd, J., Doshi, S., & McInnis, A. (2010). Beyond Coal: A Resilient New Economy for
Appalachia. Solutions, 1, 45-52. Retrieved from http://www.thesolutionsjournal.com/
node/706
Toensmeier, E., & Garrity, D. (2020). How Climate Change Strategies That Use Biomass Can
Be More Realistic. Scientific American. Retrieved from https://
www.scientificamerican.com/article/how-climate-change-strategies-that-use-biomass-
can-be-more-realistic/
Tokarska, K. B., & Zickfeld, K. (2013). The effectiveness of net negative carbon dioxide
emissions in reversing anthropogenic climate change. Environmental Research Letters,
10(094013), 1-11. Retrieved from http://iopscience.iop.org/article/
10.1088/1748-9326/10/9/094013/pdf
Tokimatsu, K., Konishi, S., Ishihara, K., Tezuka, T., Yasuoka, R., & Nishio, M. (2016). Role of
innovative technologies under the global zero emissions scenarios. Applied Energy, 162,
1483-1493. doi:http://dx.doi.org/10.1016/j.apenergy.2015.02.051
Tokimatsu, K., Yasuoka, R., & Nishio, M. (2017). Global zero emissions scenarios: The role of
biomass energy with carbon capture and storage by forested land use. Applied Energy,
185, 1899-1906.
Tokoro, T., Watanabe, K., Tada, K., & Kuwae, T. (2018). Air–Water CO2 Flux in Shallow Coastal
Waters: Theory, Methods, and Empirical Studies. In T. Kuwae & M. Hori (Eds.), Blue
Carbon in Shallow Coastal Ecosystems: Carbon Dynamics, Policy, and Implementation
(pp. 153-184). Singapore: Springer Singapore.
Tokushige, K., Akimoto, K., & Tomoda, T. (2007). Public acceptance and risk-benefit perception
of CO2 geological storage for global warming mitigation in Japan. Mitigation and
Adaptation Strategies for Global Change, 12(7), 1237-1251. doi:10.1007/
s11027-006-9037-6
Tokushige, K., Akimoto, K., & Tomoda, T. (2007). Public perceptions on the acceptance of
geological storage of carbon dioxide and information influencing the acceptance.
International Journal of Greenhouse Gas Control, 1(1), 101-112. doi:https://doi.org/
10.1016/S1750-5836(07)00020-5
Tollefson, D. (2014). Quorum Sensing Molecules for Unicellular Organisms: Spectroscopic and
Computational Study of Conformational Behavior. In.
Tollefson, J. (2015). Is the 2°C world a fantasy? Nature, 527, 436-438. Retrieved from https://
www.nature.com/polopoly_fs/1.18868!/menu/main/topColumns/topLeftColumn/pdf/
527436a.pdf
Tollefson, J. (2017). Iron-dumping ocean experiment sparks controversy. Nature, 545(7655),
393-394. Retrieved from https://www.nature.com/news/iron-dumping-ocean-experiment-
sparks-controversy-1.22031
Tomei, J., & Helliwell, R. (2016). Food versus fuel? Going beyond biofuels. Land Use Policy, 56,
320-326. doi:http://dx.doi.org/10.1016/j.landusepol.2015.11.015
Tomlinson, T. (2010). Highlighting Progress on Biochar Research, Projects, and Technology.
Eos, Transactions American Geophysical Union, 91(46), 1. doi:10.1029/2010eo460007
Tong, D.-L., & Xu, R.-K. (2015). Ameliorating Effects of Fungus Chaff and Its Biochar on Soil
Acidity. Communications in Soil Science and Plant Analysis, 46(15), 1913 - 1921.
doi:10.1080/00103624.2015.1068323
Tong, H., et al. (2014). Biochar enhances the microbial and chemical transformation of
pentachlorophenol in paddy soil. Soil Biology and Biochemistry, 70, 142-150. Retrieved
from http://www.sciencedirect.com/science/article/pii/S0038071713004458
Tong, L., et al. (2013). Soil Biochar Quantification via Hyperspectral Unmixing. Retrieved from
http://www.ict.griffith.edu.au/~junzhou/papers/C_DICTA_2013_A.pdf
Tong, L., et al. . (2015). Automatic Estimation of Soil Biochar Quantity via Hyperspectral
Imaging. In Computer Vision and Pattern Recognition in Environmental Informatics.
Tonucci, R. G., Nair, P. K. R., Nair, V. D., Garcia, R., & Bernardino, F. S. (2011). Soil Carbon
Storage in Silvopasture and Related Land-Use Systems in the Brazilian Cerrado. 40(3),
833-841. doi:10.2134/jeq2010.0162
Toplensky, R. (2021). Carbon Capture Is Key to Companies’ Net Zero Pledges. Wall Street
Journal. Retrieved from https://www.wsj.com/articles/carbon-capture-is-key-to-
companies-net-zero-pledges-11615975780
Topoliantz, S., Ponge, J. F., Arrouays, D., Ballof, S., & Lavelle, P. (2002). Effect of organic
manure and the endogeic earthworm Pontoscolex corethrurus (Oligochaeta :
Glossoscolecidae) on soil fertility and bean production. Biology and Fertility of Soils,
36(4), 313-319. Retrieved from https://link.springer.com/article/10.1007/
s00374-002-0535-8
Topoliantz, S., Ponge, J. F., & Ballof, S. (2005). Manioc peel and charcoal: a potential organic
amendment for sustainable soil fertility in the tropics. Biology and Fertility of Soils, 41,
15-21.
Torres, A. B., Marchant, R., Lovett, J. C., Smart, J. C. R., & Tipper, R. (2010). Analysis of the
carbon sequestration costs of afforestation and reforestation agroforestry practices and
the use of cost curves to evaluate their potential for implementation of climate change
mitigation. Ecological Economics, 69(3), 469-477. doi:https://doi.org/10.1016/
j.ecolecon.2009.09.007
Torres-Rojas, D., et al. , & Lehmann, J. (2011). Biomass availability, energy consumption and
biochar production in rural households of Western Kenya. Biomass and Bioenergy,
35(8), 3537-3546. doi:10.1016/j.biombioe.2011.05.002
Torri, C., & Fabbri, D. (2014). Biochar enables anaerobic digestion of aqueous phase from
intermediate pyrolysis of biomass. Bioresource Technology, 172, 335 - 341. doi:10.1016/
j.biortech.2014.09.021
Torvanger, A. (2018). Governance of bioenergy with carbon capture and storage (BECCS):
accounting, rewarding, and the Paris agreement. Climate Policy, 19(3), 1-13.
doi:10.1080/14693062.2018.1509044
Torvanger, A., Grimstad, A.-A., Lindeberg, E., Rive, N., Rypdal, K., Skeie, R. B., . . . Tollefsen, P.
(2012). Quality of geological CO2 storage to avoid jeopardizing climate targets. Climatic
Change, 114(2), 245-260. doi:10.1007/s10584-012-0447-z
Torvanger, A., & Meadowcroft, J. (2011). The political economy of technology support: Making
decisions about carbon capture and storage and low carbon energy technologies. Global
Environmental Change, 21(2), 303-312. doi:https://doi.org/10.1016/
j.gloenvcha.2011.01.017
Torvanger, A., Rypdal, K., & Kallbekken, S. (2005). Geological CO2 Storage as a Climate
Change Mitigation Option. Mitigation and Adaptation Strategies for Global Change,
10(4), 693-715. doi:10.1007/s11027-005-2080-x
Toselli, M., et al. (2014). LA COLTURA DEL MELOGRANO IN AMBIENTE
ROMAGNOLO:PRIME VALUTAZIONI AGRONOMICHE ( THE CULTURE OF
POMEGRANATE IN ENVIRONMENT ROMAGNOLO: PRIME AGRICULTURAL
EVALUATIONS). Paper presented at the Notiziario RGV n.1-2/2014 numero Speciale
“Convegno Melograno” (News RGV n.1-2 / 2014 Special number "Conference
Pomegranate"). http://planta-res.entecra.it/rgvnews_pdf/
Notiziario%201-2%202014.pdf#page=15
Total. (2021). Total and Forêt Ressources Management to Plant a 40,000-Hectare Forest in the
Republic of the Congo [Press release]. Retrieved from https://www.total.com/media/
news/press-releases/total-and-frm-to-plant-forest-in-congo
Toth, J. D., & Dou, Z. (2015). SSSA Special PublicationAgricultural and Environmental
Applications of Biochar: Advances and BarriersUse and Impact of Biochar and Charcoal
in Animal Production Systems: Soil Science Society of America, Inc.
Toufiq Reza, M., Werner, M., Pohl, M., & Mumme, J. (2014). Evaluation of Integrated Anaerobic
Digestion and Hydrothermal Carbonization for Bioenergy Production. Journal of
Visualized Experiments, 88, 1-9. doi:10.3791/51734
Touray, N., Tsai, W.-T., Chen, H.-R., & Liu, S.-C. (2014). Thermochemical and pore properties of
goat-manure-derived biochars prepared from different pyrolysis temperatures. Journal of
Analytical and Applied Pyrolysis, 109, 116 - 122. doi:10.1016/j.jaap.2014.07.004
Touray, N., Tsai, W.-T., & Li, M.-H. (2014). Effect of holding time during pyrolysis on
thermochemical and physical properties of biochars derived from goat manure. Waste
and Biomass Valorization, 5(6), 1029-1033. doi:10.1007/s12649-014-9315-6
Toussaint, K. (2020). This biotech startup is making palm oil-substitutes and omega-3s from
carbon emissions. Retrieved from https://www.fastcompany.com/90586249/this-biotech-
startup-is-making-palm-oil-substitutes-and-omega-3s-from-carbon-emissions
Townsend, A., & Havercroft, I. (2019). The LCFS and CCS Protocol: An Overview for
Policymakers and Project Developers. Retrieved from https://
www.globalccsinstitute.com/wp-content/uploads/2019/05/LCFS-and-CCS-
Protocol_digital_version-2.pdf
Trakal, L., et al. . (2011). Biochar application to metal-contaminated soil: Evaluating of Cd, Cu,
Pb and Zn sorption behavior using single- and multi-element sorption experiment. Plant
Soil Environment, 57, 372-380. Retrieved from http://www.agriculturejournals.cz/
publicFiles/44519.pdf
Trakal, L., et al. (2014). Copper removal from aqueous solution using biochar: Effect of chemical
activation. Arabian Journal of Chemistry, 7(1), 43-52. doi:10.1016/j.arabjc.2013.08.001
Trakal, L., et al. . (2014). Geochemical and spectroscopic investigations of Cd and Pb sorption
mechanisms on contrasting biochars: Engineering implications. Bioresource Technology,
171, 442 - 451. doi:10.1016/j.biortech.2014.08.108
Trakal, L., et al. (2016). Lead and cadmium sorption mechanisms on magnetically modified
biochars. Bioresource Technology, 203, 318 - 324. doi:10.1016/j.biortech.2015.12.056
Tran, H. N., You, S.-J., & Chao, H.-P. (2016). Effect of pyrolysis temperatures and times on the
adsorption of cadmium onto orange peel derived biochar. Waste Management &
Research, 34(2), 129 - 138. doi:10.1177/0734242x15615698
Tran, P. D., Wong, L. H., Barber, J., & Loo, J. S. C. (2012). Recent advances in hybrid
photocatalysts for solar fuel production. Energy Environ. Sci., 5, 5902.
Traxler, V. S. (2015).
Traxler, V. S., Thompson, T. A., Faust, P., & Hago, W. (2015).
Trazzi, P. A., Leahy, J. J., Hayes, M. H. B., & Kwapinski, W. (2016). Adsorption and desorption
of phosphate on biochars. Journal of Environmental Chemical Engineering, 4(1), 37 - 46.
doi:10.1016/j.jece.2015.11.005
Tredici, M. R. (1998). Photobiology of microalgae mass cultures: understanding the tools for the
next green revolution. Biofuels, 1, 143-162. Retrieved from http://www.tandfonline.com/
doi/citedby/10.4155/bfs.09.10?scroll=top&needAccess=true
Tredici, M. R., Bassi, N., Prussi, M., Biondi, N., Rodolfi, L., Chini Zittelli, G., & Sampietro, G.
(2015). Energy balance of algal biomass production in a 1-ha “Green Wall Panel” plant:
How to produce algal biomass in a closed reactor achieving a high Net Energy Ratio.
Applied Energy, 154, 1103-1111. doi:https://doi.org/10.1016/j.apenergy.2015.01.086
Treguer, P., Bowler, C., Moriceau, B., Dutkiewicz, S., Gehlen, M., Aumont, O., . . . Pondaven, P.
(2018). Influence of diatom diversity on the ocean biological carbon pump. Nature
Geoscience, 11(1), 27-37. doi:10.1038/s41561-017-0028-x
Treleaven, C. (2019). Could It Be the Holy Grail? Medium, (February 19). Retrieved from https://
medium.com/@ctreleaven/could-it-be-the-holy-grail-b311387f247a
Tremain, P., Zanganeh, J., Hugo, L., Curry, S., & Moghtaderi, B. (2014). Characterization of
“Chailings”: A Char Created from Coal Tailings. Energy & Fuels, 28(12), 7609 - 7615.
doi:10.1021/ef501829f
Trevathan-Tackett, S. M., Kelleway, J., Macreadie, P. I., Beardall, J., Ralph, P., & Bellgrove, A.
(2015). Comparison of marine macrophytes for their contributions to blue carbon
sequestration. Ecology, 96(11), 3043-3057. doi:10.1890/15-0149.1
Trevor, C. T., Stephen, E., & W., L. J. (2016). When does seed limitation matter for scaling up
reforestation from patches to landscapes? Ecological Applications, 26(8), 2439-2450.
doi:doi:10.1002/eap.1410
Trevor, R. (2015). Biochar - reversing the flow of carbon. UTAR Agriculture Science Journal,
1(1), 1-8. Retrieved from http://eprints.utar.edu.my/1677/
Treweek, G. (2015). The effect of winter grazing and a nitrification inhibitor on nitrous oxide
emissions and denitrification in a stony soil. Lincoln University, Retrieved from http://
researcharchive.lincoln.ac.nz/handle/10182/6591
Trexler, M. (2021). Time to Rethink Nature-Based Solutions? Retrieved from https://
illuminem.com/energyvoices/2cf8e0b0-46be-4c8e-abb1-71237461ece0
Trias, R., Ménez, B., le Campion, P., Zivanovic, Y., Lecourt, L., Lecoeuvre, A., . . . Gérard, E.
(2017). High reactivity of deep biota under anthropogenic CO2 injection into basalt.
Nature Communications, 8(1), 1063. doi:10.1038/s41467-017-01288-8
Triberti, L., Nastri, A., & Baldoni, G. (2016). Long-term effects of crop rotation, manure and
mineral fertilisation on carbon sequestration and soil fertility. European Journal of
Agronomy, 74, 47-55. doi:https://doi.org/10.1016/j.eja.2015.11.024
Tributsch, H. (2008). Photovoltaic hydrogen generation. Int. J. Hydrogen Energy, 33, 5911.
Trick, C. G., Bill, B. D., Cochlan, W. P., Wells, M. L., Trainer, V. L., & Pickell, L. D. (2010). Iron
enrichment stimulates toxic diatom production in high-nitrate, low-chlorophyll areas.
Proceedings of the National Academy of Sciences, 107(13), 5887-5892. doi:10.1073/
pnas.0910579107
Trigo, C., Spokas, K. A., Cox, L., & Koskinen, W. C. (2014). Influence of Soil Biochar Aging on
Sorption of the Herbicides MCPA, Nicosulfuron, Terbuthylazine, Indaziflam, and
Fluoroethyldiaminotriazine. Journal of Agricultural and Food Chemistry, 62(45), 10855 -
10860. doi:10.1021/jf5034398
Trimarchi, M. (2009). How could adding lime to seawater cut atmospheric CO2?
HowStuffWorks. Retrieved from https://science.howstuffworks.com/environmental/green-
science/lime-seawater.htm
Tripathi, M., Sahu, J. N., & Ganesan, P. (2016). Effect of process parameters on production of
biochar from biomass waste through pyrolysis: A review. Renewable and Sustainable
Energy Reviews, 55, 467 - 481. doi:10.1016/j.rser.2015.10.122
Tripathy, S. C., & Jena, B. (2019). Iron-Stimulated Phytoplankton Blooms in the Southern
Ocean: a Brief Review. Remote Sensing in Earth Systems Sciences, 2(1), 64-77.
doi:10.1007/s41976-019-00012-y
Trippe, K., Griffith, S., Banowetz, G., & Whitaker, G. (2015). Biochars Derived from Gasified
Feedstocks Increase the Growth and Improve Nutrient Acquisition of Triticum aestivum
(L.) Grown in Agricultural Alfisols. Agriculture, 5(3), 668 - 681. doi:10.3390/
agriculture5030668
Trippe, K. M., Griffith, S. M., Banowetz, G. M., & Whitaker, G. W. (2015). Changes in Soil
Chemistry following Wood and Grass Biochar Amendments to an Acidic Agricultural
Production Soil. Agronomy Journal, 107(4), 1440-1460. doi:10.2134/agronj14.0593
Trivedi, P., Singh, B. P., & Singh, B. K. (2018). Chapter 1 - Soil Carbon: Introduction,
Importance, Status, Threat, and Mitigation. In B. K. Singh (Ed.), Soil Carbon Storage
(pp. 1-28): Academic Press.
Trivedi, V. (2020). Carbon capture technology not on track to reduce CO2 emissions. Down To
Earth. Retrieved from https://www.downtoearth.org.in/news/climate-change/carbon-
capture-technology-not-on-track-to-reduce-co2-emissions-74718
Tromso, U. o. (2017). Battered Earth revived by mineral weathering after mass extinction.
Science Daily. Retrieved from https://www.sciencedaily.com/releases/
2017/05/170505092607.htm
Troy, S. M., et al. . (2013). Impact of biochar addition to soil on greenhouse gas emissions
following pig manure application. Soil Biology and Biochemistry, 60, 173-181. Retrieved
from http://www.sciencedirect.com/science/article/pii/S0038071713000308
Troy, S. M., et al. (2014). The Impact of Biochar Addition on Nutrient Leaching and Soil
Properties from Tillage Soil Amended with Pig Manure. Water, Air, & Soil Pollution, 225,
1-15. Retrieved from https://link.springer.com/article/10.1007/s11270-014-1900-6
Troy, S. M., Lawlor, P. G., O' Flynn, C. J., & Healy, M. G. (2013). Impact of biochar addition to
soil on greenhouse gas emissions following pig manure application. Soil Biology and
Biochemistry, 60, 173-181. doi:https://doi.org/10.1016/j.soilbio.2013.01.019
Trull, T., Rintoul, S. R., Hadfield, M., & Abraham, E. R. (2001). Circulation and seasonal
evolution of polar waters south of Australia: implications for iron fertilization of the
Southern Ocean. Deep Sea Research Part II: Topical Studies in Oceanography, 48(11–
12), 2439-2466. doi:http://dx.doi.org/10.1016/S0967-0645(01)00003-0
Trull, T. W., & Armand, L. (2001). Insights into Southern Ocean carbon export from the δ13C of
particles and dissolved inorganic carbon during the SOIREE iron release experiment.
Deep Sea Research Part II: Topical Studies in Oceanography, 48(11), 2655-2680.
doi:https://doi.org/10.1016/S0967-0645(01)00013-3
Trull, T. W., Davies, D., & Casciotti, K. (2008). Insights into nutrient assimilation and export in
naturally iron-fertilized waters of the Southern Ocean from nitrogen, carbon and oxygen
isotopes. Deep Sea Research Part II: Topical Studies in Oceanography, 55(5), 820-840.
doi:https://doi.org/10.1016/j.dsr2.2007.12.035
Truong, C. C., & Mishra, D. K. (2020). Recent advances in the catalytic fixation of carbon
dioxide to value-added chemicals over alkali metal salts. Journal of CO2 Utilization, 41,
101252. doi:https://doi.org/10.1016/j.jcou.2020.101252
Tryon, E. H. (1948). Effect of charcoal on certain physical, chemical, and biological properties of
forest soils. Ecological Monographs, 18(1), 81-115. Retrieved from http://
onlinelibrary.wiley.com/doi/10.2307/1948629/abstract
Tsai, D. D.-W., et al. (2012). Growth condition study of algae function in ecosystem for CO2 bio-
fixation. Journal of Photochemistry and Photobiology B: Biology, 107, 27-34. Retrieved
from Growth condition study of algae function in ecosystem for CO2 bio-fixation
Tsai, D. D.-W., Chen, P. H., & Ramaraj, R. (2017). The potential of carbon dioxide capture and
sequestration with algae. Ecological Engineering, 98, 17-23. doi:https://doi.org/10.1016/
j.ecoleng.2016.10.049
Tsai, D. D.-W., Ramaraj, R., & Chen, P. H. (2016). Carbon dioxide bio-fixation by algae of high
rate pond on natural water medium. Ecological Engineering, 92, 106-110. doi:https://
doi.org/10.1016/j.ecoleng.2016.03.021
Tsai, W. T., Lee, M. K., & Chang, Y. M. (2007). Fast pyrolysis of rice husk: Product yields and
compositions. Bioresource Technology, 98(1), 22-28. Retrieved from http://
www.sciencedirect.com/science/article/pii/S0960852405005651
Tsai, W.-T., Huang, C.-N., Chen, H.-R., & Cheng, H.-Y. (2015). Pyrolytic Conversion of Horse
Manure into Biochar and Its Thermochemical and Physical Properties. Waste and
Biomass Valorization, 6(6), 975-981. doi:10.1007/s12649-015-9376-1
Tsai, W.-T., Kuo, K.-C., Tsai, C.-Y., Chou, T.-C., Chen, H.-R., & Chang, Y.-M. (2011). Novel
Preparation of Bamboo Biochar and Its Application on Cationic Dye Removal. Journal of
Biobased Materials and Bioenergy, 5(4), 556-561. doi:http://dx.doi.org/10.1166/
jbmb.2011.1177
Tsai, W.-T., & Liu, S.-C. (2015). Thermochemical characterization of cattle manure relevant to its
energy conversion and environmental implications. Biomass Conversion and Biorefinery,
6(1), 71-77. doi:10.1007/s13399-015-0165-7
Tsai, W.-T., Liu, S.-C., Chen, H.-R., Chang, Y.-M., & Tsai, Y.-L. (2012). Textural and chemical
properties of swine-manure-derived biochar pertinent to its potential use as a soil
amendment. Chemosphere, 89(2), 198-203. Retrieved from http://
www.sciencedirect.com/science/article/pii/S0045653512007217
Tsaneva, V. N., Kwapinski, W., Teng, X., & Glowacki, B. A. (2014). Assessment of the structural
evolution of carbons from microwave plasma natural gas reforming and biomass
pyrolysis using Raman spectroscopy. Carbon, 80, 617 - 628. doi:10.1016/
j.carbon.2014.09.005
Tsang, D. C. W., Beiyuan, J., & Deng, M. (2015). Emerging Applications of Biochar. In Biochar:
Production, Characterization, and Applications.
Tsiropoulos, I., Hoefnagels, R., van den Broek, M., Patel, M. K., & Faaij, A. P. C. (2017). The
role of bioenergy and biochemicals in CO2 mitigation through the energy system - a
scenario analysis for the Netherlands. Global Change Biology Bioenergy, 9(9),
1489-1509. doi:10.1111/gcbb.12447
Tsonkova, P., Quinkenstein, A., Böhm, C., Freese, D., & Schaller, E. (2014). Ecosystem services
assessment tool for agroforestry (ESAT-A): An approach to assess selected ecosystem
services provided by alley cropping systems. Ecological Indicators, 45, 285-299.
doi:https://doi.org/10.1016/j.ecolind.2014.04.024
Tsubaki, K., Maruyama, S., Komiya, A., & Mitsugashira, H. (2007). Continuous measurement of
an artificial upwelling of deep sea water induced by the perpetual salt fountain. Deep
Sea Research Part I: Oceanographic Research Papers, 54(1), 75-84. doi:https://doi.org/
10.1016/j.dsr.2006.10.002
Tsuda, A., Kiyosawa, H., Kuwata, A., Mochizuki, M., Shiga, N., Saito, H., . . . Ono, T. (2005).
Responses of diatoms to iron-enrichment (SEEDS) in the western subarctic Pacific,
temporal and spatial comparisons. Progress in Oceanography, 64(2), 189-205.
doi:https://doi.org/10.1016/j.pocean.2005.02.008
Tsuda, A., Saito, H., Nishioka, J., Ono, T., Noiri, Y., & Kudo, I. (2006). Mesozooplankton
response to iron enrichment during the diatom bloom and bloom decline in SERIES (NE
Pacific). Deep Sea Research Part II: Topical Studies in Oceanography, 53(20–22),
2281-2296. doi:http://dx.doi.org/10.1016/j.dsr2.2006.05.041
Tsuda, A., Takeda, S., Saito, H., Nishioka, J., Kudo, I., Nojiri, Y., . . . Yoshie, N. (2007). Evidence
for the grazing hypothesis: Grazing reduces phytoplankton responses of the HNLC
ecosystem to iron enrichment in the western subarctic pacific (SEEDS II). Journal of
Oceanography, 63(6), 983-994. doi:10.1007/s10872-007-0082-x
Tsuda, A., Takeda, S., Saito, H., Nishioka, J., Nojiri, Y., Kudo, I., . . . Saino, T. (2003). A
Mesoscale Iron Enrichment in the Western Subarctic Pacific Induces a Large Centric
Diatom Bloom. Science, 300(5621), 958-961. doi:10.1126/science.1082000
Tsui, L., & Roy, W. R. (2008). The potential applications of using compost chars for removing the
hydrophobic herbicide atrazine from solution. Bioresource Technology, 99(13),
5673--5678. Retrieved from http://www.sciencedirect.com/science/article/pii/
S0960852407008644
Tsuji, T., Sorai, M., Shiga, M., Fujikawa, S., & Kunitake, T. Geological storage of CO2–N2–O2
mixtures produced by membrane-based direct air capture (DAC). Greenhouse Gases:
Science and Technology, n/a(n/a). doi:https://doi.org/10.1002/ghg.2099
Tsumune, D., Nishioka, J., Shimamoto, A., Takeda, S., & Tsuda, A. (2005). Physical behavior of
the SEEDS iron-fertilized patch by sulphur hexafluoride tracer release. Progress in
Oceanography, 64(2), 111-127. doi:https://doi.org/10.1016/j.pocean.2005.02.018
Tsumune, D., Nishioka, J., Shimamoto, A., Watanabe, Y. W., Aramaki, T., Nojiri, Y., . . . Tsubono,
T. (2009). Physical behaviors of the iron-fertilized patch in SEEDS II. Deep Sea
Research Part II: Topical Studies in Oceanography, 56(26), 2948-2957. doi:https://
doi.org/10.1016/j.dsr2.2009.07.004
Tsupari, E., Arponen, T., Hankalin, V., Kärki, J., & Kouri, S. (2017). Feasibility comparison of
bioenergy and CO2 capture and storage in a large combined heat, power and cooling
system. Energy. doi:http://dx.doi.org/10.1016/j.energy.2017.08.022
Tu, Q., Wu, W., Lu, H., sun, B., Wang, C., deng, H., & Chen, Y. (2013). The Effect of Biochar
and Bacterium Agent on Humification During Swine Manure Composting, Dordrecht.
Tuana, N., Sriver, R. L., Svoboda, T., Olson, R., Irvine, P. J., Haqq-Misra, J., & Keller, K. (2012).
Towards Integrated Ethical and Scientific Analysis of Geoengineering: A Research
Agenda. Ethics, Policy & Environment, 15(2), 136-157.
doi:10.1080/21550085.2012.685557
Tubana, B. S., Babu, T., & Datnoff, L. E. (2016). A Review of Silicon in Soils and Plants and Its
Role in US Agriculture: History and Future Perspectives. Soil Science, 181(9/10),
393-411. doi:10.1097/ss.0000000000000179
Tulbure, M. G., et al. (2012). Climatic and genetic controls of yields of switchgrass, a model
bioenergy species. Agriculture, Ecosystems & Environment, 146(1), 121-129. Retrieved
from https://www.cabdirect.org/cabdirect/abstract/20123064617
Tumiatti, V., Lenzi, F., & Tumiatti, M. (2015).
Turan, G., & Neori, A. (2010). Intensive seaweed aquaculture: a potent solution against global
warming. In A. Israel, R. Einav, & J. Seckbach (Eds.), Seaweeds and Their Role in
Globally Changing Environments (pp. 359-372).
Turk, J. K., Reay, D. S., & Haszeldine, R. S. (2018). UK grid electricity carbon intensity can be
reduced by enhanced oil recovery with CO2 sequestration. Carbon Management, 9(2),
115-126. doi:10.1080/17583004.2018.1435959
Turkeysong. (2012). Biochar in 19th Century Europe and North America: A partial review.
Retrieved from https://turkeysong.wordpress.com/2012/05/18/some-citations-on-biochar-
in-europe-and-america-in-the-19th-century/
Turner, M., & Rouse, P. (2021). Navigating the maze of climate-altering technology. Retrieved
from https://www.c2g2.net/navigating-the-maze-of-climate-altering-terminology/
Turner, P. A., Mach, K. J., Lobell, D. B., Benson, S. M., Baik, E., Sanchez, D. L., & Field, C. B.
(2018). The global overlap of bioenergy and carbon sequestration potential. Climatic
Change, 148(1), 1-10. doi:10.1007/s10584-018-2189-z
Turner, S. M., Nightingale, P. D., Spokes, L. J., Liddicoat, M. I., & Liss, P. S. (1996). Increased
dimethyl sulphide concentrations in sea water from in situ iron enrichment. Nature,
383(6600), 513-517. Retrieved from http://dx.doi.org/10.1038/383513a0
Turner, W. R. (2018). Looking to nature for solutions. Nature Climate Change, 8(1), 18-19.
doi:10.1038/s41558-017-0048-y
Tursunov, O., & Dobrowolski, J. W. (2015). A Brief Review of Application of Laser Biotechnology
as an Efficient Mechanism for the Increase of Biomass for Bio-energy Production Via
Clean Thermo-Technologies. American Journal of Renewable and Sustainable Energy,
1(2), 66-71. Retrieved from http://files.aiscience.org/journal/article/pdf/70190019.pdf
Turvey, C. C., Wilson, S. A., Hamilton, J. L., Tait, A. W., McCutcheon, J., Beinlich, A., . . .
Southam, G. (2018). Hydrotalcites and hydrated Mg-carbonates as carbon sinks in
serpentinite mineral wastes from the Woodsreef chrysotile mine, New South Wales,
Australia: Controls on carbonate mineralogy and efficiency of CO2 air capture in mine
tailings. International Journal of Greenhouse Gas Control, 79, 38-60. doi:https://doi.org/
10.1016/j.ijggc.2018.09.015
Twedt, J. (2012). The Effects of Geoengineering on the Southern Ocean. Retrieved from https://
atmos.washington.edu/~jtwedt/coursework/ClimateModeling/
Ocn558FinalPaper_JTwedt.pdf
Twidale, S. (2021). World must remove 1 bln tonnes CO2 by 2025 to meet climate goal - report.
Reuters. Retrieved from https://www.reuters.com/world/world-must-remove-1-bln-
tonnes-co2-by-2025-meet-climate-goal-report-2021-06-29/
Twining, B. S., Baines, S. B., Fisher, N. S., & Landry, M. R. (2004). Cellular iron contents of
plankton during the Southern Ocean Iron Experiment (SOFeX). Deep Sea Research
Part I: Oceanographic Research Papers, 51(12), 1827-1850. doi:https://doi.org/10.1016/
j.dsr.2004.08.007
Ty, C., et al. . (2013). Synergism between biochar and biodigester effluent as soil amenders for
biomass production and nutritive value of Mustard green (Brassica juncea). Livestock
Research for Rural Development, 25(4). Retrieved from http://www.lrrd.org/lrrd25/4/
chha25057.htm
Tyree, S., & Greenleaf, M. (2009). The Environmental Injustice of “Clean Coal”: Expanding the
National Conversation on Carbon Capture and Storage Technology to Include an
Analysis of Potential Environmental Justice Impacts. Environmental Justice, 2(4),
167-171. doi:10.1089/env.2009.0040
Tytłak, A., Oleszczuk, P., & Dobrowolski, R. (2014). Sorption and desorption of Cr(VI) ions from
water by biochars in different environmental conditions. Environmental Science and
Pollution Research, 22(8), 5985-5994. doi:10.1007/s11356-014-3752-4
Tzankova, Z. (2021). Carbon offsetting can be a tool of environmental justice.
Tzimas, E., et al. (2005). Enhanced Oil Recovery using Carbon Dioxide in the European Energy
System. Retrieved from http://publications.jrc.ec.europa.eu/repository/bitstream/
JRC32102/P2005-277=EUR21895EN=PUBSY%20Request%202102.pdf
U.S. National Academies Sciences, E. M. (2021). A Research Strategy for Ocean Carbon
Dioxide Removal and Sequestration: Workshop Series, Part 1
Ubalde, J. M., et al. (2015). Application of Biochar Amendments to Mediterranean Soils: Effects
on Vine Growth and Grapde Quality. In.
Ubando, A. T., et al. (2014). Fuzzy mixed-integer linear programming model for optimizing a
multi-functional bioenergy system with biochar production for negative carbon emissions.
Clean Technologies and Environmental Policy, 16(8), 1537-1549. Retrieved from https://
link.springer.com/article/10.1007/s10098-014-0721-z
Uchikawa, J., & Zeebe, R. E. (2008). Influence of terrestrial weathering on ocean acidification
and the next glacial inception. Geophysical Research Letters, 35(23), 1-5.
doi:doi:10.1029/2008GL035963
Uchimiya, M., et al.i (2010). Influence of soil properties on heavy metal sequestration by biochar
amendment: 1. Copper sorption isotherms and the release of cations. Chemosphere,
82(10), 1431-1437. doi:10.1016/j.chemosphere.2010.11.050
Uchimiya, M., et al. . (2011). Influence of Pyrolysis Temperature on Biochar Property and
Function as a Heavy Metal Sorbent in Soil. Journal of Agriculture and Food Chemistry,
59(6), 2501-2510. Retrieved from http://pubs.acs.org/doi/abs/10.1021/jf104206c
Uchimiya, M. (2014). Influence of pH, Ionic Strength, and Multidentate Ligand on the Interaction
of Cd <sup>II</sup> with Biochars. ACS Sustainable Chemistry & Engineering, 2(8),
2019-2027. doi:10.1021/sc5002269
Uchimiya, M., & Bannon, D. I. (2013). Solubility of Lead and Copper in Biochar-Amended Small
Arms Range Soils: Influence of Soil Organic Carbon and pH. Journal of Agricultural and
Food Chemistry, 61(32), 7679-7688. Retrieved from http://pubs.acs.org/doi/abs/10.1021/
jf401481x
Uchimiya, M., Bannon, D. I., & Wartelle, L. H. (2012). Retention of Heavy Metals by Carboxyl
Functional Groups of Biochars in Small Arms Range Soil. Journal of Agricultural and
Food Chemistry, 60(7), 1798-1809. doi:10.1021/jf2047898
Uchimiya, M., Chang, S., & Klasson, K. T. (2011). Screening biochars for heavy metal retention
in soil: Role of oxygen functional groups. Journal of Hazardous Materials, 190(1-3),
432-441. Retrieved from http://www.sciencedirect.com/science/article/pii/
S0304389411003669
Uchimiya, M., Hiradate, S., & Antal, M. J. (2015). Dissolved Phosphorus Speciation of Flash
Carbonization, Slow Pyrolysis, and Fast Pyrolysis Biochars. ACS Sustainable Chemistry
& Engineering, 3(7), 1642-1649. doi:10.1021/acssuschemeng.5b00336
Uchimiya, M., Hiradate, S., & Antal, M. J. (2015). Influence of Carbonization Methods on the
Aromaticity of Pyrogenic Dissolved Organic Carbon. Energy & Fuels, 29(4), 2503-2513.
doi:10.1021/acs.energyfuels.5b00146
Uchimiya, M., Lima, I. M., Klasson, K. T., Chang, S. C., Wartelle, L. H., & Rodgers, J. E. (2010).
Immobilization of Heavy Metal Ions (Cu-II, Cd-II, Ni-II, and Pb-II) by Broiler Litter-Derived
Biochars in Water and Soil. Journal of Agricultural and Food Chemistry, 58, 5538-5544.
Retrieved from http://www.sciencedirect.com/science/article/pii/S0045653510013573
Uchimiya, M., Lima, I. M., Klasson, K. T., & Wartelle, L. H. (2010). Contaminant immobilization
and nutrient release by biochar soil amendment: Roles of natural organic matter.
Chemosphere, 80(8), 935-940. Retrieved from http://www.sciencedirect.com/science/
article/pii/S0045653510005965
Uchimiya, M., Liu, Z., & Sistani, K. (2016). Field-scale fluorescence fingerprinting of biochar-
borne dissolved organic carbon. Journal of Environmental Management, 169, 184 - 190.
doi:10.1016/j.jenvman.2015.12.009
Uchimiya, M., Wartelle, L. H., & Boddu, V. M. (2012). Sorption of Triazine and
Organophosphorus Pesticides on Soil and Biochar. Journal of Agricultural and Food
Chemistry, 60(12), 2989–2997. doi:10.1021/jf205110g
Udawatta, R. P., & Jose, S. (2012). Agroforestry strategies to sequester carbon in temperate
North America. Agroforestry Systems, 86(2), 225-242. doi:10.1007/s10457-012-9561-1
Uddin, S. N., & Barreto, L. (2007). Biomass-fired cogeneration systems with CO2 capture and
storage. Renewable Energy, 32(6), 1006-1019. doi:10.1016/j.renene.2006.04.009
Uden, S., et al. (2021). Cutting through the noise on negative emissions. Joule. doi:https://
doi.org/10.1016/j.joule.2021.06.013
Uematsu, M., Wells, M. L., Tsuda, A., & Saito, H. (2009). Introduction to Subarctic iron
Enrichment for Ecosystem Dynamics Study II (SEEDS II). Deep Sea Research Part II:
Topical Studies in Oceanography, 56(26), 2731-2732. doi:https://doi.org/10.1016/
j.dsr2.2009.07.006
Uibu, M., & Kuusik, R. (2009). Mineral trapping of CO2 via oil shale ash aqueous carbonation:
Controlling mechanism of process rate and development of continuous-flow reactor
system. Oil Shale, 26(1), 40-58. Retrieved from https://www.scopus.com/record/
display.uri?eid=2-
s2.0-77949913506&origin=inward&txGid=696f8a51ca4e129ce6b11c7aecc4d700
Ukwattage, N. L., Ranjith, P. G., & Li, X. (2017). Steel-making slag for mineral sequestration of
carbon dioxide by accelerated carbonation. Measurement, 97, 15-22. doi:https://doi.org/
10.1016/j.measurement.2016.10.057
Ukwattage, N. L., Ranjith, P. G., Yellishetty, M., Bui, H. H., & Xu, T. (2015). A laboratory-scale
study of the aqueous mineral carbonation of coal fly ash for CO2 sequestration. Journal
of Cleaner Production, 103, 665-674. doi:https://doi.org/10.1016/j.jclepro.2014.03.005
Ullah, K., Ahmad, M., Sofia, Sharma, V. K., Lu, P., Harvey, A., . . . Sultana, S. (2015). Assessing
the potential of algal biomass opportunities for bioenergy industry: A review. Fuel, 143,
414-423. doi:https://doi.org/10.1016/j.fuel.2014.10.064
Ullman, R., Bilbao-Bastida, V., & Grimsditch, G. (2013). Including Blue Carbon in climate market
mechanisms. Ocean & Coastal Management, 83, 15-18. doi:https://doi.org/10.1016/
j.ocecoaman.2012.02.009
Ulrich, B. A., Im, E., Werner, D., & Higgins, C. P. (2015). Biochar and Activated Carbon for
Enhanced Trace Organic Contaminant Retention in Stormwater Infiltration Systems.
Environmental Science and Technology, 49(10), 6222-6230. doi:10.1021/
acs.est.5b00376
Ulusal, A., et al. (2015). Influence of Pyrolysis Temperature on Physicochemical Properties of
Oak Sawdust Biochar for Soil Application. In.
Ulyett, J., Sakrabani, R., Kibblewhite, M., & Hann, M. (2013). Impact of biochar addition on
water retention, nitrification and carbon dioxide evolution from two sandy loam soils.
European Journal of Soil Science, 65(1), 96-104. Retrieved from http://
onlinelibrary.wiley.com/doi/10.1111/ejss.12081/abstract
Umweltforschungsplan des Bundesministeriums für Umwelt, N., Bau und Reaktorsicherheit.
(2016). Chancen und Risiken des Einsatzes von Biokohle und anderer
„veränderter“ Biomasse als Bodenhilfsstoffe oder für die C-Sequestrierung in Böden.
Retrieved from http://www.agrokarbo.info/uba-2016-4-biokohle/
Unger, N. (2014). Human land-use-driven reduction of forest volatiles cools global climate.
Nature Climate Change, 4, 907. doi:10.1038/nclimate2347
https://www.nature.com/articles/nclimate2347#supplementary-information
Unger, N. (2014). To Save the Planet, Don’t Plant Trees. New York Times. Retrieved from
https://www.nytimes.com/2014/09/20/opinion/to-save-the-planet-dont-plant-trees.html
Unger, R., & Killorn, R. (2011). Effect of the Application of Biochar on Selected Soil Chemical
Properties, Corn Grain, and Biomass Yields in Iowa. Communications in Soil Science
and Plant Analysis, 42(20), 2441-2451. doi:10.1080/00103624.2011.609253
Ungera, R., & Killorna, R. (2011). Effect of Three Different Qualities of Biochar on Selected Soil
Properties. Communications in Soil Science and Plant Analysis, 42(18), 2274-2283.
doi:10.1080/00103624.2011.602448
Unit, E. I. (2020). Investing in Carbon Removal: Demystifying Existing Approaches. The
Economist. Retrieved from https://carbonremoval.economist.com/
Unit, M. D. R. (2020). CO2 Sequestration in Mine Tailings. Retrieved from https://
www.mdru.ubc.ca/projects/co2-sequestration/
United Kingdom, D. f. B., Energy & Industrial Strategy. (2021). The Role of Biomass in
Achieving Net Zero: Call for Evidence. Retrieved from https://
assets.publishing.service.gov.uk/government/uploads/system/uploads/attachment_data/
file/978812/role-of-biomass-achieving-net-zero-call-for-evidence.pdf
University, C. (2019). Iron fertilization won't work in much of Pacific, says study. Phys.org.
Retrieved from https://phys.org/news/2016-05-iron-fertilization-wont-pacific.html?
gclid=CjwKCAiA__HvBRACEiwAbViuUxOUwVPkucHM4UxtANik4-
qgJKrSxLWZRbZucERGe7H2IxYKZak--hoCu9YQAvD_BwE
University, K. (2020). Membranes for capturing carbon dioxide from the air. Phys.org. Retrieved
from https://phys.org/news/2020-10-membranes-capturing-carbon-dioxide-air.html
University, M. (2020). New Record for Carbon Dioxide Capture Set Using Metal Organic
Frameworks [Press release]. Retrieved from https://scitechdaily.com/new-record-for-
carbon-dioxide-capture-set-using-metal-organic-frameworks/
University, N. (2020). New self-forming membrane to protect our environment. Phys.org.
Retrieved from https://phys.org/news/2020-05-self-forming-membrane-environment.html
University of California, L. A. (2019). Carbon dioxide capture and use could become big
business. Phys.org. Retrieved from https://phys.org/news/2019-11-carbon-dioxide-
capture-big-business.html?fbclid=IwAR0XujNtrh8OnRPIBkPerFBW-E1Q2jQVDp5hHl-
xAQzJnfROxdWNkdqupY4
University of Michigan, G. C. I. (2020). The Techno-Economic Assessment and Life Cycle
Assessment Toolkit. Retrieved from https://www.globalco2initiative.org/research/techno-
economic-assessment-and-life-cycle-assessment-toolkit/
University, S. (2019). A cheap Carbon Capture breakthrough? MOF molecular cages that trap
CO2. Energy Post.eu. Retrieved from https://energypost.eu/a-cheap-carbon-capture-
breakthrough-mof-molecular-cages-that-trap-co2/
Uniyal, S. K., & Kumar, A. (2011). Charcoal making: going green with black. Current Science,
100(1), 9. Retrieved from https://www.cabdirect.org/cabdirect/abstract/20113026557
Unluer, C. (2018). 7 - Carbon dioxide sequestration in magnesium-based binders. In F.
Pacheco-Torgal, C. Shi, & A. P. Sanchez (Eds.), Carbon Dioxide Sequestration in
Cementitious Construction Materials (pp. 129-173): Woodhead Publishing.
Unnervik, D. (2020). Why planting trees won’t be enough to tackle climate change. 1-3.
Retrieved from https://sofiesgroup.com/en/news/white-paper-sofies-co2-as-a-resource/
Upadhyay, K. (2015). The influence of biochar on crop growth and the colonization of
horticultural crops by arbuscular mycorrhizal fungi. (Ph.D. PhD Thesis). University of
Queensland, Retrieved from http://espace.library.uq.edu.au/view/UQ:367181
Upadhyay, K. P., et al. (2014). The Influence of Biochar on Growth of Lettuce and Potato.
Journal of Integrative Agriculture, 13(3), 541–546. Retrieved from http://
www.sciencedirect.com/science/article/pii/S2095311913607108
Upadhyay, T. P., Shahi, C., Leitch, M., & Pulkki, R. (2012). Economic feasibility of biomass
gasification for power generation in three selected communities of northwestern Ontario,
Canada. Energy Policy, 44, 235-244. doi:10.1016/j.enpol.2012.01.047
UPFSI (Writer). (2018). Getting off (climate disruption) with our Rocks. In. YouTube.
Upham, P., & Roberts, T. (2011). Public perceptions of CCS in context: Results of NearCO2
focus groups in the UK, Belgium, the Netherlands, Germany, Spain and Poland. Energy
Procedia, 4, 6338-6344. doi:http://dx.doi.org/10.1016/j.egypro.2011.02.650
Upham, P., & Roberts, T. (2011). Public perceptions of CCS: Emergent themes in pan-European
focus groups and implications for communications. International Journal of Greenhouse
Gas Control, 5, 1359-1367. Retrieved from https://kar.kent.ac.uk/28706/1/
Upham_Roberts_2011.pdf
Upham, P., & Roberts, T. (2011). Public perceptions of CCS: Emergent themes in pan-European
focus groups and implications for communications. International Journal of Greenhouse
Gas Control, 5(5), 1359-1367. doi:https://doi.org/10.1016/j.ijggc.2011.06.005
Upreti, B. R. (2004). Conflict over biomass energy development in the United Kingdom: some
observations and lessons from England and Wales. Energy Policy, 32(6), 785-800.
doi:https://doi.org/10.1016/S0301-4215(02)00342-7
Upson, M. A., Burgess, P. J., & Morison, J. I. L. (2016). Soil carbon changes after establishing
woodland and agroforestry trees in a grazed pasture. Geoderma, 283, 10-20. doi:https://
doi.org/10.1016/j.geoderma.2016.07.002
Upton, J. (2015). Pulp Fiction, Part 1: . Retrieved from http://reports.climatecentral.org/pulp-
fiction/1/#section-1
ur Rehman, A., Baek, J. W., Rene, E. R., Sergienko, N., Behera, S. K., & Park, H.-S. (2018).
Effect of process parameters influencing the chemical modification of activated carbon
fiber for carbon dioxide removal. Process Safety and Environmental Protection.
doi:https://doi.org/10.1016/j.psep.2018.07.004
Urbanova, O., Elbl, J., & Zahora, J. (2014). The effects of biochar on soil respiration in
rhizosphere and non-rhizosphere soil. Mendelnet. Retrieved from http://
mnet.mendelu.cz/mendelnet2014/articles/52_urbankova_1077.pdf
USDA. (2018). Comet Farm: Whole Farm and Ranch Carbon and Greenhouse Gas Accounting
System. Retrieved from http://cometfarm.nrel.colostate.edu/
Usham, A. R. A., et al. (2015). Conocarpus biochar induces changes in soil nutrient availability
and tomato growth under saline irrigation. Pedosphere, 26(1), 27-38. Retrieved from
http://pedosphere.issas.ac.cn/trqen/ch/reader/view_abstract.aspx?
file_no=20160103&flag=1
Usman, A. R. A., Abduljabbar, A., Vithanage, M., Ok, Y. S., Ahmad, M., Ahmad, M., . . . Al-Wabel,
M. I. (2015). Biochar production from date palm waste: Charring temperature induced
changes in composition and surface chemistry. Journal of Analytical and Applied
Pyrolysis, 115, 392 - 400. doi:10.1016/j.jaap.2015.08.016
Usman, A. R. A., Ahmad, M., EL-MAHROUKY, M., Al-Omran, A., Ok, Y. S., Sallam, A. S., . . . Al-
Wabel, M. I. (2015). Chemically modified biochar produced from conocarpus waste
increases NO3 removal from aqueous solutions. Environmental Geochemistry and
Health, 38, 511-528. doi:10.1007/s10653-015-9736-6
Ussiri, D. A. N., & Lal, R. (2017). Introduction to Terrestrial Carbon Sequestration. In Carbon
Sequestration for Climate Change Mitigation and Adaptation (pp. 327-341). Cham:
Springer International Publishing.
Utomo, W. H., & Islami, T. (2015). Nitrogen fertilizer requirement of maize (Zea mays L.) on
biochar-treated soil. In K. Hayashi (Ed.), Biochar for future food security: learning from
experiences and identifying research priorities (pp. 32-78).
Uygun, M., et al. (2015). Micromotor-Based Biomimetic Carbon Dioxide Sequestration: Towards
Mobile Microscrubbers. Angewandte Chemie International Edition, 54(44), 12900-12904.
Retrieved from http://onlinelibrary.wiley.com/doi/10.1002/anie.201505155/epdf
Uzoma, K. C., et al. (2011). Effect of cow manure biochar on maize productivity under sandy soil
condition. Soil Use and Management, 27(2), 205-212. doi:10.1111/
j.1475-2743.2011.00340.x
Uzun, B., Apaydin-Varol, E., Ates, F., Ozbay, N., & Putun, A. (2010). Synthetic fuel production
from tea waste: Characterisation of bio-oil and bio-char. Fuel, 89(1), 176-184. Retrieved
from http://www.sciencedirect.com/science/article/pii/S0016236109004128
Vaccari, F., Baronti, S., Lugato, E., Genesio, L., Castaldi, S., & Fornasier, F. (2011). Biochar as a
strategy to sequester carbon and increase yield in durum wheat. European Journal of
Agronomy, 34(4), 231-238. doi:10.1016/j.eja.2011.01.006
Vaidyanathan, G. (2016). Geoengineering Would Not Work in All Oceans. Scientific
American(January 28). Retrieved from https://www.scientificamerican.com/article/
geoengineering-would-not-work-in-all-oceans/
Valili, S., et al. . (2015). Development of biochar sorbents from food-industry by-products for the
removal of phenanthrene and mercury from aqueous solutions. In.
Vall, M., Hultberg, J., Strømme, M., & Cheung, O. (2019). Carbon dioxide adsorption on
mesoporous magnesium carbonate. Energy Procedia, 158, 4671-4676. doi:https://
doi.org/10.1016/j.egypro.2019.01.738
Valverde, J. M., Sanchez-Jimenez, P. E., Perejon, A., & Perez-Maqueda, L. A. (2013). Constant
rate thermal analysis for enhancing the long-term CO2 capture of CaO at Ca-looping
conditions. Applied Energy, 108(Supplement C), 108-120. doi:https://doi.org/10.1016/
j.apenergy.2013.03.013
van Alphen, K., Hekkert, M. P., & Turkenburg, W. C. (2010). Accelerating the deployment of
carbon capture and storage technologies by strengthening the innovation system.
International Journal of Greenhouse Gas Control, 4(2), 396-409. doi:https://doi.org/
10.1016/j.ijggc.2009.09.019
van Alphen, K., van Ruijven, J., Kasa, S., Hekkert, M., & Turkenburg, W. (2009). The
performance of the Norwegian carbon dioxide, capture and storage innovation system.
Energy Policy, 37(1), 43-55. doi:https://doi.org/10.1016/j.enpol.2008.07.029
van Alphen, K., van Voorst tot Voorst, Q., Hekkert, M. P., & Smits, R. E. H. M. (2007). Societal
acceptance of carbon capture and storage technologies. Energy Policy, 35(8),
4368-4380. doi:http://dx.doi.org/10.1016/j.enpol.2007.03.006
van Antwerpen, R., et al. (2013). Sugarcane as an Energy Crop: Its Role in Biomass Economy.
In B. P. Singh (Ed.), Biofuel Crop Sustainability (pp. 53-108).
van Asperen, H. L., et al. (2013). Properties of anthropogenic soils in ancient run-off capturing
agricultural terraces in the Central Negev desert (Israel) and related effects of biochar
and ash on crop growth. Plant and Soil, 374(1), 779-792. Retrieved from http://
link.springer.com/article/10.1007/s11104-013-1901-z
Van Bockhaven, J., De Vleesschauwer, D., & Höfte, M. (2012). Towards establishing broad-
spectrum disease resistance in plants: silicon leads the way. Journal of Experimental
Botany, 64(5), 1281-1293. doi:10.1093/jxb/ers329
van Dam, J., & Junginger, M. (2011). Striving to further harmonization of sustainability criteria for
bioenergy in Europe: Recommendations from a stakeholder questionnaire. Energy
Policy, 39(7), 4051-4066. doi:http://dx.doi.org/10.1016/j.enpol.2011.03.022
Van den Bergh, C. (2009). Biochar and Waste Law: A Comparative Analysis. European Energy
and Environmental Law Review, 18, 243-253.
van der Giesen, C., Kleijn, R., & Kramer, G. J. (2014). Energy and Climate Impacts of Producing
Synthetic Hydrocarbon Fuels from CO2. Environmental Science & Technology, 48(12),
7111-7121. doi:10.1021/es500191g
van der Giesen, C., Meinrenken, C. J., Kleijn, R., Sprecher, B., Lackner, K. S., & Kramer, G. J.
(2017). A Life Cycle Assessment Case Study of Coal-Fired Electricity Generation with
Humidity Swing Direct Air Capture of CO2 versus MEA-Based Postcombustion Capture.
Environmental Science & Technology, 51(2), 1024-1034. doi:10.1021/acs.est.6b05028
van der Pol, L., et al. (2021). To make agriculture more climate-friendly, carbon farming needs
clear rules. The Conversation. Retrieved from https://theconversation.com/to-make-
agriculture-more-climate-friendly-carbon-farming-needs-clear-rules-160243?
utm_medium=email&utm_campaign=Science%20Editors%20Picks%20%20June%2030
%202021%20-
%201989119528&utm_content=Science%20Editors%20Picks%20%20June%2030%202
021%20-
%201989119528+Version+B+CID_b7918d9f8ba755d552b15ce2dac1db2f&utm_source=
campaign_monitor_us&utm_term=host%20of%20technical%20and%20economic%20iss
ues%20need%20to%20be%20worked%20out
van der Spek, M., Ramirez, A., & Faaij, A. (2017). Challenges and uncertainties of ex ante
techno-economic analysis of low TRL CO2 capture technology: Lessons from a case
study of an NGCC with exhaust gas recycle and electric swing adsorption. Applied
Energy, 208, 920-934. doi:https://doi.org/10.1016/j.apenergy.2017.09.058
van der Werf, G. R., Morton, D. C., DeFries, R. S., Olivier, J. G. J., Kasibhatla, P. S., Jackson,
R. B., . . . Randerson, J. T. (2009). CO2 emissions from forest loss. Nature Geoscience,
2, 737. doi:10.1038/ngeo671
https://www.nature.com/articles/ngeo671#supplementary-information
Van Hoang, N. T., & Maeda, M. (2017). NITROUS OXIDE AND CARBON DIOXIDE EMISSIONS
FROM AGRICULTURAL SOIL AMENDED WITH DIFFERENT TYPES OF BIOCHAR AT
THREE TEMPERATURES. Journal of Environmental Science for Sustainable Society, 8,
22-31. doi:10.3107/jesss.8.22
van Kooten, C. G., Shaikh, S. L., & Suchánek, P. (2002). Mitigating climate change by planting
trees: the transaction costs trap. Land Economics, 78(4), 559-572.
van Kooten, C. G., & Sohngen, B. (2007). Economics of Forest Ecosystem Carbon Sinks: A
Review. Retrieved from https://web.uvic.ca/~repa/publications/
REPA%20working%20papers/WorkingPaper2007-02.pdf
van Kooten, G. C., Grainger, A., Ley, E., Marland, G., & Solberg, B. (1997). Conceptual issues
related to carbon sequestration: Uncertainty and time. Critical Reviews in Environmental
Science and Technology, 27(sup001), 65-82. doi:10.1080/10643389709388510
van Kooten, G. C., & Johnston, C. M. (2016). The economics of forest carbon offsets. Annual
Review of Resource Economics, 8, 227-246. Retrieved from https://
www.annualreviews.org/doi/10.1146/annurev-resource-100815-095548
van Laer, T., de Smedt, P., Ronsse, F., Ruysschaert, G., Boeckx, P., Verstraete, W., . . .
Lavrysen, L. J. (2015). Legal constraints and opportunities for biochar: a case analysis of
EU law. GCB Bioenergy, 7(1), 14-24. doi:10.1111/gcbb.12114
van Minnen, J. G., et al. (2007). Quantifying the effectiveness of climate change mitigation
through forest plantations and carbon sequestration with an integrated land-use model.
Carbon Balance and Management, 3(3), 1-20. Retrieved from https://
cbmjournal.springeropen.com/track/pdf/10.1186/1750-0680-3-3
Van Oost, K., Quine, T. A., Govers, G., DeGryze, S., Six, J., Harden, J. W., . . . Merckx, R.
(2007). The Impact of Agricultural Soil Erosion on the Global Carbon Cycle. Science,
318(5850), 626-629. Retrieved from http://science.sciencemag.org/content/
318/5850/626
van Oosterzee, P. (2012). The integration of biodiversity and climate change: A contextual
assessment of the carbon farming initiative. 13(3), 238-244. doi:10.1111/emr.12001
van Renssen, S. (2021). CCU: Dangerous distraction or essential for the energy transition?
Energy Monitor. Retrieved from https://energymonitor.ai/technology/carbon-removal/ccu-
dangerous-distraction-or-essential-for-the-energy-transition
van Soest, H. L., den Elzen, M. G. J., & van Vuuren, D. P. (2021). Net-zero emission targets for
major emitting countries consistent with the Paris Agreement. Nature Communications,
12(1), 2140. doi:10.1038/s41467-021-22294-x
Van Straaten, P. (2006). Farming with rocks and minerals: challenges and opportunities. Anais
da Academia Brasileira de Ciências, 78(4), 731-747. Retrieved from http://www.scielo.br/
scielo.php?
script=sci_arttext&pid=S0001-37652006000400009&lng=en&nrm=iso&tlng=en
Van Thorre, D. M., Tait, C. D., Catto, M. L., & Scalzo, P. J. (2016).
Van Vinh, N., et al. . (2014). Arsenic(III) removal from aqueous solution by raw and zinc-loaded
pine cone biochar: equilibrium, kinetics, and thermodynamics studies. International
Journal of Environmental Science and Technology, 12(4), 1283-1294. Retrieved from
https://link.springer.com/article/10.1007/s13762-014-0507-1
Van Voorhees, R. F. (2017). Crediting Carbon Dioxide Storage Associated with Enhanced Oil
Recovery. Energy Procedia, 114, 7659-7666. doi:https://doi.org/10.1016/
j.egypro.2017.03.1898
Van Voorhis, C. (2021). The Genius of Nature. Middlebury Eccentric. Retrieved from https://
middleburgeccentric.com/2021/02/the-genius-of-nature/
van Vuuren, D., et al. (2017). Open discussion of negative emissions is urgently needed. Nature
Energy, 2, 902-904. Retrieved from https://www.nature.com/articles/
s41560-017-0055-2.pdf
van Vuuren, D. P., Stehfest, E., Gernaat, D. E. H. J., van den Berg, M., Bijl, D. L., de Boer, H.
S., . . . van Sluisveld, M. A. E. (2018). Alternative pathways to the 1.5°C target reduce
the need for negative emission technologies. Nature Climate Change. doi:10.1038/
s41558-018-0119-8
van Vuuren, D. P., van Vliet, J., & Stehfest, E. (2009). Future bio-energy potential under various
natural constraints. Energy Policy, 37(11), 4220-4230. doi:http://dx.doi.org/10.1016/
j.enpol.2009.05.029
Van Wesenbeeck, S., Prins, W., Ronsse, F., & Antal, M. J. (2014). Sewage Sludge
Carbonization for Biochar Applications. The Fate of Heavy Metals. Energy & Fuels,
28(8), 5318-5326. doi:10.1021/ef500875c
van Wey, L. (2009). Social and distributional impacts of biofuel production. Paper presented at
the Biofuels: Environmental Consequences and Interactions with Changing Land Use.
Proceedings of the Scientific Committee on Problems of the Environment (SCOPE)
International Biofuels Project Rapid Assessment.
van Zelm, R., Muchada, P. A. N., van der Velde, M., Kindermann, G., Obersteiner, M., &
Huijbregts, M. A. J. (2015). Impacts of biogenic CO2 emissions on human health and
terrestrial ecosystems: the case of increased wood extraction for bioenergy production
on a global scale. GCB Bioenergy, 7(4), 608-617. doi:10.1111/gcbb.12153
Van Zwieten, L., et al. (2009). Biochar and Emissions of non-CO2 Greenhouse Gasses from
Soil. In J. Lehmann & S. Joseph (Eds.), Biochar for Environmental Management:
Science and Technology (pp. 227 - 249). London, UK: Earthscan.
Van Zwieten, L., et al. (2014). An incubation study investigating the mechanisms that impact
N2O flux from soil following biochar application. Agriculture, Ecosystems & Environment,
191, 53-62. Retrieved from http://www.sciencedirect.com/science/article/pii/
S0167880914001145
Van Zwieten, L., et al. (2016). Biochar effects on nitrous oxide and methane emissions from soil.
In J. Lehmann & S. Joseph (Eds.), Biochar for Environmental Management (pp.
487-518).
Van Zwieten, L., Kimber, S., Downie, A., Morris, S., Petty, S., Rust, J., & Chan, K. Y. (2010). A
glasshouse study on the interaction of low mineral ash biochar with nitrogen in a sandy
soil. Australian Journal of Soil Research, 48, 569-576.
Van Zwieten, L., Kimber, S., Morris, S., Chan, K. Y., Downie, A., Rust, J., . . . Cowie, A. (2010).
Effects of biochar from slow pyrolysis of papermill waste on agronomic performance and
soil fertility. Plant and Soil, 327, 235-246. Retrieved from https://link.springer.com/article/
10.1007%2Fs11104-009-0050-x
Van Zwieten, L., Kimber, S., Morris, S., Downie, A., Berger, E., Rust, J., & Scheer, C. (2010).
Influence of biochars on flux of N2O and CO2 from Ferrosol. Australian Journal of Soil
Research, 48(7), 555-568. Retrieved from http://www.publish.csiro.au/sr/SR10004
Van Zwieten, L., Rose, T., Herridge, D., Kimber, S., Rust, J., Cowie, A., & Morris, S. (2015).
Enhanced biological N2 fixation and yield of faba bean (Vicia faba L.) in an acid soil
following biochar addition: dissection of causal mechanisms. Plant and Soil, 395(1),
7-20. doi:10.1007/s11104-015-2427-3
Van Zwieten, L., Singh, B. P., Kimber, S. W. L., Murphy, D. V., Macdonald, L. M., Rust, J., &
Morris, S. (2014). An incubation study investigating the mechanisms that impact N2O
flux from soil following biochar application. Agriculture, Ecosystems & Environment, 191,
53-62. doi:http://dx.doi.org/10.1016/j.agee.2014.02.030
Vanbergen, A. J., Aizen, M. A., Cordeau, S., Garibaldi, L. A., Garratt, M. P. D., Kovács-
Hostyánszki, A., . . . Young, J. C. (2020). Transformation of agricultural landscapes in the
Anthropocene: Nature's contributions to people, agriculture and food security. In
Advances in Ecological Research: Academic Press.
Vanbeveren, S. P. P., & Ceulemans, R. (2019). Biodiversity in short-rotation coppice. Renewable
and Sustainable Energy Reviews, 111, 34-43. doi:https://doi.org/10.1016/
j.rser.2019.05.012
Vandecasteele, B., Sinicco, T., D'Hose, T., Vanden Nest, T., & Mondini, C. (2016). Biochar
amendment before or after composting affects compost quality and N losses, but not P
plant uptake. Journal of Environmental Management, 168, 200 - 209. doi:10.1016/
j.jenvman.2015.11.045
VandenBygaart, A. J. (2018). Comments on soil carbon 4 per mille by Minasny et al. 2017.
Geoderma, 309, 113-114. doi:https://doi.org/10.1016/j.geoderma.2017.05.024
Vanderzee, S. S. S. (2016). Carbon sequestration through the production of precipitated calcium
carbonate from waste concrete. (MES Dissertation/Thesis). Queen's University,
Retrieved from https://search.proquest.com/docview/1826409866?accountid=14496
Vanek, S. J., & Lehmann, J. (2014). Phosphorus availability to beans via interactions between
mycorrhizas and biochar. Plant and Soil, 395(1-2), 105-123. doi:10.1007/
s11104-014-2246-y
Vangkilde-Pedersen, T., Anthonsen, K. L., Smith, N., Kirk, K., neele, F., van der Meer, B., . . .
Peter Christensen, N. (2009). Assessing European capacity for geological storage of
carbon dioxide–the EU GeoCapacity project. Energy Procedia, 1(1), 2663-2670.
doi:https://doi.org/10.1016/j.egypro.2009.02.034
Vansant, J., & Koziel, P. W. (2019). Technical and Industrial Applications of CO2. In M. Aresta, I.
Karimi, & S. Kawi (Eds.), An Economy Based on Carbon Dioxide and Water: Potential of
Large Scale Carbon Dioxide Utilization (pp. 73-104). Retrieved from https://
link.springer.com/content/pdf/10.1007%2F978-3-030-15868-2_3.pdf
Vardon, D. R., et al. (2013). Complete Utilization of Spent Coffee Grounds To Produce
Biodiesel, Bio-Oil, and Biochar. ACS Sustainable Chem. Eng, 1(10), 1286-1294.
Retrieved from http://pubs.acs.org/doi/abs/10.1021/sc400145w
Varela Milla, O., & Huang, W.-J. (2013). Identifying the Advantages of Using Municipal Solid
Waste Bottom Ash in Combination with Rice Husk and Bamboo Biochar Mixtures as Soil
Modifiers: Enhancement of the Release of Polyphenols from a Carbon Matrix. Journal of
Hazardous, Toxic, and Radioactive Waste Management, 17, 204-210.
Varinsky, D. (2018). We’re altering the climate so severely that we’ll soon face apocalyptic
repercussions. Sucking carbon dioxide out of the air could save us. Business Insider.
Retrieved from https://www.businessinsider.com/how-to-stop-gobal-warming-plan-
carbon-capture-2018-10
Varis, O. (2007). Water Demands for Bioenergy Production. International Journal of Water
Resources Development, 23(3), 519-535. doi:10.1080/07900620701486004
Varjani, S., Humbal, A., & Srivastava, V. K. (2019). Carbon Sequestration a Viable Option to
Mitigate Climate Change. In F. Winter, R. A. Agarwal, J. Hrdlicka, & S. Varjani (Eds.),
CO2 Separation, Purification and Conversion to Chemicals and Fuels (pp. 5-17).
Singapore: Springer Singapore.
Vassilev, N., et al. (2013). Biochar of animal origin: A sustainable solution to the global problem
of high-grade rock phosphate scarcity? Journal of the Science of Food and Agriculture,
93(8), 1799-1804. Retrieved from https://www.ncbi.nlm.nih.gov/pubmed/23504602
Vassilev, S. V., & Vassileva, C. G. (2016). Composition, properties and challenges of algae
biomass for biofuel application: An overview. Fuel, 181, 1-33. doi:https://doi.org/10.1016/
j.fuel.2016.04.106
Vasudevan, S., et al. (2019). Technoenergetic and Economic Analysis of CO2 Conversion. In M.
Aresta, I. Karimi, & S. Kawi (Eds.), An Economy Based on Carbon Dioxide and Water:
Potential of Large Scale Carbon Dioxide Utilization (pp. 413-430). Retrieved from https://
link.springer.com/chapter/10.1007/978-3-030-15868-2_12
Vasudevan, S., Farooq, S., Karimi, I. A., Saeys, M., Quah, M. C. G., & Agrawal, R. (2016).
Energy penalty estimates for CO2 capture: Comparison between fuel types and capture-
combustion modes. Energy, 103, 709-714. doi:https://doi.org/10.1016/
j.energy.2016.02.154
Vasujini, P., Dandeniya, W. S., & Dharmakeerthi, R. S. (2015). An Assessing of the Quality of
Biochar Produced from Coconut Husk Waste. Paper presented at the Proceedings
Peradeniya University International Research Sessions. http://www.dlib.pdn.ac.lk/
archive/handle/1/4976
Vat, V., et al. (2020). Effect of biochar and its combined application with manure and fertilizer on
nitrogen leaching, greenhouse gas (GHG) emissions, and grain yield under alternate
wetting and drying (AWD) system. Journal of Agricultural and Crop Research, 8(2),
33-47. Retrieved from http://sciencewebpublishing.net/jacr/archive/2020/February/
abstract/Vat%20et%20al.htm
Vaughan, A. (2020). Carbon-negative crops may mean water shortages for 4.5 billion people.
New Scientist. Retrieved from https://www.newscientist.com/article/2270227-carbon-
negative-crops-may-mean-water-shortages-for-4-5-billion-people/
Vaughan, A. (2020). Scattering pulverised rock over the Earth’s surface. Fix the Planet.
Retrieved from https://us3.campaign-archive.com/?
u=6710b48697068ec8e08d69abf&id=39a706fb2f
Vaughan, A. (2021). Controversial geoengineering scheme will dump iron in the sea
New Scientist. Retrieved from https://www.newscientist.com/article/2282188-controversial-
geoengineering-scheme-will-dump-iron-in-the-sea/
Vaughan, N., E., et al. (2018). Evaluating the use of biomass energy with carbon capture and
storage in low emission scenarios. Environmental Research Letters, 13(4), 044014.
Retrieved from http://stacks.iop.org/1748-9326/13/i=4/a=044014
Vaughan, N. E., & Gough, C. (2016). Expert assessment concludes negative emissions
scenarios may not deliver. Environmental Research Letters, 11(9), 7.
doi:10.1088/1748-9326/11/9/095003
Vaughan, N. E., & Lenton, T. M. (2012). Interactions between reducing CO2 emissions, CO2
removal and solar radiation management. Philosophical Transactions of the Royal
Society a-Mathematical Physical and Engineering Sciences, 370(1974), 4343-4364.
doi:10.1098/rsta.2012.0188
Vaughn, S. F., Kenar, J. A., Eller, F. J., Moser, B. R., Jackson, M. A., & Peterson, S. C. (2015).
Physical and chemical characterization of biochars produced from coppiced wood of
thirteen tree species for use in horticultural substrates. Industrial Crops and Products,
66, 44 - 51. doi:10.1016/j.indcrop.2014.12.026
Vázquez, F. V., Koponen, J., Ruuskanen, V., Bajamundi, C., Kosonen, A., Simell, P., . . .
Piermartini, P. (2018). Power-to-X technology using renewable electricity and carbon
dioxide from ambient air: SOLETAIR proof-of-concept and improved process concept.
Journal of CO2 Utilization, 28, 235-246. doi:https://doi.org/10.1016/j.jcou.2018.09.026
Vega, B., & Kovscek, A. R. (2010). 4 - Carbon dioxide (CO2) sequestration in oil and gas
reservoirs and use for enhanced oil recovery (EOR). In M. M. Maroto-Valer (Ed.),
Developments and Innovation in Carbon Dioxide (CO2) Capture and Storage
Technology (Vol. 2, pp. 104-126): Woodhead Publishing.
Vega-Ortiz, C., Avendaño-Petronilo, F., Richards, B., Sorkhabi, R., Torres-Barragán, L.,
Martínez-Romero, N., & McLennan, J. (2021). Assessment of carbon geological storage
at Tula de Allende as a potential solution for reducing greenhouse gas emissions in
central Mexico. International Journal of Greenhouse Gas Control, 109, 103362.
doi:https://doi.org/10.1016/j.ijggc.2021.103362
Veksha, A., et al. (2013). Pyrolysis of wood to biochar: increasing yield while maintaining
microporosity. Bioresource Technology, 153, 173-179.
Veksha, A., Puja, P., & Hill, J. M. (2015). The removal of methyl orange from aqueous solution
by biochar and activated carbon under microwave irradiation and in the presence of
hydrogen peroxide. Journal of Environmental Chemical Engineering, 3(3), 1452-1458.
doi:10.1016/j.jece.2015.05.003
Veksha, A., Waheed, Z., Layzell, D. B., & Hill, J. M. (2014). Enhancing biochar yield by co-
pyrolysis of bio-oil with biomass: Impacts of potassium hydroxide addition and air
pretreatment prior to co-pyrolysis. Bioresource Technology, 171, 88 - 94. doi:10.1016/
j.biortech.2014.08.040
Velasquez-Manoff, M. (2018). Can Dirt Save the Earth? New York Times Magazine. Retrieved
from https://www.nytimes.com/2018/04/18/magazine/dirt-save-earth-carbon-farming-
climate-change.html
Velbel, M. A. (2009). Dissolution of olivine during natural weathering. Geochimica Et
Cosmochimica Acta, 73(20), 6098-6113. doi:https://doi.org/10.1016/j.gca.2009.07.024
Veld, K. v. t., Mason, C. F., & Leach, A. (2013). The Economics of CO2 Sequestration Through
Enhanced Oil Recovery. Energy Procedia, 37, 6909-6919. doi:https://doi.org/10.1016/
j.egypro.2013.06.623
Veldman, J. W., Aleman, J. C., Alvarado, S. T., Anderson, T. M., Archibald, S., Bond, W. J., . . .
Zaloumis, N. P. (2019). Comment on “The global tree restoration potential”. 366(6463),
eaay7976. doi:10.1126/science.aay7976 %J Science
Veldman, J. W., Overbeck, G. E., Negreiros, D., Mahy, G., Le Stradic, S., Fernandes, G. W., . . .
Bond, W. J. (2015). Where Tree Planting and Forest Expansion are Bad for Biodiversity
and Ecosystem Services. BioScience, 65(10), 1011-1018. doi:10.1093/biosci/biv118
Velez, T. I. (2012). Measuring the Impact of Melaleuca quinquenervia Biochar Application on
Soil Quality, Plant Growth, and Microbial Gas Flux. FIU, Retrieved from http://
digitalcommons.fiu.edu/etd/775
Vella, H. (2019). Drax’s great biomass carbon capture experiment. Power Technology, (May 20).
Retrieved from https://www.power-technology.com/features/draxs-carbon-capture/
Velthof, G. L., Kuikman, P. J., & Oenema, O. (2002). Nitrous oxide emission from soils amended
with crop residues. Nutrient Cycling in Agroecosystems, 62(3), 249-261. doi:10.1023/
a:1021259107244
Veltman, K., Singh, B., & Hertwich, E. G. (2010). Human and Environmental Impact Assessment
of Postcombustion CO2 Capture Focusing on Emissions from Amine-Based Scrubbing
Solvents to Air. Environmental Science & Technology, 44(4), 1496-1502. doi:10.1021/
es902116r
Venables, H., & Moore, C. M. (2010). Phytoplankton and light limitation in the Southern Ocean:
Learning from high-nutrient, high-chlorophyll areas. Journal of Geophysical Research:
Oceans, 115(C2). doi:doi:10.1029/2009JC005361
Venegas, A., Rigol, A., & Vidal, M. (2016). Effect of ageing on the availability of heavy metals in
soils amended with compost and biochar: evaluation of changes in soil and amendment
properties. Environmental Science and Pollution Research, 23(20), 20619-20627.
doi:10.1007/s11356-016-7250-8
Venkata Mohan, S., Modestra, J. A., Amulya, K., Butti, S. K., & Velvizhi, G. (2016). A Circular
Bioeconomy with Biobased Products from CO2 Sequestration. Trends in Biotechnology,
34(6), 506-519. doi:http://dx.doi.org/10.1016/j.tibtech.2016.02.012
Venkatesan, A., et al. (2015). A Compressive Strength and Water Absorption Test on Brick Made
of Wood Ash, Charcoal with Clay Bricks: A Comparative Study. The International Journal
Of Science & Technoledge, 2(7), 1-4. Retrieved from http://www.theijst.com/wp-content/
uploads/2015/03/14.-ST1503-047.pdf
Venkatesh, G., et al. (2013). Biochar Production Technology for Conversion of Cotton Stalk
Bioresidue into Biochar and its Characterization for Soil Amendment Qualities. Indian
Journal of Dryland Agricultural Research and Development, 28(1), 48-57. Retrieved from
https://www.researchgate.net/publication/
258068939_Biochar_Production_Technology_for_Conversion_of_Cotton_Stalk_Bioresid
ue_into_Biochar_and_its_Characterization_for_Soil_Amendment_Qualities
Venkatesh, G., et al. (2013). Operational Process for Biochar Preparation from Castor Bean
Stalk and its Characterization for Soil Application. Indian Journal of Dryland Agricultural
Research and Development, 28(2), 21-26. Retrieved from https://www.researchgate.net/
publication/
259659346_Operational_Process_for_Biochar_Preparation_from_Castor_bean_Stalk_a
nd_its_Characterization_for_Soil_Application
Ventili, S. (2016). Biochar from grapevine canes : study upon phosphate sorption and water
retention. Retrieved from https://www.politesi.polimi.it/bitstream/10589/114083/3/
Frontespizio%20%2B%20Tesi.pdf
Ventilli, S. (2016). Biochar from grapevine canes: study upon phosphate sorption and water
retention. In.
Venton, D. (2016). Can bioenergy with carbon capture and storage make an impact?
Proceedings of the National Academy of Sciences of the United States of America,
113(47), 13260-13262. doi:10.1073/pnas.1617583113
Ventura, F., et al. . (2013). The effects of biochar on the physical properties of bare soil. Earth
and Environmental Science Transactions of the Royal Society of Edinburgh, 103, 5-11.
Retrieved from https://www.cambridge.org/core/services/aop-cambridge-core/content/
view/S1755691012000059
Ventura, J.-R. S., Yang, B., Lee, Y.-W., Lee, K., & Jahng, D. (2013). Life cycle analyses of CO2,
energy, and cost for four different routes of microalgal bioenergy conversion.
Bioresource Technology, 137, 302-310. doi:https://doi.org/10.1016/
j.biortech.2013.02.104
Ventura, M., et al. (2012). Biochar Reduces Short-Term Nitrate Leaching from A Horizon in an
Apple Orchard. Journal of Environmental Quality, 42, 76-82. Retrieved from https://
www.ncbi.nlm.nih.gov/pubmed/23673741
Ventura, M., et al. . (2013). Effect of biochar addition on soil respiration partitioning and root
dynamics in an apple orchard. European Journal of Soil Science, 65(1), 186-195.
Retrieved from http://onlinelibrary.wiley.com/doi/10.1111/ejss.12095/abstract
Verbruggen, E., Struyf, E., & Vicca, S. Can arbuscular mycorrhizal fungi speed up carbon
sequestration by enhanced weathering? PLANTS, PEOPLE, PLANET, n/a(n/a).
doi:https://doi.org/10.1002/ppp3.10179
Vercelli, S., Anderlucci, J., Memoli, R., Battisti, N., Mabon, L., & Lombardi, S. (2013). Informing
People about CCS: A Review of Social Research Studies. Energy Procedia, 37,
7464-7473. doi:https://doi.org/10.1016/j.egypro.2013.06.690
Verchot, L. V., Brienza, S., de Oliveira, V. C., Mutegi, J. K., Cattânio, J. H., & Davidson, E. A.
(2008). Fluxes of CH4, CO2, NO, and N2O in an improved fallow agroforestry system in
eastern Amazonia. Agriculture, Ecosystems & Environment, 126(1), 113-121. doi:https://
doi.org/10.1016/j.agee.2008.01.012
Verchot, L. V., Van Noordwijk, M., Kandji, S., Tomich, T., Ong, C., Albrecht, A., . . . Palm, C.
(2007). Climate change: linking adaptation and mitigation through agroforestry.
Mitigation and Adaptation Strategies for Global Change, 12(5), 901-918. doi:10.1007/
s11027-007-9105-6
Verchot, W. M. J. A. L. V. (2011). Implications of Biodiesel-Induced Land-Use Changes for CO
2
Emissions: Case Studies in Tropical America, Africa, and Southeast Asia. Ecology and
Society, 16(4), Article 14. Retrieved from http://dx.doi.org/10.5751/ES-04403-160414
Verde, S. E., et al. (2021). The Biochar System in the EU: the Pieces are Falling Into Place, but
Key Policy Questions Remain. Retrieved from https://cadmus.eui.eu/handle/1814/70349
Verdegaal, W. M., Becker, S., & Olshausen, C. v. (2015). Power-to-Liquids: Synthetisches Rohöl
aus CO2, Wasser und Sonne. Chemie Ingenieur Technik, 87(4), 340-346. doi:10.1002/
cite.201400098
Vereš, J., et al. . (2014). Biochar Status Under International Law and Regulatory Issues
for the Practical Application. Chemical Engineering Tranactions, 37, 799-804. Retrieved
from https://www.google.com/url?
sa=t&rct=j&q=&esrc=s&source=web&cd=&cad=rja&uact=8&ved=2ahUKEwj9yIiRrv7uAh
VWHc0KHRX_BY0QgAMoAHoECAMQAg&url=http%3A%2F%2Fscholar.google.com%2
Fscholar_url%3Furl%3Dhttps%3A%2F%2Fcdrlaw.org%2Fwp-
content%2Fuploads%2F2020%2F04%2F134.pdf%26hl%3Den%26sa%3DX%26ei%3D7
hc0YOLNB5X0yASbiZCgAQ%26scisig%3DAAGBfm3KL1LFK-
YEMs4JhGUwFN2ArwxIJA%26nossl%3D1%26oi%3Dscholarr&usg=AOvVaw3pOGpPS
ZdzCGmvJ5T_uG0b
Vergragt, P. J., Markusson, N., & Karlsson, H. (2011). Carbon capture and storage, bio-energy
with carbon capture and storage, and the escape from the fossil-fuel lock-in. Global
Environmental Change, 21(2), 282-292. doi:https://doi.org/10.1016/
j.gloenvcha.2011.01.020
Verheijen, F., et al. (2010). Biochar Application to Soils: A Critical Scientific Review of Effects on
Soil Properties, Processes and Functions (978-92-79-14293-2). Retrieved from http://
www.biochar-international.org/sites/default/files/
Verheijen%20et%20al%202010%20JRC_Biochar_Soils_Review.pdf
Verheijen, F. G. A., et al. . (2013). Reductions in soil surface albedo as a function of biochar
application rate: implications for global radiative forcing. Environmental Research
Letters, 8(4), 1-8.
Verheijen, F. G. A., Montanarella, L., & Bastos, A. C. (2012). Sustainability, certification, and
regulation of biochar. Pesquisa Agropecuária Brasileira, 47, 649-653.
Verhoeven, E., & Six, J. (2014). Biochar does not mitigate field-scale N2O emissions in a
Northern California vineyard: An assessment across two years. Agriculture, Ecosystems
& Environment, 191, 27-38. doi:http://dx.doi.org/10.1016/j.agee.2014.03.008
Verma, M., et al. . (2014). Thermochemical Transformation of Agro-biomass into Biochar:
Simultaneous Carbon Sequestration and Soil Amendment. In S. K. Brar, et a. (Ed.),
Biotransformation of Waste Biomass into High Value Biochemicals (pp. 51-70).
Verma, V. S. (2017). Adoption and Introduction of Supercritical Technology in the Power Sector
and Consequential Effects in Operation, Efficiency and Carbon Dioxide Emission in the
Present Context. In M. Goel & M. Sudhakar (Eds.), Carbon Utilization: Applications for
the Energy Industry (pp. 35-43). Singapore: Springer Singapore.
Vermeulen, S., Bossio, D., Lehmann, J., Luu, P., Paustian, K., Webb, C., . . . Warnken, M.
(2019). A global agenda for collective action on soil carbon. Nature Sustainability, 2(1),
2-4. doi:10.1038/s41893-018-0212-z
Vermeulen, S., & Cotula, L. (2010). Over the heads of local people: consultation, consent, and
recompense in large-scale land deals for biofuels projects in Africa. The Journal of
Peasant Studies, 37(4), 899-916. doi:10.1080/03066150.2010.512463
Verschuuren, J. (2018). Towards an EU Regulatory Framework for Climate-Smart Agriculture:
The Example of Soil Carbon Sequestration. Transnational Environmental Law, 1-22.
doi:10.1017/S2047102517000395
Veselovskaya, J. V., Derevschikov, V. S., Kardash, T. Y., Stonkus, O. A., Trubitsina, T. A., &
Okunev, A. G. (2013). Direct CO2 capture from ambient air using K2CO3/Al2O3
composite sorbent. International Journal of Greenhouse Gas Control, 17, 332-340.
doi:http://dx.doi.org/10.1016/j.ijggc.2013.05.006
Veselovskaya, J. V., Parunin, P. D., Netskina, O. V., & Okunev, A. G. (2018). A Novel Process for
Renewable Methane Production: Combining Direct Air Capture by K2CO3/Alumina
Sorbent with CO2 Methanation over Ru/Alumina Catalyst. Topics in Catalysis, 61(15),
1528-1536. doi:10.1007/s11244-018-0997-z
Veselovskaya, J. V., Parunin, P. D., & Okunev, A. G. (2017). Catalytic process for methane
production from atmospheric carbon dioxide utilizing renewable energy. Catalysis Today,
298, 117-123. doi:https://doi.org/10.1016/j.cattod.2017.05.044
Vetter, D. (2020). The Amazing Secret To Cutting 25% Of Carbon Could Be Under Your Feet.
Forbes. Retrieved from https://www.forbes.com/sites/davidrvetter/2020/10/14/the-
amazing-secret-to-cutting-25-of-carbon-could-be-under-your-feet/amp/?
__twitter_impression=true
Vetter, D. (2021). Could This Revolutionary Idea Pay Our Climate Change Debt And
Supercharge CO2 Reductions? Forbes. Retrieved from https://www.forbes.com/sites/
davidrvetter/2021/07/09/could-this-revolutionary-idea-pay-our-climate-change-debt-and-
supercharge-co2-reductions/?sh=30eaa93c640a
Vichi, M., Navarra, A., & Fogli, P. G. (2013). Adjustment of the natural ocean carbon cycle to
negative emission rates. Climatic Change, 118(1), 105-118. Retrieved from http://
link.springer.com/article/10.1007%2Fs10584-012-0677-0
Victoria, U. o. (2019). Rock-solid climate solutions: Negative emissions technology. Retrieved
from https://www.eurekalert.org/pub_releases/2019-09/uov-rcs092519.php
Vidal, J. (2018). How Bill Gates aims to clean up the planet. The Guardian. Retrieved from
https://www.theguardian.com/environment/2018/feb/04/carbon-emissions-negative-
emissions-technologies-capture-storage-bill-gates
Viebahn, P., et al. (2019). The Potential Role of Direct Air Capture in the German Energy
Research Program—Results of a Multi-Dimensional Analysis. Energies, 12(18), 1-27.
Retrieved from https://www.mdpi.com/1996-1073/12/18/3443
Viebahn, P., et al. (2020). Integrated Assessment of Carbon Capture and Storage (CCS) in
South Africa’s Power Sector. Energies, 8(12), 14380-14406. Retrieved from https://
www.mdpi.com/1996-1073/8/12/12432
Viebahn, P., & Chappin, E. J. L. (2018). Scrutinising the Gap between the Expected and Actual
Deployment of Carbon Capture and Storage—A Bibliometric Analysis. Energies, 11(9),
2319. doi:http://dx.doi.org/10.3390/en11092319
Viebahn, P., Vallentin, D., & Höller, S. (2014). Prospects of carbon capture and storage (CCS) in
India’s power sector – An integrated assessment. Applied Energy, 117, 62-75. doi:http://
doi.org/10.1016/j.apenergy.2013.11.054
Vierros, M. (2017). Communities and blue carbon: the role of traditional management systems
in providing benefits for carbon storage, biodiversity conservation and livelihoods.
Climatic Change, 140(1), 89-100. doi:10.1007/s10584-013-0920-3
Viger, M., Hancock, R., Miglietta, F., & Taylor, G. (2014). More plant growth but less plant
defence? First global gene expression data for plants grown in soil amended with
biochar. GCB Bioenergy, 7(4), 658-672. Retrieved from http://onlinelibrary.wiley.com/doi/
10.1111/gcbb.12182/abstract
Vihavainen, A. (2021). Nasdaq becomes majority investor in Puro.earth Retrieved from https://
puro.earth/articles/nasdaq-becomes-majority-investor-in-puro-earth-643?
utm_source=newsletter&utm_medium=email&utm_campaign=newsletter-42&utm_conte
nt=20210601-
Vijayanand, C., et al. (2015). Biochar production from arecanut waste. International Journal of
Farm Sciences - VIJAYANAND, 6(1), 43-48. Retrieved from http://inflibnet.ac.in/ojs/
index.php/IJFS/article/view/3641
Vilarrasa, V., & Carrera, J. (2015). Geologic carbon storage is unlikely to trigger large
earthquakes and reactivate faults through which CO<sub>2</sub> could leak.
Proceedings of the National Academy of Sciences, 112(19), 5938-5943. doi:10.1073/
pnas.1413284112
Villar, A. (2012). Biochar: A Solution to Oakland's Green Waste? Retrieved from http://
escholarship.org/uc/item/7zh0n19v
Vilvanathan, S., & Shanthakumar, S. (2015). Biosorption of Co(II) ions from aqueous solution
using Chrysanthemum indicum: Kinetics, equilibrium and thermodynamics. Process
Safety and Environmental Protection, 96, 98 - 110. doi:10.1016/j.psep.2015.05.001
Vinca, A., & Tavoni, M. (2018). The role of carbon capture and storage electricity in attaining 1.5
and 2 °C (Vol. 78).
Vine, E. J. M., & Change, A. S. f. G. (2004). Regulatory Constraints to Carbon Sequestration in
Terrestrial Ecosystems and Geologic Formations: A California Perspective. 9(1), 77-95.
doi:10.1023/B:MITI.0000009916.29110.cb
Vinh, H., et al. (2015). Integrated nutrient management of annual and perennial crops on sandy
coastal plains of south-central coastal Vietnam. In S. Mann, M. Webb, & R. Bell (Eds.),
Sustainable and profitable crop and livestock systems in south-central coastal Vietnam
(pp. 80-90): Australian Centre for International Agricultural Research,.
Vinh, N. C., et al. (2014). Biochar Treatment and its Effects on Rice and Vegetable Yields in
Mountainous Areas of Northern Vietnam. International Journal of Agricultural and Soil
Science, 2(1), 5-13. Retrieved from http://internationalinventjournals.org/journals/IJASS/
Archive/2014/February_vol-2-issue-1/Fulltext/Vinh%20et%20al.pdf
Visioli, G., Conti, F. D., Menta, C., Bandiera, M., Malcevschi, A., Jones, D. L., & Vamerali, T.
(2016). Assessing biochar ecotoxicology for soil amendment by root phytotoxicity
bioassays. Environmental Monitoring and Assessment, 188(3), 1-11. doi:10.1007/
s10661-016-5173-y
Vithanage, M., et al. . (2014). Acid-activated biochar increased sulfamethazine retention in soils.
Environmental Science and Pollution Research, 22(3), 2175-2186. doi:10.1007/
s11356-014-3434-2
Vithanage, M., et al. . (2014). Role of Fungal-bacterial Biofilm and Woody Biochar on Soil
Enzyme Activities and Ni Immobilization in Serpentine Soil. 2nd CLEAR. Retrieved from
http://www.researchgate.net/profile/Tharanga_Bandara2/publication/
276954234_Role_of_Fungal-
bacterial_Biofilm_and_Woody_Biochar_on_Soil_Enzyme_Activities_and_Ni_Immobilizat
ion_in_Serpentine_Soil/links/555c8dc708ae86c06b5d38f1.pdf
Vithanage, M., et al. (2014). Sorption and transport of sulfamethazine in agricultural soils
amended with invasive-plant-derived biochar. Journal of Environmental Management,
141, 95-103. doi:10.1016/j.jenvman.2014.02.030
Vithanage, M., Mayakaduwa, S. S., Herath, I., Ok, Y. S., & Mohan, D. (2015). Kinetics,
thermodynamics and mechanistic studies of carbofuran removal using biochars from tea
waste and rice husks. Chemosphere, 150, 781-789. doi:10.1016/
j.chemosphere.2015.11.002
Vithanage, M., Rajapaksha, A. U., Ahmad, M., Uchimiya, M., Dou, X., ALESSI, D. S., & Ok, Y. S.
(2015). Mechanisms of antimony adsorption onto soybean stover-derived biochar in
aqueous solutions. Journal of Environmental Management, 151, 443 - 449. doi:10.1016/
j.jenvman.2014.11.005
Vochozka, M., Maroušková, A., Váchal, J., & Straková, J. (2016). Biochar pricing hampers
biochar farming. Clean Technologies and Environmental Policy, 18(4), 1225-1231.
doi:10.1007/s10098-016-1113-3
Voegele, E. (2020). Drax, Velocys help launch Coalition for Negative Emissions. Biomass
Magazine. Retrieved from http://biomassmagazine.com/articles/17440/drax-velocys-
help-launch-coalition-for-negative-emissions
Voegele, E. (2020). SCALE Act could help ethanol plants transport CO2 to customers. Ethanol
Producer Magazine. Retrieved from http://ethanolproducer.com/articles/17832/scale-act-
could-help-ethanol-plants-transport-co2-to-customers
Voigt, M., Marieni, C., Baldermann, A., Galeczka, I. M., Wolff-Boenisch, D., Oelkers, E. H., &
Gislason, S. R. (2021). An experimental study of basalt–seawater–CO2 interaction at
130!°C. Geochimica Et Cosmochimica Acta, 308, 21-41. doi:https://doi.org/10.1016/
j.gca.2021.05.056
Volk, T. A., et al. (2004). Growing fuel: a sustainability assessment of willow biomass crops.
Frontiers in Ecology and the Environment, 2(8), 411-418. Retrieved from http://
onlinelibrary.wiley.com/doi/10.1890/1540-9295(2004)002[0411:GFASAO]2.0.CO;2/
abstract?
systemMessage=Wiley+Online+Library+will+be+unavailable+on+Saturday+7th+Oct+fro
m+03.00+EDT+%2F+08%3A00+BST+%2F+12%3A30+IST+
%2F+15.00+SGT+to+08.00+EDT+%2F+13.00+BST+%2F+17%3A30+IST+
%2F+20.00+SGT+and+Sunday+8th+Oct+from+03.00+EDT+%2F+08%3A00+BST+
%2F+12%3A30+IST+%2F+15.00+SGT+to+06.00+EDT+%2F+11.00+BST+
%2F+15%3A30+IST+%2F+18.00+SGT+for+essential+maintenance.
+Apologies+for+the+inconvenience+caused+.
Volpe, M., Panno, D., Volpe, R., & Messineo, A. (2015). Upgrade of citrus waste as a biofuel via
slow pyrolysis. Journal of Analytical and Applied Pyrolysis. doi:10.1016/
j.jaap.2015.06.015
vom Eyser, C., Palmu, K., Otterpohl, R., Schmidt, T. C., & Tuerk, J. (2014). Determination of
pharmaceuticals in sewage sludge and biochar from hydrothermal carbonization using
different quantification approaches and matrix effect studies. Analytical and Bioanalytical
Chemistry. doi:10.1007/s00216-014-8068-1
vom Eyser, C., Palmu, K., Schmidt, T. C., & Tuerk, J. (2015). Pharmaceutical load in sewage
sludge and biochar produced by hydrothermal carbonization. Science of The Total
Environment, 537, 180 - 186. doi:10.1016/j.scitotenv.2015.08.021
von Blottnitz, H., & Curran, M. A. (2007). A review of assessments conducted on bio-ethanol as
a transportation fuel from a net energy, greenhouse gas, and environmental life cycle
perspective. Journal of Cleaner Production, 15, 607-619. Retrieved from http://
www.bren.ucsb.edu/academics/documents/biofuel_jcp.pdf
von Blottniz, H., & Curran, M. A. (2007). A review of assessments conducted on bio-ethanol as a
transportation fuel from a net energy, greenhouse gas, and environmental life cycle
perspective. Journal of Cleaner Production, 15, 607-619. Retrieved from http://
www.bren.ucsb.edu/academics/documents/biofuel_jcp.pdf
von der Assen, N., Jung, J., & Bardow, A. (2013). Life-cycle assessment of carbon dioxide
capture and utilization: avoiding the pitfalls. Energy & Environmental Science, 6(9),
2721-2734. doi:10.1039/C3EE41151F
Von der Assen, N., Voll, P., Peters, M., & Bardow, A. (2014). Life cycle assessment of CO2
capture and utilization: A tutorial review. Chem. Soc. Rev.
von Hippel, T. (2018). Thermal removal of carbon dioxide from the atmosphere: energy
requirements and scaling issues. Climatic Change. doi:10.1007/s10584-018-2208-0
von Stechow, C., Watson, J., & Praetorius, B. (2011). Policy incentives for carbon capture and
storage technologies in Europe: A qualitative multi-criteria analysis. Global
Environmental Change, 21(2), 346-357. doi:https://doi.org/10.1016/
j.gloenvcha.2011.01.011
Vongkhamchanh, B., Inthapanya, S., & Preston, T. R. (2016). Methane production in an in vitro
rumen fermentation is reduced when the carbohydrate substrate is fresh rather than
ensiled or dried cassava root, and when biochar is added to the substrate. Livestock
Research for Rural Development, 27(10). Retrieved from http://www.lrrd.cipav.org.co/
lrrd27/10/bobb27208.html
Vongsamphanh, P., Napasirth, V., Inthapanya, S., & Preston, T. R. (2016). Effect of biochar and
leaves from sweet or bitter cassava on gas and methane production in an in vitro rumen
incubation using cassava root pulp as source of energy. Livestock Research for Rural
Development. Retrieved from http://lrrd.cipav.org.co/lrrd27/4/phan27072.html
vonHedemann, N., et al. . (2020). Forest policy and management approaches for carbon dioxide
removal. Interface Focus, 10(5), 20200001. doi:doi:10.1098/rsfs.2020.0001
Voosen, P. (2018). Rise of carbon dioxide–absorbing mountains in tropics may set thermostat
for global climate. Science. Retrieved from https://www.sciencemag.org/news/2018/12/
rise-carbon-dioxide-absorbing-mountains-tropics-may-set-thermostat-global-climate
Voskian, S., & Hatton, T. A. (2019). Faradaic electro-swing reactive adsorption for CO2 capture.
Energy & Environmental Science. doi:10.1039/C9EE02412C
Vow. (2020). Vow ASA : A breakthrough solution in the fight against climate change. Global
Newswire. Retrieved from https://www.globenewswire.com/news-release/
2020/12/09/2141894/0/en/Vow-ASA-A-breakthrough-solution-in-the-fight-against-
climate-change.html
Vu, K. A., Tawfiq, K., & Chen, G. (2015). Rhamnolipid Transport in Biochar-Amended
Agricultural Soil. Water, Air, & Soil Pollution, 226(8), 1-8. doi:10.1007/s11270-015-2497-0
Vu, L. H., Seung-soo, K., Soo, K. J., & Woohuicheol. (2015). Effect of treatment method on
pyrolysis of saccharina japonica alga in fluidized-bed reactor.
(Korea Society of Industrial and Engineering Chemistry Research Papers). Retrieved
from http://www.papersearch.net/view/detail.asp?detail_key=10916864
Vu, Q. D., de Neergaard, A., Tran, T. D., Hoang, H. T. T., Vu, V. T. K., & Jensen, L. S. (2014).
Greenhouse gas emissions from passive composting of manure and digestate with crop
residues and biochar on small-scale livestock farms in Vietnam. Environmental
Technology, 36(23), 1 - 12. doi:10.1080/09593330.2014.960475
Vu, Q. D., de Neergaard, A., Tran, T. D., Hoang, Q. Q., Ly, P., Tran, T. M., & Jensen, L. S.
(2015). Manure, biogas digestate and crop residue management affects methane gas
emissions from rice paddy fields on Vietnamese smallholder livestock farms. Nutrient
Cycling in Agroecosystems, 103(3), 329 - 346. doi:10.1007/s10705-015-9746-x
Vyawahare, M. (2019). Natural forests best bet for fighting climate change, analysis finds.
Mongabay, (April 9). Retrieved from https://news.mongabay.com/2019/04/natural-
forests-best-bet-for-fighting-climate-change-analysis-finds/
Wade, A. (2019). Direct action: Carbon capture gears up for climate battle. The Engineer.
Retrieved from https://www.theengineer.co.uk/carbon-capture-climate-battle/
Wade, J. P. (2015). Biotic and Abiotic Remediation of Acetaminophen with Woodchip and
Biochar-amended Woodchip Adsorbents. Virginia Polytechnic Institute and State
University, Retrieved from https://vtechworks.lib.vt.edu/handle/10919/64157?show=full
Wagner, A., et al. (2013). Carbon Dioxide Capture from Ambient Air Using Amine-Grafted
Mesoporous Adsorbents. International Journal of Spectroscopy, 2013(690186), 1-8.
Wagner, A., & Kaupenjohann, M. (2015). Biochar addition enhanced growth of!Dactylis
glomerata!L. and immobilized Zn and Cd but mobilized Cu and Pb on a former sewage
field soil. European Journal of Soil Science, 66(3), 505-515. doi:10.1111/ejss.12246
Wagner, A., Kaupenjohann, M., Hu, Y., Kruse, J., & Leinweber, P. (2015). Biochar-induced
formation of Zn-P-phases in former sewage field soils studied by P K-edge XANES
spectroscopy. Journal of Plant Nutrition and Soil Science, 178(4), 582 - 585.
doi:10.1002/jpln.201400601
Waheed, Q. M. K., Wu, C., & Williams, P. T. (2015). Hydrogen production from high temperature
steam catalytic gasification of bio-char. In.
Wahyuni, S. (2015). EFFECTIVENESS OF UREA COATING ON THE ENRICHED WITH
CHARCOAL INDIGENUS MICROBES TO DECREASE AND RESIDUAL
HEKSAKLOROBENZEN (translated from Indonesian language). Retrieved from http://
eprints.uns.ac.id/19911/
Wahyuni, S., Indratin, I., Dewi, W. S., & Atmanto, H. (2016). Urea Coating with Activated Carbon
Enriched by Microbial Indigenous Can Reduce Endrin Concentration. Paper presented
at the Prosiding Seminar Nasional Biologi (Proceedings of the National Seminar on
Biological). http://www.jurnal.fkip.uns.ac.id/index.php/prosbio/article/view/7220
Wainberg, R., & Downie, A. (2007, 6 February 2007). The Pay Dirt of El Dorado. Retrieved from
http://www.wme.com.au/categories/waste_managemt/feb6_07.php
Wajuimomgtyas, A., Roto, R., & Kuncaka, A. (2016). Study of Glucose Adsorption on Synthetic
Humin. Asian Journal of Chemistry, 28(5), 987-992. Retrieved from http://
www.asianjournalofchemistry.co.in/User/ViewFreeArticle.aspx?ArticleID=28_5_10
Waldron, A., Garrity, D., Malhi, Y., Girardin, C., Miller, D. C., & Seddon, N. (2017). Agroforestry
Can Enhance Food Security While Meeting Other Sustainable Development Goals.
Tropical Conservation Science, 10, 1940082917720667.
doi:10.1177/1940082917720667
Waldron, A., Justicia, R., & Smith, L. E. (2015). Making biodiversity-friendly cocoa pay:
combining yield, certification, and REDD for shade management. Ecological
Applications, 25(2), 361-372. doi:https://doi.org/10.1890/13-0313.1
Walia, J., et al. (2021). Reconfigurable carbon quantum emitters from CO2 gas reduced via
surface plasmons. Optica, 8, 708-709. Retrieved from https://www.osapublishing.org/
optica/fulltext.cfm?uri=optica-8-5-708&id=451118
Walker, J. C. G., Hays, P. B., & Kasting, J. F. (1981). A negative feedback mechanism for the
long-term stabilization of Earth's surface temperature. Journal of Geophysical Research:
Oceans, 86(C10), 9776-9782. doi:https://doi.org/10.1029/JC086iC10p09776
Wallace, T. (2017). Biochar, the once and future agricultural mainstay. Cosmos. Retrieved from
https://cosmosmagazine.com/climate/biochar-the-once-and-future-agricultural-mainstay
Waller, L., Rayner, T., Chilvers, J., Gough, C. A., Lorenzoni, I., Jordan, A., & Vaughan, N. (2020).
Contested framings of greenhouse gas removal and its feasibility: Social and political
dimensions. WIREs Climate Change, 11(4), e649. doi:10.1002/wcc.649
Waller, R. (2012). Iron Fertilization: Savior to Climate Change or Ocean Dumping? National
Geographic, (October 18). Retrieved from http://voices.nationalgeographic.com/
2012/10/18/iron-fertilization-savior-to-climate-change-or-ocean-dumping/
Wallquist, L., Seigo, S. L. O., Visschers, V. H. M., & Siegrist, M. (2012). Public acceptance of
CCS system elements: A conjoint measurement. International Journal of Greenhouse
Gas Control, 6, 77-83. doi:http://dx.doi.org/10.1016/j.ijggc.2011.11.008
Walsh, B., Ciais, P., Janssens, I. A., Peñuelas, J., Riahi, K., Rydzak, F., . . . Obersteiner, M.
(2017). Pathways for balancing CO2 emissions and sinks. Nature Communications, 8,
14856. doi:10.1038/ncomms14856
https://www.nature.com/articles/ncomms14856#supplementary-information
Walsh, B. J., Rydzak, F., Palazzo, A., Kraxner, F., Herrero, M., Schenk, P. M., . . . Obersteiner,
M. (2015). New feed sources key to ambitious climate targets. Carbon Balance and
Management, 10(1), 26. doi:10.1186/s13021-015-0040-7
Walsh, M., J., et al. . (2016). Algal food and fuel coproduction can mitigate greenhouse gas
emissions while improving land and water-use efficiency. Environmental Research
Letters, 11(11), 114006. Retrieved from http://stacks.iop.org/1748-9326/11/i=11/
a=114006
Walsh, M. E., de la Torre Ugarte, D. G., Shapouri, H., & Slinsky, S. P. (2003). Bioenergy Crop
Production in the United States: Potential Quantities, Land Use Changes, and Economic
Impacts on the Agricultural Sector. Environmental and Resource Economics, 24(4),
313-333. doi:10.1023/a:1023625519092
Walter, R., & Rao, B. K. R. (2015). Biochars influence sweet-potato yield and nutrient uptake in
tropical Papua New Guinea. Journal of Plant Nutrition and Soil Science, n/a - n/a.
doi:10.1002/jpln.201400405
Walter, S., Peeken, I., Lochte, K., Webb, A., & Bange, H. W. (2005). Nitrous oxide
measurements during EIFEX, the European Iron Fertilization Experiment in the subpolar
South Atlantic Ocean. Geophysical Research Letters, 32(23), n/a-n/a.
doi:10.1029/2005GL024619
Walters, R., et al. (2015). Investigating Bio-Char as Flow Modifier and Water Treatment Agent
for Sustainable Pavement Design. American Journal of Engineering and Applied
Sciences, 8(1), 138-146. Retrieved from http://search.proquest.com/openview/
fa408a4aec667e25a33c3f63ce007035/1?pq-origsite=gscholar
Walters, R. C., M.S. (2014). Enhancing Asphalt Binder's Rheological Behavior and Aging
Susceptibility Using Nano-Particles. North Carolina Agricultural and Technical State
University, Retrieved from http://gradworks.umi.com/15/60/1560232.html
Walters, R. C., Fini, E. H., & Abu-Lebdeh, T. (2014). Enhancing Asphalt Rheological Behavior
and AGing Susceptibility Using Bio-Char and Nano-Clay. American Journal of
Engineering and Applied Sciences, 7(1), 66 - 76. doi:10.3844/ajeassp.2014.66.76
Wang, B. (2018). Restore the oceans and get up to 50 times the fish and store a trillion tons of
CO2. nextBIGfuture. Retrieved from https://www.nextbigfuture.com/2018/07/restore-the-
oceans-and-get-up-to-50-times-the-fish-and-store-a-trillion-tons-of-co2.html
Wang, B., Jiang, Z., Yu, J. C.-m., Wang, J., & Wong, P. K. (2019). Enhanced CO2 reduction and
valuable C2+ chemical production by a CdS-Photosynthetic hybrid system. Nanoscale.
doi:10.1039/C9NR02896J
Wang, B., Li, Y., Wu, N., Lan, C. Q. J. A. M., & Biotechnology. (2008). CO2 bio-mitigation using
microalgae. 79(5), 707-718. doi:10.1007/s00253-008-1518-y
Wang, B., Pan, Z., Cheng, H., Zhang, Z., & Cheng, F. (2021). A review of carbon dioxide
sequestration by mineral carbonation of industrial byproduct gypsum. Journal of Cleaner
Production, 126930. doi:https://doi.org/10.1016/j.jclepro.2021.126930
Wang, C., et al. . (2013). Adsorption of deoxyribonucleic acid (DNA) by willow wood biochars
produced at different pyrolysis tempuratures. Biological Fertility of Soils, 50(1), 87-94.
Retrieved from http://link.springer.com/article/10.1007/s00374-013-0836-0
Wang, C., et al. (2013). Insight into the Effects of Biochar on Manure Composting: Evidence
Supporting the Relationship between N2O Emission and Denitrifying Community.
Environmental Science and Technology, 47(13), 7341-7349.
Wang, C., et al. . (2015). The chemical composition of native organic matter influences the
response of bacterial community to input of biochar and fresh plant material. Plant and
Soil, 395(1-2), 87-104. doi:10.1007/s11104-015-2621-3
Wang, C., Walter, M. T., & Parlange, J.-Y. (2013). Modeling Simple Experiments of Biochar
Erosion from Soil. Journal of Hydrology, 499, 140-145.
Wang, D., et al. . (2012). Transport of Biochar Particles in Saturated Granular Media: Effects of
Pyrolysis Temperature and Particle Size. Environmental Science and Technology, 47(2),
821-828.
Wang, D., Zhang, W., & Zhou, D. (2013). Antagonistic Effects of Humic Acid and Iron
Oxyhydroxide Grain-Coating on Biochar Nanoparticle Transport in Saturated Sand.
Environ. Sci. Technol.
Wang, D. Y., et al. (2014). Impact of Biochar on Water Holding Capacity of Two Chinese
Agricultural Soil. Advanced Materials Research, 941-944, 952-955. Retrieved from http://
www.scientific.net/AMR.941-944.952
Wang, D. Y., et al. . (2015). Phenylurea herbicide sorption to biochars and agricultural soil.
Journal of Environmental Science and Health, Part B, 50(8), 544-551.
doi:10.1080/03601234.2015.1028830
Wang, F., et al. . (2014). Species-dependent effects of biochar amendment on bioaccumulation
of atrazine in earthworms. Environmental Pollution, 186, 241–247.
Wang, F., et al. (2020). Addressing critical challenges in carbon dioxide removal. Retrieved from
https://www.climateworks.org/blog/addressing-critical-challenges-in-carbon-dioxide-
removal/
Wang, F., Deng, S., Zhao, J., Zhao, J., Yang, G., & Yan, J. (2017). Integrating geothermal into
coal-fired power plant with carbon capture: A comparative study with solar energy.
Energy Conversion and Management, 148, 569-582. doi:https://doi.org/10.1016/
j.enconman.2017.06.016
Wang, F., Dreisinger, D., Jarvis, M., & Hitchins, T. (2019). Kinetics and mechanism of mineral
carbonation of olivine for CO2 sequestration. Minerals Engineering, 131, 185-197.
doi:https://doi.org/10.1016/j.mineng.2018.11.024
Wang, F., Dreisinger, D. B., Jarvis, M., & Hitchins, T. (2018). The technology of CO2
sequestration by mineral carbonation: current status and future prospects. Canadian
Metallurgical Quarterly, 57(1), 46-58. doi:10.1080/00084433.2017.1375221
Wang, G., & Xu, Z. (2013). The Effects of Biochar on Germination and Growth of Wheat in
Different Saline-alkali Soil. Asian Agricultural Research, 5(11), 116-119. Retrieved from
http://aagr.chinajournal.net.cn/WKB/WebPublication/paperDigest.aspx?
paperID=b90014fc-905f-44c2-b561-67d3a9d0850e
Wang, H., Gao, B., Wang, S., Fang, J., Xue, Y., & Yang, K. (2015). Removal of Pb(II), Cu(II),
and Cd(II) from aqueous solutions by biochar derived from KMnO4 treated hickory wood.
Bioresource Technology, 197, 356 - 362. doi:10.1016/j.biortech.2015.08.132
Wang, H. L., Lin, K. D., Hou, Z. N., Richardson, B., & Gan, J. (2010). Sorption of the herbicide
terbuthylazine in two New Zealand forest soils amended with biosolids and biochars.
Journal of Soils and Sediments, 10(2), 283-289. Retrieved from https://link.springer.com/
article/10.1007/s11368-009-0111-z
Wang, J., et al. . (2011). Effects of biochar addition on N
2
O and CO
2
emissions from two paddy
soils. Biology and Fertility of Soils, 47(8), 887-896. doi:10.1007/s00374-011-0595-8
Wang, J., et al. . (2012). Effects of biochar amendment in two soils on greenhouse gas
emissions and crop production. Plant and Soil, 360(1-2), 287-298. doi:10.1007/
s11104-012-1250-3
Wang, J., et al. (2015). Contrasting effects of aged and fresh biochars on glucose-induced
priming and microbial activities in paddy soil. Journal of Soils and Sediments, 16(1),
191-203. doi:10.1007/s11368-015-1189-0
Wang, J., et al. (2018). Simultaneous H2 Production with Carbon Storage by Enhanced Olivine
Weathering in Laboratory-scale: An Investigation of CO2 Effect. Paper presented at the
Second International Conference on Materials Chemistry and Environmental Protection -
MEEP.
Wang, J., Chen, Z., Xiong, Z., Chen, C., Xu, X., Zhou, Q., & Kuzyakov, Y. (2015). Effects of
biochar amendment on greenhouse gas emissions, net ecosystem carbon budget and
properties of an acidic soil under intensive vegetable production. Soil Use and
Management, 31(3), 375-383. doi:10.1111/sum.12202
Wang, J., Feng, L., Palmer, P. I., Liu, Y., Fang, S., Bösch, H., . . . Xia, C. (2020). Large Chinese
land carbon sink estimated from atmospheric carbon dioxide data. Nature, 586(7831),
720-723. doi:10.1038/s41586-020-2849-9
Wang, J., Xiong, Z., & Kuzyakov, Y. (2015). Biochar stability in soil: meta-analysis of
decomposition and priming effects. GCB Bioenergy, 8(3), 512-523. doi:10.1111/
gcbb.12266
Wang, J., Xiong, Z., Yan, X., & Kuzyakov, Y. (2016). Carbon budget by priming in a biochar-
amended soil. European Journal of Soil Biology, 76, 26-34. doi:https://doi.org/10.1016/
j.ejsobi.2016.07.003
Wang, J., Zhao, J., Wang, Y., Deng, S., Sun, T., & Li, K. (2017). Application potential of solar-
assisted post-combustion carbon capture and storage (CCS) in China: A life cycle
approach. Journal of Cleaner Production, 154, 541-552. doi:https://doi.org/10.1016/
j.jclepro.2017.04.021
Wang, K., et al. . (2012). Fast pyrolysis of microalgae remnants in a fluidized bed reactor for bio-
oil and biochar production. Bioresource Technology, 127, 494-499. Retrieved from http://
www.sciencedirect.com/science/article/pii/S0960852412011844
Wang, L., et al. (2013). Effect of crop residue biochar on soil acidity amelioration in strongly
acidic tea garden soils. Soil Use and Management.
Wang, L. (2014). Biofuels and BiorefineriesProduction of Biofuels and Chemicals with
MicrowaveTechno-Economic Analysis of Microwave-Assisted Pyrolysis for Production of
Biofuels (Vol. 3). Dordrecht: Springer Netherlands.
Wang, L., Chen, L., Poon, C. S., Wang, C.-H., Ok, Y. S., Mechtcherine, V., & Tsang, D. C. W.
(2021). Roles of Biochar and CO2 Curing in Sustainable Magnesia Cement-Based
Composites. ACS Sustainable Chemistry & Engineering. doi:10.1021/
acssuschemeng.1c02008
Wang, L., Gao, C., Yang, K., Sheng, Y., Xu, J., Zhao, Y., . . . Zhu, L. (2021). Effects of biochar
aging in the soil on its mechanical property and performance for soil CO2 and N2O
emissions. Science of The Total Environment, 146824. doi:https://doi.org/10.1016/
j.scitotenv.2021.146824
Wang, L., Higgins, D. C., Ji, Y., Morales-Guio, C. G., Chan, K., Hahn, C., & Jaramillo, T. F.
(2020). Selective reduction of CO to acetaldehyde with CuAg electrocatalysts.
Proceedings of the National Academy of Sciences, 117(23), 12572-12575. doi:10.1073/
pnas.1821683117
Wang, L., Li, X., Ma, J., Wu, Q., & Duan, X. (2014). Non-activated, N, S-co-doped Biochar
Derived from Banana with Superior Capacitive Properties. Sustainable Energy, 2(2),
39-43. doi:10.12691/rse-2-2-1
Wang, M., Sun, X., Zhong, N., Cai, D., & Wu, Z. (2015). Promising Approach for Improving
Adhesion Capacity of Foliar Nitrogen Fertilizer. ACS Sustainable Chemistry &
Engineering, 3(3), 499-506. doi:10.1021/acssuschemeng.5b00064
Wang, M., Wang, S., Sun, Y., & Li, Y. (2019). Improving Public Acceptance of Carbon Capture
and Storage(CCS) in China. IOP Conference Series: Earth and Environmental Science,
371, 032071. doi:10.1088/1755-1315/371/3/032071
Wang, M. C., Sheng, G. D., & Qiu, Y. P. (2014). A novel manganese-oxide/biochar composite for
efficient removal of lead(II) from aqueous solutions. International Journal of
Environmental Science and Technology, 12(5), 1719-1726. Retrieved from https://
link.springer.com/article/10.1007/s13762-014-0538-7
Wang, M. E., Peng, C., & Chen, W. P. (2016). Effects of Rice Cultivar and Typical Soil
Improvement Measures on the Uptake of Cd in Rice Grains. Europe PMC: Huan Jing ke
Xue, 36(11), 4283-4290. Retrieved from http://europepmc.org/abstract/med/26911020
Wang, M. M., & Zhou, Q. X. (2013). Long-Term Carbon Sequestration and Environmental
Immobilization of Biochar: A Review. Advanced Materials Research, 790, 475-479.
Retrieved from https://www.scientific.net/AMR.790.475
Wang, N., Akimoto, K., & Nemet, G. F. (2021). What went wrong? Learning from three decades
of carbon capture, utilization and sequestration (CCUS) pilot and demonstration projects.
Energy Policy, 158, 112546. doi:https://doi.org/10.1016/j.enpol.2021.112546
Wang, N., Chang, Z.-Z., Xue, X.-M., Yu, J.-G., Shi, X.-X., Ma, L. Q., & Li, H.-B. (2017). Biochar
decreases nitrogen oxide and enhances methane emissions via altering microbial
community composition of anaerobic paddy soil. Science of The Total Environment, 581,
689-696. doi:http://dx.doi.org/10.1016/j.scitotenv.2016.12.181
Wang, P., Guo, Y., Zhao, C., Yan, J., & Lu, P. (2017). Biomass derived wood ash with amine
modification for post-combustion CO2 capture. Applied Energy, 201, 34-44. doi:https://
doi.org/10.1016/j.apenergy.2017.05.096
Wang, P., Yin, Y., Guo, Y., & Wang, C. (2015). Removal of chlorpyrifos from waste water by
wheat straw-derived biochar synthesized through oxygen-limited method. RSC Adv.,
5(89), 72572 - 72578. doi:10.1039/c5ra10487d
Wang, P., Yin, Y., Guo, Y., & Wang, C. (2016). Preponderant adsorption for chlorpyrifos over
atrazine by wheat straw-derived biochar: experimental and theoretical studies. RSC
Adv., 6(13), 10615 - 10624. doi:10.1039/c5ra24248g
Wang, Q., Li, J., Chen, J., Hong, H., Lu, H., Liu, J., . . . Yan, C. (2018). Glomalin-related soil
protein deposition and carbon sequestration in the Old Yellow River delta. Science of
The Total Environment, 625, 619-626. doi:https://doi.org/10.1016/j.scitotenv.2017.12.303
Wang, Q. X., Mao, L. A., Wang, D., Yan, D. D., Ma, T. T., Liu, P. F., . . . Cao, A. C. (2014).
Emission Reduction of 1,3-Dichloropropene by Soil Amendment with Biochar. Journal of
Environmental Quality. Retrieved from http://ir.ipe.ac.cn/handle/122111/11689
Wang, R., et al. (2015). Research progress on preparing biochar and its effect on soil physio-
chemical properties. Journal of Agricultural Science and Technology (Beijing), 17(2),
126-133. Retrieved from http://www.cabdirect.org/abstracts/20153172001.html
Wang, R., Peng, F., Song, K., Feng, G., & Guo, Z. (2018). Molecular dynamics study of
interfacial properties in CO2 enhanced oil recovery. Fluid Phase Equilibria, 467, 25-32.
doi:https://doi.org/10.1016/j.fluid.2018.03.022
Wang, S., et al. . (2012). Large-scale Biochar Production from Crop Residue: A New Idea and
the Biogas-Energy Pyrolysis System. Bioresources.com, 8(1), 8-11. Retrieved from
http://www.ncsu.edu/bioresources/BioRes_08/
BioRes_08_1_0008_Wang_ZXY_Editorial_Biochar_Crop_Biogas_Pyrol_3257.pdf
Wang, S. (2015). Iron (Fe) and manganese (Mn) oxide mineral modified biochars:
Characterization and removal of arsenate and lead. UNIVERSITY OF FLORIDA,
Retrieved from http://gradworks.umi.com/37/16/3716993.html
Wang, S., Gao, B., Li, Y., Creamer, A. E., & He, F. (2016). Adsorptive removal of arsenate from
aqueous solutions by biochar supported zero-valent iron nanocomposite: Batch and
continuous flow tests. Journal of Hazardous Materials. doi:10.1016/
j.jhazmat.2016.01.052
Wang, S., Gao, B., Li, Y., Mosa, A., Zimmerman, A. R., Ma, L. Q., . . . Migliaccio, K. W. (2015).
Manganese oxide-modified biochars: Preparation, characterization, and sorption of
arsenate and lead. Bioresource Technology, 181, 13 - 17. doi:10.1016/
j.biortech.2015.01.044
Wang, S., Gao, B., Li, Y., Wan, Y., & Creamer, A. E. (2015). Sorption of arsenate onto magnetic
iron–manganese (Fe–Mn) biochar composites. RSC Adv., 5(83), 67971 - 67978.
doi:10.1039/c5ra12137j
Wang, S., Gao, B., Li, Y., Zimmerman, A. R., & Cao, X. (2016). Sorption of arsenic onto Ni/Fe
layered double hydroxide (LDH)-biochar composites. RSC Adv., 6(22), 17792 - 17799.
doi:10.1039/c5ra17490b
Wang, S., Gao, B., Zimmerman, A. R., Li, Y., Ma, L., Harris, W. G., & Migliaccio, K. W. (2015).
Physicochemical and sorptive properties of biochars derived from woody and
herbaceous biomass. Chemosphere, 134, 257 - 262. doi:10.1016/
j.chemosphere.2015.04.062
Wang, S., Gao, B., Zimmerman, A. R., Li, Y., Ma, L., Harris, W. G., & Migliaccio, K. W. (2015).
Removal of arsenic by magnetic biochar prepared from pinewood and natural hematite.
Bioresource Technology, 175, 391 - 395. doi:10.1016/j.biortech.2014.10.104
Wang, S., Ma, S., Shan, J., Xia, Y., Lin, J., & Yan, X. (2019). A 2-year study on the effect of
biochar on methane and nitrous oxide emissions in an intensive rice–wheat cropping
system. Biochar, 1(2), 177-186. doi:10.1007/s42773-019-00011-8
Wang, S., Shiau, B., Chen, C., Harwell, J. H., & Kadhum, M. J. (2017). Development of in Situ
CO2 Generation Formulations for Enhanced Oil Recovery. Energy & Fuels, 31(12),
13475-13486. doi:http://dx.doi.org/10.1021/acs.energyfuels.7b02810
Wang, S.-y., Tang, Y.-k., Chen, C., Wu, J.-t., Huang, Z., Mo, Y.-y., . . . Chen, J.-b. (2015).
Regeneration of magnetic biochar derived from eucalyptus leaf residue for lead(II)
removal. Bioresource Technology. doi:10.1016/j.biortech.2015.03.139
Wang, S.-y., Tang, Y.-k., Li, K., Mo, Y.-y., Li, H.-f., & Gu, Z.-q. (2014). Combined performance of
biochar sorption and magnetic separation processes for treatment of chromium-
contained electroplating wastewater. Bioresource Technology, 174, 67 - 73. doi:10.1016/
j.biortech.2014.10.007
Wang, T., et al. . (2012). Chemical and bioassay characterisation of nitrogen availability in
biochar produced from dairy manure and biosolids. Organic Geochemistry, 51, 45-54.
Wang, T. (2012). Fuel synthesis with CO2 captured from atmosphere: Thermodynamic analysis.
ECS Trans., 41, 13.
Wang, T., Camps-Arbestain, M., & Hedley, M. (2013). Predicting C aromaticity of biochars based
on their elemental composition. Organic Geochemistry, 62, 1-6. Retrieved from http://
www.sciencedirect.com/science/article/pii/S0146638013001423
Wang, T., Ge, K., Wu, Y. S., Chen, K. X., Fang, M. X., & Luo, Z. Y. (2017). Designing Moisture-
Swing CO2 Sorbents through Anion Screening of Polymeric Ionic Liquids. Energy &
Fuels, 31(10), 11127-11133. doi:10.1021/acs.energyfuels.7b02200
Wang, T., Hou, C. L., Ge, K., Lackner, K. S., Shi, X. Y., Liu, J., . . . Luo, Z. Y. (2017).
Spontaneous Cooling Absorption of CO2 by a Polymeric Ionic Liquid for Direct Air
Capture. Journal of Physical Chemistry Letters, 8(17), 3986-3990. doi:10.1021/
acs.jpclett.7b01726
Wang, T., Huang, J., He, X., Wu, J., Fang, M., & Cheng, J. (2014). CO
2
Fertilization System
Integrated with a Low-cost Direct Air Capture Technology. Energy Procedia, 63,
6842-6851. doi:http://dx.doi.org/10.1016/j.egypro.2014.11.718
Wang, T., Lackner, K. S., & Wright, A. (2011). Moisture Swing Sorbent for Carbon Dioxide
Capture from Ambient Air. Environmental Science & Technology, 45(15), 6670-6675.
doi:10.1021/es201180v
Wang, T., Liu, J., Fang, M., & Luo, Z. (2013). A Moisture Swing Sorbent for Direct Air Capture of
Carbon Dioxide: Thermodynamic and Kinetic analysis. Energy Procedia, 37, 6096-6104.
doi:http://dx.doi.org/10.1016/j.egypro.2013.06.538
Wang, T., Liu, J., Huang, H., Fang, M., & Luo, Z. (2016). Preparation and kinetics of a
heterogeneous sorbent for CO2 capture from the atmosphere. Chemical Engineering
Journal, 284, 679-686. doi:http://dx.doi.org/10.1016/j.cej.2015.09.009
Wang, T., Wang, X., Hou, C., & Liu, J. (2020). Quaternary functionalized mesoporous
adsorbents for ultra-high kinetics of CO2 capture from air. Scientific Reports, 10(1),
21429. doi:10.1038/s41598-020-77477-1
Wang, T.-T., et al. (2012). Effect of biochar amendment on the bioavailability of pesticide
chlorantraniliprole in soil to earthworm. Ecotoxicology and Environmental Safety, 83,
96-101. Retrieved from http://www.sciencedirect.com/science/article/pii/
S0147651312001947
Wang, T.-T., et al. . (2015). Suppression of Chlorantraniliprole Sorption on Biochar in Soil–
Biochar Systems. Bulletin of Environmental Contamination and Toxicology, 95(3),
401-406. doi:10.1007/s00128-015-1541-5
Wang, T. T., et al. (2012). Impact of biochar amendment on the sorption and dissipation of
chlorantraniliprole in soils. Huan Jing Ke Xue, 33, 1339-1345. Retrieved from http://
www.sciencedirect.com/science/article/pii/S0960852407008644
Wang, W.-L., Ren, X.-Y., Chang, J.-M., Cai, L.-P., & Shi, S. Q. (2015). Characterization of bio-
oils and bio-chars obtained from the catalytic pyrolysis of alkali lignin with metal
chlorides. Fuel Processing Technology. doi:10.1016/j.fuproc.2015.06.048
Wang, X., Hu, Z., Deng, S., Wang, Y., & Tan, H. (2014). Kinetics investigation on the combustion
of biochar in O2/CO2 atmosphere. Environmental Progress & Sustainable Energy, 34(3),
923-932. doi:10.1002/ep.12063
Wang, X., Peng, B., Tan, C., Ma, L., & Rathinasabapathi, B. (2015). Recent advances in arsenic
bioavailability, transport, and speciation in rice. Environmental Science and Pollution
Research, 22(8), 5742-5750. doi:10.1007/s11356-014-4065-3
Wang, X., Sato, T., & Xing, B. (2006). Competitive Sorption of Pyrene on Wood Chars.
Environmental Science and Technology, 40, 3267-3272.
Wang, X., & Song, C. (2019). Capture of CO2 from Concentrated Sources and the Atmosphere.
In M. Aresta, I. Karimi, & S. Kawi (Eds.), An Economy Based on Carbon Dioxide and
Water: Potential of Large Scale Carbon Dioxide Utilization (pp. 35-72). Retrieved from
https://link.springer.com/chapter/10.1007/978-3-030-15868-2_2
Wang, X., Song, D., Liang, G., Zhang, Q., Ai, C., & Zhou, W. (2015). Maize biochar addition rate
influences soil enzyme activity and microbial community composition in a fluvo-aquic
soil. Applied Soil Ecology, 96, 265 - 272. doi:10.1016/j.apsoil.2015.08.018
Wang, X., van ’t Veld, K., Marcy, P., Huzurbazar, S., & Alvarado, V. (2018). Economic co-
optimization of oil recovery and CO2 sequestration. Applied Energy, 222, 132-147.
doi:https://doi.org/10.1016/j.apenergy.2018.03.166
Wang, X., Zhang, F., & Lipiński, W. (2020). Research progress and challenges in hydrate-based
carbon dioxide capture applications. Applied Energy, 269, 114928. doi:https://doi.org/
10.1016/j.apenergy.2020.114928
Wang, X., Zhou, W., Liang, G., Song, D., & Zhang, X. (2015). Characteristics of maize biochar
with different pyrolysis temperatures and its effects on organic carbon, nitrogen and
enzymatic activities after addition to fluvo-aquic soil. Science of The Total Environment,
538, 137 - 144. doi:10.1016/j.scitotenv.2015.08.026
Wang, Y., et al. (2013). Comparisons of biochar properties from wood material and crop
residues at different temperatures and residence time. Energy Fuels, 27(10), 5890-5899.
Retrieved from http://pubs.acs.org/doi/abs/10.1021/ef400972z
Wang, Y., et al. . (2014). Effects of biochar on photosynthesis and antioxidative system of Malus
hupehensis Rehd. seedlings under replant conditions. Scientia Horticulturae, 175, 9-15.
Retrieved from http://www.sciencedirect.com/science/article/pii/S0304423814002957
Wang, Y., et al. (2015). Measuring the bioavailability of polychlorinated biphenyls to earthworms
in soil enriched with biochar or activated carbon using triolein-embedded cellulose
acetate membrane. Journal of Soils and Sediments, 16(2), 527-536. Retrieved from
http://link.springer.com/article/10.1007/s11368-015-1245-9
Wang, Y., Dong, Y., Zhang, L., Chu, G., Zou, H., Sun, B., & Zeng, X. (2021). Carbon Dioxide
Capture by Non-aqueous Blend in Rotating Packed Bed Reactor: Absorption and
Desorption Investigation. Separation and Purification Technology, 118714. doi:https://
doi.org/10.1016/j.seppur.2021.118714
Wang, Y., Guo, C.-h., Zhuang, S.-r., Chen, X.-j., Jia, L.-q., Chen, Z.-y., . . . Wu, Z. (2021). Major
contribution to carbon neutrality by China’s geosciences and geological technologies.
China Geology, 4(2), 329-352. doi:https://doi.org/10.31035/cg2021037
Wang, Y., Lin, Y., Chiu, P. C., Imhoff, P. T., & Guo, M. (2015). Phosphorus release behaviors of
poultry litter biochar as a soil amendment. Science of The Total Environment, 512-513,
454 - 463. doi:10.1016/j.scitotenv.2015.01.093
Wang, Y., Lu, J., Wu, J., Liu, Q., Zhang, H., & Jin, S. (2015). Adsorptive Removal of
Fluoroquinolone Antibiotics Using Bamboo Biochar. Sustainability, 7(9), 12947 - 12957.
doi:10.3390/su70912947
Wang, Y., Yan, X., & Wang, Z. (2014). The biogeophysical effects of extreme afforestation in
modeling future climate. Theoretical and Applied Climatology, 118(3), 511-521.
doi:10.1007/s00704-013-1085-8
Wang, Y., Yin, R., & Liu, R. (2014). Characterization of biochar from fast pyrolysis and its effect
on chemical properties of the tea garden soil. Journal of Analytical and Applied Pyrolysis,
110, 375 - 381. doi:10.1016/j.jaap.2014.10.006
Wang, Y., Zhang, L., Yang, H., Yan, G., Xu, Z., Chen, C., & Zhang, D. (2016). Biochar nutrient
availability rather than its water holding capacity governs the growth of both C3 and C4
plants. Journal of Soils and Sediments, 16(3), 801 - 810. doi:10.1007/s11368-016-1357-
x
Wang, Z., et al. . (2013). Effects of co-produced biochar on life cycle greenhouse gas emissions
of pyrolysis-derived renewable fuels. Biofuels, Bioproducts and Biorefining, 8(2),
189-204. Retrieved from http://onlinelibrary.wiley.com/doi/10.1002/bbb.1447/abstract
Wang, Z., et al. (2014). Contrasting effects of bamboo leaf and its biochar on soil CO2 efflux
and labile organic carbon in an intensively managed Chinese chestnut plantation.
Biology and Fertility of Soils, 50(7), 1109-1119. Retrieved from http://link.springer.com/
article/10.1007/s00374-014-0933-8
Wang, Z., et al. . (2015). Reduced nitrification and abundance of ammonia-oxidizing bacteria in
acidic soil amended with biochar. Chemosphere, 138, 576 - 583. doi:10.1016/
j.chemosphere.2015.06.084
Wang, Z., Guo, H., Shen, F., Yang, G., Zhang, Y., Zeng, Y., . . . Deng, S. (2015). Biochar
produced from oak sawdust by Lanthanum (La)-involved pyrolysis for adsorption of
ammonium (NH4+), nitrate (NO3), and phosphate (PO43). Chemosphere, 119, 646 -
653. doi:10.1016/j.chemosphere.2014.07.084
Wang, Z., Shen, D., Shen, F., & Li, T. (2016). Phosphate adsorption on lanthanum loaded
biochar. Chemosphere, 150, 1 - 7. doi:10.1016/j.chemosphere.2016.02.004
Wang, Z., Zheng, H., Luo, Y., Deng, X., Herbert, S., & Xing, B. (2013). Characterization and
influence of biochars on nitrous oxide emission from agricultural soil. Environmental
Pollution, 174, 289-296. doi:https://doi.org/10.1016/j.envpol.2012.12.003
Wang, Z. C., Dunn, J. B., Han, J. W., & Wang, M. Q. (2014). Effects of co-produced biochar on
life cycle greenhouse gas emissions of pyrolysis-derived renewable fuels. Biofuels,
Bioproducts & Biorefining, 8(2), 189-204. Retrieved from http://www.cabdirect.org/
abstracts/20143131389.html
Wang, Z. L., et al. (2015). Effect of bamboo leaf biochar addition on soil CO2 efflux and labile
organic carbon pool in a Chinese chestnut plantation. Ying Yong Sheng Tai Xue Bao,
25(11), 3152-3160. Retrieved from http://www.ncbi.nlm.nih.gov/pubmed/25898611
Wani, S., et al. (2013). Hydrological consequences of jatropha on waste lands in developing
countries. In J. F. Dellemand & P. W. Gerbens-Leenes (Eds.), Bioenergy and Water (pp.
103-116): European Commission.
Wankhede, S., Saini, M. K., Kothari, S. L., Bala, N., Singh, G., & Gour, V. S. (2017). Evaluation
of Carbon Sequestration Potential in Amla (Emblica officinalis Gaertn.) Orchards in
Semi-arid Region of India. Proceedings of the National Academy of Sciences, India
Section B: Biological Sciences. doi:10.1007/s40011-017-0917-1
Waqas, M., et al. (2013). The effects of sewage sludge and sewage sludge biochar on PAHs
and potentially toxic element bioaccumulation in Cucumis sativa L. Chemosphere, 105,
53-61. Retrieved from https://www.ncbi.nlm.nih.gov/pubmed/24360844
Waramit, N., Moore, K. J., & Heggenstaller, A. H. (2011). Composition of Native Warm-Season
Grasses for Bioenergy Production in Response to Nitrogen Fertilization Rate and
Harvest Date All rights reserved. No part of this periodical may be reproduced or
transmitted in any form or by any means, electronic or mechanical, including
photocopying, recording, or any information storage and retrieval system, without
permission in writing from the publisher. Agronomy Journal, 103(3), 655-662.
doi:10.2134/agronj2010.0374
Wararam, W., Chunkao, K., Phewnil, O., Tangkananuruk, N., Tangkananuruk, K.,
Pattamapitoon, T., . . . Peumsinb, J. (2015). Applicable VFCW Technology in Parallel
with Biochar-Mixed Soils for Treating Formaldehyde in Ethylene Glycol Factory
Wastewater. Modern Applied Science, 9(12), 154. doi:10.5539/mas.v9n12p154
Ward, J., Rasul, M. G., & Bhuiya, M. M. K. (2014). Energy Recovery from Biomass by Fast
Pyrolysis. Procedia Engineering, 90, 669 - 674. doi:10.1016/j.proeng.2014.11.791
Wardle, D., Nilsson, M.-C., & Zackrisson, O. (2008). Fire-Derived Charcoal Causes Loss of
Forest Humus. Science, 320(5876), 629. Retrieved from https://www.sciencemag.org/
cgi/content/abstract/320/5876/629
Wardle, D., Nilsson, M.-C., & Zackrisson, O. (2008). Response to Comment on "Fire-derived
Charcoal Causes Loss of Forest Humus". Science, 321(5894), 1295. Retrieved from
http://www.sciencemag.org/cgi/content/full/sci;321/5894/1295d
Waring, B. (2021). There aren’t enough trees in the world to offset society’s carbon emissions –
and there never will be. The Conversation. Retrieved from https://theconversation-
com.cdn.ampproject.org/v/s/theconversation.com/amp/there-arent-enough-trees-in-the-
world-to-offset-societys-carbon-emissions-and-there-never-will-be-158181?
amp_js_v=a6&_gsa=1&usqp=mq331AQFKAGwASA%3D#aoh=16192491278967&csi=0
&referrer=https%3A%2F%2Fwww.google.com&_tf=From%20%251%24s&ampshare=htt
ps%3A%2F%2Ftheconversation.com%2Fthere-arent-enough-trees-in-the-world-to-
offset-societys-carbon-emissions-and-there-never-will-be-158181
Waring, B., Neumann, M., Prentice, I. C., Adams, M., Smith, P., & Siegert, M. (2020). Forests
and Decarbonization – Roles of Natural and Planted Forests. Frontiers in Forests and
Global Change, 3(58). doi:10.3389/ffgc.2020.00058
Warner, E., et al. (2013). Modeling biofuel expansion effects on land use change dynamics.
Environmental Research Letters, 8, 2-10. Retrieved from http://iopscience.iop.org/article/
10.1088/1748-9326/8/1/015003/pdf
Warning.org, S. (2018). David Beerling - Saving Ourselves with Rocks, Crops & Soil. YouTube.
Retrieved from https://www.youtube.com/watch?v=0iAqxOMy61U&t=19s
Warnock, D. D., et al. (2010). Influences of non-herbaceous biochar on arbuscular mycorrhizal
fungal abundances in roots and soils: Results from growth-chamber and field
experiments. Applied Soil Ecology, 46(3), 450 - 456. Retrieved from http://
science.cjb.net/science/article/
B6T4B-5172K98-1/2/692a54925f1f4de64a2e02333c9cdb8c
Warnock, D. D., Lehmann, J., Kuyper, T. W., & Rillig, M. C. (2007). Mycorrhizal responses to
biochar in soil – concepts and mechanisms. Plant and Soil, 300(1), 9-20. doi:10.1007/
s11104-007-9391-5
Warren, A., & Sombroek, W. (1967). Amazon soils - a reconnaissance of soils of the brazilian
Amazon region. Geographical Journal, 133(4). Retrieved from https://
www.researchgate.net/publication/
275979371_Amazon_Soils_A_Reconnaissance_of_the_Soils_of_the_Brazilian_Amazon
_Region
Warren, G. P., Robinson, J. S., & Someus, E. (2009). Dissolution of phosphorus from animal
bone char in 12 soils. Nutrient Cycling in Agroecosystems, 84(2), 167-178. Retrieved
from http://link.springer.com/article/10.1007/s10705-008-9235-6
Warren, L. (2019). CCUS is a necessity not an option if we’re to have any hope of achieving net
zero emissions by 2050. Energy Voice. Retrieved from https://www.energyvoice.com/
otherenergy/199633/ccus-is-a-necessity-not-an-option-if-were-to-have-any-hope-of-
achieving-net-zero-emissions-by-2050/
Warring, B., et al. (2020). What role can forests play in tackling climate change? Retrieved from
https://www.imperial.ac.uk/grantham/publications/earth-and-life-sciences/what-role-can-
forests-play-in-tackling-climate-change.php
Warszawski, L., et al. (2021). All options, not silver bullets, needed to limit global warming to 1.5
°C: a scenario appraisal. Environmental Research Letters, 16(6), 064037.
doi:10.1088/1748-9326/abfeec
Warwick, P. D., Verma, M. K., Attanasi, E. D., Olea, R. A., Blondes, M. S., Freeman, P. A., . . .
Lohr, C. D. (2017). A Database and Probabilistic Assessment Methodology for Carbon
Dioxide-enhanced Oil Recovery and Associated Carbon Dioxide Retention in the United
States. Energy Procedia, 114, 7055-7059. doi:https://doi.org/10.1016/
j.egypro.2017.03.1847
Warwick, P. D., Verma, M. K., Freeman, P. A., Corum, M. D., & Hickman, S. H. (2014). U.S.
Geological Survey Carbon Sequestration – Geologic Research and Assessments.
Energy Procedia, 63, 5305-5309. doi:https://doi.org/10.1016/j.egypro.2014.11.561
Washbourne, C. L., Renforth, P., & Manning, D. A. C. (2012). Investigating carbonate formation
in urban soils as a method for capture and storage of atmospheric carbon. Science of
The Total Environment, 431, 166-175. doi:http://dx.doi.org/10.1016/
j.scitotenv.2012.05.037
Watanabe, A., Ikeya, K., Kanazaki, N., Makabe, S., Sugiura, Y., & Shibata, A. (2014). Five crop
seasons' records of greenhouse gas fluxes from upland fields with repetitive applications
of biochar and cattle manure. Journal of Environmental Management, 144, 168 - 175.
doi:10.1016/j.jenvman.2014.05.032
Watanabe, A., & Nakamura, T. (2018). Carbon Dynamics in Coral Reefs. In T. Kuwae & M. Hori
(Eds.), Blue Carbon in Shallow Coastal Ecosystems: Carbon Dynamics, Policy, and
Implementation (pp. 273-293). Singapore: Springer Singapore.
Watanabe, K., Yoshida, G., Hori, M., Umezawa, Y., Moki, H., & Kuwae, T. (2020). Macroalgal
metabolism and lateral carbon flows can create significant carbon sinks.
Biogeosciences, 17(9), 2425-2440. doi:10.5194/bg-17-2425-2020
Watanabe, S., & Sato, S. (2015). Priming effect of bamboo (Phyllostanchys edulis Carrière)
biochar application in a soil amended with legume. Soil Science and Plant Nutrition,
61(6), 934 - 939. doi:10.1080/00380768.2015.1105112
Watanabe, Y., & Hall, D. O. (1996). Photosynthetic CO2 conversion technologies using a
photobioreactor incorporating microalgae - energy and material balances. Energy
Conversion and Management, 37(6), 1321-1326. doi:https://doi.org/
10.1016/0196-8904(95)00340-1
Waters, C. N., Zalasiewicz, J., Summerhayes, C., Barnosky, A. D., Poirier, C., Gałuszka, A., . . .
Wolfe, A. P. (2016). Science, 351, aad2622.
Waters, D., et al. (2011). Biochar in Soil for Climate Change Mitigation and Adaptation. Soil
Health and Climate Change, 29, 345-368. doi:10.1007/978-3-642-20256-8_15
Watson, A., Liss, P., & Duce, R. (1991). Design of a small-scale in situ iron fertilization
experiment. Limnology and Oceanography, 36(8), 1960-1965. doi:doi:10.4319/
lo.1991.36.8.1960
Watson, A. J., Bakker, D. C. E., Ridgwell, A. J., Boyd, P. W., & Law, C. S. (2000). Effect of iron
supply on Southern Ocean CO2 uptake and implications for glacial atmospheric CO2.
Nature, 407(6805), 730-733. doi:http://www.nature.com/nature/journal/v407/n6805/
suppinfo/407730a0_S1.html
Watson, A. J., Boyd, P. W., Turner, S. M., Jickells, T. D., & Liss, P. S. (2008). Designing the next
generation of ocean iron fertilization experiments. Marine Ecology Progress Series, 364,
303-309. Retrieved from http://www.int-res.com/abstracts/meps/v364/p303-309/
Watson, F., & Dart, J. (2020). Shell Australia to buy land-use carbon offsets company. S&P
Global Platts. Retrieved from https://www.spglobal.com/platts/en/market-insights/latest-
news/coal/080320-shell-australia-to-buy-land-use-carbon-offsets-company
Watson, J. E. M., Evans, T., Venter, O., Williams, B., Tulloch, A., Stewart, C., . . . Lindenmayer,
D. (2018). The exceptional value of intact forest ecosystems. Nature Ecology &
Evolution. doi:10.1038/s41559-018-0490-x
Watts, J. D., Lawrence, R. L., Miller, P., & Montagne, C. (2011). An analysis of cropland carbon
sequestration estimates for North Central Monana. Climatic Change, 108(1), 301-331.
doi:10.1007/s10584-010-0009-1
Watzinger, A., et al. . (2013). Soil microbial communities responded to biochar application in
temperate soils and slowly metabolized 13C-labelled biochar as revealed by 13C PLFA
analyses: results from a short-term incubation and pot experiment. European Journal of
Soil Science, 65(1), 40-51. Retrieved from http://onlinelibrary.wiley.com/doi/10.1111/
ejss.12100/abstract
Webb, A., & Coates, D. (2012). Biofuels and Biodiversity. Retrieved from
Webb, R. (2020). The Law of Enhanced Weathering for Carbon Dioxide Removal. Retrieved
from https://climate.law.columbia.edu/sites/default/files/content/Webb%20-
%20The%20Law%20of%20Enhanced%20Weathering%20for%20CO2%20Removal%20
-%20Sept.%202020.pdf
Webb, R. (2021). The Law of Enhanced Weathering for Carbon Dioxide Removal: Volume 2 -
Legal Issues Associated with Materials Source. Retrieved from https://
climate.law.columbia.edu/sites/default/files/content/
Webb_Enhanced%20Weathering%20for%20CO2%20Removal_Vol%202_Mar21.pdf
Webb, R., et al. (2021). REMOVING CARBON DIOXIDE THROUGH OCEAN ALKALINITY
ENHANCEMENT AND SEAWEED CULTIVATION: Legal Challenges and Opportunities.
Retrieved from https://climate.law.columbia.edu/sites/default/files/content/
Webb%20et%20al%20-
%20Removing%20CO2%20Through%20Ocean%20Alkalinity%20Enhancement%20and
%20Seaweed%20Cultivation%20-%20Feb.%202021.pdf
Webb, R., & Gerrard, M. (2021). THE LEGAL FRAMEWORK FOR OFFSHORE CARBON
CAPTURE AND STORAGE IN CANADA
Retrieved from https://climate.law.columbia.edu/sites/default/files/content/
Webb%20%26%20Gerrard%20-%20Offshore%20CCS%20in%20Canada.pdf
Webb, R. M., et al. (2021). Removing Carbon Dioxide Removal Through Ocean Alkalinity
Enhancement: Legal Challenges and Opportunities Retrieved from https://
climate.law.columbia.edu/sites/default/files/content/Webb%20et%20al.%20-
%20Removing%20CO2%20Through%20Ocean%20Alkalinity%20Enhancement%20%2
0-%20August%202021.pdf
Webb, R. M., & Gerrard, M. B. (2017). Policy Readiness for Offshore Carbon Dioxide Storage in
the Northeast. Retrieved from https://climate.law.columbia.edu/sites/default/files/content/
docs/others/Webb-and-Gerrard-2017-06-Offshore-Carbon-Storage.pdf
Webb, R. M., & Gerrard, M. B. (2019). Overcoming Impediments to Offshore Carbon Dioxide
Storage: Legal Issues in the U.S. and Canada. Retrieved from http://
columbiaclimatelaw.com/files/2019/03/Webb-Gerrard-2019-03-Offshore-Carbon-Dioxide-
Storage.pdf
Webber, J. B. W., Corbett, P., Semple, K. T., Ogbonnaya, U., Teel, W. S., Masiello, C. A., . . . Hu,
Q. (2013). An NMR study of porous rock and biochar containing organic material.
Microporous and Mesoporous Materials, 178, 94-98. doi:https://doi.org/10.1016/
j.micromeso.2013.04.004
Weber, C., Boscagli, C., Raffelt, K., Richter, D., & Zevaco, T. (2015). Fast Pyrolysis of Fresh Bio
Waste and Ensiled Municipal Green Cut. Chemie Ingenieur Technik, 87(12), 1696 -
1706. doi:10.1002/cite.201500040
Weber, T. (2017). A Low-Carbon Growth Strategy for India: Synergies from Oxy-Combustion,
Carbon Capture, and ECBM. In M. Goel & M. Sudhakar (Eds.), Carbon Utilization:
Applications for the Energy Industry (pp. 205-214). Singapore: Springer Singapore.
Webley, P. A., & Danaci, D. (2020). Chapter 5 CO2 Capture by Adsorption Processes. In Carbon
Capture and Storage (pp. 106-167): The Royal Society of Chemistry.
Webster, C. (2014). THE EFFECTS OF BIOCHAR APPLICATION ON CARBON DIOXIDE AND
METHANE SOIL SURFACE FLUXES. (Master's thesis). Retrieved from https://
circle.ubc.ca/bitstream/handle/2429/46262/ubc_2014_spring_webster_cameron.pdf?
sequence=1
Wedding, L. M., Moritsch, M., Verutes, G., Arkema, K., Hartge, E., Reiblich, J., . . . Strong, A. L.
(2021). Incorporating blue carbon sequestration benefits into sub-national climate
policies. Global Environmental Change, 102206. doi:https://doi.org/10.1016/
j.gloenvcha.2020.102206
Wee, J.-H. (2013). A review on carbon dioxide capture and storage technology using coal fly
ash. Applied Energy, 106, 143-151. doi:https://doi.org/10.1016/j.apenergy.2013.01.062
Wei, J., Ge, Q., Yao, R., Wen, Z., Fang, C., Guo, L., . . . Sun, J. (2017). Directly converting CO2
into a gasoline fuel. Nature Communications, 8, 1-9. doi:10.1038/ncomms15174
https://www.nature.com/articles/ncomms15174#supplementary-information
Wei, L., et al. . (2015). Production and characterization of bio-oil and biochar from the pyrolysis
of residual bacterial biomass from a polyhydroxyalkanoate production process. Journal
of Analytical and Applied Pyrolysis, 115, 268-278. doi:10.1016/j.jaap.2015.08.005
Wei, L., Shutao, W., Jin, Z., & Tong, X. (2014). Biochar influences the microbial community
structure during tomato stalk composting with chicken manure. Bioresource Technology,
154, 148-154. doi:https://doi.org/10.1016/j.biortech.2013.12.022
Wei, L. L., et al. (2013). Regulating environmental factors of nutrients release from wheat straw
biochar for sustainable agriculture. CLEAN – Soil, Air, Water, 41(7), 697-701. Retrieved
from https://onlinelibrary.wiley.com/doi/epdf/10.1002/clen.201200347
Wei, N., Li, X., Dahowski, R. T., Davidson, C. L., Liu, S., & Zha, Y. (2015). Economic evaluation
on CO2-EOR of onshore oil fields in China. International Journal of Greenhouse Gas
Control, 37, 170-181. doi:https://doi.org/10.1016/j.ijggc.2015.01.014
Wei, X., Li, Q., Liu, Y., Liu, S., Guo, X., Zhang, L., . . . Zhang, W. (2013). Restoring ecosystem
carbon sequestration through afforestation: A sub-tropic restoration case study. Forest
Ecology and Management, 300, 60-67. doi:https://doi.org/10.1016/j.foreco.2012.06.018
Weil, G. (2022). Global Climate Governance in 3D: Mainstreaming Geoengineering within a
Unified Framework
University of Pittsburgh Law Review, 81(3), 1-78. Retrieved from https://papers.ssrn.com/sol3/
papers.cfm?abstract_id=3788661
Weiner, P.-M. (2021). Fast Company Recognizes Recapture’s Profitable Carbon Capture Model
As A World Changing Idea in 2021 [Press release]. Retrieved from https://
www.prweb.com/releases/
fast_company_recognizes_recaptures_profitable_carbon_capture_model_as_a_world_c
hanging_idea_in_2021/prweb17915635.htm
Weisberg, P., Delaney, M., & Hawkes, J. (2010). Carbon Market Investment Criteria for Biochar
Projects. Retrieved from http://www.biochar-international.org/sites/default/files/
WestCARB_Biochar_Report_DRAFT.pdf
Weissman, J. C., Radway, J. C., Wilde, E. W., & Benemann, J. R. (1998). Growth and
production of thermophilic cyanobacteria in a simulated thermal mitigation process.
Bioresource Technology, 65(1), 87-95. doi:https://doi.org/10.1016/
S0960-8524(98)00008-X
Weiwei, L. i., et al. (2016). Influence of afforestation, reforestation, forest logging, climate
change, CO 2 concentration rise, fire, and insects on the carbon sequestration capacity
of the forest ecosystem. Acta Ecologica Sinica, 36(8). doi:10.5846/stxb201411022143
Welch, A. (2020). This tech nonprofit is moving carbon capture from sci-fi to reality. Climate and
Capital Media. Retrieved from https://www.climateandcapitalmedia.com/the-tech-
nonprofit-moving-carbon-capture-from-from-sci-fi-to-reality/
Welch, A. J., Dunn, E., DuChene, J. S., & Atwater, H. A. (2020). Bicarbonate or Carbonate
Processes for Coupling Carbon Dioxide Capture and Electrochemical Conversion. ACS
Energy Letters, 5(3), 940-945. doi:10.1021/acsenergylett.0c00234
Welch, A. J., Dunn, E., DuChene, J. S., & Atwater, H. A. (2020). Bicarbonate or Carbonate
Processes for Coupling Carbon Dioxide Capture and Electrochemical Conversion. ACS
Energy Letters, 5(3), 940-945. doi:10.1021/acsenergylett.0c00234
Welch, B., Gauci, V., & Sayer, E. J. (2019). Tree stem bases are sources of CH4 and N2O in a
tropical forest on upland soil during the dry to wet season transition. 25(1), 361-372.
doi:10.1111/gcb.14498
Welch, C. (2019). To curb climate change, we have to suck carbon from the sky. But how?
National Geographic. Retrieved from https://www.nationalgeographic.com/environment/
2019/01/carbon-capture-trees-atmosphere-climate-change/
Welch, L. M., Vijayaraghavan, M., Greenwell, F., Satherley, J., & Cowan, A. J. (2021).
Electrochemical carbon dioxide reduction in ionic liquids at high pressure. Faraday
Discussions, 230(0), 331-343. doi:10.1039/D0FD00140F
Weldemichael, Y., & Assefa, G. (2016). Assessing the energy production and GHG (greenhouse
gas) emissions mitigation potential of biomass resources for Alberta. Journal of Cleaner
Production, 112(Part 5), 4257-4264. doi:https://doi.org/10.1016/j.jclepro.2015.08.118
Welfle, A. (2017). Balancing growing global bioenergy resource demands - Brazil's biomass
potential and the availability of resource for trade. Biomass and Bioenergy, 105, 83-95.
doi:https://doi.org/10.1016/j.biombioe.2017.06.011
Welfle, A., Gilbert, P., & Thornley, P. (2014). Securing a bioenergy future without imports. Energy
Policy, 68, 1-14. doi:http://dx.doi.org/10.1016/j.enpol.2013.11.079
Welkenhuysen, K., Compernolle, T., Piessens, K., Ramírez, A., Rupert, J., & Swennen, R.
(2014). Geological Uncertainty and Investment Risk in CO2-enhanced Oil Recovery.
Energy Procedia, 63, 7878-7883. doi:https://doi.org/10.1016/j.egypro.2014.11.823
Welkenhuysen, K., Meyvis, B., & Piessens, K. (2017). A Profitability Study of CO2-EOR and
Subsequent CO2 Storage in the North Sea under Low Oil Market Prices. Energy
Procedia, 114, 7060-7069. doi:https://doi.org/10.1016/j.egypro.2017.03.1848
Welkenhuysen, K., Rupert, J., Compernolle, T., Ramirez, A., Swennen, R., & Piessens, K.
(2017). Considering economic and geological uncertainty in the simulation of realistic
investment decisions for CO2-EOR projects in the North Sea. Applied Energy, 185,
745-761. doi:https://doi.org/10.1016/j.apenergy.2016.10.105
Wellington, S. (2014). Liming the oceans. Retrieved from http://climate-engineering-the-
answer.blogspot.com/2014/11/liming-oceans.html
Wells, H. (2021). LG&E, KU partner with UK to study carbon dioxide emissions. Retrieved from
https://www.wtvq.com/2021/09/08/lge-ku-partner-with-uk-to-study-carbon-dioxide-
emissions/
Wells, H. C., et al. . (2014). Stabilizing Chromium from Leather Waste in Biochar. ACS
Sustainable Chemical Engineering, 2(7), 1864-1870. Retrieved from http://pubs.acs.org/
doi/abs/10.1021/sc500212r
Wells, J. M., Crow, S. E., Meki, M. N., Sierra, C. A., Carlson, K. M., Youkhana, A., . . . Deem, L.
(2017). Maximizing Soil Carbon Sequestration: Assessing Procedural Barriers to Carbon
Management in Cultivated Tropical Perennial Grass Systems. In Y. Yun (Ed.), Recent
Advances in Carbon Capture and Storage (pp. Ch. 07). Rijeka: InTech.
Wells, M. L., Trick, C. G., Cochlan, W. P., & Beall, B. (2009). Persistence of iron limitation in the
western subarctic Pacific SEEDS II mesoscale fertilization experiment. Deep Sea
Research Part II: Topical Studies in Oceanography, 56(26), 2810-2821. doi:https://
doi.org/10.1016/j.dsr2.2009.06.007
Wells, N. S., & Baggs, E. M. (2014). Char Amendments Impact Soil Nitrous Oxide Production
during Ammonia Oxidation. Soil Science Society of America Journal, 78(5), 1656.
doi:10.2136/sssaj2013.11.0468n
Welz, A. (2021). Are Huge Tree Planting Projects More Hype than Solution? Yale Environment
360. Retrieved from https://e360.yale.edu/features/are-huge-tree-planting-projects-more-
hype-than-solution
Wen, C., Karvounis, N., Walther, J. H., Yan, Y., Feng, Y., & Yang, Y. (2019). An efficient
approach to separate CO2 using supersonic flows for carbon capture and storage.
Applied Energy, 238, 311-319. doi:https://doi.org/10.1016/j.apenergy.2019.01.062
Wen, D., Zhai, W., & Noll, K. E. (2017). Relationship Between Mineral Soil Surface Area and
Carbon Sequestration Rate for Biosolids Added to Soil. In Y. Yun (Ed.), Recent Advances
in Carbon Capture and Storage (pp. Ch. 08). Rijeka: InTech.
Weng, L.-C., Bell, A. T., & Weber, A. Z. (2018). Modeling gas-diffusion electrodes for CO2
reduction. Physical Chemistry Chemical Physics, 20(25), 16973-16984. doi:10.1039/
C8CP01319E
Weng, Y., Cai, W., & Wang, C. (2021). Evaluating the use of BECCS and afforestation under
China’s carbon-neutral target for 2060. Applied Energy, 117263. doi:https://doi.org/
10.1016/j.apenergy.2021.117263
Weng, Z., Van Zwieten, L., Singh, B. P., Tavakkoli, E., Joseph, S., Macdonald, L. M., . . . Cowie,
A. (2017). Biochar built soil carbon over a decade by stabilizing rhizodeposits. Nature
Climate Change, 7(5), 371-376. doi:10.1038/nclimate3276
http://www.nature.com/nclimate/journal/v7/n5/abs/nclimate3276.html#supplementary-
information
Weng, Z., Zwieten, L. V., Singh, B. P., Kimber, S., Morris, S., Cowie, A., & Macdonald, L. M.
(2015). Plant-biochar interactions drive the negative priming of soil organic carbon in an
annual ryegrass field system. Soil Biology and Biochemistry, 90, 111 - 121. doi:10.1016/
j.soilbio.2015.08.005
Wenger, S. (2021). If We Need Negative Emissions, Why Not Just Plant Trees? Retrieved from
https://removecarbon.co/f/if-we-need-negative-emissions-why-not-just-plant-trees
Wenger, S. (2021). Let’s Get Excited About DAC Hubs. Retrieved from https://
bipartisanpolicy.org/blog/dac-hubs/
Wennersten, R., Sun, Q., & Li, H. (2015). The future potential for Carbon Capture and Storage
in climate change mitigation – an overview from perspectives of technology, economy
and risk. Journal of Cleaner Production, 103, 724-736. doi:http://dx.doi.org/10.1016/
j.jclepro.2014.09.023
Werling, B. P., Dickson, T. L., Isaacs, R., Gaines, H., Gratton, C., Gross, K. L., . . . Landis, D. A.
(2014). Perennial grasslands enhance biodiversity and multiple ecosystem services in
bioenergy landscapes. Proceedings of the National Academy of Sciences, 111(4),
1652-1657. doi:10.1073/pnas.1309492111
Werner, C., et al. (2018). Biogeochemical potential of biomass pyrolysis systems for limiting
global warming to 1.5°C. Environmental Research Letters, 13(4), 044036. Retrieved
from http://stacks.iop.org/1748-9326/13/i=4/a=044036
West, A. J., Galy, A., & Bickle, M. (2005). Tectonic and climatic controls on silicate weathering.
Earth and Planetary Science Letters, 235(1), 211-228. doi:https://doi.org/10.1016/
j.epsl.2005.03.020
West, T. A. P., Börner, J., Sills, E. O., & Kontoleon, A. (2020). Overstated carbon emission
reductions from voluntary REDD+ projects in the Brazilian Amazon. Proceedings of the
National Academy of Sciences, 117(39), 24188-24194. doi:10.1073/pnas.2004334117
West, T. O., & Marland, G. (2002). A synthesis of carbon sequestration, carbon emissions, and
net carbon flux in agriculture: comparing tillage practices in the United States.
Agriculture, Ecosystems & Environment, 91(1), 217-232. doi:https://doi.org/10.1016/
S0167-8809(01)00233-X
West, T. O., & Post, W. M. (2002). Soil Organic Carbon Sequestration by Tillage and Crop
Rotation: A Global Data Analysis. Soil Science of America Journal, 66, 1930-1946.
Retrieved from http://cdiac.ornl.gov/programs/CSEQ/terrestrial/westpost2002/
westpost2002.html
Westberry, T. K., Behrenfeld, M. J., Milligan, A. J., & Doney, S. C. (2013). Retrospective satellite
ocean color analysis of purposeful and natural ocean iron fertilization. Deep Sea
Research Part I: Oceanographic Research Papers, 73, 1-16. doi:http://dx.doi.org/
10.1016/j.dsr.2012.11.010
Westerman, B. (2020). HR 5859 Trillion Trees Act. Retrieved from https://www.congress.gov/
bill/116th-congress/house-bill/5859/text#toc-
HFD0EE6B7246E4B768C7D6CD6665ADB46
Weston, P. (2019). Tackle climate change by fertilising ocean with iron, expert says. The
Independent. Retrieved from https://www.independent.co.uk/environment/climate-
change-ocean-iron-aerosols-fertilise-science-david-king-a8988241.html
Wettengel, J. (2019). Merkel puts contentious CCS technology back on German agenda. Clean
Energy Wire. Retrieved from https://www.cleanenergywire.org/news/merkel-puts-
contentious-ccs-technology-back-german-agenda
Wettengel, J. (2019). Merkel’s net-zero 2050 pledge “nod to Paris”, revival of CCS debate –
opinions. Clean Energy Wire. Retrieved from https://www.cleanenergywire.org/news/
merkels-net-zero-2050-pledge-nod-paris-revival-ccs-debate-opinions
Wettengel, J. (2020). Germany must put CCS back on the table, says Merkel. EnergyPost.eu.
Retrieved from https://energypost.eu/germany-must-put-ccs-back-on-the-table-says-
merkel/
Wettengel, J. (2021). German government paves way for CO2 exports – media report.
Retrieved from https://www.cleanenergywire.org/news/german-government-paves-way-
co2-exports-media-report
Wettengel, J. (2021). Quest for climate neutrality puts CCS back on the table in Germany. Clean
Energy Wire. Retrieved from https://www.cleanenergywire.org/factsheets/quest-climate-
neutrality-puts-ccs-back-table-germany
Weyers, S. L., & Spokas, K. A. (2011). Impact of Biochar on Earthworm Populations: A Review.
Applied and Environmental Soil Science, 1-12. doi:10.1155/2011/541592
Weyers, S. L., & Spokas, K. A. (2014). Crop residue decomposition in Minnesota biochar
amended plots. Solid Earth Discuss., 6, 599–617. Retrieved from http://www.solid-earth-
discuss.net/6/599/2014/sed-6-599-2014.pdf
Whipple, T. (2019). Fertilising ocean with iron can combat climate change. The Times. Retrieved
from https://www.thetimes.co.uk/article/fertilising-ocean-with-iron-can-combat-climate-
change-dzj5m76qd?shareToken=ecfbe6c1f92f9ce05f309495d16e7190
Whitaker, J., Field, J. L., Bernacchi, C. J., Cerri, C. E. P., Ceulemans, R., Davies, C. A., . . .
McNamara, N. P. (2018). Consensus, uncertainties and challenges for perennial
bioenergy crops and land-use. GCB Bioenergy, 10(3), 150-164. doi:10.1111/gcbb.12488
White, A. F., Björkman, K., Grabowski, E., Letelier, R., Poulos, S., Watkins, B., & Karl, D. (2010).
An Open Ocean Trial of Controlled Upwelling Using Wave Pump Technology. Journal of
Atmospheric and Oceanic Technology, 27(2), 385-396. doi:10.1175/2009jtecho679.1
White, A. F., & Brantley, S. F. (1995). Chemical weathering rates of silicate minerals; an
overview. In A. F. White & S. F. Brantley (Eds.), Reviews in Mineralogy and
Geochemistry (Vol. 31, pp. 1-22).
White, A. F., & Brantley, S. L. (2003). The effect of time on the weathering of silicate minerals:
why do weathering rates differ in the laboratory and field? Chemical Geology, 202(3),
479-506. doi:https://doi.org/10.1016/j.chemgeo.2003.03.001
White, J. (2015). Promotion of Clean Emissions Charcoal Production and Use of Biochar.
Retrieved from http://www.biochar-international.org/sites/default/files/
TLUD%26Biochar%20Report_Thailand_for_IBI.pdf
White, M. (2021). 2021 Outlook – “BECCS is critical to achieve net zero”. Bioenergy Insight.
Retrieved from https://www.bioenergy-news.com/news/2021-outlook-beccs-is-critical-to-
achieve-net-zero/
White, P. M., Potter, T. L., & Lima, I. M. (2015). Sugarcane and pinewood biochar effects on
activity and aerobic soil dissipation of metribuzin and pendimethalin. Industrial Crops
and Products, 74, 737 - 744. doi:10.1016/j.indcrop.2015.04.022
White, R. E., Davidson, B., Lam, S. K., & Chen, D. (2018). A critique of the paper ‘Soil carbon 4
per mille’ by Minasny et al. (2017). Geoderma, 309, 115-117. doi:https://doi.org/10.1016/
j.geoderma.2017.05.025
Whitehead, D., Schipper, L. A., Pronger, J., Moinet, G. Y. K., Mudge, P. L., Calvelo Pereira,
R., . . . Camps-Arbestain, M. (2018). Management practices to reduce losses or increase
soil carbon stocks in temperate grazed grasslands: New Zealand as a case study.
Agriculture, Ecosystems & Environment, 265, 432-443. doi:https://doi.org/10.1016/
j.agee.2018.06.022
Whitford, B. (2008). Biochar: Ancient Fertilizer for Modern Farms. In.
Whiting, K. (2020). An expert explains: How to turn industrial carbon emissions into building
materials. Retrieved from https://www.weforum.org/agenda/2020/11/an-expert-explains-
how-to-turn-carbon-into-useful-building-materials/
Whiting, K. (2020). An expert explains: How to turn industrial carbon emissions into building
materials. Retrieved from https://www.weforum.org/agenda/2020/11/an-expert-explains-
how-to-turn-carbon-into-useful-building-materials/
Whiting, K. (2020). How carbon removal can turn industrial emissions into building materials.
GreenBiz. Retrieved from https://www.greenbiz.com/article/how-carbon-removal-can-
turn-industrial-emissions-building-materials
Whitman, T. (2015). When Is 2+2 ¿ 4? Interactive Priming Of Pyrogenic Organic Matter, Soil
Organic Carbon, And Plant Roots In Natural And Managed Ecosystems. Cornell
University, Retrieved from http://ecommons.library.cornell.edu/handle/1813/38934
Whitman, T., & Lehmann, J. (2009). Biochar—One way forward for soil carbon in offset
mechanisms in Africa? Environmental Science & Policy, 12, 1024-1027. Retrieved from
http://www.css.cornell.edu/faculty/lehmann/publ/
EnvSciPolicy%2012,%201024-1027,%202009,%20Whitman.pdf
Whitman, T., Nicholson, C. F., Torres, D., & Lehmann, J. (2011). Climate Change Impact of
Biochar Cook Stoves in Western Kenyan Farm Households: System Dynamics Model
Analysis. Environmental Science and Technology, 45(8), 3687-3694. doi:10.1021/
es103301k
Whitman, T., Scholz, S. M., & Lehmann, J. (2010). Biochar projects for mitigating climate
change: an investigation of critical methodology issues for carbon accounting. Carbon
Management, 1, 89-107. Retrieved from http://www.future-science.com/doi/full/10.4155/
cmt.10.4
Whitman, T., Singh, B. P., & Zimmerman, A. R. (2015). Priming effects in biochar-amended soils:
implications of biochar-soil organicmatter interactions for carbon storage. In Biochar For
Environmental Engineering.
Whitman, T., Zhu, Z., & Lehmann, J. (2014). Carbon Mineralizability Determines Interactive
Effects on Mineralization of Pyrogenic Organic Matter and Soil Organic Carbon.
Environmental Science & Technology, 48(23), 13727-13734. doi:10.1021/es503331y
Whitmarsh, L., Xenias, D., & Jones, C. R. (2019). Framing effects on public support for carbon
capture and storage. Palgrave Communications, 5(1), 17. doi:10.1057/
s41599-019-0217-x
Wicke, B. (2011). The global technical and economic potential of bioenergy from salt-affected
soils. Energy & Environmental Science, 8, 2669-2671. Retrieved from http://
pubs.rsc.org/en/Content/ArticleLanding/2011/EE/c1ee01029h#!divAbstract
Wicke, B., van der Hilst, F., Daioglou, V., Banse, M., Beringer, T., Gerssen-Gondelach, S., . . .
Faaij, A. P. C. (2015). Model collaboration for the improved assessment of biomass
supply, demand, and impacts. GCB Bioenergy, 7(3), 422-437. doi:10.1111/gcbb.12176
Widowati, & Asnah. (2014). Biochar Can Enhance Potassium Fertilization Efficiency and
Economic Feasibility of Maize Cultivation. Journal of Agricultural Science, 6, 24.
Retrieved from http://www.ccsenet.org/journal/index.php/jas/article/view/21421
Widowati, Utomo, W. H., Guritno, B., & Soehono, L. A. (2016). Evaluating the effects of biochar
on N absorption and N use efficiency in maize. In Biochar for future food security:
learning from experiences and identifying research priorities.
Widowati, W., & Asnah, A. (2014). BIOCHAR EFFECT AT POTASSIUM FERTILIZER AND
DOSAGE LEACHING POTASSIUM FOR TWO-CORN PLANTING SEASON. AGRIVITA
journal of agricultural scienc. Retrieved from http://www.agrivita.ub.ac.id/index.php/
agrivita/article/view/359
Widowati, W., Asnah, A., & Utomo, W. H. (2014). The use of biochar to reduce nitrogen and
potassium leaching from soil cultivated with maize. Journal of Degraded and Mining
Lands Management. Retrieved from http://www.jdmlm.ub.ac.id/index.php/jdmlm/article/
view/87
Widowati, W., Utomo, H., Guritno, B., & Soehono, L. A. (2012). The Effect of Biochar on the
Growth and N Fertilizer Requirement of Maize (Zea mays L.) in Green House
Experiment. Journal of Agricultural Science, Vol 4(5), 255-262. Retrieved from http://
ccsenet.org/journal/index.php/jas/article/view/16140/10929
Widowati, W., Utomo, H., Soehono, L. A., & Guritno, B. (2011). Effect of biochar on the Release
and Loss of Nitrogen from Urea Fertilization. J. Agric. Food. Tech., 1, 127-132. Retrieved
from http://www.textroad.com/pdf/JAFT/J.%20Agric.%20Food.%20Tech.,
%201(7)%20127-132,%202011.pdf
Wiedemeier, D. B., Abiven, S., Hockaday, W. C., Keiluweit, M., Kleber, M., Masiello, C. A., . . .
Schmidt, M. W. I. (2014). Aromaticity and degree of aromatic condensation of char.
Organic Geochemistry. doi:10.1016/j.orggeochem.2014.10.002
Wiedner, K., et al. (2015). Acceleration of Biochar Surface Oxidation during Composting?
Journal of Agricultural and Food Chemistry, 63(15), 3830-3837. doi:10.1021/
acs.jafc.5b00846
Wiedner, K., & Glaser, B. (2015). Traditional use of biochar. In Biochar for Environmental
Management: Science and Technology and Implementation.
Wiesberg, I. L., Brigagão, G. V., de Medeiros, J. L., & de Queiroz Fernandes Araújo, O. (2017).
Carbon dioxide utilization in a microalga-based biorefinery: Efficiency of carbon removal
and economic performance under carbon taxation. Journal of Environmental
Management, 203, 988-998. doi:https://doi.org/10.1016/j.jenvman.2017.03.005
Wiesmeier, M., Urbanski, L., Hobley, E., Lang, B., von Lützow, M., Marin-Spiotta, E., . . . Kögel-
Knabner, I. (2019). Soil organic carbon storage as a key function of soils - A review of
drivers and indicators at various scales. Geoderma, 333, 149-162. doi:https://doi.org/
10.1016/j.geoderma.2018.07.026
Wight, A. (2019). This Start-Up Wants To Make Reforestation More High-Tech. Forbes.
Retrieved from https://www.forbes.com/sites/andrewwight/2019/11/11/this-start-up-
wants-to-make-reforestation-more-high-tech/amp/?__twitter_impression=true
Wijayanta, A. T., et al. (2013). Combustibility of biochar injected into the raceway of a blast
furnace. Fuel Processing Technology, 117, 53-59.
Wijayanta, A. T., et al. (2014). Numerical Study on Pulverized Biochar Injection in Blast Furnace.
ISIJ International, 54(7), 1521 - 1529. doi:10.2355/isijinternational.54.1521
Wijesiri, R. P., et al. (2019). Technoeconomic Evaluation of a Process Capturing CO2 Directly
from Air. Processes, 7(8), 1-23. Retrieved from https://www.mdpi.com/
2227-9717/7/8/503#
Wijesiri, R. P., Knowles, G. P., Yeasmin, H., Hoadley, A. F. A., & Chaffee, A. L. (2019). CO2
Capture from Air Using Pelletized Polyethylenimine Impregnated MCF Silica. Industrial &
Engineering Chemistry Research, 58(8), 3293-3303. doi:10.1021/acs.iecr.8b04973
Wijitkosum, S., & Kallayasiri, W. (2015). The Use of Biochar to Increase Productivity of
Indigenous Upland Rice (Oryza sativa L.) and Improve Soil Properties. Research Journal
of Pharmaceutical, Biological and Chemical Sciences, 6(2), 1326-1336. Retrieved from
http://www.rjpbcs.com/pdf/2015_6(2)/[196].pdf
Wilcox, J. (2018). A new way to remove CO2 from the atmosphere. April. Retrieved from https://
www.ted.com/talks/
jennifer_wilcox_a_new_way_to_remove_co2_from_the_atmosphere?language=en
Wilcox, J. (2020). The DAC-up plan for climate change—w/ Dr. Jen Wilcox of Worcester
Polytechnic Institute. Retrieved from https://anchor.fm/reversingclimatechange/
episodes/S2E25-The-DAC-up-plan-for-climate-changew-Dr--Jen-Wilcox-of-Worcester-
Polytechnic-Institute-ehvfi1?
utm_medium=email&_hsmi=93058059&_hsenc=p2ANqtz-9EdPW2j7HKxBfwfyMbeZr1c
MvMYooyY1a7H0_z6BKoJW4nFLKAlXN8mnQvypo3i9LdiNlR_8wZ9X6qG5ubNNvRshm
hng&utm_content=93056681&utm_source=hs_email
Wilcox, J. (2020). An electro-swing approach. Nature Energy. doi:10.1038/s41560-020-0554-4
Wilcox, J., Haghpanah, R., Rupp, E. C., He, J., & Lee, K. (2014). Advancing Adsorption and
Membrane Separation Processes for the Gigaton Carbon Capture Challenge. Annual
Review of Chemical and Biomolecular Engineering, 5(1), 479. Retrieved from http://
www.annualreviews.org/doi/pdf/10.1146/annurev-chembioeng-060713-040100
Wilcox, J., Kolosz, B., & Freeman, J. (2021). CDR Primer. Retrieved from https://cdrprimer.org/
Wilcox, J., Psarras, P. C., & Liguori, S. (2017). Assessment of reasonable opportunities for
direct air capture. Environmental Research Letters, 12(6). doi:10.1088/1748-9326/
aa6de5
Wilcox, J., Rochana, P., Kirchofer, A., Glatz, G., & He, J. (2014). Revisiting film theory to
consider approaches for enhanced solvent-process design for carbon capture. Energy &
Environmental Science, 7(5), 1769-1785. doi:10.1039/C4EE00001C
Wilfried, R., Christine, M., Fabian, R., David, K., & Andreas, O. (2019). (Mis)conceptions about
modelling of negative emissions technologies. Environmental Research Letters.
Retrieved from http://iopscience.iop.org/10.1088/1748-9326/ab3ab4
Wilkes, P., Disney, M., Vicari, M. B., Calders, K., & Burt, A. (2018). Estimating urban above
ground biomass with multi-scale LiDAR. Carbon Balance and Management, 13(1), 10.
doi:10.1186/s13021-018-0098-0
Wilkin, R. T., & DiGiulio, D. C. (2010). Geochemical Impacts to Groundwater from Geologic
Carbon Sequestration: Controls on pH and Inorganic Carbon Concentrations from
Reaction Path and Kinetic Modeling. Environmental Science & Technology, 44(12),
4821-4827. doi:10.1021/es100559j
Willauer, H. D., DiMascio, F., Hardy, D. R., & Williams, F. W. (2017). Development of an
Electrolytic Cation Exchange Module for the Simultaneous Extraction of Carbon Dioxide
and Hydrogen Gas from Natural Seawater. Energy & Fuels, 31(2), 1723-1730.
doi:10.1021/acs.energyfuels.6b02586
Williams, C. A. (2020). Mining technologies could capture 'billions of tonnes of CO2 per year,'
says UBC professor. Northern Miner. Retrieved from https://www.northernminer.com/
subscribe-login/?id=1003814933
Williams, C. L., Dahiya, A., & Porter, P. (2020). Chapter 1 - Introduction to bioenergy and waste
to energy. In A. Dahiya (Ed.), Bioenergy (Second Edition) (pp. 5-44): Academic Press.
Williams, J. (2020). Engineers look to improve carbon dioxide storage in coal reserves. World
Coal. Retrieved from https://www.worldcoal.com/coal/21072020/engineers-look-to-
improve-co2-storage-in-coal-reserves/
Williams, M., & Arnott, J. C. (2010). A Comparison of Variable Economic Costs Associated with
Two Proposed Biochar Application Methods. Annals of Environmental Science, 4, 23-30.
Retrieved from http://openjournals.neu.edu/aes/journal/article/view/v4art3
Williams, M., Martin, S., & Kookana, R. S. (2015). Sorption and plant uptake of pharmaceuticals
from an artificially contaminated soil amended with biochars. Plant and Soil, 395(1),
75-86. doi:10.1007/s11104-015-2421-9
Williams, M. I., Dumroese, R. K., Page-Dumroese, D. S., & Hardegree, S. P. (2016). Can
biochar be used as a seed coating to improve native plant germination and growth in
arid conditions? Journal of Arid Environments, 125, 8 - 15. doi:10.1016/
j.jaridenv.2015.09.011
Williams, R. (2016). Effectiveness of Biochar Addition in Reducing Concentrations of Selected
Nutrients and Bacteria in Runoff. In.
Williams, R., Jack, C., Gamboa, D., & Shackley, S. (2021). Decarbonising steel production using
CO2 Capture and Storage (CCS): Results of focus group discussions in a Welsh steel-
making community. International Journal of Greenhouse Gas Control, 104, 103218.
doi:https://doi.org/10.1016/j.ijggc.2020.103218
Williams, T. (2018). Some Top Funders Back a Controversial Way to Fight Climate Change.
Inside Philanthropy. Retrieved from https://www.insidephilanthropy.com/home/2018/7/6/
its-a-controversial-way-to-fight-climate-change-but-some-top-funders-are-on-board
Williamson, P. (2016). Emissions reduction: Scrutinize CO
2
removal methods. Science.
Retrieved from http://www.nature.com/news/emissions-reduction-scrutinize-co2-removal-
methods-1.19318
Williamson, P. (2018). Guest post: 13 ‘ocean-based solutions’ for tackling climate change.
CarbonBrief. Retrieved from https://www.carbonbrief.org/guest-post-13-ocean-based-
solutions-for-tackling-climate-change/amp?__twitter_impression=true
Williamson, P., & Turley, C. (2012). Ocean acidification in a geoengineering context.
Philosophical Transactions of the Royal Society A: Mathematical,
Physical and Engineering Sciences, 370(1974), 4317-4342. doi:10.1098/rsta.2012.0167
Williamson, P., Wallace, D. W. R., Law, C. S., Boyd, P. W., Collos, Y., Croot, P., . . . Vivian, C.
(2012). Ocean fertilization for geoengineering: A review of effectiveness, environmental
impacts and emerging governance. Process Safety and Environmental Protection, 90(6),
475-488. doi:http://dx.doi.org/10.1016/j.psep.2012.10.007
Willis, K. (2018). Scientists identify new minerals for carbon capture and storage. Folio.
Retrieved from https://www.folio.ca/scientists-identify-new-minerals-for-carbon-capture-
and-storage/
Wilson, B. (2021). Past the Tipping Point, but With Hope of Return: How Creating a
Geoengineering Compulsory Licensing Scheme Can Incentivize Innovation. Washington
and Lee Journal of Civil Rights and Social Justice, 27(2), 791-831. Retrieved from
https://scholarlycommons.law.wlu.edu/crsj/vol27/iss2/13/
Wilson, E. J., Morgan, M. G., Apt, J., Bonner, M., Bunting, C., Gode, J., . . . Wright, I. W. (2008).
Regulating the Geological Sequestration of CO2. Environmental Science & Technology,
42(8), 2718-2722. doi:10.1021/es087037k
Wilson, G. (2014). Murky Waters: Ambiguous International Law for Ocean Fertilization and
Other Geoengineering. Texas International Law Journal, 49, 507-557. Retrieved from
http://www.lexisnexis.com/hottopics/lnacademic/?
Wilson, G., et al. (2015). A Strategic European Research and Innovation Agenda for Smart CO
2
Transformation in Europe CO
2
as a resource. Retrieved from http://www.scotproject.org/
images/SCOT%20SERIA.pdf
Wilson, J. (2004). Weathering of the primary rock-forming minerals: Processes, products and
rates. Clay Minerals, 39, 233-266. doi:10.1180/0009855043930133
Wilson, K. (2007). The Good Black Magic That Could Save the Earth: Terra Preta. In (pp. 52 -
57).
Wilson, K. (2013). Justus von Liebig and the Birth of Modern Biochar. Ithaka Journal. Retrieved
from http://www.ithaka-journal.net/english-justus-von-liebig-and-the-birth-of-modern-
biochar
Wilson, K. (2014). How Biochar Works in Soil. the Biochar Journal. Retrieved from https://
www.biochar-journal.org/en/ct/32-How-Biochar-Works-in-Soil
Wilson, K. (2015). Biochar for Forest Restoration in the Western United States. Retrieved from
http://greenyourhead.typepad.com/files/biochar_for_forest_restoration_wba.pdf
Wilson, R., Hago, W., & Bontchev, R. P. (2014).
Wilson, S. A., Dipple, G. M., Power, I. M., Barker, S. L. L., Fallon, S. J., & Southam, G. (2011).
Subarctic Weathering of Mineral Wastes Provides a Sink for Atmospheric CO2.
Environmental Science & Technology, 45(18), 7727-7736. doi:10.1021/es202112y
Wilson, S. A., Dipple, G. M., Power, I. M., Thom, J. M., Anderson, R. G., Raudsepp, M., . . .
Southam, G. (2009). Carbon Dioxide Fixation within Mine Wastes of Ultramafic-Hosted
Ore Deposits: Examples from the Clinton Creek and Cassiar Chrysotile Deposits,
Canada. Economic Geology, 104(1), 95-112. doi:10.2113/gsecongeo.104.1.95
Wilson, S. A., Harrison, A. L., Dipple, G. M., Power, I. M., Barker, S. L. L., Ulrich Mayer, K., . . .
Southam, G. (2014). Offsetting of CO2 emissions by air capture in mine tailings at the
Mount Keith Nickel Mine, Western Australia: Rates, controls and prospects for carbon
neutral mining. International Journal of Greenhouse Gas Control, 25, 121-140.
doi:https://doi.org/10.1016/j.ijggc.2014.04.002
Wilujeng, E. D. I., Ningtyas, W., & Nuraini, Y. (2015). Combined applications of biochar and
legume residues to improve growth and yield of sweet potato in a dry land area of East
Java. Journal of Degraded and Mining Lands Management, 2(4), 377-382. Retrieved
from http://jdmlm.ub.ac.id/index.php/jdmlm/article/view/128
Win, T. T., et al. (2015). PREPARATION AND STRUCTURAL PROPERTIES OF PALM SHELL.
International Journal of Technical Research and Applications. Retrieved from http://
www.ijtra.com/view/flood-routing-with-real-time-method-for-flash-flood-forecasting-in-the-
plain-bou-salem.pdf
Windeatt, J. H. (2015). Assessing the potential of biochar from crop residues to sequester CO2:
Scenarios to 2100. University of Leeds, Retrieved from http://etheses.whiterose.ac.uk/
8439/
Windeatt, J. H., Ross, A. B., Williams, P. T., Forster, P. M., Nahil, M. A., & Singh, S. (2014).
Characteristics of biochars from crop residues: Potential for carbon sequestration and
soil amendment. Journal of Environmental Management, 146, 189 - 197. doi:10.1016/
j.jenvman.2014.08.003
Windham-Myers, L., et al., . (2018). Potential for negative emissions of greenhouse gases (CO
2 , CH 4 and N 2 O) through coastal peatland re-establishment: Novel insights from high
frequency flux data at meter and kilometer scales. Environmental Research Letters,
13(4), 045005. Retrieved from http://stacks.iop.org/1748-9326/13/i=4/a=045005
Wingenter, O. W., et al. (2004). Changing concentrations of CO, CH4, C5H8, CH3Br, CH3I, and
dimethyl sulfide during the Southern Ocean Iron Enrichment Experiments. PNAS,
101(23), 8537-8541.
Wingenter, O. W., Elliot, S. M., & Blake, D. R. (2007). New Directions: Enhancing the natural
sulfur cycle to slow global warming. Atmospheric Environment, 41(34), 7373-7375.
doi:http://dx.doi.org/10.1016/j.atmosenv.2007.07.021
Winickoff, D. E., & Mondou, M. (2016). The problem of epistemic jurisdiction in global
governance: The case of sustainability standards for biofuels. Social Studies of Science,
1-26. doi:DOI: 10.1177/0306312716667855
Winjum, J. K., Dixon, R. K., & Schroeder, P. E. (1992). Estimating the global potential of forest
and agroforest management practices to sequester carbon. Water, Air, and Soil
Pollution, 64(1), 213-227. doi:10.1007/BF00477103
Winning, M., Pye, S., Glynn, J., Scamman, D., & Welsby, D. (2018). How Low Can We Go? The
Implications of Delayed Ratcheting and Negative Emissions Technologies on Achieving
Well Below 2 °C. In G. Giannakidis, K. Karlsson, M. Labriet, & B. Ó. Gallachóir (Eds.),
Limiting Global Warming to Well Below 2 °C: Energy System Modelling and Policy
Development (pp. 51-65). Cham: Springer International Publishing.
Winsley, P. (2007). Biochar and bioenergy production for climate change mitigation. New
Zealand Science Review, 64(1), 5-10. Retrieved from http://www.biochar-
international.org/images/NZSR64_1_Winsley.pdf
Winter, E., Lowe, S., & Campbell, L. (2013). Biochar applications in a King Valley Vineyard.
Australian and New Zealand Grapegrower and Winemaker, Issue 597. Retrieved from
https://search.informit.com.au/documentSummary;dn=656237170757422;res=IELHSS
Wirawan, D., Kim, J., Wong, H. C., Low, H. Y., & Tan, M. C. (2021). Textured carbon capture
composite (C3) films for distributed direct air capture in urban spaces. Cleaner
Engineering and Technology, 4, 100145. doi:https://doi.org/10.1016/j.clet.2021.100145
Wise, L., Marland, E., Marland, G., Hoyle, J., Kowalczyk, T., Ruseva, T., . . . Kinlaw, T. (2019).
Optimizing sequestered carbon in forest offset programs: balancing accounting
stringency and participation. Carbon Balance and Management, 14(1), 16. doi:10.1186/
s13021-019-0131-y
Wise, M., Calvin, K., Thomson, A., Clarke, L., Bond-Lamberty, B., Sands, R., . . . Edmonds, J.
(2009). Implications of Limiting CO
2
Concentrations for Land Use and Energy. Science,
324(5931), 1183-1186. doi:10.1126/science.1168475
Wise, M., Dooley, J., Luckow, P., Calvin, K., & Kyle, P. (2014). Agriculture, land use, energy and
carbon emission impacts of global biofuel mandates to mid-century. Applied Energy, 114,
763-773. doi:http://dx.doi.org/10.1016/j.apenergy.2013.08.042
Wise, M. A. (2014). Assessing the Interactions among U.S. Climate Policy, Biomass Energy, and
Agricultural Trade. The Energy Journal, 35. Retrieved from http://econpapers.repec.org/
article/aenjournl/ej35-si1-09.htm
Wisnubroto, E. I. (2015). Investigation on the effect of biochar addition and the use of pasture
species with different rooting systems on soil fertility and carbon storage : a thesis
presented in partial fulfilment of the requirements for the degree of Master of Philosophy
(MPhil. Massey University, Retrieved from http://mro.massey.ac.nz/handle/10179/7180
Wiszniewska, A., et al. (2015). Natural organic amendments for improved phytoremediation of
polluted soils: A review of recent progress. Pedosphere, 26(1), 1-12. Retrieved from
http://pedosphere.issas.ac.cn/trqen/ch/reader/view_abstract.aspx?
file_no=20160101&flag=1
Withey, P., Johnston, C., & Guo, J. (2019). Quantifying the global warming potential of carbon
dioxide emissions from bioenergy with carbon capture and storage. Renewable and
Sustainable Energy Reviews, 115, 109408. doi:https://doi.org/10.1016/
j.rser.2019.109408
Witzgall, K., Vidal, A., Schubert, D. I., Höschen, C., Schweizer, S. A., Buegger, F., . . . Mueller,
C. W. (2021). Particulate organic matter as a functional soil component for persistent soil
organic carbon. Nature Communications, 12(1), 4115. doi:10.1038/s41467-021-24192-8
Witzke, B. J., et al. (2018). Potential for Geologic Sequestration of CO2 in Iowa. Retrieved from
https://www.iihr.uiowa.edu/igs/publications/uploads/2018-09-28_09-09-33_tis-58.pdf
Wogelius, R. A., & Walther, J. V. (1991). Olivine dissolution at 25°C: Effects of pH, CO2, and
organic acids. Geochimica Et Cosmochimica Acta, 55, 943-954. Retrieved from https://
www.researchgate.net/publication/
256177813_Olivine_dissolution_at_25C_Effects_of_pH_CO2_and_organic_acids
Wogelius, R. A., & Walther, J. V. (1992). Olivine dissolution kinetics at near-surface conditions.
Chemical Geology, 97(1), 101-112. doi:http://dx.doi.org/10.1016/0009-2541(92)90138-U
Wohland, J., Witthaut, D., & Schleussner, C.-F. (2018). Negative Emission Potential of Direct Air
Capture Powered by Renewable Excess Electricity in Europe. Earth's Future, 6(10),
1380-1384. doi:doi:10.1029/2018EF000954
Wolf, J., et al. (2003). Exploratory study on the land area required for global food supply and the
potential global production of bioenergy. Agricultural Systems, 76(3), 841-861. Retrieved
from https://www.researchgate.net/publication/
222567956_Exploratory_study_on_the_land_area_required_for_global_food_supply_an
d_the_potential_global_production_of_bioenergy
Wolff-Boenisch, D., Gislason, S. R., & Oelkers, E. H. (2006). The effect of crystallinity on
dissolution rates and CO2 consumption capacity of silicates. Geochimica Et
Cosmochimica Acta, 70(4), 858-870. doi:https://doi.org/10.1016/j.gca.2005.10.016
Wolff-Boenisch, D., Wenau, S., Gislason, S. R., & Oelkers, E. H. (2011). Dissolution of basalts
and peridotite in seawater, in the presence of ligands, and CO2: Implications for mineral
sequestration of carbon dioxide. Geochimica Et Cosmochimica Acta, 75(19), 5510-5525.
doi:https://doi.org/10.1016/j.gca.2011.07.004
Wolske, K. S., Raimi, K. T., Campbell-Arvai, V., & Hart, P. S. (2019). Public support for carbon
dioxide removal strategies: the role of tampering with nature perceptions. Climatic
Change. doi:10.1007/s10584-019-02375-z
Wong, C. S., & Crawford, D. W. (2006). Evolution of phytoplankton pigments in an in-situ iron
enrichment experiment in the subarctic NE Pacific. Deep Sea Research Part II: Topical
Studies in Oceanography, 53(20–22), 2152-2167. doi:http://dx.doi.org/10.1016/
j.dsr2.2006.05.043
Wong, C. S., Johnson, W. K., Sutherland, N., Nishioka, J., Timothy, D. A., Robert, M., & Takeda,
S. (2006). Iron speciation and dynamics during SERIES, a mesoscale iron enrichment
experiment in the NE Pacific. Deep Sea Research Part II: Topical Studies in
Oceanography, 53(20–22), 2075-2094. doi:http://dx.doi.org/10.1016/j.dsr2.2006.05.037
Wong, C. S., & Matear, R. (1993). The storage of anthropogenic carbon dioxide in the ocean.
Energy Conversion and Management, 34(9), 873-880. doi:https://doi.org/
10.1016/0196-8904(93)90031-5
Wong, C. S., Timothy, D. A., Law, C. S., Nojiri, Y., Xie, L., Wong, S.-K. E., & Page, J. S. (2006).
Carbon distribution and fluxes during the SERIES iron fertilization experiment with
special reference to the fugacity of carbon dioxide (fCO2). Deep Sea Research Part II:
Topical Studies in Oceanography, 53(20–22), 2053-2074. doi:http://dx.doi.org/10.1016/
j.dsr2.2006.05.036
Wong, J. T. F., Chen, Z., Ng, C. W. W., & Wong, M. H. (2015). Gas permeability of biochar-
amended clay: potential alternative landfill final cover material. Environmental Science
and Pollution Research, 23(8), 7126-7131. doi:10.1007/s11356-015-4871-2
Wong, R., et al. (2011). Net Greenhouse Gas Impact of Storing CO2 Through Enhanced Oil
Recovery. Retrieved from https://www.pembina.org/pub/2458
Wong-Parodi, G., Ray, I., & Farrell, A. E. (2008). Environmental non-government organizations'
perceptions of geologic sequestration. Environmental Research Letters, 3(2), 1-8.
Retrieved from http://stacks.iop.org/1748-9326/3/i=2/a=024007
Woo, S. H. (2013). Biochar for soil carbon sequestration. Clean Technology, 19(3), 201 - 211.
doi:10.7464/ksct.2013.19.3.201
Wood, J., et al. (2021). From jet fuel to clothes, microbes can help us recycle carbon dioxide
into everyday products The Conversation. Retrieved from https://theconversation.com/
from-jet-fuel-to-clothes-microbes-can-help-us-recycle-carbon-dioxide-into-everyday-
products-165242
Wood, S. M., & Layzell, D. B. (2003). A Canadian Biomass Inventory: Feedstocks for a Bio-
based Economy. Canada: BIOCAP Canada Foundation, Queen's University Ontario.
Wood, W. (2019). How Carbon Farming Can Help Stop Climate Change in Its Tracks. The
Nation. Retrieved from https://www.thenation.com/article/agriculture-carbon-farming-
ranching-soil/
Woodall, C., et al. (2020). Capturing and Reusing CO2 by Converting It To Rock. Frontiers
Young Minds, 9(592018). Retrieved from https://kids.frontiersin.org/articles/10.3389/
frym.2020.592018
Woodhouse, M. T., Mann, G. W., Carslaw, K. S., & Boucher, O. (2008). New Directions: The
impact of oceanic iron fertilisation on cloud condensation nuclei. Atmospheric
Environment, 42(22), 5728-5730. doi:http://dx.doi.org/10.1016/j.atmosenv.2008.05.005
Woods, W. I., Falcao, N. P. S., & Teixeira, W. G. (2006). Biochar trials aim to enrich soil for
smallholders. Nature, 443(7108), 144. Retrieved from http://www.nature.com/nature/
journal/v443/n7108/full/443144b.html
Woods, W. J., et al. (2009). Amazonian Dark Earths: Wim Sombroek’s Vision. Berlin: Springer.
Woolerton, T. W., Sheard, S., Chaudhary, Y. S., & Armstrong, F. A. (2012). Enzymes and bio-
inspired electrocatalysts in solar fuel devices. Energy Environ. Sci., 5, 7470.
Woolf, D. (2014). Biofuels from pyrolysis in perspective: trade-offs between energy yields and
soil-carbon additions. Environmental Science & Technology, 48(11), 6492-6499.
Retrieved from http://pubs.acs.org/doi/abs/10.1021/es500474q
Woolf, D., Amonette, J. E., Street-Perrott, F. A., Lehmann, J., & Joseph, S. (2010). Sustainable
biochar to mitigate global climate change. Nature Communications, 1(1), 1-9. Retrieved
from file:///C:/Users/Gateway/Downloads/ncomms1053.pdf
Woolf, D., & Lehmann, J. (2012). Modelling the long-term response to positive and negative
priming of soil organic carbon by black carbon. BioGeoChem, 111(1), 83-95. Retrieved
from https://link.springer.com/article/10.1007/s10533-012-9764-6
Woolf, D., Lehmann, J., & Lee, D. R. (2016). Optimal bioenergy power generation for climate
change mitigation with or without carbon sequestration. Nature Communications, 7,
1-11. doi:10.1038/ncomms13160
(2020). Field Work [Retrieved from https://www.fieldworktalk.org/episode/2020/05/20/the-new-
cash-crop-carbon?utm_medium=email&_hsmi=88504870&_hsenc=p2ANqtz--d-
HThVDiL1cgUpxIXG12UDvyfaShOBdrJhg_ngyeFwaCZBywKOViwuWbbGffjPp4jOgzZN-
vIMKlGkMcO5v66TLRAeA&utm_content=88504802&utm_source=hs_email
Workman, M., Dooley, K., Lomax, G., Maltby, J., & Darch, G. (2020). Decision making in
contexts of deep uncertainty - An alternative approach for long-term climate policy.
Environmental Science & Policy, 103, 77-84. doi:https://doi.org/10.1016/
j.envsci.2019.10.002
Workman, M., McGlashan, N., Chalmers, H., & Shah, N. (2011). An assessment of options for
CO2 removal from the atmosphere. In J. Gale, C. Hendriks, & W. Turkenberg (Eds.),
10th International Conference on Greenhouse Gas Control Technologies (Vol. 4, pp.
2877-2884). Amsterdam: Elsevier Science Bv.
Works, F. C. (2021). Friday Fallback Story: Planetary Hydrogen Announces Plans for First Sale
of Carbon Removal to Shopify. Retrieved from https://fuelcellsworks.com/news/friday-
fallback-story-planetary-hydrogen-announces-plans-for-first-sale-of-carbon-removal-to-
shopify/
Worrall, F., Bell, M. J., & Bhogal, A. (2010). Assessing the probability of carbon and greenhouse
gas benefit from the management of peat soils. Science of The Total Environment,
408(13), 2657-2666. doi:https://doi.org/10.1016/j.scitotenv.2010.01.033
Wozniacka, G. (2019). Can regenerative agriculture reverse climate change? Big Food is
banking on it. NBC News. Retrieved from https://www.nbcnews.com/news/us-news/can-
regenerative-agriculture-reverse-climate-change-big-food-banking-it-n1072941
Writer, O. S. (2019). Sucking Carbon From Air, Swiss Firm Wins New Funds for Climate Fix.
Osborn Oracle. Retrieved from https://osburnoracle.com/sucking-carbon-from-air-swiss-
firm-wins-new-funds-for-climate-fix/56567/
Wróbel-Tobiszewska, A. (2015). Biochar as a soil amendment and productivity stimulus for
Eucalyptus nitens plantations. University of Tasmania, Retrieved from http://
eprints.utas.edu.au/18751/
Wrobel-Tobiszewska, A., Boersma, M., Sargison, J., Adams, P., & Jarick, S. (2015). An
economic analysis of biochar production using residues from Eucalypt plantations.
Biomass and Bioenergy, 81, 177 - 182. doi:10.1016/j.biombioe.2015.06.015
Wu, C., et al. . (2015). CO2 gasification of bio-char derived from conventional and microwave
pyrolysis. Applied Energy, 157, 533-539. doi:10.1016/j.apenergy.2015.04.075
Wu, C. F., et al. (2012). Novel application of biochar from biomass pyrolysis for low temperature
selective catalytic reduction. Journal of the Energy Institute, 85(4), 236-239. doi:http://
dx.doi.org/10.1179/1743967112Z.00000000033
Wu, C.-H., et al. (2015). Improvement of oxygen release from calcium peroxide-polyvinyl alcohol
bead by adding low-cost bamboo biochar and its application in bioremediation. 環境與安
全衛⽣⼯程系所 (The Environmental Health and Safety Engineering), 43(2), 287-295.
Retrieved from http://ir.lib.yuntech.edu.tw/ir/handle/310060000/10728
Wu, C.-H., Chang, S.-H., & Lin, C.-W. (2014). Improvement of Oxygen Release from Calcium
Peroxide-polyvinyl Alcohol Beads by Adding Low-cost Bamboo Biochar and Its
Application in Bioremediation. CLEAN – Soil, Air, Water, 43(2), 287-295. doi:10.1002/
clen.201400059
Wu, D., Feng, Y., Xue, L., Liu, M., Yang, B., Hu, F., & Yang, L. (2019). Biochar Combined with
Vermicompost Increases Crop Production While Reducing Ammonia and Nitrous Oxide
Emissions from a Paddy Soil. Pedosphere, 29(1), 82-94. doi:https://doi.org/10.1016/
S1002-0160(18)60050-5
Wu, F., et al. . (2012). Contrasting effects of wheat straw and its biochar on greenhouse gas
emissions and enzyme activities in a Chernozemic soil. Biology and Fertility of Soils,
49(5), 555-565. doi:10.1007/s00374-012-0745-7
Wu, H., Che, X., Ding, Z., Hu, X., Creamer, A. E., Chen, H., & Gao, B. (2015). Release of
soluble elements from biochars derived from various biomass feedstocks. Environmental
Science and Pollution Research, 23(2), 1905-1915. doi:10.1007/s11356-015-5451-1
Wu, H., & Maginn, E. J. (2014). Fluid Phase Equilib., 368, 72.
Wu, M., Feng, Q., Sun, X., Wang, H., Gielen, G., & Wu, W. (2015). Rice (Oryza sativa L)
plantation affects the stability of biochar in paddy soil. Scientific Reports, 5(10001), 1-10.
doi:10.1038/srep10001
Wu, M., Han, X., Zhong, T., Yuan, M., & Wu, W. (2016). Soil organic carbon content affects the
stability of biochar in paddy soil. Agriculture, Ecosystems & Environment, 223, 59 - 66.
doi:10.1016/j.agee.2016.02.033
Wu, M., Ma, J., Cai, Z., Tian, G., Yang, S., Wang, Y., & Liu, X. e. (2015). Rational synthesis of
zerovalent iron/bamboo charcoal composites with high saturation magnetization. RSC
Adv., 5(108), 88703 - 88709. doi:10.1039/c5ra13236c
Wu, S. c., Lin, F., & Yang, J. y. (2011). Modular Biochar Torrefaction System for Rural Taiwan.
Paper presented at the 2011 International Conference on Management and Service
Science (MASS).
Wu, S.-R., Chang, C.-C., Chang, Y.-H., & Wan, H.-P. (2016). Comparison of oil-tea shell and
Douglas-fir sawdust for the production of bio-oils and chars in a fluidized-bed fast
pyrolysis system. Fuel, 175, 57 - 63. doi:10.1016/j.fuel.2016.02.008
Wu, W., et al. (2012). Chemical characterization of rice straw-derived biochar for soil
amendment. Biomass and Bioenergy, 47, 268-276. Retrieved from http://
www.sciencedirect.com/science/article/pii/S0961953412003741
Wu, X. D., et al. (2014). Carbon Capture and Storage (CCS) policy for China: Implications from
Some Representative Countries and Regions. Journal of Environmental Accounting and
Management, 2(1), 43-63. Retrieved from https://www.researchgate.net/publication/
327551671_Carbon_Capture_and_Storage_CCS_policy_for_China_Implications_from_
Some_Representative_Countries_and_Regions
Wu, X. H., Luo, J., Wang, H., & Fang, Z. (2014). Characteristics of Products from Hydrothermal
Carbonization of Bamboo. Applied Mechanics and Materials, 654, 7 - 10. doi:10.4028/
www.scientific.net/AMM.654.7
Wu, Y., Ge, S., Xia, C., Cai, L., Mei, C., Sonne, C., . . . Shiung Lam, S. (2020). Using low carbon
footprint high-pressure carbon dioxide in bioconversion of aspen branch waste for
sustainable bioethanol production. Bioresource Technology, 123675. doi:https://doi.org/
10.1016/j.biortech.2020.123675
Wu, Y., Xu, G., & Shao, H. B. (2014). Furfural and its biochar improve the general properties of
a saline soil. Solid Earth, 5(5), 665-671. Retrieved from http://www.solid-earth.net/
5/665/2014/se-5-665-2014.pdf
Wu, Y., Zhang, P., Zhang, H., Zeng, G., Liu, J., Ye, J., . . . Gou, X. (2016). Possibility of sludge
conditioning and dewatering with rice husk biochar modified by ferric chloride.
Bioresource Technology, 205, 258 - 263. doi:10.1016/j.biortech.2016.01.020
Wu, Z., Nan, Y., Zhao, Y., Wang, X., Huang, S., & Shi, J. (2020). Immobilization of carbonic
anhydrase for facilitated CO2 capture and separation. Chinese Journal of Chemical
Engineering. doi:https://doi.org/10.1016/j.cjche.2020.06.002
Wu, Z., Song, Y., Shen, H., Jiang, X., Li, B., & Xiong, Z. (2019). Biochar can mitigate methane
emissions by improving methanotrophs for prolonged period in fertilized paddy soils.
Environmental Pollution, 253, 1038-1046. doi:https://doi.org/10.1016/
j.envpol.2019.07.073
Wullschleger, S. D., et al. (2010). Biomass Production in Switchgrass across the United States:
Database Description and Determinants of Yield. Agronomy Journal, 102(4), 1158-1168.
Retrieved from https://dl.sciencesocieties.org/publications/aj/abstracts/102/4/1158
Wurzbacher, J. A., Gebald, C., Brunner, S., & Steinfeld, A. (2016). Heat and mass transfer of
temperature–vacuum swing desorption for CO2 capture from air. Chemical Engineering
Journal, 283, 1329-1338. doi:http://dx.doi.org/10.1016/j.cej.2015.08.035
Wurzbacher, J. A., Gebald, C., Piatkowski, N., & Steinfeld, A. (2012). Concurrent Separation of
CO2 and H2O from Air by a Temperature-Vacuum Swing Adsorption/Desorption Cycle.
Environmental Science & Technology, 46(16), 9191-9198. doi:10.1021/es301953k
Wurzler, T., Borchert, U., Wittmann, L., & Szymczyk, J. A. (2016). Technology Development and
Conceptual Design of a Test Stand for the Optimization of a Gasification Process.
Applied Mechanics & Materials, 831, 316-324. Retrieved from http://
web.b.ebscohost.com/abstract?
direct=true&profile=ehost&scope=site&authtype=crawler&jrnl=16627482&AN=11281046
0&h=oa9yRioEq3TQxQWdEhysX1M9pTSamoYQxz%2f%2fhyFwldqMaC6r8qjk%2bFe8y
QJpAvCu3H2%2fI%2f6F2uFn9tHzog%2bIPg%3d%3d&crl=c&resultNs=AdminWebAuth&
res
WWF, & RSPB. (2020). The Role of Nature in a UK NDC. Retrieved from https://
www.rspb.org.uk/globalassets/downloads/Nature_Based_Solutions_NDC_ReportV2.pdf
Wylie, L., Sutton-Grier, A. E., & Moore, A. (2016). Keys to successful blue carbon projects:
Lessons learned from global case studies. Marine Policy, 65, 76-84. doi:https://doi.org/
10.1016/j.marpol.2015.12.020
Wynn, G. (2017). The Carbon-Capture Dream is Dying. Retrieved from http://
www.theenergycollective.com/gerard-wynn/2410045/carbon-capture-dream-dying?
utm_source=feedburner&utm_medium=email&utm_campaign=The+Energy+Collective+
%28all+posts%29
X.B., Y., G.G., Y., P.A., P., L., W., J.L., Z., L.J., Z., . . . H.P., H. (2010). Influence of Biochars on
Plant Uptake and Dissipation of Two Pesticides in an Agricultural Soil. Journal of
Agricultural and Food Chemistry, 58, 7915-7921. doi:10.1021/jf1011352.
Xenias, D., & Whitmarsh, L. (2018). Carbon capture and storage (CCS) experts’ attitudes to and
experience with public engagement. International Journal of Greenhouse Gas Control,
78, 103-116. doi:https://doi.org/10.1016/j.ijggc.2018.07.030
Xi, X., Yan, J., Quan, G., & Cui, L. (2014). Removal of the Pesticide Pymetrozine from Aqueous
Solution by Biochar Produced from Brewer's Spent Grain at Different Pyrolytic
Temperatures. BioResources, 9(4), 7696-7709. Retrieved from http://ojs.cnr.ncsu.edu/
index.php/BioRes/article/view/BioRes_09_4_7696_Xi_Removal_Pesticide_Biochar/3157
Xia, L., Wang, Y., & Meng, J. (2016). Communications in Computer and Information
ScienceGeo-Informatics in Resource Management and Sustainable EcosystemThe
Influencing Factors of Biochar’s Characteristics and the Development of Carbonization
Equipments: A Review (Vol. 569). Berlin, Heidelberg: Springer Berlin Heidelberg.
Xia, Y., Liu, M. H., Song, X. N., & Zheng, H. (2014). Impact of Biochar Modified by HNO3 on
Plant Growth in Low Nutrient Coastal Saline Soil. Applied Mechanics and Materials, 707,
255 - 258. doi:10.4028/www.scientific.net/AMM.707.255
Xiang, J., Liu, D., Ding, W., Yuan, J., & Lin, Y. (2014). Effects of biochar on nitrous oxide and
nitric oxide emissions from paddy field during the wheat growth season. Journal of
Cleaner Production. doi:10.1016/j.jclepro.2014.12.038
Xiang, L., Liu, S., Ye, S., Yang, H., Song, B., Qin, F., . . . Tan, X. (2021). Potential hazards of
biochar: The negative environmental impacts of biochar applications. Journal of
Hazardous Materials, 420, 126611. doi:https://doi.org/10.1016/j.jhazmat.2021.126611
Xiang, Y., Cai, L., Guan, Y., Liu, W., He, T., & Li, J. (2019). Study on the biomass-based
integrated gasification combined cycle with negative CO2 emissions under different
temperatures and pressures. Energy. doi:https://doi.org/10.1016/j.energy.2019.05.011
Xiang, Y., Yan, M., Choi, Y.-S., Young, D., & Nesic, S. (2014). Time-dependent electrochemical
behavior of carbon steel in MEA-based CO2 capture process. International Journal of
Greenhouse Gas Control, 30, 125-132. doi:https://doi.org/10.1016/j.ijggc.2014.09.003
XiangHong, L., Feng-Peng, H., & Zhang, X.-C. (2012). Effect of biochar on soil aggregates in
the Loess Plateau: results from incubation experiments. International Journal of
Agriculture and Biology, 14, 975-979. Retrieved from https://search.proquest.com/
docview/1267099382/fulltextPDF/1485D34AE77A4B3BPQ/1?accountid=14496
Xiao, F., & Pignatello, J. J. (2015). Interactions of triazine herbicides with biochar: Steric and
electronic effects. Water Research, 80, 179 - 188. doi:10.1016/j.watres.2015.04.040
Xiao, F., & Pignatello, J. J. (2015). π+–π Interactions between (Hetero)aromatic Amine Cations
and the Graphitic Surfaces of Pyrogenic Carbonaceous Materials. Environmental
Science & Technology, 49(2), 906 - 914. doi:10.1021/es5043029
Xiao, J., Guo, X., & Song, C. (2019). Use of CO2 as Source of Carbon for Energy-Rich Cn
Products. In M. Aresta, I. Karimi, & S. Kawi (Eds.), An Economy Based on Carbon
Dioxide and Water: Potential of Large Scale Carbon Dioxide Utilization (pp. 211-238).
Retrieved from https://link.springer.com/chapter/10.1007/978-3-030-15868-2_6
Xiao, N., Luo, H., Wei, W., Tang, Z., Hu, B., Kong, L., & Sun, Y. (2015). Microwave-assisted
gasification of rice straw pyrolytic biochar promoted by alkali and alkaline earth metals.
Journal of Analytical and Applied Pyrolysis. doi:10.1016/j.jaap.2015.02.001
Xiao, Q., et al. (2015). Effects of biochar on water infiltration, evaporation and nitrate leaching in
semi-arid loess area. Transactions of the Chinese Society of Agricultural Engineering,
31(16), 128-134. Retrieved from http://web.b.ebscohost.com/abstract?
direct=true&profile=ehost&scope=site&authtype=crawler&jrnl=10026819&AN=10905243
0&h=krAXlohuUhEyDCGzj%2fX5ovlZt3bbxp6lPc6sBq%2bigunL5fnLiXmg4YaI0WwgdjzV
3iJ9DpXz7DdGux56JJQOnA%3d%3d&crl=c&resultNs=AdminWebAuth&resultLocal
Xiao, Q., et al. (2015). Soil amendment with biochar increases maize yields in a semi-arid
region by improving soil quality and root growth. Crop & Pasture Science, 67, 495-507.
Retrieved from https://www.publish.csiro.au/cp/pdf/CP15351
Xiao, R., Wang, J. J., Gaston, L. A., Zhou, B., Park, J.-H., Li, R., . . . Zhang, Z. (2018). Biochar
produced from mineral salt-impregnated chicken manure: Fertility properties and
potential for carbon sequestration. Waste Management, 78, 802-810. doi:https://doi.org/
10.1016/j.wasman.2018.06.047
Xiao, R., & Yang, W. (2016). Kinetics characteristics of straw semi-char gasification with carbon
dioxide. Bioresource Technology, 207, 180 - 187. doi:10.1016/j.biortech.2016.02.010
Xiao, X., & Chen, B. (2015). SSSA Special PublicationAgricultural and Environmental
Applications of Biochar: Advances and BarriersInteraction Mechanisms between Biochar
and Organic Pollutants: Soil Science Society of America, Inc.
Xiao, X., Chen, Z., & Chen, B. (2016). H/C atomic ratio as a smart linkage between pyrolytic
temperatures, aromatic clusters and sorption properties of biochars derived from diverse
precursory materials. Scientific Reports, 6, 1-13. doi:10.1038/srep22644
Xiao, X., Sheng, G. D., & Qiu, Y. (2011). Improved understanding of tributyltin sorption on
natural and biochar-amended sediments. Environmental Toxicology and Chemistry,
30(12), 2682-2687. doi:10.1002/etc.672
Xiao, Y., Che, Y., Zhang, F., Li, Y., & Liu, M. (2018). Effects of Biochar, N Fertilizer, and Crop
Residues on Greenhouse Gas Emissions from Acidic Soils. 46(7), 1700346.
doi:10.1002/clen.201700346
Xie, H., Jiang, W., Liu, T., Wu, Y., Wang, Y., Chen, B., . . . Liang, B. (2020). Low-Energy
Electrochemical Carbon Dioxide Capture Based on a Biological Redox Proton Carrier.
Cell Reports Physical Science, 1(5). doi:10.1016/j.xcrp.2020.100046
Xie, H., Jiang, W., Liu, T., Wu, Y., Wang, Y., Chen, B., . . . Liang, B. (2020). Low-Energy
Electrochemical Carbon Dioxide Capture Based on a Biological Redox Proton Carrier.
Cell Reports Physical Science, 1(5), 100046. doi:https://doi.org/10.1016/
j.xcrp.2020.100046
Xie, H., Yue, H., Zhu, J., Liang, B., Li, C., Wang, Y., . . . Zhou, X. (2015). Scientific and
Engineering Progress in CO2 Mineralization Using Industrial Waste and Natural
Minerals. Engineering, 1(1), 150-157. doi:https://doi.org/10.15302/J-ENG-2015017
Xie, M., et al. (2013). Sorption of Monoaromatic Compounds to Heated and Unheated Coals,
Humic Acid, and Biochar: Implication for Using Combustion Method to Quantify Sorption
Contribution of Carbonaceous Geosorbents in Soil. Applied Geochemistry, 35, 289-296.
Retrieved from http://www.sciencedirect.com/science/article/pii/S088329271300125X
Xie, Q. (2016). Fast microwave-assisted thermochemical conversion of biomass for biofuel
production. University of Minnesota, Retrieved from http://conservancy.umn.edu/handle/
11299/177123
Xie, Q., Peng, P., Liu, S., Min, M., Cheng, Y., Wan, Y., . . . Ruan, R. (2014). Fast microwave-
assisted catalytic pyrolysis of sewage sludge for bio-oil production. Bioresource
Technology, 172, 162 - 168. doi:10.1016/j.biortech.2014.09.006
Xie, T., et al. (2014). Effects of Amendment of Biochar Produced from Woody Biomass on Soil
Quality and Crop Yield. Geoenvironmental Engineering, 170-180. Retrieved from http://
cedb.asce.org/cgi/WWWdisplay.cgi?318416
Xie, T., et al. (2015). Review of the Effects of Biochar Amendment on Soil Properties and
Carbon Sequestration. Journal of Hazardous, Toxic, and Radioactive Waste, 20(1),
04015013. doi:10.1061/(asce)hz.2153-5515.0000293
Xie, X., & Economides, M. J. (2009). The impact of carbon geological sequestration. Journal of
Natural Gas Science and Engineering, 1(3), 103-111. doi:https://doi.org/10.1016/
j.jngse.2009.06.002
Xie, Z., Xu, Y., Liu, G., Liu, Q., Zhu, J., Tu, C., . . . Hu, S. (2013). Impact of biochar application
on nitrogen nutrition of rice, greenhouse-gas emissions and soil organic carbon
dynamics in two paddy soils of China. Plant and Soil, 370(1), 527-540. doi:10.1007/
s11104-013-1636-x
Xin, C., Addy, M. M., Zhao, J., Cheng, Y., Cheng, S., Mu, D., . . . Ruan, R. (2016).
Comprehensive techno-economic analysis of wastewater-based algal biofuel production:
A case study. Bioresource Technology, 211, 584-593. doi:https://doi.org/10.1016/
j.biortech.2016.03.102
Xin, J., et al. (2014). Effects of biochar–BDE-47 interactions on BDE-47 bioaccessibility and
biodegradation by Pseudomonas putida TZ-1. Ecotoxicology and Environmental Safety,
106, 27-32. doi:10.1016/j.ecoenv.2014.04.036
Xing, L., Darton, R. C., & Yang, A. (2021). Enhanced weathering to capture atmospheric carbon
dioxide: Modeling of a trickle-bed reactor. AIChE Journal, 67(5), e17202. doi:https://
doi.org/10.1002/aic.17202
Xingcan, T., Jinlin, C., & Wenqing, L. (2014). Cu2+ Adsorption Characteristic of Biochar and Its
Influential Factor. Journal of Anhui Agricultural Sciences. Retrieved from http://
d.wanfangdata.com.cn/periodical_ahnykx201405070.aspx
Xiong, W., Wells, R. K., Menefee, A. H., Skemer, P., Ellis, B. R., & Giammar, D. E. (2017). CO2
mineral trapping in fractured basalt. International Journal of Greenhouse Gas Control,
66, 204-217. doi:https://doi.org/10.1016/j.ijggc.2017.10.003
Xu, C.-Y., Bai, S. H., Hao, Y., Rachaputi, R. C. N., Xu, Z., & Wallace, H. M. (2015). Peanut shell
biochar improves soil properties and peanut kernel quality on a red Ferrosol. Journal of
Soils and Sediments, 15(11), 2220-2231. doi:10.1007/s11368-015-1242-z
Xu, C.-Y., Bai, S. H., Xu, Z., Blumfielda, T. J., Zhao, H., Wang, H., . . . Zwieten, L. V. (2015).
Biochar application increases soil available nitrogen and plant-to-soil carbon input. In.
Xu, C.-Y., Hosseini-Bai, S., Hao, Y., Rachaputi, R. C. N., Wang, H., Xu, Z., & Wallace, H. (2014).
Effect of biochar amendment on yield and photosynthesis of peanut on two types of
soils. Environmental Science and Pollution Research, 22(8), 6112-6125. doi:10.1007/
s11356-014-3820-9
Xu, D., et al. . (2014). Cadmium adsorption on plant- and manure-derived biochar and biochar-
amended sandy soils: Impact of bulk and surface properties. Chemosphere, 111,
320-326. doi:10.1016/j.chemosphere.2014.04.043
Xu, D.-y., et al. (2014). Characterization of Biochar by X-Ray Photoelectron Spectroscopy and
13C Nuclear Magnetic Resonance. In.
Xu, G., et al. (2011). Impacts of Biochar on Agriculture Soils and Environmental Implications.
Journal Advanced Materials Research, 391 - 392, 1055-1058. doi:10.4028/
www.scientific.net/AMR.391-392.1055
Xu, G., et al. . (2012). Recent Advances in Biochar Applications in Agricultural Soils: Benefits
and Environmental Implications. CLEAN – Soil, Air, Water, 40(10), 1093-1098.
doi:10.1002/clen.201100738
Xu, G., et al. (2013). What is more important for enhancing nutrient bioavailability with biochar
application into a sandy soil: Direct or indirect mechanism? Ecological Engineering, 52,
119–124. Retrieved from http://www.sciencedirect.com/science/article/pii/
S0925857412004533
Xu, G., et al. (2014). Biochar had effects on phosphorus sorption and desorption in three soils
with differing acidity. Ecological Engineering, 62, 54-60. Retrieved from http://
www.sciencedirect.com/science/article/pii/S0925857413004515
Xu, H., Cai, A., Wu, D., Liang, G., Xiao, J., Xu, M., . . . Zhang, W. (2021). Effects of biochar
application on crop productivity, soil carbon sequestration, and global warming potential
controlled by biochar C:N ratio and soil pH: A global meta-analysis. Soil and Tillage
Research, 213, 105125. doi:https://doi.org/10.1016/j.still.2021.105125
Xu, H.-J., Wang, X.-H., Li, H., Yao, H.-Y., Su, J.-Q., & Zhu, Y.-G. (2014). Biochar Impacts Soil
Microbial Community Composition and Nitrogen Cycling in an Acidic Soil Planted with
Rape. Environmental Science & Technology, 48(16), 9391 - 9399. doi:10.1021/
es5021058
Xu, J. Y., Wu, H. Y., Wang, Z., Qiao, Z. H., Zhao, S., & Wang, J. X. (2018). Recent advances on
the membrane processes for CO2 separation. Chinese Journal of Chemical Engineering,
26(11), 2280-2291. doi:10.1016/j.cjche.2018.08.020
Xu, L., Yao, Q., Deng, J., Han, Z., Zhang, Y., Fu, Y., . . . Guo, Q. (2015). Renewable N-
Heterocycles Production by Thermocatalytic Conversion and Ammonization of Biomass
over ZSM-5. ACS Sustainable Chemistry & Engineering, 3(11), 2890 - 2899.
doi:10.1021/acssuschemeng.5b00841
Xu, M., & Shang, H. (2016). Contribution of soil respiration to the global carbon equation.
Journal of Plant Physiology, 203(Supplement C), 16-28. doi:https://doi.org/10.1016/
j.jplph.2016.08.007
Xu, N., Zhang, B., Tan, G., Li, J., & Wang, H. (2015). Influence of biochar on sorption, leaching
and dissipation of bisphenol A and 17α-ethynylestradiol in soil. Environ. Science:
Processes & Impacts, 17(10), 1722-1730. doi:10.1039/c5em00190k
Xu, R., et al. (2011). Thermal self-sustainability of biochar production by pyrolysis. Journal of
Analytical and Applied Pyrolysis, 91(1), 55-66. Retrieved from http://
www.sciencedirect.com/science/article/
B6TG7-51XH964-1/2/7e405197368040d67ff93c10e7c7ecbd
Xu, R.-K., et al. . (2015). Adsorption Properties of Subtropical and Tropical Variable Charge
Soils: Implications from Climate Change and Biochar Amendment. Advances in
Agronomy, 135, 1-58. doi:10.1016/bs.agron.2015.09.001
Xu, S., Adhikari, D., Huang, R., Zhang, H., Tang, Y., Roden, E., & Yang, Y. (2016). Biochar-
Facilitated Microbial Reduction of Hematite. Environmental Science & Technology, 50(5),
2389 - 2395. doi:10.1021/acs.est.5b05517
Xu, S., & Dai, S. (2021). CCUS As a second-best choice for China's carbon neutrality: an
institutional analysis. Climate Policy, 21(7), 927-938.
doi:10.1080/14693062.2021.1947766
Xu, W., Jian, H., Liu, Y., Zeng, G., Li, X., Gu, Y., & Tan, X. (2015). Removal of chromium (VI)
from aqueous solution using mycelial pellets of Penicillium simplicissimum impregnated
with powdered biochar. Bioremediation Journal, 19(4), 259-268.
doi:10.1080/10889868.2015.1066302
Xu, W., Pignatello, J. J., & Mitch, W. A. (2015). Reduction of Nitroaromatics Sorbed to Black
Carbon by Direct Reaction with Sorbed Sulfides. Environmental Science & Technology,
49(6), 3419-3426. doi:10.1021/es5045198
Xu, X., et al. (2012). Removal of Cu, Zn, and Cd from aqueous solutions by the dairy manure-
derived biochar. Environmental Science and Pollution Research, 20(1), 358-368.
doi:10.1007/s11356-012-0873-5
Xu, X., et al. . (2014). Comparison of sewage sludge- and pig manure-derived biochars for
hydrogen sulfide removal. Chemosphere, 111, 296-303. doi:10.1016/
j.chemosphere.2014.04.014
Xu, X., et al. . (2014). Interaction of organic and inorganic fractions of biochar with Pb. RSC
Adv., 4(85), 44930 - 44937. doi:10.1039/c4ra07303g
Xu, X., et al. . (2016). Comparison of the characteristics and mechanisms of Hg(II) sorption by
biochars and activated carbon. Journal of Colloid and Interface Science, 463, 55 - 60.
doi:10.1016/j.jcis.2015.10.003
Xu, X., Cheng, K., Wu, H., Sun, J., Yue, Q., & Pan, G. (2019). Greenhouse gas mitigation
potential in crop production with biochar soil amendment—a carbon footprint
assessment for cross-site field experiments from China. 11(4), 592-605. doi:10.1111/
gcbb.12561
Xu, X., Gu, X., Wang, Z., Shatner, W., & Wang, Z. (2019). Progress, challenges and solutions of
research on photosynthetic carbon sequestration efficiency of microalgae. Renewable
and Sustainable Energy Reviews, 110, 65-82. doi:https://doi.org/10.1016/
j.rser.2019.04.050
Xu, X., Kan, Y., Zhao, L., & Cao, X. (2016). Chemical transformation of CO2 during its capture
by waste biomass derived biochars. Environmental Pollution, 213, 533-540. doi:https://
doi.org/10.1016/j.envpol.2016.03.013
Xu, X., Wu, Z., Dong, Y., Zhou, Z., & Xiong, Z. (2016). Effects of nitrogen and biochar
amendment on soil methane concentration profiles and diffusion in a rice-wheat annual
rotation system. Scientific Reports, 6, 38688. doi:10.1038/srep38688
http://www.nature.com/articles/srep38688#supplementary-information
Xu, Y., & Chen, B. (2014). Organic carbon and inorganic silicon speciation in rice-bran-derived
biochars affect its capacity to adsorb cadmium in solution. Journal of Soils and
Sediments. doi:10.1007/s11368-014-0969-2
Xu, Y., Lou, Z., Yi, P., Chen, J., Ma, X., Wang, Y., . . . Qian, G. (2014). Improving abiotic
reducing ability of hydrothermal biochar by low temperature oxidation under air.
Bioresource Technology, 172, 212 - 218. doi:10.1016/j.biortech.2014.09.018
Xua, T., Lou, L., Luo, L., Cao, R., Duan, D., & Chen, Y. (2011). Effect of bamboo biochar on
pentachlorophenol leachability and bioavailability in agricultural soil. Science of The Total
Environment. doi:10.1016/j.scitotenv.2011.11.005
Xuan, D., & Poon, C. S. (2019). 16 - Sequestration of carbon dioxide by RCAs and
enhancement of properties of RAC by accelerated carbonation. In J. de Brito & F. Agrela
(Eds.), New Trends in Eco-efficient and Recycled Concrete (pp. 477-497): Woodhead
Publishing.
Xue, B., Yu, Y., & Chen, J. (2017). Process simulation and energy consumption for CO2 capture
with different flowsheets. International Journal of Greenhouse Gas Control, 12(2),
207-227. Retrieved from http://www.inderscience.com/info/inarticle.php?artid=84514
Xue, X., et al. (2016). Study on microwave-assisted pyrolysis of hemicellulose. Kezaisheng
Nengyuan / Renewable Energy Resources, 33(11), 1749-1754. Retrieved from http://
www.cabdirect.org/abstracts/
20153416550.html;jsessionid=08C12AE8783C422B97BEEAA9278D844F
Xue, Y., et al. (2012). Hydrogen peroxide modification enhances the ability of biochar
(hydrochar) produced from hydrothermal carbonization of peanut hull to remove
aqueous heavy metals: Batch and column tests. Chemical Engineering Journal,
200-202, 673-680. Retrieved from http://www.sciencedirect.com/science/article/pii/
S1385894712008467
Xue, Y. (2016). Influence of birch biochar on strawberry plants in greenhouse under attack of
gray mold. University of Helsinki, Retrieved from https://helda.helsinki.fi/handle/
10138/159927
Xue, Y., Zhou, S., Brown, R. C., Kelkar, A., & Bai, X. (2015). Fast pyrolysis of biomass and
waste plastic in a fluidized bed reactor. Fuel, 156, 40 - 46. doi:10.1016/j.fuel.2015.04.033
Xuefeng, L., et al. (2015). In-situ remediation of Cd polluted paddy soil using sepiolite and
combined amendments. Geoderma, 235-236, 9-18. Retrieved from http://
www.sciencedirect.com/science/article/pii/S0016706114002596
XuSheng, H., et al. . (2011). Implications of production and agricultural utilization of biochar and
its international dynamic. Transactions of the Chinese Society of Agricultural
Engineering, 27, 1-7. Retrieved from http://www.tcsae.org
Y., Y., B, G., H, C., L, J., M, I., AR, Z., . . . H, L. (2012). Adsorption of sulfamethoxazole on
biochar and its impact on reclaimed water irrigation. Journal of Hazardous Materials,
209-210, 408-413. Retrieved from http://www.sciencedirect.com/science/article/pii/
S0304389412000775
Yaashikaa, P. R., Senthil Kumar, P., Varjani, S. J., & Saravanan, A. (2019). A review on
photochemical, biochemical and electrochemical transformation of CO2 into value-added
products. Journal of CO2 Utilization, 33, 131-147. doi:https://doi.org/10.1016/
j.jcou.2019.05.017
Yachigo, M., & Sato, S. (2013). Leachability and Vegetable Absorption of Heavy Metals from
Sewage Sludge Biochar. Retrieved from http://cdn.intechopen.com/pdfs/43245/InTech-
Leachability_and_vegetable_absorption_of_heavy_metals_from_sewage_sludge_bioch
ar.pdf
Yadav, G., & Sen, R. (2017). Microalgal green refinery concept for biosequestration of carbon-
dioxide vis-à-vis wastewater remediation and bioenergy production: Recent
technological advances in climate research. Journal of CO2 Utilization, 17, 188-206.
doi:https://doi.org/10.1016/j.jcou.2016.12.006
Yadav, G. S., Kandpal, B. K., Das, A., Babu, S., Mohapatra, K. P., Devi, A. G., . . . Barman, K. K.
(2021). Impact of 28 year old agroforestry systems on soil carbon dynamics in Eastern
Himalayas. Journal of Environmental Management, 283, 111978. doi:https://doi.org/
10.1016/j.jenvman.2021.111978
Yadav, S., & Mehra, A. (2017). Experimental study of dissolution of minerals and CO2
sequestration in steel slag. Waste Management, 64, 348-357. doi:https://doi.org/
10.1016/j.wasman.2017.03.032
Yadav, S., & Tyagi, D. K. (2011). Equilibrium and Kinetic Studies on Adsorption of Aniline Blue
from Aqueous Solution onto Rice Husk Carbon. International Journal of Chemistry
Research, 2(3), 59-64. Retrieved from http://www.ijcr.info/Vol2Issue3/202.pdf
Yadav, V., Shrivastava, P., Deshmukh, Y., Shanker, K., & Khare, P. (2015). Evaluation of solid
phase extraction efficiency of functionalized biochar for polyphenols from Punica
granatum. Asia-Pacific Journal of Chemical Engineering, n/a - n/a. doi:10.1002/apj.1956
Yadava, P. S., & Thokchom, A. (2017). Soil Carbon Stock and CO2 Flux in Different Ecosystems
of North-East India. In M. Goel & M. Sudhakar (Eds.), Carbon Utilization: Applications for
the Energy Industry (pp. 69-79). Singapore: Springer Singapore.
Yager, D. B., & Stanton, M. R. (2014). Metals sequestration by biochar in sulfide bearing mine
waste leachate experiments: Implications for mine waste reclamation and carbon
sequestration. Retrieved from ftp://ftpcrustal.cr.usgs.gov/pub/KSmith/IMDP%20Circular/
IMDP%20Circular_6-21-13/REVIEW%20VERSION/Minerals-Energy-Climate/
Yager_IMDP_draft_120911-4-Review.docx
Yakout, S. M. (2015). Monitoring the Changes of Chemical Properties of Rice Straw–Derived
Biochars Modified by Different Oxidizing Agents and Their Adsorptive Performance for
Organics. Bioremediation Journal, 19(2), 171 - 182.
doi:10.1080/10889868.2015.1029115
Yakout, S. M., & Elsherif, E. (2015). Biosorption behavior of Sr2+ using straw-derived biochar:
equilibrium and isotherm study. Desalination and Water Treatment, 1 - 8.
doi:10.1080/19443994.2015.1019362
Yakout, S. M., & Elsherif, E. (2015). Investigation of Strontium Sorption Kinetic and
Thermodynamic onto Straw Biochar. Particulate Science and Technology,
150427135415001. doi:10.1080/02726351.2015.1008712
Yamafuji, K. (2014). INCUBATION STUDIES OF BIOCHAR AND MANURE TO MITIGATE
CARBON DIOXIDE RELEASE AND NITROGEN DEFICIENCY IN SEMI-ARID SOILS.
University of Arizona, Retrieved from http://arizona.openrepository.com/arizona/handle/
10150/326281
Yamagata, Y. (2018). Global Negative Emission Land Use Scenarios and Their Ecological
Implications. In Reference Module in Earth Systems and Environmental Sciences:
Elsevier.
Yamagata, Y., Hanasaki, N., Ito, A., Kinoshita, T., Murakami, D., & Zhou, Q. (2018). Estimating
water–food–ecosystem trade-offs for the global negative emission scenario (IPCC-
RCP2.6). Sustainability Science. doi:10.1007/s11625-017-0522-5
Yamamoto, A., Yamaji, K., & Fujino, J. (1999). Evaluation of bioenergy resources with a global
land use and energy model formulated with SD technique. Applied Energy, 63(2),
101-113. Retrieved from http://econpapers.repec.org/article/eeeappene/
v_3a63_3ay_3a1999_3ai_3a2_3ap_3a101-113.htm
Yamamoto, H., Fujino, J., & Yamaji, K. (2001). Evaluation of bioenergy potential with a multi-
regional global-land-use-and-energy model. Biomass and Bioenergy, 21(3), 185-203.
doi:http://dx.doi.org/10.1016/S0961-9534(01)00025-3
Yamamoto, H., Yamaji, K., & Fujino, J. (2000). Scenario analysis of bioenergy resources and
CO2 emissions with a global land use and energy model. Applied Energy, 66(4),
325-337. doi:http://dx.doi.org/10.1016/S0306-2619(00)00019-2
Yamane, V. K., & Green, R. E. (1972). Adsorption of Ametryne and Atrazine on an Oxisol,
Montmorillonite, and Charcoal in Relation to pH and Solubility Effects.
Yamato, M., et al. (2006). Effects of the Application of Charred Bark of Acacia Mangium on the
Yield of Maize, Cowpea and Peanut, and Soil Chemical Properties in South Sumatra,
Indonesia. Soil Science and Plant Nutrition, 52(4), 489-495. Retrieved from http://
onlinelibrary.wiley.com/doi/10.1111/j.1747-0765.2006.00065.x/abstract
Yamauchi, S., Yamagishi, T., Kirikoshi, K., & Yatagai, M. (2014). Cesium adsorption from
aqueous solutions onto Japanese oak charcoal I: effects of the presence of group 1 and
2 metal ions. Journal of Wood Science. doi:10.1007/s10086-014-1431-1
Yan, F., et al. (2015). Optimized preparation of lanthanum uploaded biochar and its application
in adsorbing pentavalent arsenic ions from aqueous solution. China Environmental
Science, 35(8), 2433-2441. Retrieved from http://www.cabdirect.org/abstracts/
20153314910.html;jsessionid=884132458603550B9DAAE2DEFAF7C84F
Yan, J., Han, L., Gao, W., Xue, S., & Chen, M. (2015). Biochar supported nanoscale zerovalent
iron composite used as persulfate activator for removing trichloroethylene. Bioresource
Technology, 175, 269 - 274. doi:10.1016/j.biortech.2014.10.103
Yan, L., Kong, L., Qu, Z., Li, L., & Shen, G. (2014). Magnetic Biochar Decorated with ZnS
Nanocrytals for Pb (II) Removal. ACS Sustainable Chemistry & Engineering,
141125102254006. doi:10.1021/sc500619r
Yan, Q., et al. . (2013). Iron Nanoparticles in situ Encapsulated in Biochar-based Carbon as an
Effective Catalyst for Conversion of Biomass-derived Syngas to Liquid Hydrocarbons.
Green Chemistry, 15, 1631-1640. Retrieved from http://pubs.rsc.org/en/content/
articlehtml/2013/gc/c3gc37107g
Yan, Q., et al. (2014). Formation of nanocarbon spheres by thermal treatment of woody char
from fast pyrolysis process. Wood and Fiber Science, 46(4), 437-450. Retrieved from
http://www.swst.org/publications/wfs/preprints/46%284%29/WFS1712.pdf
Yan, Q., et al. . (2015). Synthesis of Tungsten Carbide Nanoparticles in Biochar Matrix as a
Catalyst for Dry Reforming of Methane to Syngas. Catalysis Science & Technology, 5,
3270-3280. doi:10.1039/c5cy00029g
Yanagi, M., Watanabe, Y., & Saiki, H. (1995). CO2 fixation by Chlorella sp. HA-1 and its
utilization. Energy Conversion and Management, 36(6), 713-716. doi:https://doi.org/
10.1016/0196-8904(95)00104-L
Yanagisawa, M., Kawai, S., & Murata, K. (2013). Strategies for the production of high
concentrations of bioethanol from seaweeds. Bioengineered, 4(4), 224-235. Retrieved
from https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3728193/
Yanai, Y., Toyota, K., & Okazaki, M. (2007). Effects of charcoal addition on N2O emissions from
soil resulting from rewetting air-dried soil in short-term laboratory experiments. Soil
Science and Plant Nutrition, 53(2), 181-188. Retrieved from http://onlinelibrary.wiley.com/
doi/10.1111/j.1747-0765.2007.00123.x/abstract
Yanardağ, İ. H., Zornoza, R., Cano, A. F., Yanardağ, A. B., & Mermut, A. R. (2015). Evaluation of
carbon and nitrogen dynamics in different soil types amended with pig slurry, pig manure
and its biochar by chemical and thermogravimetric analysis. Biology and Fertility of
Soils, 51(2), 183 - 196. doi:10.1007/s00374-014-0962-3
Yang, A. L. C., & Ani, F. N. (2016). Controlled Microwave-Induced Pyrolysis of Waste Rubber
Tires. International Journal of Technology, 7(2), 314. doi:10.14716/ijtech.v7i2.2973
Yang, E., Jun, M., Haijun, H., & Wenfu, C. (2015). Chemical composition and potential
bioactivity of volatile from fast pyrolysis of rice husk. Journal of Analytical and Applied
Pyrolysis, 112, 394 - 400. doi:10.1016/j.jaap.2015.02.021
Yang, F., et al. (2015). Short-term effects of rice straw biochar on sorption, emission, and
transformation of soil NH4 +-N. Environmental Science and Pollution Research, 22(12),
9184-9192. doi:10.1007/s11356-014-4067-1
Yang, F., et al. (2016). Environmental Assessment of Biochar for Security Applications. In
Architectural, Energy and Information Engineering.
Yang, F., et al. (2016). The Interfacial Behavior between Biochar and Soil Minerals and Its Effect
on Biochar Stability. Environmental Science & Technology, 50(5), 2264 - 2271.
doi:10.1021/acs.est.5b03656
Yang, F., Lee, X.-q., & Wang, B. (2015). Characterization of biochars produced from seven
biomasses grown in three different climate zones. Chinese Journal of Geochemistry,
34(4), 592 - 600. doi:10.1007/s11631-015-0072-4
Yang, F., Meerman, J. C., & Faaij, A. P. C. (2021). Carbon capture and biomass in industry: A
techno-economic analysis and comparison of negative emission options. Renewable
and Sustainable Energy Reviews, 144, 111028. doi:https://doi.org/10.1016/
j.rser.2021.111028
Yang, G., Sun, Y., Zhang, J. P., & Wen, C. (2016). Fast carbonization using fluidized bed for
biochar production from reed black liquor: optimization for H2S removal. Environmental
Technology, 1 - 10. doi:10.1080/09593330.2016.1151463
Yang, G., Wang, Z., Xian, Q., Shen, F., Sun, C., Zhang, Y., & Wu, J. (2015). Effects of pyrolysis
temperature on the physicochemical properties of biochar derived from vermicompost
and its potential use as an environmental amendment. RSC Adv., 50, 40117-40125.
doi:10.1039/c5ra02836a
Yang, G.-X., & Jiang, H. (2013). Amino modification of biochar for enhanced adsorption of
copper ions from synthetic wastewater. Water Research, 48, 396-405. Retrieved from
http://www.sciencedirect.com/science/article/pii/S0043135413007598
Yang, H., & Sheng, K. (2012). Characterization of Biochar Properties Affected by Different
Pyrolysis Temperatures Using Visible-Near-Infrared Spectroscopy. ISRN Spectroscopy,
2012, 1-7. doi:10.5402/2012/712837
Yang, H., Zhou, Y., & Liu, J. (2009). Land and water requirements of biofuel and implications for
food supply and the environment in China. Energy Policy, 37(5), 1875-1885. Retrieved
from https://www.researchgate.net/publication/
223392364_Land_and_water_requirements_of_biofuel_and_implications_for_food_supp
ly_and_the_environment_in_China
Yang, J., Pan, B., Li, H., Liao, S., Zhang, D., Wu, M., & Xing, B. (2015). Degradation of p-
Nitrophenol on Biochars: Role of Persistent Free Radicals. Environmental Science &
Technology, 50(2), 694-700. doi:10.1021/acs.est.5b04042
Yang, K., Yang, J., Jiang, Y., Wu, W., & Lin, D. (2016). Correlations and adsorption mechanisms
of aromatic compounds on a high heat temperature treated bamboo biochar.
Environmental Pollution, 210, 57 - 64. doi:10.1016/j.envpol.2015.12.004
Yang, L., et al. . (2015). Biochar Improves Sugarcane Seedling Root and Soil Properties Under
a Pot Experiment. Sugar Tech, 17(1), 36 - 40. doi:10.1007/s12355-014-0335-0
Yang, L., Jiang, L., Wang, G., Chen, Y., Shen, Z., & Luo, C. (2015). Assessment of amendments
for the immobilization of Cu in soils containing EDDS leachates. Environmental Science
and Pollution Research, 22(21), 16525-16534. doi:10.1007/s11356-015-4840-9
Yang, L., Zhang, X., & McAlinden, K. J. (2016). The effect of trust on people's acceptance of
CCS (carbon capture and storage) technologies: Evidence from a survey in the People's
Republic of China. Energy, 96, 69-79. doi:https://doi.org/10.1016/j.energy.2015.12.044
Yang, Q., Han, F., Chen, Y., Yang, H., & Chen, H. (2016). Greenhouse gas emissions of a
biomass-based pyrolysis plant in China. Renewable and Sustainable Energy Reviews,
53, 1580 - 1590. doi:10.1016/j.rser.2015.09.049
Yang, Q., Hewen, Z., Bartocci, P., Fantozzi, F., Mašek, O., Foster, A., . . . Michael, M. (2021).
Prospective contributions of biomass pyrolysis to China’s 2050 carbon reduction and
renewable energy goals. Nature Communications. Retrieved from https://
www.nature.com/articles/s41467-021-21868-z
Yang, Q., Mašek, O., Zhao, L., Nan, H., Yu, S., Yin, J., . . . Cao, X. (2020). Country-level
potential of carbon sequestration and environmental benefits by utilizing crop residues
for biochar implementation. Applied Energy, 116275. doi:https://doi.org/10.1016/
j.apenergy.2020.116275
Yang, S. (2017). Solar-to-Fuel System Recycles CO2 to Make Ethanol and Ethylene [Press
release]. Retrieved from http://newscenter.lbl.gov/2017/09/18/solar-fuel-system-recycles-
co2-for-ethanol-ethylene/
Yang, W. (2012). Investigation of Extractable Materials from Biochar. (Master of Science). The
University of Waikato, Retrieved from http://researchcommons.waikato.ac.nz/bitstream/
handle/10289/6522/thesis.pdf?sequence=5
Yang, X., et al. (2015). Bioavailability of Cd and Zn in soils treated with biochars derived from
tobacco stalk and dead pigs. Journal of Soils and Sediments, 17(3), 751-762.
doi:10.1007/s11368-015-1326-9
Yang, X., et al. (2015). Effect of biochar on the extractability of heavy metals (Cd, Cu, Pb, and
Zn) and enzyme activity in soil. Environmental Science and Pollution Research, 23(2),
974-984. doi:10.1007/s11356-015-4233-0
Yang, X. J., et al. . (2013). Research Progress of Biochar, Pyroligneous Acid and Organic
Fertilizer Mixture and its Components in Agricultural Production. Applied Mechanics and
Materials, 448 - 453, 680-687. Retrieved from https://www.scientific.net/
AMM.448-453.680
Yang, Y., et al. (2013). Evaluation of adsorption potential of bamboo biochar for metal-complex
dye: equilibrium, kinetics and artificial neural network modeling. International Journal of
Environmental Science and Technology, 11(4), 1093-1100. Retrieved from https://
link.springer.com/article/10.1007/s13762-013-0306-0
Yang, Y., & Gao, K. (2003). Effects of CO2 concentrations on the freshwater microalgae,
Chlamydomonas reinhardtii, Chlorella pyrenoidosa and Scenedesmus obliquus
(Chlorophyta). Journal of Applied Phycology, 15(5), 379-389. doi:10.1023/
a:1026021021774
Yang, Y., Hobbie, S. E., Hernandez, R. R., Fargione, J., Grodsky, S. M., Tilman, D., . . . Chen,
W.-Q. (2020). Restoring Abandoned Farmland to Mitigate Climate Change on a Full
Earth. One Earth, 3(2), 176-186. doi:10.1016/j.oneear.2020.07.019
Yang, Y., Ma, S., Zhao, Y., Jing, M., Xu, Y., & Chen, J. (2015). A Field Experiment on
Enhancement of Crop Yield by Rice Straw and Corn Stalk-Derived Biochar in Northern
China. Sustainability, 7(10), 13713 - 13725. doi:10.3390/su71013713
Yang, Y., Reilly, E. C., Jungers, J. M., Chen, J., & Smith, T. M. (2019). Climate Benefits of
Increasing Plant Diversity in Perennial Bioenergy Crops. One Earth, 1(4), 434-445.
doi:https://doi.org/10.1016/j.oneear.2019.11.011
Yang, Y., Tilman, D., Furey, G., & Lehman, C. (2019). Soil carbon sequestration accelerated by
restoration of grassland biodiversity. Nature Communications, 10(1), 718. doi:10.1038/
s41467-019-08636-w
Yang, Y., Wei, Z., Zhang, X., Chen, X., Yue, D., Yin, Q., . . . Yang, L. (2014). Biochar from
Alternanthera philoxeroides could remove Pb(II) efficiently. Bioresource Technology, 171,
227 - 232. doi:10.1016/j.biortech.2014.08.015
Yang, Y., Yan, J. L., & Ding, C. (2013). Effects of Biochar Amendment on the Dynamics of
Enzyme Activities from a Paddy Soil Polluted by Heavy Metals. Journal Advanced
Materials Research, 610 - 613, 2129-2133.
Yang, Y., Zhai, R., Duan, L., Kavosh, M., Patchigolla, K., & Oakey, J. (2010). Integration and
evaluation of a power plant with a CaO-based CO2 capture system. International Journal
of Greenhouse Gas Control, 4(4), 603-612. doi:https://doi.org/10.1016/
j.ijggc.2010.01.004
Yang, Y.-l., et al. (2015). Effects of Biochar on Saline-sodic Soil Physical and Chemical
Properties. Soil and Crop, 3, 113-119. doi:10.11689/j.issn.2095-2961.2015.03.003
Yang, Y. N., Sheng, G. Y., & Huang, M. S. (2006). Bioavailability of diuron in soil containing
wheat-straw-derived char. Sci.Total Environ., 354, 170-178.
Yang, Y.-W., Li, M.-J., Tao, W.-Q., & Huang, D. (2021). Study of carbon dioxide sequestration
and electricity generation by a new hybrid bioenergy system with the novelty catalyst.
Applied Thermal Engineering, 117366. doi:https://doi.org/10.1016/
j.applthermaleng.2021.117366
Yang, Z., et al. (2016). Potential application of gasification to recycle food waste and rehabilitate
acidic soil from secondary forests on degraded land in Southeast Asia. Journal of
Environmental Management, 172, 40-48. doi:10.1016/j.jenvman.2016.02.020
Yanik, J., Stahl, R., Troeger, N., & Sinag, A. (2013). Pyrolysis of algal biomass. Journal of
Analytical and Applied Pyrolysis, 103, 134-141. doi:https://doi.org/10.1016/
j.jaap.2012.08.016
YanWen, Y., et al. (2014). Design and manufacture of horizontal continuous biomass
carbonization equipment. Transactions of the Chinese Society of Agricultural
Engineering, 30(13), 203-210. Retrieved from http://www.cabdirect.org/abstracts/
20143349110.html
YanWen, Y., YiShui, T., LiXin, Z., & HaiBo, M. (2012). The research process of the biochar
application. Kezaisheng Nengyuan / Renewable Energy Resources, 30, 45-49.
Yao, B., Xiao, T., Makgae, O. A., Jie, X., Gonzalez-Cortes, S., Guan, S., . . . Edwards, P. P.
(2020). Transforming carbon dioxide into jet fuel using an organic combustion-
synthesized Fe-Mn-K catalyst. Nature Communications, 11(1), 6395. doi:10.1038/
s41467-020-20214-z
Yao, C., et al. (2015). Developing More Effective Enhanced Biochar Fertilisers for Improvement
of Pepper Yield and Quality. Pedosphere, 25(5), 703 - 712. doi:10.1016/
s1002-0160(15)30051-5
Yao, F. X., Camps Arbestain, M., Virgel, S., Blanco, F., Arostegui, J., Macia-Agullo, J. A., &
Macias, F. (2010). Simulated geochemical weathering of a mineral ash-rich biochar in a
modified Soxhlet reactor. Chemosphere, 80, 724-732.
Yao, H., et al. (2012). Adsorption of Fluoroquinolone Antibiotics by Wastewater Sludge Biochar:
Role of the Sludge Source. Water, Air, & Soil Pollution, 224(1370), 1-9. Retrieved from
http://link.springer.com/article/10.1007/s11270-012-1370-7/fulltext.html
Yao, J., & Kong, X. (2018). Modeling the effects of land-use optimization on the soil organic
carbon sequestration potential. Journal of Geographical Sciences, 28(11), 1641-1658.
doi:10.1007/s11442-018-1534-5
Yao, J. G., Fennell, P. S., & Hallett, J. P. (2020). Chapter 4 Ionic Liquids. In Carbon Capture and
Storage (pp. 69-105): The Royal Society of Chemistry.
Yao, M., Lian, B., Teng, H. H., Tian, Y., & Yang, X. (2013). Serpentine Dissolution in the
Presence of Bacteria Bacillus mucilaginosus. Geomicrobiology Journal, 30(1), 72-80.
doi:10.1080/01490451.2011.653087
Yao, X., Fan, Y., Zhu, L., & Zhang, X. (2020). Optimization of dynamic incentive for the
deployment of carbon dioxide removal technology: A nonlinear dynamic approach
combined with real options. Energy Economics, 104643. doi:https://doi.org/10.1016/
j.eneco.2019.104643
Yao, Y., et al. (2011). Biochar Derived from Anaerobically Digested Sugar Beet Tailings:
Characterization and Phosphate Removal Potential. Bioresource Technology, 102(10),
6273-6278. doi:10.1016/j.biortech.2011.03.006
Yao, Y., et al. (2011). Removal of Phosphate from Aqueous Solution by Biochar Derived from
Anaerobically Digested Sugar Beet Tailings. Journal of Hazardous Materials, 190(1-3),
501-507. doi:10.1016/j.jhazmat.2011.03.083
Yao, Y., et al. . (2012). Effect of biochar amendment on sorption and leaching of nitrate,
ammonium, and phosphate in a sandy soil. Chemosphere, 89(11), 1467-1471.
Yao, Y., et al. (2013). An engineered biochar reclaims phosphate from aqueous solutions:
mechanisms and potential application as a slow-release fertilizer. Environmental Science
and Technology, 47(15), 8700-8708. Retrieved from http://pubs.acs.org/doi/abs/10.1021/
es4012977
Yao, Y., et al. (2013). Engineered carbon (biochar) prepared by direct pyrolysis of Mg-
accumulated tomato tissues: characterization and phosphate removal potential.
Bioresource Technology, 138, 8-13. Retrieved from http://www.sciencedirect.com/
science/article/pii/S0960852413004252
Yao, Y., et al. (2014). Characterization and environmental applications of clay-biochar
composites. Chemical Engineering Journal, 242, 136-143. Retrieved from http://
www.sciencedirect.com/science/article/pii/S1385894713016434
Yao, Y., et al. (2015). Engineered biochar from biofuel residue: characterization and its silver
removal potential. Acs Applied Materials & Interfaces, 7(19), 10634–10640. doi:10.1021/
acsami.5b03131
Yaping, P., et al. (2013). Promotion of biochar on adsorption of cadmium and retardation on
water transport in paddy soil. Transactions of the Chinese Society of Agricultural
Engineering, 29(11), 107-114. Retrieved from https://www.researchgate.net/publication/
287749684_Promotion_of_biochar_on_adsorption_of_cadmium_and_retardation_on_w
ater_transport_in_paddy_soil
Yargicoglu, E. N. (2014). Evaluation of PAH and Metal Contents of Different Biochars for Use in
Climate Change Mitigation Systems. Paper presented at the International Conference on
Sustainable Infrastructure 2014ICSI 2014, Long Beach, CaliforniaReston, VA. http://
ascelibrary.org/doi/abs/10.1061/9780784478745.011
Yarrow, D. (2015). Geology into Biology: Carbon, Minerals, and Microbes - Tools to
Remineralize Soil, Sequester Carbon, and Restore the Earth. In T. Goreau, R. Larson, &
J. Campe (Eds.), Geotherapy: Innovative Methods of Soil Fertility Restoration, Carbon
Sequestration, and Reversing CO2 Increase (pp. 195-234).
Yates, R. A. (2011). Sugarcane, carbon sequestration and food supplies. International Sugar
Journal, 113(1353), 672-676. Retrieved from http://cat.inist.fr/?
aModele=afficheN&cpsidt=24516288
Yau, Y.-Y., & Easterling, M. (2018). Novel Molecular Tools for Metabolic Engineering to Improve
Microalgae-Based Biofuel Production. In A. Kumar, S. Ogita, & Y.-Y. Yau (Eds.), Biofuels:
Greenhouse Gas Mitigation and Global Warming: Next Generation Biofuels and Role of
Biotechnology (pp. 407-420). New Delhi: Springer India.
Yavari, S., et al. (2014). The Effects of Feedstock Sources and Pyrolytic Temperature on
Biochars Sorptive Characteristics. Applied Mechanics and Materials, 567, 150-154.
Retrieved from http://eds.a.ebscohost.com/abstract?
site=eds&scope=site&jrnl=16627482&AN=99665032&h=DnSW3Z0mWAautCB0lCFfsdo
gq7XKuPdxQO2ltGNGTiohQv87yvzfc6icsXU1rLX%2foOzO8RBu0ZHb3UCNt1A7nw%3
d%3d&crl=c&resultLocal=ErrCrlNoResults&resultNs=Ehost&crlhashurl=login.aspx%3fdir
ect%3dtrue%26profile%3dehost%26scope%3dsite%26authtype%3dcrawler%26jrnl%3d
16627482%26AN%3d99665032
Yavari, S., Malakahmad, A., & Sapari, N. B. (2015). Biochar efficiency in pesticides sorption as a
function of production variables—a review. Environmental Science and Pollution
Research. doi:10.1007/s11356-015-5114-2
Yaya, F. V., Suh, C., Lendzemo, V., & Akume, N. D. (2015). Plantain acclimatisation in relation to
substrate type. International Journal of Agriculture Innovations and Research. Retrieved
from http://www.cabdirect.org/abstracts/20153325102.html
Ye, F., et al. . (2015). SiO2对改性⽣物质焦理化特性的影响 (Influence of silica on
physicochemical characteristic of modified bio-chars). In.
Ye, J., et al. (2016). A combination of biochar-mineral complexes and compost improves soil
bacterial processes, soil quality and plant properties. Frontiers in Microbiology, 7, 1-13.
Retrieved from http://journal.frontiersin.org/file/downloadfile/100348/octet-stream/
table%201.docx/311/1/187418
Ye, L., Zhang, J., Zhao, J., Luo, Z., Tu, S., & Yin, Y. (2015). Properties of biochar obtained from
pyrolysis of bamboo shoot shell. Journal of Analytical and Applied Pyrolysis, 114,
172-178. doi:10.1016/j.jaap.2015.05.016
Ye, M., Sun, M., Feng, Y., Wan, J., Xie, S., Tian, D., . . . Jiang, X. (2015). Effect of biochar
amendment on the control of soil sulfonamides, antibiotic-resistant bacteria, and gene
enrichment in lettuce tissues. Journal of Hazardous Materials. doi:10.1016/
j.jhazmat.2015.10.074
Yeardley, R. B., Lazorchak, J. M., & Gast, L. C. (1996). The Potential of an Earthworm
Avoidance Test for Evaluation of Hazardous Waste Sites. Environmental Toxicology and
Chemistry, 15(9), 1532-1537. Retrieved from http://onlinelibrary.wiley.com/doi/10.1002/
etc.5620150915/abstract
Yeboah, F. E., et al. (2006). Cost Assessment of CO2 Sequestration by Mineral Carbonation.
Retrieved from http : / /hdl .handle .net /1969 .1 /5660.
Yeluripati, J. B., del Prado, A., Sanz-Cobeña, A., Rees, R. M., Li, C., Chadwick, D., . . . Smith, P.
(2015). Global Research Alliance Modelling Platform (GRAMP): An open web platform
for modelling greenhouse gas emissions from agro-ecosystems. Computers and
Electronics in Agriculture, 111, 112-120. doi:https://doi.org/10.1016/
j.compag.2014.11.016
Yeo, T. Y., & Bue, J. (2019). Mineral Carbonation for Carbon Capture and Utilization. In M.
Aresta, I. Karimi, & S. Kawi (Eds.), An Economy Based on Carbon Dioxide and Water:
Potential of Large Scale Carbon Dioxide Utilization (pp. 105-153). Retrieved from https://
link.springer.com/content/pdf/10.1007%2F978-3-030-15868-2_4.pdf
Yi, P., Pignatello, J. J., Uchimiya, M., & White, J. C. (2015). Heteroaggregation of Cerium Oxide
Nanoparticles and Nanoparticles of Pyrolyzed Biomass. Environmental Science &
Technology, 49(22), 13294-13303. doi:10.1021/acs.est.5b03541
Yi, Q., et al. , & u. (2012). Thermogravimetric analysis of co-combustion of biomass and biochar.
Journal of Thermal Analysis and Calorimetry, 112(3), 1475-1479. Retrieved from http://
link.springer.com/article/10.1007/s10973-012-2744-1
Yì qí guó, e. a. (2014). ⽊质⽣物燃料与其半焦的混燃实验研究 (Woody biomass fuel combustion
and its semi-coke mixed experimental study): Experimental studies on co-firing
lignocellulosic biomass with biochar. Environmental Sciences, 34(9), 2407-2412.
Retrieved from http://www.actasc.cn/hjkxxb/ch/reader/view_abstract.aspx?
file_no=20140127002
Yi, S., Gao, B., Sun, Y., Wu, J., Shi, X., Wu, B., & Hu, X. (2016). Removal of levofloxacin from
aqueous solution using rice-husk and wood-chip biochars. Chemosphere, 150, 694-701.
doi:10.1016/j.chemosphere.2015.12.112
Yi, S., N., C., Guo, M., & Imhoff, P. T. (2015). Toward a mechanistic understanding of the effect
of biochar addition on soil water retention. American Geophysical Union, Fall Meeting.
Retrieved from http://adsabs.harvard.edu/abs/2014AGUFM.B54A..07Y
Yi, S., Witt, B., Chiu, P., Guo, M., & Imhoff, P. (2015). The Origin and Reversible Nature of
Poultry Litter Biochar Hydrophobicity. Journal of Environment Quality, 44(3), 963.
doi:10.2134/jeq2014.09.0385
Yilangai, R., Manu, S., Pineau, W., Mailumo, S., & Okeke-Agulu, K. (2014). The Effect of
Biochar and Crop Veil on Growth and Yield of Tomato (Lycopersicum esculentus Mill) in
Jos, North central Nigeria. Current Agriculture Research Journal, 2(1), 37 - 42.
doi:10.12944/carj.2.1.05
Yin, D. W., et al. . (2012). Effects of Biochar on Acid Black Soil Nutrient, Soybean Root and
Yield. Journal Advanced Materials Research, 524-527, 2278-2289. doi:10.4028/
www.scientific.net/AMR.524-527.2278
Ying, B., Lin, G., Jin, L., Zhao, Y., Zhang, T., & Tang, J. (2015). Adsorption and degradation of
2,4-dichlorophenoxyacetic acid in spiked soil with Fe0 nanoparticles supported by
biochar. Acta Agriculturae Scandinavica, Section B — Soil & Plant Science, 65(3), 1 - 7.
doi:10.1080/09064710.2014.992939
Ying, C., & Yuan, X. (2020). Implications of geoengineering under the 1.5 °c target: Analysis and
policy suggestions. Advances in Climate Change Research, 8, 123-129. doi:https://
doi.org/10.1016/j.accre.2017.05.003
Ying, m., et al. (2014). Effect of biochar on nitrogen forms and related microorganisms of
rhizosphere soil of seedling maize. Zhongguo Shengtai Nongye Xuebao / Chinese
Journal of Eco-Agriculture, 22(3), 270-276. Retrieved from http://www.cabdirect.org/
abstracts/20143148185.html;jsessionid=500881B1A27E7B84E4F758DACE6F5ED4
YinHai, L., Wei, L., & Hui, W. (2014). Adsorption efficiencies of pentachlorophenol from aqueous
solution onto biochars. China Environmental Science, 34(8), 2017-2023. Retrieved from
http://www.cabdirect.org/abstracts/20143317750.html
Yinxin, Z., Jishi, Z., & Yi, M. (2015). Preparation and Application of Biochar from Brewery`s
Spent Grain and Sewage Sludge. The Open Chemical Engineering Journal, 9, 14-19.
Retrieved from http://www.bentham-open.com/contents/pdf/TOCENGJ/
TOCENGJ-9-14.pdf
Yip, K., et al. (2010). Biochar as a Fuel: 3. Mechanistic Understanding on Biochar Thermal
Annealing at Mild Temperatures and Its Effect on Biochar Reactivity. Energy Fuels,
25(1), 406-414. doi:10.1021/ef101472f
Yoder, J., Galinato, S., Granatstein, D., & Garcia-Pérez, M. (2011). Economic tradeoff between
biochar and bio-oil production via pyrolysis. Biomass and Bioenergy, 35(5), 1851-1862.
Retrieved from http://www.sciencedirect.com/science/article/
B6V22-524P751-2/2/6afcf19498a86e18d09771d3c10116fb
Yoder, J., Galinato, S., Granatstein, D., & Garcia-Prez, M. (2011). Economic tradeoff between
biochar and bio-oil production via pyrolysis. Biomass Bioenergy, 35. doi:10.1016/
j.biombioe.2011.01.026
Yoo, G., et al. . (2014). Effects of Biochar Addition on Nitrogen Leaching and Soil Structure
following Fertilizer Application to Rice Paddy Soil. Soil Science Society of America
Journal, 78(3), 852-860. Retrieved from https://dl.sciencesocieties.org/publications/sssaj/
abstracts/78/3/852?access=0&view=pdf
Yoo, G., et al. . (2015). Investigation of greenhouse gas emissions from the soil amended with
rice straw biochar. KSCE Journal of Civil Engineering, 20(6), 2197-2207. doi:10.1007/
s12205-015-0449-2
Yoo, G., & Kang, H. (2012). Effects of biochar addition on greenhouse gas emissions and
microbial responses in a short-term laboratory experimen. Journal of Environmental
Quality, 41(4), 1193-1202. Retrieved from https://dl.sciencesocieties.org/publications/jeq/
articles/41/4/1193
Yool, A., Shepherd, J. G., Bryden, H. L., & Oschlies, A. (2009). Low efficiency of nutrient
translocation for enhancing oceanic uptake of carbon dioxide. Journal of Geophysical
Research: Oceans, 114(C8 (C08009)), 1-13. Retrieved from http://
onlinelibrary.wiley.com/doi/10.1029/2008JC004792/epdf
Yoon, J. E., Yoo, K. C., Macdonald, A. M., Yoon, H. I., Park, K. T., Yang, E. J., . . . Kim, I. N.
(2018). Reviews and syntheses: Ocean iron fertilization experiments – past, present,
and future looking to a future Korean Iron Fertilization Experiment in the Southern Ocean
(KIFES) project. Biogeosciences, 15(19), 5847-5889. doi:10.5194/bg-15-5847-2018
Yoon, J. E., Yoo, K. C., Macdonald, A. M., Yoon, H. I., Park, K. T., Yang, E. J., . . . Kim, I. N.
(2016). Ocean Iron Fertilization Experiments: Past–Present–Future with Introduction to
Korean Iron Fertilization Experiment in the Southern Ocean (KIFES) Project.
Biogeosciences Discuss., 2016, 1-41. doi:10.5194/bg-2016-472
Yoon, K., Cho, D.-W., Tsang, Y. F., Tsang, D. C. W., Kwon, E. E., & Song, H. (2018). Synthesis
of functionalised biochar using red mud, lignin, and carbon dioxide as raw materials.
Chemical Engineering Journal. doi:https://doi.org/10.1016/j.cej.2018.11.012
Yooyen, J., Wijitkosum, S., & Sriburi, T. (2015). INCREASING YIELD OF SOYBEAN BY
ADDING BIOCHAR. Journal of Environmental Research and Development. Retrieved
from http://search.proquest.com/openview/e8d9c5cd942e4a6e311c17bb06889ea7/1?
pq-origsite=gscholar
Yosef, G., Walko, R., Avisar, R., Tatarinov, F., Rotenberg, E., & Yakir, D. (2018). Large-scale
semi-arid afforestation can enhance precipitation and carbon sequestration potential.
Scientific Reports, 8(1), 996. doi:10.1038/s41598-018-19265-6
Yoshida, G., et al. (2018). Carbon Sequestration by Seagrass and Macroalgae in Japan:
Estimates and Future Needs. In T. Kuwae & M. Hori (Eds.), Blue Carbon in Shallow
Coastal Ecosystems: Carbon Dynamics, Policy, and Implementation (pp. 101-127).
Yoshida, T., & Antal Jr., M. J. (2009). Sewage Sludge Carbonization for Terra Preta Applications.
Energy and Fuels, 23(11), 5454-5459. Retrieved from http://pubs.acs.org/doi/abs/
10.1021/ef900610k@proofing
Yoshie, N., Fujii, M., & Yamanaka, Y. (2005). Ecosystem changes after the SEEDS iron
fertilization in the western North Pacific simulated by a one-dimensional ecosystem
model. Progress in Oceanography, 64(2), 283-306. doi:https://doi.org/10.1016/
j.pocean.2005.02.014
Yoshihara, K.-I., Nagase, H., Eguchi, K., Hirata, K., & Miyamoto, K. (1996). Biological
elimination of nitric oxide and carbon dioxide from flue gas by marine microalga
NOA-113 cultivated in a long tubular photobioreactor. Journal of Fermentation and
Bioengineering, 82(4), 351-354. doi:https://doi.org/10.1016/0922-338X(96)89149-5
Yoshizawa, S. (2000). Compost with Charcoal Containing Abundant Microorganisms: Proposal
of Environmental Recycle of Biomass Resources. Retrieved from Hino, Tokyo Japan:
Yoshizawa, S., et al. . (2005, 2005). Composting of food garbage and livestock waste containing
biomass charcoal. Paper presented at the International Conference of Natural
Resources and Environmental Management, Kuching, Sarawak.
Yoshizawa, S., et al. (2007). Estimation of Microbial Community Structure During Composting
Rice Bran with Charcoal. Paper presented at the Carbon 2007, Seattle, WA, USA.
Yoshizawa, S., et al. (2008). Proliferation of aerobic complex microorganisms during composting
of rice bran with charcoal. Retrieved from
Yoshizawa, S., et al. . (2010). Change of Microbial Community Structure during Composting
Rice Bran with Charcoal.
Yoshizawa, S. (2015). Biochar for carbon storage in the soil and for soil improvement. TANSO,
2015(270), 232 - 240. doi:10.7209/tanso.2015.232
Yoshizawa, S., Fujioka, K., Goto, S., Tanaka, S., Ohata, M., & Mineki, S. (2006, 09/2006).
Proliferation of aerobic complex microorganisms during composting of rice bran with
charcoal. Paper presented at the ORBIT 2006, Weimar, Germany.
Yoshizawa, S., Fujioka, K., Kokubun, T., Goto, S., Tanaka, S., Ohata, M., & Mineki, S. (2006).
Promotion effect of various charcoals on the proliferation of composting microorganisms.
TANSO, 261-265.
You, H., Seo, Y., Huh, C., & Chang, D. (2014). Performance Analysis of Cold Energy Recovery
from CO2 Injection in Ship-Based Carbon Capture and Storage (CCS). Energies, 7(11),
7266-7281. Retrieved from https://www.mdpi.com/1996-1073/7/11/7266
You, S., Ok, Y. S., Chen, S. S., Tsang, D. C. W., Kwon, E. E., Lee, J., & Wang, C.-H. (2017). A
critical review on sustainable biochar system through gasification: Energy and
environmental applications. Bioresource Technology, 246, 242-253. doi:https://doi.org/
10.1016/j.biortech.2017.06.177
You, S., & Wang, X. (2019). Chapter 20 - On the Carbon Abatement Potential and Economic
Viability of Biochar Production Systems: Cost-Benefit and Life Cycle Assessment. In Y.
S. Ok, D. C. W. Tsang, N. Bolan, & J. M. Novak (Eds.), Biochar from Biomass and Waste
(pp. 385-408): Elsevier.
Youchi, Z., Tang, X., & Luo, W. (2015). Metal Removal with Two Biochars Made from Municipal
Organic Waste: Adsorptive Characterization and Surface Complexation Modeling.
Toxicological & Environmental Chemistry, 96(10), 1463-1475.
doi:10.1080/02772248.2015.1030668
Youn, M. H., Park, K. T., Lee, Y. H., Kang, S.-P., Lee, S. M., Kim, S. S., . . . Lee, W. (2019).
Carbon dioxide sequestration process for the cement industry. Journal of CO2
Utilization, 34, 325-334. doi:https://doi.org/10.1016/j.jcou.2019.07.023
Young, C. (2021). New Carbon Removal Facility Will Capture 1 Million Tons Per Year.
Interesting Engineering. Retrieved from https://interestingengineering.com/new-carbon-
removal-facility-will-capture-1-million-tons-per-year
Young, E. (2007). Can ‘fertilising’ the ocean combat climate change? New Scientist, 195(2621),
42-45. doi:https://doi.org/10.1016/S0262-4079(07)62348-3
Young, J., García-Díez, E., Garcia, S., & van der Spek, M. (2021). The impact of binary water–
CO2 isotherm models on the optimal performance of sorbent-based direct air capture
processes. Energy & Environmental Science. doi:10.1039/D1EE01272J
Youngs, H. L. (2012). The Effects of Stakeholder Values on Biofuel Feedstock Choices. In C.
Taylor, R. Lomneth, & F. WoodBlack (Eds.), Perspectives on Biofuels: Potential Benefits
and Possible Pitfalls (Vol. 1116, pp. 29-67). Washington: Amer Chemical Soc.
Younis, U., et al. . (2014). Biochar role in improving biometric and growth attributes of S.
oleracea and T. corniculata under cadmium stress. International Journal of Biosciences
(IJB), 5(8), 84 - 90. doi:10.12692/ijb/5.8.84-90
Younis, U., et al. (2014). Nutrient shifts modeling in Fenugreek (Trigonella corniculata L.) under
biochar and cadmium treatments. International Journal of Biosciences (IJB), 5(8), 64 -
74. doi:10.12692/ijb/5.8.64-74
Younis, U., et al. . (2015). Biochar affects growth and biochemical activities of fenugreek
(Trigonella corniculata) in cadmium polluted soil. In.
Younis, U., et al. . (2015). Growth, survival, and heavy metal (Cd and Ni) uptake of spinach
(Spinacia oleracea) and fenugreek (Trigonella corniculata) in a biochar-amended
sewage-irrigated contaminated soil. Journal of Plant Nutrition and Soil Science, 178,
209-217. doi:10.1002/jpln.201400325
Younis, U., et a. (2015). Nutrient shifts modeling in Spinacea oleracea L. and Trigonella
corniculata L. in contaminated soil amended with biochar. International Journal of
Biosciences, 5(9), 89-98. Retrieved from http://www.cabdirect.org/abstracts/
20153063539.html;jsessionid=0B5A203C8880F92937EBB1187AC6D917
Younis, U., Athar, M., Malik, S. A., Shah, M. H. R., & Mahmood, S. (2015). Biochar impact on
physiological and biochemical attributes of Spinach (Spinacia oleracea L.) in nickel
contaminated soil. Global Journal of Environmental Science and Management.
Retrieved from http://www.gjesm.net/article_12307_1612.html
Yousaf, B., Liu, G., Wang, R., Zia-ur-Rehman, M., Rizwan, M. S., Imtiaz, M., . . . Shakoor, A.
(2016). Investigating the potential influence of biochar and traditional organic
amendments on the bioavailability and transfer of Cd in the soil–plant system.
Environmental Earth Sciences, 75(5). doi:10.1007/s12665-016-5285-2
Yousef, S., Eimontas, J., Striūgas, N., Tatariants, M., Abdelnaby, M. A., Tuckute, S., &
Kliucininkas, L. (2019). A sustainable bioenergy conversion strategy for textile waste with
self-catalysts using mini-pyrolysis plant. Energy Conversion and Management, 196,
688-704. doi:https://doi.org/10.1016/j.enconman.2019.06.050
Yu, B., Li, L., Yu, H., Maeder, M., Puxty, G., Yang, Q., . . . Chen, Z. (2018). Insights into the
Chemical Mechanism for CO2(aq) and H+ in Aqueous Diamine Solutions - An
Experimental Stopped-Flow Kinetic and 1H/13C NMR Study of Aqueous Solutions of
N,N-Dimethylethylenediamine for Postcombustion CO2 Capture. Environmental Science
& Technology, 52(2), 916-926. doi:10.1021/acs.est.7b05226
Yu, C.-H. (2012). A Review of CO2 Capture by Absorption and Adsorption. Aerosol and Air
Quality Research, 12, 745-769. Retrieved from http://aaqr.org/files/article/
1009/7_AAQR-12-05-IR-0132_745-769.pdf
Yu, J., & Chuang, S. S. C. (2017). The Role of Water in CO2 Capture by Amine. Industrial &
Engineering Chemistry Research, 56(21), 6337-6347. doi:10.1021/acs.iecr.7b00715
Yu, J. T., Dehkhoda, A. M., & Ellis, N. (2010). Development of Biochar-based Catalyst for
Transesterification of Canola Oil. Energy Fuels, 25(1), 337-344. doi:10.1021/ef100977d
Yu, K. L., Lau, B. F., Show, P. L., Ong, H. C., Ling, T. C., Chen, W.-H., . . . Chang, J.-S. (2017).
Recent developments on algal biochar production and characterization. Bioresource
Technology, 246, 2-11. doi:https://doi.org/10.1016/j.biortech.2017.08.009
Yu, L., et al. (2012). Effects of biochar application on soil methane emission at different soil
moisture levels. Biology and Fertility of Soils, 49(2), 119-128. doi:10.1007/
s00374-012-0703-4
Yu, L., Wang, Y., Yuan, Y., Tang, J., & Zhou, S. G. (2015). Biochar as electron acceptor for
microbial extracellular respiration. Geomicrobiology Journal, 00 - 00.
doi:10.1080/01490451.2015.1062060
Yu, L., Yuan, Y., Tang, J., Wang, Y., & Zhou, S. G. (2015). Biochar as an electron shuttle for
reductive dechlorination of pentachlorophenol by Geobacter sulfurreducens. Scientific
Reports, 5. doi:10.1038/srep16221
Yu, M., Liu, L., Yang, S., Yu, Z., Li, S., Yang, Y., & Shi, X. (2016). Experimental identification of
CO2–oil–brine–rock interactions: Implications for CO2 sequestration after termination of
a CO2-EOR project. Applied Geochemistry, 75, 137-151. doi:https://doi.org/10.1016/
j.apgeochem.2016.10.018
Yu, O.-Y., Raichle, B., & Sink, S. (2013). Impact of biochar on the water holding capacity of
loamy sand soil. International Journal of Energy and Environmental Engineering, 4(44),
1-9. Retrieved from http://www.journal-ijeee.com/content/4/1/44/
Yu, Q. (2018). Direct Capture of CO2 from Ambient Air using Solid Sorbents. (Ph.D.). University
of Twente, Retrieved from https://research.utwente.nl/en/publications/direct-capture-of-
co2-from-ambient-air-using-solid-sorbents
Yu, S., & Jain, P. K. (2019). Plasmonic photosynthesis of C1–C3 hydrocarbons from carbon
dioxide assisted by an ionic liquid. Nature Communications, 10(1), 2022. doi:10.1038/
s41467-019-10084-5
Yu, X., Hassan, M., Ocone, R., & Makkawi, Y. (2015). A CFD study of biomass pyrolysis in a
downer reactor equipped with a novel gas–solid separator-II thermochemical
performance and products. Fuel Processing Technology, 133, 51 - 63. doi:10.1016/
j.fuproc.2015.01.002
Yu, X., Wu, C., Fu, Y., Brookes, P. C., & Lu, S. (2015). Three-dimensional pore structure and
carbon distribution of macroaggregates in biochar-amended soil. European Journal of
Soil Science, 67(1), 109 - 120. doi:10.1111/ejss.12305
Yu, X., Ying, G., & Kookana, R. S. (2006). Sorption and desorption behaviors of diuron in soils
amended with charcoal. Journal of Agricultural and Food Chemistry, 54(22), 8545-8550.
Retrieved from http://pubs.acs.org/doi/abs/10.1021/jf061354y
Yu, X. Y., et al. (2011). Impact of woodchip biochar amendment on the sorption and dissipation
of pesticide acetamiprid in agricultural soils. Chemosphere, 85(8), 1284-1289. Retrieved
from http://www.sciencedirect.com/science/article/pii/S0045653511008678
Yu, X. Y., Pan, L. G., Ying, G. G., & Kookana, R. S. (2010). Enhanced and irreversible sorption
of pesticide pyrimethanil by soil amended with biochars. Journal of Environmental
Sciences-China, 22(4), 615-620. Retrieved from http://www.sciencedirect.com/science/
article/pii/S1001074209601534
Yu, X. Y., Ying, G. G., & Kookana, R. S. (2009). Reduced plant uptake of pesticides with biochar
additions to soil. Chemosphere, 76(5), 665-671. Retrieved from http://
www.sciencedirect.com/science/article/pii/S0045653509004226
Yu, X.-Y., Ying, G.-G., & Kookana, R. S. (2009). Reduced plant uptake of pesticides with biochar
additions to soil. Chemosphere, 76(5), 665-671. Retrieved from http://
www.sciencedirect.com/science/article/pii/S0045653509004226
Yu, Y., Fu, X., Yu, L., Liu, R., & Cai, J. (2016). Combustion kinetics of pine sawdust biochar.
Journal of Thermal Analysis and Calorimetry, 124(3), 1641-1649. doi:10.1007/
s10973-016-5296-y
Yu, Y., & Wu, H. W. (2010). Bioslurry as a Fuel. 2. Life-Cycle Energy and Carbon Footprints of
Bioslurry Fuels from Mallee Biomass in Western Australia. Energy & Fuels, 24,
5660-5668.
Yu, Z., et al. (2015). Effects of a manganese oxide-modified biochar composite on adsorption of
arsenic in red soil. Journal of Environmental Management, 163, 155 - 162. doi:10.1016/
j.jenvman.2015.08.020
Yuan, H. R., et al. (2013). Influence of temperature on product distribution and biochar
properties by municipal sludge pyrolysis. Journal of Material Cycles and Waste
Management, 15(3), 357-361. Retrieved from http://link.springer.com/article/10.1007/
s10163-013-0126-9#
Yuan, H. R., et al. (2014). Influence of pyrolysis temperature and holding time on properties of
biochar derived from medicinal herb (radix isatidis) residue and its effect on soil CO2
emission. Journal of Analytical and Applied Pyrolysis, 110, 277-284. doi:10.1016/
j.jaap.2014.09.016
Yuan, H. R., et al. . (2014). Nonactivated and Activated Biochar Derived from Bananas as
Alternative Cathode Catalyst in Microbial Fuel Cells. The Scientific World Journal,
2014(2), 1- 8. doi:10.1155/2014/832850
Yuan, H. R., et al. . (2015). Influence of pyrolysis temperature on physical and chemical
properties of biochar made from sewage sludge. Journal of Analytical and Applied
Pyrolysis, 112, 284-289. doi:10.1016/j.jaap.2015.01.010
Yuan, H. R., et al. (2016). Sewage sludge biochar: Nutrient composition and its effect on the
leaching of soil nutrients. Geoderma, 267, 17 - 23. doi:10.1016/j.geoderma.2015.12.020
Yuan, J.-H., & Xu, R.-K. (2010). The amelioration effects of low temperature biochar generated
from nine crop residues on an acidic Ultisol. Soil Use and Management, 27(1), 110-115.
doi:10.1111/j.1475-2743.2010.00317.x
Yuan, J.-H., Xu, R.-K., Qian, W., & Wang, R.-H. (2011). Comparison of the ameliorating effects
on an acidic ultisol between four crop straws and their biochars. Journal of Soils and
Sediments, 11(5), 741-750. Retrieved from https://link.springer.com/article/10.1007/
s11368-011-0365-0
Yuan, J.-H., Xu, R.-K., & Zhang, H. (2010). The forms of alkalis in the biochar produced from
crop residues at different temperatures. Bioresource Technology, 102(3), 3488-3497.
doi:10.1016/j.biortech.2010.11.018
Yuan, L.-m., et al. (2015). Progress on Biochar-based Fertilizer Production Technology and
Equipment in China. In.
Yuan, R.-n., et al. (2015). Effects of biochar additions combined with three nitrogen fertilizer
levels on soil nitrogen mineralization in loessal soil. In.
Yuan, Y., et al. (2013). Sewage sludge biochar as an efficient catalyst for oxygen reduction
reaction in an microbial fuel cell. Bioresource Technology, 144, 115-120. Retrieved from
http://www.sciencedirect.com/science/article/pii/S0960852413009942
Yuan, Y., et al. (2015). Conversion of sewage sludge into high-performance bifunctional
electrode materials for microbial energy harvesting. Journal of Materials Chemistry A, 3,
8475–8482. doi:10.1039/c5ta00458f
Yuan, Y. (2015). Important Chemical Products from Macroalgae (Ascophyllum nodosum)
Biorefinery by Assistance of Microwave Technology. University of York, Retrieved from
http://etheses.whiterose.ac.uk/11198/
Yuan, Y., & Macquarrie, D. J. (2015). Microwave assisted acid hydrolysis of brown seaweed
Ascophyllum nodosum for bioethanol production and characterization of alga residue.
ACS Sustainable Chemistry & Engineering, 3(7), 1359-1365. doi:10.1021/
acssuschemeng.5b00094
Yuan, Y., & Macquarrie, D. J. (2015). Microwave assisted step-by-step process for the
production of fucoidan, alginate sodium, sugars and biochar from Ascophyllum nodosum
through a biorefinery concept. Bioresource Technology, 198, 819 - 827. doi:10.1016/
j.biortech.2015.09.090
Yue, L., & Chen, W. (2005). Isolation and determination of cultural characteristics of a new
highly CO2 tolerant fresh water microalgae. Energy Conversion and Management,
46(11–12), 1868-1876. doi:https://doi.org/10.1016/j.enconman.2004.10.010
Yue, L. F., & Fei, W. J. (2013). Estimation of carbon emission from burning and carbon
sequestration from biochar producing using crop straw in China. Transactions of the
Chinese Society of Agricultural Engineering, 29(14), 1-7. Retrieved from https://
www.researchgate.net/publication/
286944169_Estimation_of_carbon_emission_from_burning_and_carbon_sequestration_
from_biochar_producing_using_crop_straw_in_China
Yue, Y., Cui, L., Lin, Q., Li, G., & Zhao, X. (2017). Efficiency of sewage sludge biochar in
improving urban soil properties and promoting grass growth. Chemosphere, 173,
551-556. doi:https://doi.org/10.1016/j.chemosphere.2017.01.096
Yuen, Y. T., Sharratt, P. N., & Jie, B. (2016). Carbon dioxide mineralization process design and
evaluation: concepts, case studies, and considerations. Environmental Science and
Pollution Research, 23(22), 22309-22330. doi:10.1007/s11356-016-6512-9
YuMei, L., et al. (2015). Effects of bio-char on sugar beet growth in clomazone residual soil.
Journal of Agricultural Resources and Environment, 32(3), 269-274. Retrieved from
http://www.cabdirect.org/abstracts/20153323570.html
Yun-feng, Y., et al. . (2014). Effects of Rice Straw and Its Biochar Addition on Soil Labile Carbon
and Soil Organic Carbon. Journal of Integrative Agriculture, 13(3), 491–498.
Yusof, J. M., et al. (2014). Characterisation of Carbon Particles (CPs) Derived from Dry Milled
Kenaf Biochar. Journal of Engineering Science and Technology, October, 125-131.
Retrieved from http://jestec.taylors.edu.my/Special%20Issue%20SAES2013_9_5_2014/
SAES%202013_125_131.pdf
Yusof, M. R. M., Ahmed, O. H., King, W. S., & Zakry, F. A. A. (2015). Effects of biochar and
chicken litter ash on selected soil chemical properties and nutrients uptake by Oryza
sativa L. var. MR 219. International Journal of Biosciences, 6(3), 360-369. Retrieved
from http://www.cabdirect.org/abstracts/20153179510.html
Ywih, C. n. H. (2015). Improving Phosphorus Availability in an Acid Soil Using Organic
Amendments Produced from Agroindustrial Wastes. Experimental Agriculture, 2014, 1-6.
doi:10.1017/s0014479715000204
Zaafouri, K., Ben Hassen Trabelsi, A., Krichah, S., Ouerghi, A., Aydi, A., Claumann, C. A., . . .
Hamdi, M. (2016). Enhancement of biofuels production by means of co-pyrolysis of
Posidonia oceanica (L.) and frying oil wastes: Experimental study and process modeling.
Bioresource Technology, 207, 387 - 398. doi:10.1016/j.biortech.2016.02.004
Zabaniotou, A., et al. (2008). Experimental Study of Pyrolysis for Potential Energy, Hydrogen
and Carbon Material Production from Lignocellulosic Biomass. International Journal of
Hydrogen Energy, 33(10), 2433-2444. Retrieved from http://www.sciencedirect.com/
science/article/pii/S0360319908002231
Zabaniotou, A., et al. (2014). Boosting circular economy and closing the loop in agriculture:
Case study of a small-scale pyrolysis–biochar based system integrated in an olive farm
in symbiosis with an olive mill. Environmental Development, 14, 22-36. doi:10.1016/
j.envdev.2014.12.002
Zabaniotou, A., Rovas, D., & Monteleone, M. (2015). Management of Olive Grove Pruning and
Solid Waste from Olive Oil Extraction Via Thermochemical Processes. Waste and
Biomass Valorization. doi:10.1007/s12649-015-9403-2
Zabranska, J., & Pokorna, D. (2018). Bioconversion of carbon dioxide to methane using
hydrogen and hydrogenotrophic methanogens. Biotechnology Advances, 36(3),
707-720. doi:https://doi.org/10.1016/j.biotechadv.2017.12.003
Zacharia, P. U., Kaladharan, P., & Rohith, G. (2015). Seaweed Farming as a Climate Resilient
Strategy for Indian Coastal Waters. Paper presented at the The International Conference
on Integrating Climate, Crop, Ecology–The Emerging Areas of Agriculture, Horticulture,
Livestock, Fishery, Forestry, Biodiversity and Policy Issues. http://eprints.cmfri.org.in/
10491/
Zackrisson, O., Nilsson, M. C., & Wardle, D. A. (1996). Key Ecological Function of Charcoal
from Wildfire in the Boreal Forest. Oikos, 77(1), 10-19. Retrieved from https://
www.jstor.org/stable/3545580?seq=1#page_scan_tab_contents
Zahariev, K., Christian, J. R., & Denman, K. L. (2008). Preindustrial, historical, and fertilization
simulations using a global ocean carbon model with new parameterizations of iron
limitation, calcification, and N2 fixation. Progress in Oceanography, 77(1), 56-82.
doi:http://dx.doi.org/10.1016/j.pocean.2008.01.007
Zahasky, C., & Krevor, S. (2020). Global geologic carbon storage requirements of climate
change mitigation scenarios. Energy & Environmental Science. doi:10.1039/
D0EE00674B
Zahida, R. (2017). Biochar: A Tool for Mitigating Climate Change - A Review. Chemical Science
Review and Letters, 6(23), 1-14. Retrieved from https://chesci.com/wp-content/uploads/
2017/08/V6i23_33_CS122048061_Zahida_1561-1574.pdf
ZaiFu, Y., XueJing, W., & LianLian, X. (2015). Effect of biochar application on
organophosphorus pesticide migration and transformation under different rainfall
conditions. Academia Journal of Agricultural Research, 3(4), 53-63. Retrieved from
http://www.cabdirect.org/abstracts/
20153288417.html;jsessionid=EE10F1C7BDCA560A99624D87A8E32FF6
Zailani, R., Ghafar, H., & So'aib, M. S. (2013). Effect of Oxygen on Biochar Yield and Properties.
World Academy of Science, Engineering and Technology, 73. Retrieved from http://
waset.org/publications/10316/effect-of-oxygen-on-biochar-yield-and-properties
Zaitun, Nisa, K., Sufardi, C., Gani, A., Slavich, P., & McLeod, M. (2013). Effect of NPK fertilizer
and biochar applications on growth and yield of irrigation rice. In Improving food, energy
and environment with better crops.
Zakharova, N. V., Goldberg, D. S., Sullivan, E. C., Herron, M. M., & Grau, J. A. (2012).
Petrophysical and geochemical properties of Columbia River flood basalt: Implications
for carbon sequestration. Geochemistry, Geophysics, Geosystems, 13(11).
doi:10.1029/2012gc004305
Zakkour, P., Kemper, J., & Dixon, T. (2014). Incentivising and Accounting for Negative Emission
Technologies. Energy Procedia, 63, 6824-6833. doi:http://dx.doi.org/10.1016/
j.egypro.2014.11.716
Zakkour, P., Scowcroft, J., & Heidug, W. (2014). The Role of UNFCCC Mechanisms in
Demonstration and Deployment of CCS Technologies. Energy Procedia, 63, 6945-6958.
doi:https://doi.org/10.1016/j.egypro.2014.11.728
Zanchi, G., Pena, N., & Bird, N. (2012). Is woody bioenergy carbon neutral? A comparative
assessment of emissions from consumption of woody bioenergy and fossil fuel. GCB
Bioenergy, 4(6), 761-772. doi:doi:10.1111/j.1757-1707.2011.01149.x
Zanco, S. E., Ambrosetti, M., Groppi, G., Tronconi, E., & Mazzotti, M. (2021). Heat transfer
intensification with packed open-cell foams in TSA processes for CO2 capture. Chemical
Engineering Journal, 131000. doi:https://doi.org/10.1016/j.cej.2021.131000
Zang, G., Jia, J., Tejasvi, S., Ratner, A., & Silva Lora, E. (2018). Techno-economic comparative
analysis of Biomass Integrated Gasification Combined Cycles with and without CO2
capture. International Journal of Greenhouse Gas Control, 78, 73-84. doi:https://doi.org/
10.1016/j.ijggc.2018.07.023
Zarate-Barrera, T. G., & Maldonado, J. H. (2015). Valuing Blue Carbon: Carbon Sequestration
Benefits Provided by the Marine Protected Areas in Colombia. Plos One, 10(5),
e0126627. doi:10.1371/journal.pone.0126627
Zavalloni, C., et al. (2011). Microbial mineralization of biochar and wheat straw mixture in soil: A
short-term study. Applied Soil Ecology, 50, 45-51. doi:10.1016/j.apsoil.2011.07.012
Zaverl, M. J., Misra, M., & Mohanty, A. K. (2014). Using Taguchi's Statistical Method for
Optimizing Co-Injected Biochar Composites. Paper presented at the The 19th
International Conference on Composite Materials. http://confsys.encs.concordia.ca/
ICCM19/AllPapers/FinalVersion/MIS81673.pdf
Zaybak, Z., Logan, B. E., & Pisciotta, J. M. (2018). Electrotrophic activity and electrosynthetic
acetate production by Desulfobacterium autotrophicum HRM2. Bioelectrochemistry, 123,
150-155. doi:https://doi.org/10.1016/j.bioelechem.2018.04.019
Zech, W., et al. (1997). Factors Controlling Humification and Mineralization of Soil Organic
Matter in the Tropics. Geoderma, 79(1-4), 117-161. Retrieved from http://
www.sciencedirect.com/science/article/pii/S0016706197000402
Zeebe, R. E., & Archer, D. (2005). Feasibility of ocean fertilization and its impact on future
atmospheric CO2 levels. Geophysical Research Letters, 32(9), 1-5. Retrieved from
http://onlinelibrary.wiley.com/doi/10.1029/2005GL022449/abstract
Zegart, D. (2021). The Gassing Of Satartia Huffington Post. Retrieved from https://
www.huffpost.com/entry/gassing-satartia-mississippi-co2-
pipeline_n_60ddea9fe4b0ddef8b0ddc8f
Zeiler, K. G., Heacox, D. A., Toon, S. T., Kadam, K. L., & Brown, L. M. (1995). The use of
microalgae for assimilation and utilization of carbon dioxide from fossil fuel-fired power
plant flue gas. Energy Conversion and Management, 36(6), 707-712. doi:https://doi.org/
10.1016/0196-8904(95)00103-K
Zeldis, J. (2001). Mesozooplankton community composition, feeding, and export production
during SOIREE. Deep Sea Research Part II: Topical Studies in Oceanography, 48(11–
12), 2615-2634. doi:http://dx.doi.org/10.1016/S0967-0645(01)00011-X
Zelikova, J. (2020). In search of carbon removal offsets. Retrieved from https://
carbon180.medium.com/in-search-of-carbon-removal-offsets-42abf71b3ccc
Zelikova, J., et al. (2021). A buyer’s guide to soil carbon offsets. Retrieved from https://
carbonplan.org/research/soil-protocols-explainer
Zelikova, T. J. (2020). The future of carbon dioxide removal must be transdisciplinary. Interface
Focus, 10(5), 20200038. doi:doi:10.1098/rsfs.2020.0038
Zellner, W., Friedrich, R. L., Kim, S., Sturtz, D., Frantz, J., Altland, J., & Krause, C. (2015).
Continuing Assessment of the 5-Day Sodium Carbonate-Ammonium Nitrate Extraction
Assay as an Indicator Test for Silicon Fertilizers. Journal of AOAC International, 98(4),
890 - 895. doi:10.5740/jaoacint.14-205
Zeman, F. (2007). Energy and Material Balance of CO
2
Capture from Ambient Air.
Environmental Science & Technology, 41(21), 7558-7563. doi:10.1021/es070874m
Zeman, F. (2008). Effect of steam hydration on performance of lime sorbent for CO2 capture.
International Journal of Greenhouse Gas Control, 2(2), 203-209. doi:http://dx.doi.org/
10.1016/S1750-5836(07)00115-6
Zeman, F. (2014). Reducing the Cost of Ca-Based Direct Air Capture of CO2. Environmental
Science & Technology, 48(19), 11730-11735. doi:10.1021/es502887y
Zeman, F. S., & Lackner, K. S. (2004). Capturing Carbon Dioxide Directly from the Atmosphere.
World Resource Review, 16(2), 157-172. Retrieved from http://
wordpress.ei.columbia.edu/lenfest/files/2012/11/ZEMAN_LACKNER_2004.pdf
Zemke, W., W.L., & Smith, J. E. (2006). Environmental imapcts of seaweed farming int he
tropics. Retrieved from https://www.nceas.ucsb.edu/~jsmith/PDFs/Zemke-
White%20and%20Smith%202006.pdf
Zeng, G., Wu, H., Liang, J., Guo, S., Huang, L., Xu, P., . . . He, Y. (2015). Efficiency of biochar
and compost (or composting) combined amendments for reducing Cd, Cu, Zn and Pb
bioavailability, mobility and ecological risk in wetland soil. RSC Adv., 5(44), 34541 -
34548. doi:10.1039/c5ra04834f
Zeng, N. (2008). Carbon sequestration via wood burial. Carbon Balance and Management, 3(1),
1-12. doi:10.1186/1750-0680-3-1
Zeng, S., Liu, Z., & Kaufmann, G. (2019). Sensitivity of the global carbonate weathering carbon-
sink flux to climate and land-use changes. Nature Communications, 10(1), 5749.
doi:10.1038/s41467-019-13772-4
Zeng, W. Q., Zhu, L. J., & Wang, Q. (2013). Steam Gasification of Biochar Derived from Fast
Pyrolysis for Hydrogen-Rich Gas Production. Advanced Materials Research, 830,
477-480. Retrieved from https://www.scientific.net/AMR.830.477
Zenid. (2021). Sustainable aviation fuel made from air. Fully circular. Retrieved from https://
zenidfuel.com/
Zetterberg, L., & Chen, D. (2015). The time aspect of bioenergy – climate impacts of solid
biofuels due to carbon dynamics. GCB Bioenergy, 7(4), 785-796. doi:10.1111/
gcbb.12174
Zevenhoven, R., Eloneva, S., & Teir, S. (2006). Chemical fixation of CO2 in carbonates: Routes
to valuable products and long-term storage. Catalysis Today, 115(1), 73-79. doi:https://
doi.org/10.1016/j.cattod.2006.02.020
Zevenhoven, R., Fagerlund, J., & Songok, J. K. (2011). CO2 mineral sequestration:
developments toward largescale application. Greenhouse Gases: Science and
Technology, 1(1), 48-57. doi:doi:10.1002/ghg3.7
Zevenhoven, R., Slotte, M., Åbacka, J., & Highfield, J. (2016). A comparison of CO2 mineral
sequestration processes involving a dry or wet carbonation step. Energy, 117, 604-611.
doi:https://doi.org/10.1016/j.energy.2016.05.066
Zhai, L., CaiJi, Z., Liu, J., Wang, H., Ren, T., Gai, X., . . . Liu, H. (2014). Short-term effects of
maize residue biochar on phosphorus availability in two soils with different phosphorus
sorption capacities. Biology and Fertility of Soils, 51(1), 113-122. doi:10.1007/
s00374-014-0954-3
Zhang, A., et al. (2011). Effect of biochar amendment on maize yield and greenhouse gas
emissions from a soil organic carbon poor calcareous loamy soil from Central China
Plain. Plant and Soil, 351(1), 263-275. doi:10.1007/s11104-011-0957-x
Zhang, A., et al. (2012). Effects of biochar amendment on soil quality, crop yield and
greenhouse gas emission in a Chinese rice paddy: A field study of 2 consecutive rice
growing cycles. Field Crops Research, 127, 153–160.
Zhang, A., et al. (2013). Change in net global warming potential of a rice–wheat cropping
system with biochar soil amendment in a rice paddy from China. Agriculture,
Ecosystems & Environment, 173, 37–45.
Zhang, A., et al. (2015). Enhanced rice production but greatly reduced carbon emission
following biochar amendment in a metal-polluted rice paddy. Environmental Science and
Pollution Research, 22(23), 18977–18986. doi:10.1007/s11356-015-4967-8
Zhang, A. F., Cui, L. Q., Pan, G. X., Li, L. Q., Hussain, Q., Zhang, X. H., . . . Crowley, D. (2010).
Effect of biochar amendment on yield and methane and nitrous oxide emissions from a
rice paddy from Tai Lake plain, China. Agriculture, Ecosystems & Environment, 139(4),
469–475. Retrieved from http://ac.els-cdn.com/S0167880910002215/1-s2.0-
S0167880910002215-main.pdf?_tid=aa014724-e9d0-11e6-
af92-00000aab0f27&acdnat=1486099489_5ad334eb6637f0aa4733ed10c3814882
Zhang, B., Zhong, Z., Xie, Q., Liu, S., & Ruan, R. (2016). Two-step fast microwave-assisted
pyrolysis of biomass for bio-oil production using microwave absorbent and HZSM-5
catalyst. Journal of Environmental Sciences, 45, 240-247. doi:10.1016/j.jes.2015.12.019
Zhang, C., et al. (2012). Ionic liquid-functionalized biochar sulfonic acid as a biomimetic catalyst
for hydrolysis of cellulose and bamboo under microwave irradiation. Green Chemistry,
7(14), 1928-1934. doi:10.1039/c2gc35071h
Zhang, C., et al. (2013). Chlorocuprate ionic liquid functionalized biochar sulfonic acid as an
efficiently biomimetic catalyst for direct hydrolysis of bamboo under microwave
irradiation. Industrial and Engineering Chemistry Research, 52(33), 11537–11543.
Retrieved from http://pubs.acs.org/doi/abs/10.1021/ie401100x
Zhang, C., et al. (2014). Biochar sulfonic acid immobilized chlorozincate ionic liquid: an
efficiently biomimetic and reusable catalyst for hydrolysis of cellulose and bamboo under
microwave irradiation. Cellulose, 21(3), 1227-1237. Retrieved from https://
link.springer.com/article/10.1007/s10570-014-0167-9
Zhang, C., Clark, G. J., Patti, A. F., Bolan, N., Cheng, M., Sale, P. W. G., & Tang, C. (2015).
Contrasting effects of organic amendments on phytoextraction of heavy metals in a
contaminated sediment. Plant and Soil, 397(1), 331-345. doi:10.1007/
s11104-015-2615-1
Zhang, C., Zeng, G., Huang, D., Lai, C., Chen, M., Cheng, M., . . . Wang, R. (2019). Biochar for
environmental management: Mitigating greenhouse gas emissions, contaminant
treatment, and potential negative impacts. Chemical Engineering Journal, 373, 902-922.
doi:https://doi.org/10.1016/j.cej.2019.05.139
Zhang, C. X., Jiang, Y. F., Zhou, M., Hu, X. F., & J. Yves, U. (2014). Adsorption Equilibrium and
Thermodynamics Behavior of Sodium Pentachlorophenol to Biomass-Derived Biochars
at Two Pyrolytic Temperatures. Advanced Materials Research, 955-959, 2243 - 2247.
doi:10.4028/www.scientific.net/AMR.955-959.2243
Zhang, D., et al. (2014). Catalytic Pyrolysis of Bamboo Residues for Composite Biochar and
Bamboo Oil. Applied Mechanics and Materials, 472, 921-925. Retrieved from https://
www.scientific.net/AMM.472.921
Zhang, D., et al. (2016). Reviews of power supply and environmental energy conversions for
artificial upwelling. Renewable & Sustainable Energy Reviews, 56, 659-668. Retrieved
from http://or.nsfc.gov.cn/bitstream/00001903-5/276662/1/1000014397751.pdf
Zhang, D. (2017). The Performance and Carbon Sequestration of the Biochar Concrete. Hans.,
7(6), 465-475. Retrieved from https://doi.org/10.12677/aep.2017.76060
Zhang, D., Bui, M., Fajardy, M., Patrizio, P., Kraxner, F., & Dowell, N. M. (2019). Unlocking the
potential of BECCS with indigenous sources of biomass at a national scale. Sustainable
Energy & Fuels. doi:10.1039/C9SE00609E
Zhang, D., Pan, G., Wu, G., Kibue, G. W., Li, L., Zhang, X., . . . Liu, X. (2015). Biochar helps
enhance maize productivity and reduce greenhouse gas emissions under balanced
fertilization in a rainfed low fertility inceptisol. Chemosphere, 142, 106-113. doi:10.1016/
j.chemosphere.2015.04.088
Zhang, D., Yan, M., Niu, Y., Liu, X., van Zwieten, L., Chen, D., . . . Pan, G. (2016). Is current
biochar research addressing global soil constraints for sustainable agriculture?
Agriculture, Ecosystems & Environment, 226, 25-32. doi:http://dx.doi.org/10.1016/
j.agee.2016.04.010
Zhang, D., Zhu, M., & Zhang, Z. (2015). Handbook of Clean Energy SystemsCombined Heat
and Power (CHP) Generation Using Gas Engines Fueled with Pyrolysis Gases.
Chichester, UK: John Wiley & Sons, Ltd.
Zhang, F., Wang, X., Yin, D., Peng, B., Tan, C., Liu, Y., . . . Wu, S. (2015). Efficiency and
mechanisms of Cd removal from aqueous solution by biochar derived from water
hyacinth (Eichornia crassipes). Journal of Environmental Management, 153, 68 - 73.
doi:10.1016/j.jenvman.2015.01.043
Zhang, G., et al. (2017). Review and outlook for agromineral research in agriculture and climate
mitigation. Soil Research, 56(2), 113-122. Retrieved from https://www.publish.csiro.au/sr/
SR17157
Zhang, H., et al. (2015). Biochar Effects on Soil Organic Carbon Storage. In Biochar:
Production, Characterization, and Applications.
Zhang, H., et al. (2016). A novel bioremediation strategy for petroleum hydrocarbon pollutants
using salt tolerant Corynebacterium variabile HRJ4 and biochar. Journal of
Environmental Sciences, 47, 7-13. doi:10.1016/j.jes.2015.12.023
Zhang, H. (2016). Sulfur-enriched biochar as a potential soil amendment and fertilizer. Soil
Research, 55, 93-99. Retrieved from http://www.publish.csiro.au/SR/pdf/SR15256
Zhang, H., Voroney, R. P., & Price, G. W. (2014). Effects of biochar amendments on soil
microbial biomass and activity. In.
Zhang, H., Voroney, R. P., & Price, G. W. (2015). Effects of temperature and processing
conditions on biochar chemical properties and their influence on soil C and N
transformations. Soil Biology and Biochemistry, 83, 19 - 28. doi:10.1016/
j.soilbio.2015.01.006
Zhang, H., Xiao, R., Huang, H., & Xiao, G. (2009). Comparison of non-catalytic and catalytic fast
pyrolysis of corncob in a fluidized bed reactor. Bioresource Technology, 100.
Zhang, H., Yu, F., Kang, W., & Shen, Q. (2015). Encapsulating selenium into macro-/micro-
porous biochar-based framework for high-performance lithium-selenium batteries.
Carbon, 95, 354 - 363. doi:10.1016/j.carbon.2015.08.050
Zhang, H. H., Lin, K. D., Wang, H. L., & Gan, J. (2010). Effect of Pinus radiata derived biochars
on soil sorption and desorption of phenanthrene. Environmental Pollution, 158,
2821-2825.
Zhang, J., et al. (2014). Humification characterization of biochar and its potential as a
composting amendment. Journal of Environmental Sciences, 26(2), 390–397. Retrieved
from http://www.sciencedirect.com/science/article/pii/S1001074213604210
Zhang, J., et al. (2014). The use of Biochar-amended composting to Improve the Humification
and Degradation of Sewage Sludge. Bioresource Technology, 168, 252-258. Retrieved
from https://www.ncbi.nlm.nih.gov/pubmed/24656550
Zhang, J., et al. (2015). Multiscale visualization of the structural and characteristic changes of
sewage sludge biochar oriented towards potential agronomic and environmental
implication. Scientific Reports, 5, 1-8. doi:10.1038/srep09406
Zhang, J., et al. (2016). Straw biochar hastens organic matter degradation and produces
nutrient-rich compost. Bioresource Technology, 200, 876-883. doi:10.1016/
j.biortech.2015.11.016
Zhang, J., et al. (2017). Analysis of the impact of CO2 content on the physical properties of the
liquid phase mixtures in oil production wells. International Journal of Greenhouse Gas
Control, 12(2), 261-271. Retrieved from http://www.inderscience.com/info/inarticle.php?
artid=84508
Zhang, J., Chen, Q., & You, C. (2015). Numerical simulation of mass and heat transfer between
biochar and sandy soil. International Journal of Heat and Mass Transfer, 91, 119 - 126.
doi:10.1016/j.ijheatmasstransfer.2015.07.104
Zhang, J., Chen, Q., & You, C. (2016). Biochar Effect on Water Evaporation and Hydraulic
Conductivity in Sandy Soil. Pedosphere, 26(2), 265 - 272. doi:10.1016/
s1002-0160(15)60041-8
Zhang, J., Lin, Q., Zhao, X., & Li, G. (2015). Effect of hydrothermal carbonization temperature
and time on characteristics of bio-chars from chicken manure. Transactions of the
Chinese Society of Agricultural Engineering, 31(24), 239-244. Retrieved from http://
www.ingentaconnect.com/content/tcsae/tcsae/2015/00000031/00000024/art00036
Zhang, J., Liu, J., & Liu, R. (2015). Effects of pyrolysis temperature and heating time on biochar
obtained from the pyrolysis of straw and lignosulfonate. Bioresource Technology, 176,
288-291. doi:10.1016/j.biortech.2014.11.011
Zhang, J. S., & Wang, Q. (2015). Sustainable mechanisms of biochar derived from brewers’
spent grain and sewage sludge for ammonia-nitrogen capture. Journal of Cleaner
Production, 112(5), 3927–3934. doi:10.1016/j.jclepro.2015.07.096
Zhang, K., Kurano, N., & Miyachi, S. (2002). Optimized aeration by carbon dioxide gas for
microalgal production and mass transfer characterization in a vertical flat-plate
photobioreactor. Bioprocess and Biosystems Engineering, 25(2), 97-101. doi:10.1007/
s00449-002-0284-y
Zhang, L., et al. (2014). Mini-chunk biochar supercapacitors. Journal of Applied
Electrochemistry, 44(10), 1145-1151. doi:10.1007/s10800-014-0726-7
Zhang, L. (2015). Exploring N and P reduction in bioreactors. (University of Minnesota).
Retrieved from http://conservancy.umn.edu/handle/11299/172627
Zhang, L., & Sun, X. (2014). Changes in physical, chemical, and microbiological properties
during the two-stage co-composting of green waste with spent mushroom compost and
biochar. Bioresource Technology, 171, 274 - 284. doi:10.1016/j.biortech.2014.08.079
Zhang, L., Sun, X.-y., Tian, Y., & Gong, X.-q. (2014). Biochar and humic acid amendments
improve the quality of composted green waste as a growth medium for the ornamental
plant Calathea insignis. Scientia Horticulturae, 176, 70 - 78. doi:10.1016/
j.scienta.2014.06.021
Zhang, L., Wang, X., Fujii, M., Yang, L., & Song, C. (2017). CO2 capture over molecular basket
sorbents: Effects of SiO2 supports and PEG additive. Journal of Energy Chemistry,
26(5), 1030-1038. doi:https://doi.org/10.1016/j.jechem.2017.09.002
Zhang, L., & Zhang, J. S. (2013). Biochar from Sewage Sludge: Preparation, Characterization
and Ammonia-Phosphorus Capture. Advanced Materials Research, 830, 473-476.
Retrieved from https://www.scientific.net/AMR.830.473
Zhang, M., et al. (2012). Preparation and characterization of a novel magnetic biochar for
arsenic removal. Bioresource Technology, 130, 457-462. Retrieved from http://
www.sciencedirect.com/science/article/pii/S0960852412018366
Zhang, M., et al. (2012). Synthesis of porous MgO-biochar nanocomposites for removal of
phosphate and nitrate from aqueous solutions. Chemical Engineering Journal, 210,
26-32. Retrieved from http://www.sciencedirect.com/science/article/pii/
S1385894712011175
Zhang, M., et al. (2012). Synthesis, characterization, and environmental implications of
graphene-coated biochar. Science of The Total Environment, 435-436, 567-572.
Retrieved from http://www.sciencedirect.com/science/article/pii/S0048969712009837
Zhang, M., et al. (2013). Phosphate removal ability of biochar/MgAl-LDH ultra-fine composites
prepared by liquid-phase deposition. Chemosphere, 92(8), 1042-1047. Retrieved from
http://www.sciencedirect.com/science/article/pii/S0045653513003585
Zhang, M., et al. (2015). Adsorptive Removal of Trichloroethylene in Water by Crop Residue
Biochars Pyrolyzed at Contrasting Temperatures: Continuous Fixed-Bed Experiments.
Journal of Chemistry, 2015, 1-6. Retrieved from http://downloads.hindawi.com/journals/
jchem/aa/647072.pdf
Zhang, M. (2015). Properties of bio-oil based fuel mixtures: biochar/bio-oil slurry fuels and
glycerol/bio-oil fuel blends. Curtin University, Retrieved from http://
espace.library.curtin.edu.au/R?func=dbin-jump-full&object_id=234321
Zhang, M., & Gao, B. (2013). Removal of arsenic, methylene blue, and phosphate by biochar/
AlOOH nanocomposite. Chemical Engineering Journal, 226, 286-292. Retrieved from
http://www.sciencedirect.com/science/article/pii/S138589471300555X
Zhang, M., & Lu, L. (2015). Biochar for Organic Contaminant Management in Water and
Wastewater. In Biochar: Production, Characterization, and Applications.
Zhang, M., & Ok, Y. S. (2014). Biochar soil amendment for sustainable agriculture with carbon
and contaminant sequestration. Carbon Management, 5(3), 255-257.
doi:10.1080/17583004.2014.973684
Zhang, M., Shu, L., Guo, X., Shen, X., Zhang, H., Shen, G., . . . Wang, X. (2015). Impact of
humic acid coating on sorption of naphthalene by biochars. Carbon, 94, 946 - 954.
doi:10.1016/j.carbon.2015.07.079
Zhang, M., Shu, L., Shen, X., Guo, X., Tao, S., Xing, B., & Wang, X. (2014). Characterization of
nitrogen-rich biomaterial-derived biochars and their sorption for aromatic compounds.
Environmental Pollution, 195, 84-90. doi:10.1016/j.envpol.2014.08.018
Zhang, M., & Wu, H. (2015). Bioslurry as a Fuel. 6. Leaching Characteristics of Alkali and
Alkaline Earth Metallic Species from Biochar by Bio-oil Model Compounds. Energy &
Fuels, 29(4), 2535–2541. doi:10.1021/acs.energyfuels.5b00274
Zhang, M. k., et al. (2012). Degradation characteristic of different biochar materials in soil
environments. Journal of Zhejiang University (Agriculture and Life Sciences), 2012(03),
329-335. Retrieved from http://en.cnki.com.cn/Article_en/CJFDTOTAL-
ZJNY201203015.htm
Zhang, M.-m., Liu, Y.-g., Li, T.-t., Xu, W.-h., Zheng, B.-h., Tan, X.-f., . . . Wang, S.-f. (2015).
Chitosan modification of magnetic biochar produced from Eichhornia crassipes for
enhanced sorption of Cr(VI) from aqueous solution. RSC Adv., 5(58), 46955-46964.
doi:10.1039/c5ra02388b
Zhang, N., Santos, R. M., Smith, S. M., & Šiller, L. (2019). Acceleration of CO2 mineralisation of
alkaline brines with nickel nanoparticles catalysts in continuous tubular reactor. Chemical
Engineering Journal, 377, 120479. doi:https://doi.org/10.1016/j.cej.2018.11.177
Zhang, P., Sheng, G. Y., Feng, Y. H., & Miller, D. M. (2006). Predominance of char sorption over
substrate concentration and soil pH in influencing biodegradation of benzonitrile.
Biodegradation, 17(1), 1-8. Retrieved from https://www.ncbi.nlm.nih.gov/pubmed/
16453166
Zhang, Q., Gong, J., Skwarczek, M., Yue, D., & You, F. (2014). Sustainable process design and
synthesis of hydrocarbon biorefinery through fast pyrolysis and hydroprocessing. AIChE
Journal, 60(3), 980-994. doi:doi:10.1002/aic.14344
Zhang, Q. z., et al. (2013). Biochar impact on nitrate accumulation in an alkaline soil. CSIRO
Publishing, 51(6), 521. Retrieved from https://www.researchgate.net/publication/
270806967_Impact_of_biochar_on_nitrate_accumulation_in_an_alkaline_soil
Zhang, Q. z., et al. . (2015). Effect of biochar amendment on soil thermal conductivity,
reflectance and temperatures. Soil Science Society of America Journal, 77(5),
1478-1487. Retrieved from http://www.researchgate.net/publication/
264496596_Effect_of_biochar_amendment_on_soil_thermal_conductivity_reflectance_a
nd_temperatures
Zhang, Q. z., et al. . (2015). A one-year short-term biochar application improved carbon
accumulation in large macroaggregate fractions. CATENA, 127, 26 - 31. doi:10.1016/
j.catena.2014.12.009
Zhang, S., Dong, Q., Zhang, L., Xiong, Y., Liu, X., & Zhu, S. (2015). Effects of water washing
and torrefaction pretreatments on rice husk pyrolysis by microwave heating. Bioresource
Technology, 193, 442 - 448. doi:10.1016/j.biortech.2015.06.142
Zhang, S., Li, J., Wang, J., Zhang, F., Wang, Z., & Liu, H. (2017). Co–Deoxy-Liquefaction of
Macroalgae and Lignocellulosic Biomass for Production of High–quality Liquid Oil.
ChemistrySelect, 2(5), 1820-1824. doi:10.1002/slct.201601903
Zhang, S., Wang, D., Fan, P.-P., & Sun, L.-P. (2015). Enhancement of gas-to-liquid oxygen
transfer in the presence of fine solid particles for air-exposed multiphase system.
Chemical Engineering Research and Design, 100, 434-443. doi:10.1016/
j.cherd.2015.04.024
Zhang, S., & Xiong, Y. (2016). Washing pretreatment with light bio-oil and its effect on pyrolysis
products of bio-oil and biochar. RSC Adv., 6(7), 5270 - 5277. doi:10.1039/c5ra22350d
Zhang, T., et al. . (2013). Application of Biochar for Phosphate Adsorption and Recovery from
Wastewater. Periodical Advanced Materials Research, 750-752, 1389-1392. Retrieved
from https://www.researchgate.net/publication/
271982638_Application_of_Biochar_for_Phosphate_Adsorption_and_Recovery_from_W
astewater
Zhang, W. (2010). Fate And Transport Of Phosphorus, Colloids, And Biochar In Soils. Cornell
University, Ithaca. Retrieved from http://hdl.handle.net/1813/17698
Zhang, W., Liu, H., Sun, C., Drage, T. C., & Snape, C. E. (2014). Capturing CO
2
from ambient
air using a polyethyleneimine–silica adsorbent in fluidized beds. Chemical Engineering
Science, 116, 306-316. doi:http://dx.doi.org/10.1016/j.ces.2014.05.018
Zhang, W., Liu, H., Sun, C., Drage, T. C., & Snape, C. E. (2014). Performance of
polyethyleneimine–silica adsorbent for post-combustion CO2 capture in a bubbling
fluidized bed. Chemical Engineering Journal, 251, 293-303. doi:https://doi.org/10.1016/
j.cej.2014.04.063
Zhang, W., Niu, J., Morales, V. L., Chen, X., Hay, A. G., Lehmann, J., & Steenhuis, T. S. (2010).
Transport and retention of Biochar particles in porous media: effect of pH, ionic strength,
and particle size. Ecohydrology, 3(4), 497-508. Retrieved from http://
onlinelibrary.wiley.com/doi/10.1002/eco.160/abstract
Zhang, W., Zheng, J., Zheng, P., & Qiu, R. (2015). Atrazine immobilization on sludge derived
biochar and the interactive influence of coexisting Pb(II) or Cr(VI) ions. Chemosphere,
134, 438 - 445. doi:10.1016/j.chemosphere.2015.05.011
Zhang, W., Zheng, J., Zheng, P., Tsang, D. C. W., & Qiu, R. (2015). Sludge-Derived Biochar for
Arsenic(III) Immobilization: Effects of Solution Chemistry on Sorption Behavior. Journal
of Environment Quality, 44(4), 1119-1126. doi:10.2134/jeq2014.12.0536
Zhang, X., et al. . (2013). Using biochar for remediation of soils contaminated with heavy metals
and organic pollutants. Environmental Science and Pollution Research, 20(12),
8472-8483. Retrieved from https://link.springer.com/article/10.1007/s11356-013-1659-0
Zhang, X. (2014). Dairy farm waste treatment by using microbial fuel cells (MFCs) and pyrolysis.
University of Nottingham, Retrieved from http://ethos.bl.uk/OrderDetails.do?
uin=uk.bl.ethos.662212
Zhang, X., et al. . (2015). Biochar for Organic Contaminant Management in Soil. In Biochar:
Production, Characterization, and Applications.
Zhang, X., et al. (2015). Effect of aging process on adsorption of diethyl phthalate in soils
amended with bamboo biochar. Chemosphere, 142, 28-34. doi:10.1016/
j.chemosphere.2015.05.037
Zhang, X., et al. (2015). SSSA Special PublicationAgricultural and Environmental Applications of
Biochar: Advances and BarriersResearch and Application of Biochar in China: Soil
Science Society of America, Inc.
Zhang, X., Deng, J., Pupucevski, M., Impeng, S., Yang, B., Chen, G., . . . Zhang, D. (2021).
High-Performance Binary Mo–Ni Catalysts for Efficient Carbon Removal during Carbon
Dioxide Reforming of Methane. ACS Catalysis, 12087-12095. doi:10.1021/
acscatal.1c02124
Zhang, X., Zhang, S., Yang, H., Feng, Y., Chen, Y., Wang, X., & Chen, H. (2014). Nitrogen
enriched biochar modified by high temperature CO2-ammonia treatment:
characterization and adsorption of CO2. Chemical Engineering Journal, 257, 20-27.
doi:10.1016/j.cej.2014.07.024
Zhang, X., Zhang, S., Yang, H., Shao, J., Chen, Y., Feng, Y., . . . Chen, H. (2015). Effects of
hydrofluoric acid pre-deashing of rice husk on physicochemical properties and CO2
adsorption performance of nitrogen-enriched biochar. Energy, 91, 903 - 910.
doi:10.1016/j.energy.2015.08.028
Zhang, X.-K., et al. (2013). Soil Nematode Response to Biochar Addition in a Chinese Wheat
Field. Pedosphere, 23(1), 98-103. Retrieved from http://www.sciencedirect.com/science/
article/pii/S1002016012600848
Zhang, X. N., Mao, G. Y., Jiao, Y. B., Shang, Y., & Han, R. P. (2014). Adsorption of anionic dye
on magnesium hydroxide-coated pyrolytic bio-char and reuse by microwave irradiation.
International Journal of Environmental Science and Technology, 11(5), 1439 - 1448.
doi:10.1007/s13762-013-0338-5
Zhang, Y. (2010). Life cycle environmental and cost evaluation of bioenergy systems.
Dissertation: University of Toronto.
Zhang, Y., et al. . (2014). A promising approach to co-processing calcium-rich coal and an
aqueous condensate from biomass carbonization. Fuel, 133, 82-88. doi:10.1016/
j.fuel.2014.05.007
Zhang, Y., Li, Z., & Mahmood, I. B. (2015). Effects of corn cob produced biochars on urea
recovery from human urine and their application as soil conditioners. CLEAN - Soil, Air,
Water, n/a - n/a. doi:10.1002/clen.201400489
Zhang, Y., Lin, F., Wang, X., Zou, J., & Liu, S. (2016). Annual accounting of net greenhouse gas
balance response to biochar addition in a coastal saline bioenergy cropping system in
China. Soil and Tillage Research, 158, 39 - 48. doi:10.1016/j.still.2015.11.006
Zhang, Y., Liu, G., & Liu, H. (2013). Effects of biochar application on petroleum ether extract and
aroma constituent of flue-cured tobacco leaves. Acta Agriculturae Jiangxi(5), 96-100.
Retrieved from http://caod.oriprobe.com/order.htm?id=36438402&ftext=base
Zhang, Y., & Luo, W. (2014). Adsorptive Removal of Heavy Metal from Acidic Wastewater with
Biochar Produced from Anaerobically Digested Residues: Kinetics and Surface
Complexation Modeling. BioResources, 9(2), 2484-2489. Retrieved from http://
ojs.cnr.ncsu.edu/index.php/BioRes/article/view/
BioRes_09_2_2484_Zhang_Luo_Adsorptive_Removal_Heavy_Metal/2665
Zhang, Y., McKechnie, J., Cormier, D., Lyng, R., Mabee, W., Ogino, A., & MacLean, H. L.
(2010). Life Cycle Emissions and Cost of Producing Electricity from Coal, Natural Gas,
and Wood Pellets in Ontario, Canada. Environmental Science & Technology, 44(1),
538-544. doi:10.1021/es902555a
Zhang, Y., Tan, Q., Hu, C., Zheng, C., Gui, H., Zeng, W., . . . Zhao, X. (2014). Differences in
responses of soil microbial properties and trifoliate orange seedling to biochar derived
from three feedstocks. Journal of Soils and Sediments, 15(3), 541-551. doi:10.1007/
s11368-014-1032-z
Zhang, Y., Yao, A., & Song, K. (2016). Torrefaction of cultivation residue of Auricularia auricula-
judae to obtain biochar with enhanced fuel properties. Bioresource Technology, 206, 211
- 216. doi:10.1016/j.biortech.2016.01.099
Zhang, Y.-l., Chen, L.-j., Duan, Z.-h., Wu, Z.-j., Sun, C.-x., & Wang, J.-y. (2014). Change in Soil
Enzymes Activities after Adding Biochar or Straw by Fluorescent Microplate Method.
Guang Pu Xue Yu Guang Pu Fen Xi, 34(2), 455-459. Retrieved from https://
www.ncbi.nlm.nih.gov/pubmed/24822420
Zhang, Z., Luo, D., Lui, G., Li, G., Jiang, G., Cano, Z. P., . . . Chen, Z. (2019). In-situ ion-
activated carbon nanospheres with tunable ultramicroporosity for superior CO2 capture.
Carbon, 143, 531-541. doi:https://doi.org/10.1016/j.carbon.2018.10.096
Zhang, Z., Moore, J. C., Huisingh, D., & Zhao, Y. (2015). Review of geoengineering approaches
to mitigating climate change. Journal of Cleaner Production, 103, 898-907. doi:http://
dx.doi.org/10.1016/j.jclepro.2014.09.076
Zhang, Z., Pan, S.-Y., Li, H., Cai, J., Olabi, A. G., Anthony, E. J., & Manovic, V. (2020). Recent
advances in carbon dioxide utilization. Renewable and Sustainable Energy Reviews,
125, 109799. doi:https://doi.org/10.1016/j.rser.2020.109799
Zhang, Z., Yani, S., Zhu, M., Li, J., & Zhang, D. (2013). Effect of Temperature and Heating Rate
in Pyrolysis on the Yield, Structure and Oxidation Reactivity of Pine Sawdust Biochar.
Retrieved from http://www.conference.net.au/chemeca2013/papers/30430.pdf
Zhang, Z., Zhu, Z., Shen, B., & Liu, L. (2019). Insights into biochar and hydrochar production
and applications: A review. Energy, 171, 581-598. doi:https://doi.org/10.1016/
j.energy.2019.01.035
Zhang, Z.-b., Cao, X.-h., Liang, P., & Liu, Y.-h. (2012). Adsorption of uranium from aqueous
solution using biochar produced by hydrothermal carbonization. Journal of
Radioanalytical and Nuclear Chemistry, 295(2), 1201-1208. Retrieved from http://
link.springer.com/article/10.1007/s10967-012-2017-2
Zhang, Z. X., et al. (2012). A biochar manufacturing furnace based on laboratory studies.
Journal of Advanced Manufacturing Systems, 11(2).
Zhang, Z. X., et al. . (2014). A Monitoring System of Biochar Production Device Based on
MCGS. Advanced Materials Research, 898, 672-675.
Zhang, Z. X., Wu, J., & Chen, W. F. (2014). Review on Preparation and Application of Biochar.
Advanced Materials Research, 898, 456-460.
Zhang, Z. X., Wu, J., Meng, J., & Chen, W. F. (2014). Research on carbonised process
characteristics of biomass. Materials Research Innovations, 18(S5), S5-79 - S75-81.
doi:10.1179/1432891714z.000000000915
Zhang, Z. X., Wu, J., Meng, J., & Chen, W. F. (2014). Study of Biochar Pyrolysis Mechanism
and Production Technology. Applied Mechanics and Materials, 709, 364 - 369.
doi:10.4028/www.scientific.net/AMM.709.364
Zhang, Z. Y., Meng, J., Dang, S., Gao, M. C., & Che, W. F. (2013). Research on Cadmium
Adsorption-Desorption Dynamics of Biochar. Advanced Materials Research, 726 - 731,
179-183. Retrieved from https://www.scientific.net/AMR.726-731.179
ZHANG, Z.-y., Meng, J., Dang, S., & CHEN, W.-F. (2014). Effect of Biochar on Relieving
Cadmium Stress and Reducing Accumulation in Super japonica Rice. Journal of
Integrative Agriculture, 13(3), 547–553. Retrieved from http://www.sciencedirect.com/
science/article/pii/S209531191360711X
Zhang, Z. Z., Zhu, M. M., Liu, P. F., Wan, W. C., Zhou, W. X., Chan, Y. L., & Zhang, D. K. (2015).
Effect of Biochar on the Cracking of Tar from the Pyrolysis of a Pine Sawdust in a Fixed
Bed Reactor. Energy Procedia, 75, 196 - 201. doi:10.1016/j.egypro.2015.07.299
Zhang. Ming, e. a. (2014). Self-assembly of needle-like layered double hydroxide (LDH)
nanocrystals on hydrochar: characterization and phosphate removal ability. RSC
Advances, 4(53), 28171-28175. doi:10.1039/c4ra02332c
Zhangrui. (2017). udy: organic carbon can resist breakdown in underground environment.
Retrieved from http://english.cctv.com/2017/05/04/
ARTI6XVdH8JdVrxeEcTMwHFw170504.shtml
Zhao, B., & Su, Y. (2014). Process effect of microalgal-carbon dioxide fixation and biomass
production: A review. Renewable and Sustainable Energy Reviews, 31, 121-132.
doi:https://doi.org/10.1016/j.rser.2013.11.054
Zhao, C., Lv, P., Yang, L., Xing, S., Luo, W., & Wang, Z. (2018). Biodiesel synthesis over
biochar-based catalyst from biomass waste pomelo peel. Energy Conversion and
Management, 160, 477-485. doi:https://doi.org/10.1016/j.enconman.2018.01.059
Zhao, D., Huang, S., & Huang, J. (2015). Effects of biochar on hydraulic parameters and
shrinkage-swelling rate of silty clay. Transactions of the Chinese Society of Agricultural
Engineering. Retrieved from http://www.ingentaconnect.com/content/tcsae/tcsae/
2015/00000031/00000017/art00018
Zhao, H. (2014). Tailored formation of mineral carbonates in the presence of various chemical
additives for in-situ and ex-situ carbon storage. In A.-H. A. Park (Ed.): ProQuest
Dissertations Publishing.
Zhao, L., et al. . (2013). Heterogeneity of biochar properties as a function of feedstock sources
and production temperatures. Journal of Hazardous Materials, 256-257, 1-9. Retrieved
from http://www.sciencedirect.com/science/article/pii/S0304389413002707
Zhao, L., et al. (2015). Endogenous minerals have influences on surface electrochemistry and
ion exchange properties of biochar. Chemosphere, 136, 133 - 139. doi:10.1016/
j.chemosphere.2015.04.053
Zhao, L., Qi, Y., & Chen, G. (2015). Isolation and characterization of microalgae for biodiesel
production from seawater. Bioresource Technology, 184, 42-46. doi:https://doi.org/
10.1016/j.biortech.2014.10.063
Zhao, L., Zheng, W., & Cao, X. (2014). Distribution and evolution of organic matter phases
during biochar formation and their importance in carbon loss and pore structure.
Chemical Engineering Journal, 250, 240-247. doi:10.1016/j.cej.2014.04.053
Zhao, M. Y., Enders, A., & Lehmann, J. (2014). Short- and long-term flammability of biochars.
Biomass and Bioenergy, 69, 183 - 191. doi:10.1016/j.biombioe.2014.07.017
Zhao, P. P., Gu, W. H., Huang, A. Y., Wu, S. C., Liu, C. H., Huan, L., . . . Wang, G. C. (2018).
Effect of iron on the growth of Phaeodactylum tricornutum via photosynthesis. Journal of
Phycology, 54(1), 34-43. doi:10.1111/jpy.12607
Zhao, R., Coles, N., Kong, Z., & Wu, J. (2015). Effects of aged and fresh biochars on soil acidity
under different incubation conditions. Soil and Tillage Research, 146, 133 - 138.
doi:10.1016/j.still.2014.10.014
Zhao, R., Coles, N., & Wu, J. (2015). Carbon mineralization following additions of fresh and
aged biochar to an infertile soil. CATENA, 125, 183 - 189. doi:10.1016/
j.catena.2014.10.026
Zhao, R., Coles, N., & Wu, J. (2015). Soil carbon mineralization following biochar addition
associated with external nitrogen. Chilean Journal of Agricultural Research, 75(4), 465 -
471. doi:10.4067/s0718-58392015000500012
Zhao, R., Deng, S., Zhao, L., Li, S., Zhang, Y., & Liu, B. (2017). Performance analysis of
temperature swing adsorption for CO2 capture using thermodynamic properties of
adsorbed phase. Applied Thermal Engineering, 123(Supplement C), 205-215. doi:https://
doi.org/10.1016/j.applthermaleng.2017.05.042
Zhao, R., Jiang, D., Coles, N., & Wu, J. (2015). Effects of biochar on the acidity of a loamy clay
soil under different incubation conditions. Journal of Soils and Sediments, 15(9),
1919-1926. doi:10.1007/s11368-015-1143-1
Zhao, R., Liu, L., Zhao, L., Deng, S., Li, S., Zhang, Y., & Li, H. (2019). Thermodynamic
exploration of temperature vacuum swing adsorption for direct air capture of carbon
dioxide in buildings. Energy Conversion and Management, 183, 418-426. doi:https://
doi.org/10.1016/j.enconman.2019.01.009
Zhao, S., Huang, B., & Ye, P. (2014). Laboratory Evaluation of Asphalt Cement and Mixture
Modified by Bio-Char Produced through Fast Pyrolysis. Geo-Shanghai 2014.
doi:10.1061/9780784413418.015
Zhao, S., Luo, Y., Zhang, Y., & Long, Y. (2015). Experimental investigation of the synergy effect
of partial oxidation and bio-char on biomass tar reduction. Journal of Analytical and
Applied Pyrolysis, 112, 262-269. doi:10.1016/j.jaap.2015.01.016
Zhao, T., & Liu, Z. (2019). A novel analysis of carbon capture and storage (CCS) technology
adoption: An evolutionary game model between stakeholders. Energy, 189, 116352.
doi:https://doi.org/10.1016/j.energy.2019.116352
Zhao, X., et al. (2013). Effects of the addition of rice-straw-based biochar on leaching and
retention of fertilizer N in highly fertilized cropland soils. Soil Science and Plant Nutrition,
59(5), 771-782. Retrieved from http://www.tandfonline.com/doi/abs/
10.1080/00380768.2013.830229
Zhao, X., et al. (2013). Nitrification, acidification, and nitrogen leaching from subtropical
cropland soils as affected by rice straw-based biochar: laboratory incubation and column
leaching studies. Journal of Soils and Sediments, 14(3), 471-482. Retrieved from https://
link.springer.com/article/10.1007/s11368-013-0803-2
Zhao, X., et al. (2014). Effects of crop-straw biochar on crop growth and soil fertility over a
wheat-millet rotation in soils of China. Soil Use and Management, 30(3), 311-319.
doi:10.1111/sum.12124
Zhao, X., et al. (2014). Successive straw biochar application as a strategy to sequester carbon
and improve fertility: A pot experiment with two rice/wheat rotations in paddy soil. Plant
and Soil, 378(1), 279-294. Retrieved from https://link.springer.com/article/10.1007/
s11104-014-2025-9
Zhao, X., Liu, S.-L., Pu, C., Zhang, X.-Q., Xue, J.-F., Zhang, R., . . . Chen, F. (2016). Methane
and nitrous oxide emissions under no-till farming in China: a meta-analysis. 22(4),
1372-1384. doi:doi:10.1111/gcb.13185
Zhao, X.-r., et al. (2014). Does Biochar Addition Influence the Change Points of Soil Phosphorus
Leaching? Journal of Integrative Agriculture, 13(3), 499–506. Retrieved from http://
www.sciencedirect.com/science/article/pii/S2095311913607054
Zhao, Y., Feng, D., Zhang, Y., Huang, Y., & Sun, S. (2015). Effect of pyrolysis temperature on
char structure and chemical speciation of alkali and alkaline earth metallic species in
biochar. Fuel Processing Technology, 141(1), 54-60. doi:10.1016/j.fuproc.2015.06.029
Zhao, Y., & Li, Y. (2014). Utilization of corn cob biochar in a direct carbon fuel cell. Journal of
Power Sources, 270, 312 - 317. doi:10.1016/j.jpowsour.2014.07.125
Zhao, Y., Wang, J., Ji, Z., Liu, J., Guo, X., & Yuan, J. (2020). A novel technology of carbon
dioxide adsorption and mineralization via seawater decalcification by bipolar membrane
electrodialysis system with a crystallizer. Chemical Engineering Journal, 381, 122542.
doi:https://doi.org/10.1016/j.cej.2019.122542
Zhao, Y., Wang, M., Hu, S., Zhang, X., Ouyang, Z., Zhang, G., . . . Shi, X. (2018). Economics-
and policy-driven organic carbon input enhancement dominates soil organic carbon
accumulation in Chinese croplands. Proceedings of the National Academy of Sciences,
115(16), 4045-4050. doi:10.1073/pnas.1700292114
Zhao, Y., Wu, M., Guo, X., Zhang, Y., Ji, Z., Wang, J., . . . Yuan, J. (2019). Thorough conversion
of CO2 through two-step accelerated mineral carbonation in the MgCl2-CaCl2-H2O
system. Separation and Purification Technology, 210, 343-354. doi:https://doi.org/
10.1016/j.seppur.2018.08.011
Zhao, Y., Zhang, Y., Liu, J., Gao, J., Ji, Z., Guo, X., . . . Yuan, J. (2017). Trash to treasure:
Seawater pretreatment by CO2 mineral carbonation using brine pretreatment waste of
soda ash plant as alkali source. Desalination, 407, 85-92. doi:https://doi.org/10.1016/
j.desal.2016.12.018
Zhao, Y.-Y., et al. (2015). Temperature Impact on the Hydrothermal Depolymerization of
Cunninghamia lanceolata Enzymatic/Mild Acidolysis Lignin in Subcritical Water.
BioResources, 11(1), 21-32. Retrieved from http://ojs.cnr.ncsu.edu/index.php/BioRes/
article/view/
BioRes_11_1_21_Zhao_Temperature_Impact_Hydrothermal_Depolymerization/3975
Zhao, Z., Zhang, Y., Holmes, D. E., Dang, Y., Woodard, T. L., Nevin, K. P., & Lovley, D. R.
(2016). Potential enhancement of direct interspecies electron transfer for syntrophic
metabolism of propionate and butyrate with biochar in up-flow anaerobic sludge blanket
reactors. Bioresource Technology, 209, 148 - 156. doi:10.1016/j.biortech.2016.03.005
Zhao, Z., Zhang, Y., Woodard, T. L., Nevin, K. P., & Lovley, D. R. (2015). Enhancing syntrophic
metabolism in up-flow anaerobic sludge blanket reactors with conductive carbon
materials. Bioresource Technology, 191, 140 - 145. doi:10.1016/j.biortech.2015.05.007
Zheng, B., & Xu, J. (2014). Carbon Capture and Storage Development Trends from a Techno-
Paradigm Perspective. Energies, 7(8), 5221-5250. Retrieved from http://www.mdpi.com/
1996-1073/7/8/5221
Zheng, H., et al. (2013). Impact of Pyrolysis Temperature on Nutrient Properties of Biochar. In J.
Xu, J. Wu, & Y. He (Eds.), Functions of Natural Organic Matter in Changing Environment
(pp. 975-978).
Zheng, H., et al. . (2013). Impacts of adding biochar on nitrogen retention and bioavailability in
agricultural soil. Geoderma, 206, 32–39. Retrieved from http://www.sciencedirect.com/
science/article/pii/S0016706113001365
Zheng, Q.-f., et al. (2014). Study on Structural Properties of Biochar under Different Materials
and Carbonized by FTIR. Spectroscopy and Spectral Analysis, 34, 962-966. Retrieved
from https://www.researchgate.net/publication/
263534855_Study_on_Structural_Properties_of_Biochar_under_Different_Materials_an
d_Carbonized_by_FTIR
Zheng, R., Chen, Z., Cai, C., Tie, B., Liu, X., Reid, B. J., . . . Baltrėnaitė, E. (2015). Mitigating
heavy metal accumulation into rice (Oryza sativa L.) using biochar amendment — a field
experiment in Hunan, China. Environmental Science and Pollution Research, 22(14),
11097-11008. doi:10.1007/s11356-015-4268-2
Zheng, W., Guo, M. X., Chow, T., Bennett, D. N., & Rajagopalan, N. (2010). Sorption properties
of greenwaste biochar for two triazine pesticides. Journal of Hazardous Materials,
181(1-3), 121-126. doi:10.1016/j.jhazmat.2010.04.103
Zheng, Y., Tang, Q., Wang, T., & Wang, J. (2015). Lumping Strategy in Kinetic Modeling of
Vacuum Pyrolysis of Plant Oil Asphalt. Energy & Fuels, 29(3), 1729 - 1734. doi:10.1021/
ef502530q
Zhi-dan, W., et al. (2014). Application of Biochar for Tea Plantation. Fujian Journal of Agricultural
Sciences, 2014(06). Retrieved from http://www.fjnyxb.cn/CN/abstract/abstract2453.shtml
Zhi-hui, Y., et al. (2013). Cr(III) adsorption by sugarcane pulp residue and biochar. J. Cent.
South Univ., 20, 1319-1325. Retrieved from http://edu.zndxzk.com.cn/down/
2013/05_znen/24-p1319-e122108.pdf
Zhi-lin, F., et al. . (2006). Experimental Study of NOReduction through Reburning of Biogas.
Energy Fuels, 20(2), 579–582. Retrieved from http://pubs.acs.org/doi/abs/10.1021/
ef050198e
Zhongyang, L., et al. (2015). Influences of biochars on growth, yield, water use efficiency and
root morphology of winter wheat. Transactions of the Chinese Society of Agricultural
Engineering, 31(12), 119-124. Retrieved from http://web.b.ebscohost.com/abstract?
direct=true&profile=ehost&scope=site&authtype=crawler&jrnl=10026819&AN=10355092
9&h=cl96P8STUPVmVPY4eEfYXQMqa5eclofNN5Omf826H1Wt9zhCGnBmTZ%2fuWY
RrbAcgz3EnnYfVWzmiWIRNfQUL2g%3d%3d&crl=c&resultNs=AdminWebAuth&resultL
ocal=E
Zhongyi, Q., & Changjian, L. (2015). The Effect of Biochar with Different Content on Soil
Hydraulic Conductivity. Inicio, 19(3), 41. Retrieved from http://www.fagro.edu.uy/
~agrociencia/index.php/directorio/article/view/1103
Zhou, F., Wang, H., Fang, S. e., Zhang, W., & Qiu, R. (2015). Pb(II), Cr(VI) and atrazine sorption
behavior on sludge-derived biochar: role of humic acids. Environmental Science and
Pollution Research, 22(20), 16031-16039. doi:10.1007/s11356-015-4818-7
Zhou, H., Liu, K., Li, H., Cao, M., Fu, J., Gao, X., . . . Liu, M. (2019). Recent advances in
different-dimension electrocatalysts for carbon dioxide reduction. Journal of Colloid and
Interface Science, 550, 17-47. doi:https://doi.org/10.1016/j.jcis.2019.04.077
Zhou, L., Liu, F., Liu, Q., Fortin, C., Tan, Y., Huang, L., & Campbell, P. G. C. Aluminum increases
net carbon fixation by marine diatoms and decreases their decomposition: Evidence for
the iron–aluminum hypothesis. Limnology and Oceanography, n/a(n/a). doi:https://
doi.org/10.1002/lno.11784
Zhou, S., & Flynn, P. C. (2005). Geoengineering Downwelling Ocean Currents: A Cost
Assessment. Climatic Change, 71(1), 203-220. doi:10.1007/s10584-005-5933-0
Zhou, W., Chen, P., Min, M., Ma, X., Wang, J., Griffith, R., . . . Ruan, R. (2014). Environment-
enhancing algal biofuel production using wastewaters. Renewable and Sustainable
Energy Reviews, 36, 256-269. doi:https://doi.org/10.1016/j.rser.2014.04.073
Zhou, W., Wang, J., Chen, P., Ji, C., Kang, Q., Lu, B., . . . Ruan, R. (2017). Bio-mitigation of
carbon dioxide using microalgal systems: Advances and perspectives. Renewable and
Sustainable Energy Reviews, 76, 1163-1175. doi:https://doi.org/10.1016/
j.rser.2017.03.065
Zhou, X. P., Wang, F., Hu, H. W., Yang, L., Guo, P. H., & Xiao, B. (2011). Assessment of
sustainable biomass resource for energy use in China. Biomass & Bioenergy, 35(1),
1-11. doi:10.1016/j.biombioe.2010.08.006
Zhou, Y., Gao, B., Zimmerman, A. R., & Cao, X. (2014). Biochar-supported zerovalent iron
reclaims silver from aqueous solution to form antimicrobial nanocomposite.
Chemosphere, 117, 801 - 805. doi:10.1016/j.chemosphere.2014.10.057
Zhou, Z., Du, C., Li, T., Shen, Y., Zeng, Y., Du, J., & Zhou, J. (2015). Biodegradation of a
biochar-modified waterborne polyacrylate membrane coating for controlled-release
fertilizer and its effects on soil bacterial community profiles. Environmental Science and
Pollution Research, 22(11), 8672-8682. doi:10.1007/s11356-014-4040-z
Zhou, Z., Xu, X., Bi, Z., Li, L., Li, B., & Xiong, Z. (2016). Soil concentration profiles and diffusion
and emission of nitrous oxide influenced by the application of biochar in a rice-wheat
annual rotation system. Environmental Science and Pollution Research, 23(8),
7949-7961. doi:10.1007/s11356-015-5929-x
Zhou, Z., Yuan, J., & Hu, M. (2014). Adsorption of ammonium from aqueous solutions on
environmentally friendly barbecue bamboo charcoal: Characteristics and kinetic and
thermodynamic studies. Environmental Progress & Sustainable Energy, 34(3), 655-662.
doi:10.1002/ep.12036
Zhu, K., Zhang, J., Niu, S., Chu, C., & Luo, Y. (2018). Limits to growth of forest biomass carbon
sink under climate change. Nature Communications, 9(1), 2709. doi:10.1038/
s41467-018-05132-5
Zhu, L., Jiang, P., & Fan, J. (2015). Comparison of carbon capture IGCC with chemical-looping
combustion and with calcium-looping process driven by coal for power generation.
Chemical Engineering Research and Design, 104(Supplement C), 110-124. doi:https://
doi.org/10.1016/j.cherd.2015.07.027
Zhu, L., Lei, H., Wang, L., Yadavalli, G., Zhang, X., Wei, Y., . . . Ahring, B. (2015). Biochar of
corn stover: Microwave-assisted pyrolysis condition induced changes in surface
functional groups and characteristics. Journal of Analytical and Applied Pyrolysis, 115,
149-156. doi:10.1016/j.jaap.2015.07.012
Zhu, L. D., Hiltunen, E., Antila, E., Zhong, J. J., Yuan, Z. H., & Wang, Z. M. (2014). Microalgal
biofuels: Flexible bioenergies for sustainable development. Renewable and Sustainable
Energy Reviews, 30, 1035-1046. doi:https://doi.org/10.1016/j.rser.2013.11.003
Zhu, L. J., Yin, S., Yin, Q., Wang, H., & Wang, S. (2015). Biochar: a new promising catalyst
support using methanation as a probe reaction. Energy Science & Engineering, 3(2),
126-134. doi:10.1002/ese3.58
Zhu, L.-x., Xiao, Q., Shen, Y.-f., & Li, S.-q. (2017). Effects of biochar and maize straw on the
short-term carbon and nitrogen dynamics in a cultivated silty loam in China.
Environmental Science and Pollution Research, 24(1), 1019-1029. doi:10.1007/
s11356-016-7829-0
Zhu, M., et al. (2015). An Experimental Investigation into the Ignition and Combustion
Characteristics of Single Droplets of Biochar Slurry Fuels. Energy Procedia, 75, 180 -
185. doi:10.1016/j.egypro.2015.07.286
Zhu, P., Zhuang, Q., Eva, J., & Bernacchi, C. (2017). Importance of biophysical effects on
climate warming mitigation potential of biofuel crops over the conterminous United
States. GCB Bioenergy, 9(3), 577-590. doi:10.1111/gcbb.12370
Zhu, Q., Peng, X., & Huang, T. (2015). Contrasted Effects of Biochar on Maize Growth and N
Use Efficiency Depending on Soil ConditionsAbstract. International Agrophysics, 29(2).
doi:10.1515/intag-2015-0023
Zhu, Q., Wu, J., Wang, L., Yang, G., & Zhang, X. (2015). Effect of Biochar on Heavy Metal
Speciation of Paddy Soil. Water, Air, & Soil Pollution, 226(12). doi:10.1007/
s11270-015-2680-3
Zhu, Q., Wu, J., Wang, L., Yang, G., & Zhang, X. (2016). Adsorption Characteristics of Pb2+
onto Wine Lees-Derived Biochar. Bulletin of Environmental Contamination and
Toxicology, 97(2), 294-299. doi:10.1007/s00128-016-1760-4
Zhu, W., Fusseis, F., Lisabeth, H., Xing, T., Xiao, X., De Andrade, V., & Karato, S.-i. (2016).
Experimental evidence of reaction-induced fracturing during olivine carbonation.
Geophysical Research Letters, 43(18), 9535-9543. doi:10.1002/2016gl070834
Zhu, X., Liu, Y., Li, L., Shi, Q., Hou, J., Zhang, R., . . . Chen, J. (2019). Nonthermal air plasma
dehydration of hydrochar improves its carbon sequestration potential and dissolved
organic matter molecular characteristics. Science of The Total Environment, 659,
655-663. doi:https://doi.org/10.1016/j.scitotenv.2018.12.399
Zhuang, Q., & Clements, B. (2017). Synergistic Effect on CO2 Capture by Binary Solvent
System. In Y. Yun (Ed.), Recent Advances in Carbon Capture and Storage (pp. Ch. 06).
Rijeka: InTech.
Zhuang, Q., Clements, B., & Li, B. (2017). Emerging New Types of Absorbents for
Postcombustion Carbon Capture. In Y. Yun (Ed.), Recent Advances in Carbon Capture
and Storage (pp. Ch. 04). Rijeka: InTech.
Zickfeld, K. (2020). Guest post: Why CO2 removal is not equal and opposite to reducing
emissions. Carbon Brief. Retrieved from https://www.carbonbrief.org/guest-post-why-
co2-removal-is-not-equal-and-opposite-to-reducing-emissions
Zickfeld, K., Azevedo, D., Mathesius, S., & Matthews, H. D. (2021). Asymmetry in the climate–
carbon cycle response to positive and negative CO2 emissions. Nature Climate Change.
doi:10.1038/s41558-021-01061-2
Zickfeld, K., MacDougall, A., H. , & Matthews, H. D. (2016). On the proportionality between
global temperature change and cumulative CO 2 emissions during periods of net
negative CO 2 emissions. Environmental Research Letters, 11(5), 055006. Retrieved
from http://stacks.iop.org/1748-9326/11/i=5/a=055006
Ziegler, A. D., Phelps, J., Yuen, J. Q. I., Webb, E. L., Lawrence, D., Fox, J. M., . . . Koh, L. P.
(2012). Carbon outcomes of major land-cover transitions in SE Asia: great uncertainties
and REDD+ policy implications. Global Change Biology, 18(10), 3087-3099. doi:10.1111/
j.1365-2486.2012.02747.x
Ziegler, M., Diz, P., Hall, I. R., & Zahn, R. (2013). Millennial-scale changes in atmospheric CO2
levels linked to the Southern Ocean carbon isotope gradient and dust flux. Nature
Geoscience, 6, 457. doi:10.1038/ngeo1782
https://www.nature.com/articles/ngeo1782#supplementary-information
Zielińska, A., & Oleszczuk, P. (2015). The conversion of sewage sludge into biochar reduces
polycyclic aromatic hydrocarbon content and ecotoxicity but increases trace metal
content. Biomass and Bioenergy, 75, 235 - 244. doi:10.1016/j.biombioe.2015.02.019
Zielińska, A., & Oleszczuk, P. (2015). Evaluation of sewage sludge and slow pyrolyzed sewage
sludge-derived biochar for adsorption of phenanthrene and pyrene. Bioresource
Technology, 192, 618 - 626. doi:10.1016/j.biortech.2015.06.032
Zielińska, A., Oleszczuk, P., Charmas, B., Skubiszewska-Zięba, J., & Pasieczna-Patkowska, S.
(2015). Effect of sewage sludge properties on the biochar characteristic. Journal of
Analytical and Applied Pyrolysis, 112, 201-213. doi:10.1016/j.jaap.2015.01.025
Zilberman, D., et al. (2012). The Impact of Biofuels on Commodity Food Prices: Assessment of
Findings. American Journal of Agricultural Economics, 95(2), 275-281. Retrieved from
https://academic.oup.com/ajae/article/95/2/275/69530/The-Impact-of-Biofuels-on-
Commodity-Food-Prices
Zimmerman, A. R. (2010). Abiotic and Microbial Oxidation of Laboratory-Produced Black Carbon
(Biochar). Environmental Science & Technology, 44(4), 1295-1301. Retrieved from http://
pubs.acs.org/doi/abs/10.1021/es903140c
Zimmerman, A. R., & Gao, B. (2013). The Stability of Biochar in the Environment. In Biochar
and Soil Biota. Boca Raton, FL.: CRC Press.
Zimmerman, A. R., Gao, B., & Ahn, M.-Y. (2011). Positive and negative carbon mineralization
priming effects among a variety of biochar-amended soils. Soil Biology and Biochemistry,
43(6), 1169-1179. doi:doi:10.1016/j.soilbio.2011.02.005
Zimmermann, M., et al. (2012). Rapid degradation of pyrogenic carbon. Global Change Biology,
18(11), 3306-3316. doi:10.1111/j.1365-2486.2012.02796.x
Zinke, L. (2021). Wearing down olivine. Nature Reviews Earth & Environment, 2(1), 8-8.
doi:10.1038/s43017-020-00132-w
Ziolkowska, J. R. (2020). Chapter 1 - Biofuels technologies: An overview of feedstocks,
processes, and technologies. In J. Ren, A. Scipioni, A. Manzardo, & H. Liang (Eds.),
Biofuels for a More Sustainable Future (pp. 1-19): Elsevier.
Zoback, M. D., & Gorelick, S. M. (2012). Earthquake triggering and large-scale geologic storage
of carbon dioxide. Proceedings of the National Academy of Sciences, 109(26),
10164-10168. doi:10.1073/pnas.1202473109
Zolfi-Bavariani, M., Ronaghi, A., Ghasemi-Fasaei, R., & Yasrebi, J. (2016). Influence of poultry
manure–derived biochars on nutrients bioavailability and chemical properties of a
calcareous soil. Archives of Agronomy and Soil Science, 62(11), 1578-1591.
doi:10.1080/03650340.2016.1151976
Zomer, R. J., Bossio, D. A., Sommer, R., & Verchot, L. V. (2017). Global Sequestration Potential
of Increased Organic Carbon in Cropland Soils. Scientific Reports, 7(1), 15554.
doi:10.1038/s41598-017-15794-8
Zomer, R. J., Neufeldt, H., Xu, J., Ahrends, A., Bossio, D., Trabucco, A., . . . Wang, M. (2016).
Global Tree Cover and Biomass Carbon on Agricultural Land: The contribution of
agroforestry to global and national carbon budgets. Nature Scientific Reports, 6, 1-12.
doi:10.1038/srep29987
http://dharmasastra.live.cf.private.springer.com/articles/srep29987#supplementary-information
Zomer, R. J., Trabucco, A., Bossio, D. A., & Verchot, L. V. (2008). Climate change mitigation: A
spatial analysis of global land suitability for clean development mechanism afforestation
and reforestation. Agriculture, Ecosystems & Environment, 126(1), 67-80. doi:https://
doi.org/10.1016/j.agee.2008.01.014
Zong, Y., Chen, D., & Lu, S. (2014). Impact of biochars on swell-shrinkage behavior, mechanical
strength, and surface cracking of clayey soil. Journal of Plant Nutrition and Soil Science,
177(6), 920-926. doi:10.1002/jpln.201300596
Zong, Y., Xiao, Q., & Lu, S. (2015). Acidity, water retention, and mechanical physical quality of a
strongly acidic Ultisol amended with biochars derived from different feedstocks. Journal
of Soils and Sediments, 16(1), 177-190. doi:10.1007/s11368-015-1187-2
ZongLu, Y., Min, L., LiXin, Z., HaiBo, M., Hongbin, C., & Shulin, H. (2015). Design and
experiment on biochar second-stage cooling system with spiral-flow. Transactions of the
Chinese Society of Agricultural Engineering, 31(13), 221-228. Retrieved from http://
web.b.ebscohost.com/abstract?
direct=true&profile=ehost&scope=site&authtype=crawler&jrnl=10026819&AN=10891523
0&h=gMudaxMPeuAyr2R1BMbns87vJyPSJeFeEfcjwIJs2%2bHgU3VmoSb9ssjDkvtP0di
SAUVpNMjzfhr2kCQrikQYtg%3d%3d&crl=c&resultNs=AdminWebAuth&resultLocal=E
Zou, C.-j., et al. (2015). Regulation of biochar on matrix enzyme activities and microorganisms
around cucumber roots under continuous cropping. Yingyong Shengtai Xuebao, 26(6),
1772-1778. Retrieved from http://web.b.ebscohost.com/abstract?
direct=true&profile=ehost&scope=site&authtype=crawler&jrnl=10019332&AN=10343409
4&h=FFBRbXc1y4rhrSKAmpJjng49LKKYw2pZTjPUDmdWqT8Mt7rJARMvo4eSFd%2b
GFvwNhJ2vDD8GGNX9HAdPyYcB7A%3d%3d&crl=c&resultNs=AdminWebAuth&result
Local=E
Zubrik, A., et al. (2015). Synthesis of Magnetic Materials from Natural Carbon Precursors a
Review. Journal of the Polish Mineral Engineering Society, 15(2), 127-130. Retrieved
from http://www.potopk.republika.pl/Full_text/im%202-2014-a22.pdf
Zuidema, L. (2020). State aid for solid biomass: The case for improved scrutiny. Retrieved from
https://cadmus.eui.eu/handle/1814/68737?
utm_source=Fern+Global+List&utm_campaign=e9d77d75c5-
EMAIL_CAMPAIGN_4_10_2019_9_12_COPY_04&utm_medium=email&utm_term=0_a
3733965c2-e9d77d75c5-328541189
Zukowski, D. (2017). Carbon Capture Breakthrough in India Converts CO2 Into Baking Powder.
Retrieved from http://www.ecowatch.com/carbon-capture-india-baking-
soda-2177070984.html
Zumbach, L. (2020). United Airlines making investments to be carbon neutral by 2050. ‘It’s just
not realistic to think we can plant enough trees.’. Chicago Tribune. Retrieved from
https://www.chicagotribune.com/business/ct-biz-united-airlines-cut-emissions-carbon-
capture-20201210-zrxpwseytbd5fakmxjj7pi544y-story.html
Zunsheng, J., Lifa, Z., Runmin, G., Tingting, L., Hong, W., Wang, H., . . . Quillinan, S. (2014).
Opportunity and Challenges of Integrated Enhanced Oil Recovery Using CO2 Flooding
with Geological CO2 Storage in the Ordos Basin, China. Energy Procedia, 63,
7761-7771. doi:https://doi.org/10.1016/j.egypro.2014.11.810
Zuo, X., Chen, M., Fu, D., & Li, H. (2016). The formation of alpha-FeOOH onto hydrothermal
biochar through H2O2 and its photocatalytic disinfection. Chemical Engineering Journal,
294, 202 - 209. doi:10.1016/j.cej.2016.02.116
Zuo, X., Liu, Z., & Chen, M. (2016). Effect of H2O2 concentrations on copper removal using the
modified hydrothermal biochar. Bioresource Technology, 207, 262 - 267. doi:10.1016/
j.biortech.2016.02.032
Zurich, E. (2019). How trees could help to save the climate* [Press release]. Retrieved from
https://ethz.ch/en/news-and-events/eth-news/news/2019/07/how-trees-could-save-the-
climate.html
Zurich, E. (2021). Climate action potential in waste incineration plants [Press release]. Retrieved
from https://www.eurekalert.org/pub_releases/2021-05/ez-ca050321.php
Zvomuya, F., & Laskosky, J. (2014). Organic Amendment Effects on Greenhouse Gas
Emissions from Long-Term Stockpiled Soils. American Geophysical Union, Fall Meeting.
Retrieved from http://adsabs.harvard.edu/abs/2014AGUFM.B41A0003Z
Zwart, D. C., & Kim, S.-H. (2012). Biochar Amendment Increases Resistance to Stem Lesions
Caused by Phytophthora spp. in Tree Seedlings. Hort Science, 47(12), 1736-1740.
Retrieved from http://hortsci.ashspublications.org/content/47/12/1736.full
Zwetsloot, M. (2013). Plant Available Phosphorus From Bone Char And Biochar Additions In A
Phosphorus-Fixing Soil. (Master of Science). Cornell University, Retrieved from http://
ecommons.library.cornell.edu/handle/1813/34315
Zwetsloot, M. J., Lehmann, J., & Dawit, S. (2014). Recycling slaughterhouse waste into
fertilizer: how do pyrolysis temperature and biomass additions affect phosphorus
availability and chemistry? Journal of the Science of Food and Agriculture, 95(2),
281-288. doi:10.1002/jsfa.6716
Zyga, L. (2016). Carbon dioxide captured from air can be directly converted into methanol fuel.
Phys.org. Retrieved from https://phys.org/news/2016-01-carbon-dioxide-captured-air-
methanol.html